1
|
Huang S, Wang Y, Liu S, Li H, Yang M, Fang Y, Xiao Q. Triblock polyadenine-based electrochemical aptasensor for ultra-sensitive detection of carcinoembryonic antigen via exonuclease III-assisted target recycling and hybridization chain reaction. Bioelectrochemistry 2024; 159:108749. [PMID: 38823375 DOI: 10.1016/j.bioelechem.2024.108749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/18/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024]
Abstract
Carcinoembryonic antigen (CEA), a key colon biomarker, demands a precise detection method for cancer diagnosis and prognosis. This study introduces a novel electrochemical aptasensor using a triblock polyadenine probe for ultra-sensitive detection of CEA. The method leverages Exonuclease III (Exo III)-assisted target recycling and hybridization chain reaction. The triblock polyadenine probe self-assembles on the bare gold electrode through the strong affinity between adenine and gold electrode, blocking CEA diffusion and providing a large immobilization surface. CEA binding to hairpin probe 1 (HP1), followed by the hybridization between HP1 and hairpin probe 2 (HP2), triggers DNA cleavage by Exo III, amplifying the signal via a hybridization chain reaction and producing numerous dsDNA walkers that generates a dramatic electrochemical impedance signal. Under optimized conditions, the aptasensor achieved two ultra-low detection limits: 0.39 ag∙mL-1 within the concentration range of 5 ag∙mL-1 to 5 × 106 ag∙mL-1, and 1.5 ag∙mL-1 within the concentration range of 5 × 106 ag∙mL-1 to 1 × 1010 ag∙mL-1. Its performance in human serum samples meets the practical standards, offering a promising new tool for ultrasensitive tumor marker detection, potentially revolutionizing early cancer diagnosis.
Collapse
Affiliation(s)
- Shan Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Yali Wang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Shuai Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Huihao Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Mingli Yang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Yi Fang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China.
| |
Collapse
|
2
|
Dual-signal amplified electrochemical biosensor based on eATRP and PEI for early detection of lung cancer. Bioelectrochemistry 2022; 148:108224. [PMID: 36029762 DOI: 10.1016/j.bioelechem.2022.108224] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022]
Abstract
Carcinoembryonic antigen (CEA), a lung cancer marker with high sensitivity and specificity, plays vital roles in the early diagnosis of lung cancer. In this paper, an electrochemical biosensor for highly sensitive detection of CEA was constructed, which based on dual signal amplification of electrically mediated atom transfer radical polymerization (eATRP) and polyethyleneimine (PEI) for the first time. Firstly, CEA was captured in a specific recognition manner with CEA aptamer 1 (Apt1), which self-assembled on the electrode via "Au-S" bond. After that, CEA aptamer 2-PEI (Apt2-PEI) was recognized by CEA to form an Apt-antigen-Apt sandwich structure. Next, multiple initiation sites were introduced for the eATRP reaction by the amide reaction. Finally, numerous electroactive monomers, ferrocene methacrylate (FMMA), were grafted onto the modified electrode by eATRP. Under the optimized conditions, there was a wide linear detection range of 10-3 ∼ 102 ng·mL-1, and the limit of detection (LOD) was 70.17 fg·mL-1. Compared to other reported sensors, this electrochemical biosensor used a simpler and more environmentally friendly eATRP, and the use of PEI increased the electron transfer rate. Moreover, the biosensor showed superior analytical performance in the clinical serums and has great promise for early lung cancer diagnosis applications.
Collapse
|
3
|
Ling M, Luo N, Cui L, Cao Y, Ning X, Sun J, Xu X, He S. On-bead DNA synthesis triggered by allosteric probe for detection of carcinoembryonic antigen. Mikrochim Acta 2022; 189:305. [PMID: 35915288 PMCID: PMC9342938 DOI: 10.1007/s00604-022-05404-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/03/2022] [Indexed: 12/02/2022]
Abstract
Sensitive quantification of protein biomarkers is highly desired for clinical diagnosis and treatment. Yet, unlike DNA/RNA which can be greatly amplified by PCR/RT-PCR, the amplification and detection of trace amount of proteins remain a great challenge. Here, we combined allosteric probe (AP) with magnetic bead (MB) for assembling an on-bead DNA synthesis system (named as APMB) to amplify protein signals. The AP is designed and conjugated onto the MB, enabling the protein biomarker to be separated and enriched. Once recognizing the biomarker, the AP alters its conformation to initiate DNA synthesis on beads for primary signal amplification. During the DNA synthesis, biotin-dATPs are incorporated into the newly synthesized DNA strands. Then, the biotin-labeled DNA specifically captures streptavidin (STR)–conjugated horseradish peroxidase (HRP), which is used to catalyze a colorimetric reaction for secondary signal amplification. By using carcinoembryonic antigen (CEA) as a protein model, the APMB can quantify protein biomarkers of as low as 0.01 ng/mL. The response values measured by APMB are linearly related to the protein concentrations in the range 0.05 to 20 ng/mL. Clinical examination demonstrated good practicability of the APMB in quantifying serum protein biomarker. The on-bead DNA synthesis could be exploited to improve protein signal amplification, thus facilitating protein biomarker detection of low abundance for early diagnosis.
Collapse
Affiliation(s)
- Min Ling
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Na Luo
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Lanyu Cui
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Yongqiang Cao
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Xueping Ning
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Jian Sun
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Xiaoping Xu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, People's Republic of China
| | - Shengbin He
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.
| |
Collapse
|
4
|
CRISPR/Cas12a-based electrochemical biosensor for highly sensitive detection of cTnI. Bioelectrochemistry 2022; 146:108167. [DOI: 10.1016/j.bioelechem.2022.108167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/23/2022] [Accepted: 05/16/2022] [Indexed: 12/16/2022]
|
5
|
Sousa DA, Carneiro M, Ferreira D, Moreira FTC, Sales MGFV, Rodrigues LR. Recent advances in the selection of cancer-specific aptamers for the development of biosensors. Curr Med Chem 2022; 29:5850-5880. [PMID: 35209816 DOI: 10.2174/0929867329666220224155037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/30/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022]
Abstract
An early diagnosis has the potential to greatly decrease cancer mortality. For that purpose, specific cancer biomarkers have been molecularly targeted by aptamer sequences to enable an accurate and rapid detection. Aptamer-based biosensors for cancer diagnostics are a promising alternative to those using antibodies, due to their high affinity and specificity to the target molecules and advantageous production. Synthetic nucleic acid aptamers are generated by in vitro Systematic Evolution of Ligands by Exponential enrichment (SELEX) methodologies that have been improved over the years to enhance the efficacy and to shorten the selection process. Aptamers have been successfully applied in electrochemical, optical, photoelectrochemical and piezoelectrical-based detection strategies. These aptasensors comprise a sensitive, accurate and inexpensive option for cancer detection being used as point-of-care devices. This review highlights the recent advances in cancer biomarkers, achievements and optimizations made in aptamer selection, as well as the different aptasensors developed for the detection of several cancer biomarkers.
Collapse
Affiliation(s)
- Diana A Sousa
- CEB- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- MIT-Portugal Program, Lisbon, Portugal
| | - Mariana Carneiro
- CEB- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- BioMark@ISEP, School of Engineering, Polytechnic of Porto, Porto, Portugal
| | - Débora Ferreira
- CEB- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- MIT-Portugal Program, Lisbon, Portugal
| | - Felismina T C Moreira
- CEB- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- BioMark@ISEP, School of Engineering, Polytechnic of Porto, Porto, Portugal
| | - Maria Goreti F V Sales
- CEB- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- MIT-Portugal Program, Lisbon, Portugal
- BioMark@UC, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Lígia R Rodrigues
- CEB- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| |
Collapse
|
6
|
Wang P, Ma H, Zhu Y, Feng W, Su M, Li S, Mao H. A new ratiometric electrochemical aptasensor for the sensitive detection of carcinoembryonic antigen based on exonuclease I-assisted target recycling and hybridization chain reaction amplification strategy. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Zhao F, Xie S, Li B, Zhang X. Functional nucleic acids in glycobiology: A versatile tool in the analysis of disease-related carbohydrates and glycoconjugates. Int J Biol Macromol 2022; 201:592-606. [PMID: 35031315 DOI: 10.1016/j.ijbiomac.2022.01.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/12/2022]
Abstract
As significant components of the organism, carbohydrates and glycoconjugates play indispensable roles in energy supply, cell signaling, immune modulation, and tumor cell invasion, and function as biomarkers since aberrance of them has been proved to be associated with the emergence and development of certain diseases. Functional nucleic acids (FNAs) have properties including easy-to-synthesize, good stability, good biocompatibility, low cost, and high programmability, they have attracted significant research attention and been incorporated into biosensors for detecting disease-related carbohydrates and glycoconjugates. This review summarizes the construction strategies and biosensing applications of FNAs-based biosensors in glycobiology in terms of target recognition and signal transduction. By illustrating the mechanisms and comparing the performances, the challenges and development opportunities in this area have been critically elaborated. We believe that this review will provide a better understanding of the role of FNAs in the analysis of disease-related carbohydrates and glycoconjugates, and inspire further discovery in fields that include glycobiology, chemical biology, clinical diagnosis, and drug development.
Collapse
Affiliation(s)
- Furong Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Siying Xie
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
8
|
Shabalina AV, Sharko DO, Glazyrin YE, Bolshevich EA, Dubinina OV, Kim AM, Veprintsev DV, Lapin IN, Zamay GS, Krat AV, Zamay SS, Svetlichnyi VA, Kichkailo AS, Berezovski MV. Development of Electrochemical Aptasensor for Lung Cancer Diagnostics in Human Blood. SENSORS 2021; 21:s21237851. [PMID: 34883850 PMCID: PMC8659852 DOI: 10.3390/s21237851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 02/04/2023]
Abstract
We describe the preparation and characterization of an aptamer-based electrochemical sensor to lung cancer tumor markers in human blood. The highly reproducible aptamer sensing layer with a high density (up to 70% coverage) on the gold electrode was made. Electrochemical methods and confocal laser scanning microscopy were used to study the stability of the aptamer layer structure and binding ability. A new blocking agent, a thiolated oligonucleotide with an unrelated sequence, was applied to fill the aptamer layer’s defects. Electrochemical aptasensor signal processing was enhanced using deep learning and computer simulation of the experimental data array. It was found that the combinations (coupled and tripled) of cyclic voltammogram features allowed for distinguishing between the samples from lung cancer patients and healthy candidates with a mean accuracy of 0.73. The capacitive component from the non-Faradic electrochemical impedance spectroscopy data indicated the tumor marker’s presence in a sample. These findings allowed for the creation of highly informative aptasensors for early lung cancer diagnostics.
Collapse
Affiliation(s)
- Anastasiia V. Shabalina
- Siberian Physical-Technical Institute, Tomsk State University, 634050 Tomsk, Russia; (A.V.S.); (D.O.S.); (E.A.B.); (O.V.D.); (A.M.K.); (I.N.L.); (V.A.S.)
| | - Darya O. Sharko
- Siberian Physical-Technical Institute, Tomsk State University, 634050 Tomsk, Russia; (A.V.S.); (D.O.S.); (E.A.B.); (O.V.D.); (A.M.K.); (I.N.L.); (V.A.S.)
| | - Yury E. Glazyrin
- Federal Research Center, Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science, 660036 Krasnoyarsk, Russia; (Y.E.G.); (D.V.V.); (G.S.Z.); (S.S.Z.)
- Laboratory of Biomolecular and Medical Technologies, Krasnoyarsk State Medical University Named after Prof. V.F. Voyno-Yasenetsky, 660022 Krasnoyarsk, Russia;
| | - Elena A. Bolshevich
- Siberian Physical-Technical Institute, Tomsk State University, 634050 Tomsk, Russia; (A.V.S.); (D.O.S.); (E.A.B.); (O.V.D.); (A.M.K.); (I.N.L.); (V.A.S.)
| | - Oksana V. Dubinina
- Siberian Physical-Technical Institute, Tomsk State University, 634050 Tomsk, Russia; (A.V.S.); (D.O.S.); (E.A.B.); (O.V.D.); (A.M.K.); (I.N.L.); (V.A.S.)
| | - Anastasiia M. Kim
- Siberian Physical-Technical Institute, Tomsk State University, 634050 Tomsk, Russia; (A.V.S.); (D.O.S.); (E.A.B.); (O.V.D.); (A.M.K.); (I.N.L.); (V.A.S.)
| | - Dmitry V. Veprintsev
- Federal Research Center, Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science, 660036 Krasnoyarsk, Russia; (Y.E.G.); (D.V.V.); (G.S.Z.); (S.S.Z.)
| | - Ivan N. Lapin
- Siberian Physical-Technical Institute, Tomsk State University, 634050 Tomsk, Russia; (A.V.S.); (D.O.S.); (E.A.B.); (O.V.D.); (A.M.K.); (I.N.L.); (V.A.S.)
| | - Galina S. Zamay
- Federal Research Center, Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science, 660036 Krasnoyarsk, Russia; (Y.E.G.); (D.V.V.); (G.S.Z.); (S.S.Z.)
- Laboratory of Biomolecular and Medical Technologies, Krasnoyarsk State Medical University Named after Prof. V.F. Voyno-Yasenetsky, 660022 Krasnoyarsk, Russia;
| | - Alexey V. Krat
- Laboratory of Biomolecular and Medical Technologies, Krasnoyarsk State Medical University Named after Prof. V.F. Voyno-Yasenetsky, 660022 Krasnoyarsk, Russia;
- Krasnoyarsk Regional Clinical Cancer Center Named after A.I. Kryzhanovsky, 660133 Krasnoyarsk, Russia
| | - Sergey S. Zamay
- Federal Research Center, Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science, 660036 Krasnoyarsk, Russia; (Y.E.G.); (D.V.V.); (G.S.Z.); (S.S.Z.)
- Laboratory of Biomolecular and Medical Technologies, Krasnoyarsk State Medical University Named after Prof. V.F. Voyno-Yasenetsky, 660022 Krasnoyarsk, Russia;
| | - Valery A. Svetlichnyi
- Siberian Physical-Technical Institute, Tomsk State University, 634050 Tomsk, Russia; (A.V.S.); (D.O.S.); (E.A.B.); (O.V.D.); (A.M.K.); (I.N.L.); (V.A.S.)
| | - Anna S. Kichkailo
- Federal Research Center, Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science, 660036 Krasnoyarsk, Russia; (Y.E.G.); (D.V.V.); (G.S.Z.); (S.S.Z.)
- Laboratory of Biomolecular and Medical Technologies, Krasnoyarsk State Medical University Named after Prof. V.F. Voyno-Yasenetsky, 660022 Krasnoyarsk, Russia;
- Correspondence: (A.S.K.); (M.V.B.)
| | - Maxim V. Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, AB K1N 6N5, Canada
- Correspondence: (A.S.K.); (M.V.B.)
| |
Collapse
|
9
|
Jiang J, Xia J, Zang Y, Diao G. Electrochemistry/Photoelectrochemistry-Based Immunosensing and Aptasensing of Carcinoembryonic Antigen. SENSORS (BASEL, SWITZERLAND) 2021; 21:7742. [PMID: 34833818 PMCID: PMC8624776 DOI: 10.3390/s21227742] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 11/19/2022]
Abstract
Recently, electrochemistry- and photoelectrochemistry-based biosensors have been regarded as powerful tools for trace monitoring of carcinoembryonic antigen (CEA) due to the fact of their intrinsic advantages (e.g., high sensitivity, excellent selectivity, small background, and low cost), which play an important role in early cancer screening and diagnosis and benefit people's increasing demands for medical and health services. Thus, this mini-review will introduce the current trends in electrochemical and photoelectrochemical biosensors for CEA assay and classify them into two main categories according to the interactions between target and biorecognition elements: immunosensors and aptasensors. Some recent illustrative examples are summarized for interested readers, accompanied by simple descriptions of the related signaling strategies, advanced materials, and detection modes. Finally, the development prospects and challenges of future electrochemical and photoelectrochemical biosensors are considered.
Collapse
Affiliation(s)
| | | | - Yang Zang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China; (J.J.); (J.X.); (G.D.)
| | | |
Collapse
|
10
|
A novel electrochemical aptamer biosensor based on tetrahedral DNA nanostructures and catalytic hairpin assembly for CEA detection. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
11
|
Malecka K, Mikuła E, Ferapontova EE. Design Strategies for Electrochemical Aptasensors for Cancer Diagnostic Devices. SENSORS 2021; 21:s21030736. [PMID: 33499136 PMCID: PMC7866130 DOI: 10.3390/s21030736] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
Improved outcomes for many types of cancer achieved during recent years is due, among other factors, to the earlier detection of tumours and the greater availability of screening tests. With this, non-invasive, fast and accurate diagnostic devices for cancer diagnosis strongly improve the quality of healthcare by delivering screening results in the most cost-effective and safe way. Biosensors for cancer diagnostics exploiting aptamers offer several important advantages over traditional antibodies-based assays, such as the in-vitro aptamer production, their inexpensive and easy chemical synthesis and modification, and excellent thermal stability. On the other hand, electrochemical biosensing approaches allow sensitive, accurate and inexpensive way of sensing, due to the rapid detection with lower costs, smaller equipment size and lower power requirements. This review presents an up-to-date assessment of the recent design strategies and analytical performance of the electrochemical aptamer-based biosensors for cancer diagnosis and their future perspectives in cancer diagnostics.
Collapse
Affiliation(s)
- Kamila Malecka
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Str. 10, 10-748 Olsztyn, Poland; (K.M.); (E.M.)
| | - Edyta Mikuła
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Str. 10, 10-748 Olsztyn, Poland; (K.M.); (E.M.)
| | - Elena E. Ferapontova
- Interdisciplinary Nanoscience Center (iNANO), Faculty of Science and Technology, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
- Correspondence: ; Tel.: +45-87156703
| |
Collapse
|
12
|
Lin X, Li S, Zhang B, Yang H, Zhang K, Huang H. An enzyme-free fluorescent biosensor for highly sensitive detection of carcinoembryonic antigen based on aptamer-induced entropy-driven circuit. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5496-5502. [PMID: 33150889 DOI: 10.1039/d0ay01326a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Carcinoembryonic antigen (CEA) is a disease biomarker, which can reflect the existence of tumors. The accurate detection of CEA in clinical samples is highly valuable for diagnosis of tumors. Herein, we developed an enzyme-free fluorescent biosensor for highly sensitive detection of CEA based on an aptamer-induced entropy-driven circuit. The aptamer hairpin specifically bound to CEA to expose the locked domain. Then, the exposed domain could trigger disassembly of multiple fluorophore strands from the three-strand complexes with the aid of fuel strands, leading to the production of remarkable amplified fluorescent signals. The one-step and homogeneous method exhibited high specificity and a wide linear range from 10 pg mL-1 to 500 ng mL-1 with a low limit of detection of 4.2 pg mL-1. What's more, the whole detection process could be performed within 45 min and did not involve the use of any protein enzymes and antibodies. The developed strategy could also be applied to detect CEA in clinical samples with satisfactory results. Therefore, the strategy is an alternative sensing method for the detection of CEA.
Collapse
Affiliation(s)
- Xiaojuan Lin
- Department of Clinical Laboratory, The Third Hospital of Xingtai, Xingtai, Hebei 054100, China.
| | | | | | | | | | | |
Collapse
|