1
|
Alcaraz A, Nieva JL. Viroporins: discovery, methods of study, and mechanisms of host-membrane permeabilization. Q Rev Biophys 2025; 58:e1. [PMID: 39806799 DOI: 10.1017/s0033583524000192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The 'Viroporin' family comprises a number of mostly small-sized, integral membrane proteins encoded by animal and plant viruses. Despite their sequence and structural diversity, viroporins share a common functional trend: their capacity to assemble transmembrane channels during the replication cycle of the virus. Their selectivity spectrum ranges from low-pH-activated, unidirectional proton transporters, to size-limited permeating pores allowing passive diffusion of metabolites. Through mechanisms not fully understood, expression of viroporins facilitates virion assembly/release from infected cells, and subverts the cell physiology, contributing to cytopathogenicity. Compounds that interact with viroporins and interfere with their membrane-permeabilizing activity in vitro, are known to inhibit virus production. Moreover, viroporin-defective viruses comprise a source of live attenuated vaccines that prevent infection by notorious human and livestock pathogens. This review dives into the origin and evolution of the viroporin concept, summarizes some of the methodologies used to characterize the structure-function relationships of these important virulence factors, and attempts to classify them on biophysical grounds attending to their mechanisms of ion/solute transport across membranes.
Collapse
Affiliation(s)
- Antonio Alcaraz
- Laboratory of Molecular Biophysics, Department of Physics, University Jaume I, Castellón, Spain
| | - José L Nieva
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|
2
|
Rojas-Palomino J, Altuna-Alvarez J, González-Magaña A, Queralt-Martín M, Albesa-Jové D, Alcaraz A. Electrophysiological dissection of the ion channel activity of the Pseudomonas aeruginosa ionophore protein toxin Tse5. Chem Phys Lipids 2025; 267:105472. [PMID: 39778700 DOI: 10.1016/j.chemphyslip.2025.105472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/19/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
We present an in-depth electrophysiological analysis of Tse5, a pore-forming toxin (PFT) delivered by the type VI secretion system (T6SS) of Pseudomonas aeruginosa. The T6SS is a sophisticated bacterial secretion system that injects toxic effector proteins into competing bacteria or host cells, providing a competitive advantage by disabling other microbes and modulating their environment. Our findings highlight the dependency of Tse5 insertion on membrane charge and electrolyte concentration, suggesting an in vivo effect from the periplasmic space. Conductance and selectivity experiments reveal a predominant and reproducible pore architecture of Tse5, characterized by a weak cation selectivity without chemical specificity. pH titration experiments suggest a proteolipidic pore structure influenced by both protein and lipid charges, a hypothesis further supported by experiments involving engineered mutants of Tse5 with altered glycine zippers. These results significantly advance our understanding of Tse5's molecular mechanism of toxicity, paving the way for potential applications in biosensing and macromolecular delivery.
Collapse
Affiliation(s)
- Jessica Rojas-Palomino
- Laboratory of Molecular Biophysics, Department of Physics, University Jaume I, Castellón 12071, Spain
| | - Jon Altuna-Alvarez
- Instituto Biofisika (CSIC, UPV/EHU), Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB) and Departamento de Bioquímica y Biología Molecular, University of the Basque Country, Leioa 48940, Spain
| | - Amaia González-Magaña
- Instituto Biofisika (CSIC, UPV/EHU), Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB) and Departamento de Bioquímica y Biología Molecular, University of the Basque Country, Leioa 48940, Spain
| | - María Queralt-Martín
- Laboratory of Molecular Biophysics, Department of Physics, University Jaume I, Castellón 12071, Spain
| | - David Albesa-Jové
- Instituto Biofisika (CSIC, UPV/EHU), Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB) and Departamento de Bioquímica y Biología Molecular, University of the Basque Country, Leioa 48940, Spain; Ikerbasque, Basque Foundation for Science, Bilbao 48013, Spain.
| | - Antonio Alcaraz
- Laboratory of Molecular Biophysics, Department of Physics, University Jaume I, Castellón 12071, Spain.
| |
Collapse
|
3
|
Hu J, Wang Z, Jiang D, Gao M, Dong L, Liu M, Song Z. pH-induced changes in IgE molecules measured by atomic force microscopy. Microsc Res Tech 2024; 87:2875-2883. [PMID: 39044615 DOI: 10.1002/jemt.24660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/23/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024]
Abstract
The environment surrounding proteins is tightly linked to its dynamics, which can significantly influence the conformation of proteins. This study focused on the effect of pH conditions on the ultrastructure of Immunoglobulin E (IgE) molecules. Herein, the morphology, height, and area of IgE molecules incubated at different pH were imaged by atomic force microscopy (AFM), and the law of IgE changes induced by pH value was explored. The experiment results indicated that the morphology, height and area of IgE molecules are pH dependent and highly sensitive. In particular, IgE molecules were more likely to present small-sized ellipsoids under acidic conditions, while IgE molecules tend to aggregate into large-sized flower-like structures under alkaline conditions. In addition, it was found that the height of IgE first decreased and then increased with the increase of pH, while the area of IgE increased with the increase of pH. This work provides valuable information for further study of IgE, and the methodological approach used in this study is expected to developed into AFM to investigate the changes of IgE molecules mediated by other physical and chemical factors. RESEARCH HIGHLIGHTS: The ultrastructure of IgE molecules is pH dependent and highly sensitive. IgE molecules were tend to present small-sized ellipsoids under acidic pH. Alkaline pH drives IgE self-assembly into flower-like aggregates.
Collapse
Affiliation(s)
- Jing Hu
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
| | - Zuobin Wang
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- JR3CN & IRAC, University of Bedfordshire, Luton, UK
| | - Dayong Jiang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, China
| | - Mingyan Gao
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
| | - Litong Dong
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
| | - Mengnan Liu
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
| | - Zhengxun Song
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
| |
Collapse
|
4
|
Devantier K, Kjær VMS, Griffin S, Kragelund BB, Rosenkilde MM. Advancing the field of viroporins-Structure, function and pharmacology: IUPHAR Review 39. Br J Pharmacol 2024; 181:4450-4490. [PMID: 39224966 DOI: 10.1111/bph.17317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 09/04/2024] Open
Abstract
Viroporins possess important potential as antiviral targets due to their critical roles during virus life cycles, spanning from virus entry to egress. Although the antiviral amantadine targets the M2 viroporin of influenza A virus, successful progression of other viroporin inhibitors into clinical use remains challenging. These challenges relate in varying proportions to a lack of reliable full-length 3D-structures, difficulties in functionally characterising individual viroporins, and absence of verifiable direct binding between inhibitor and viroporin. This review offers perspectives to help overcome these challenges. We provide a comprehensive overview of the viroporin family, including their structural and functional features, highlighting the moldability of their energy landscapes and actions. To advance the field, we suggest a list of best practices to aspire towards unambiguous viroporin identification and characterisation, along with considerations of potential pitfalls. Finally, we present current and future scenarios of, and prospects for, viroporin targeting drugs.
Collapse
Affiliation(s)
- Kira Devantier
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Viktoria M S Kjær
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stephen Griffin
- Leeds Institute of Medical Research, St James' University Hospital, School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Alvero-González LM, Aguilella-Arzo M, Perini DA, Bergdoll LA, Queralt-Martín M, Alcaraz A. Supralinear scaling behavior of ionic transport in membrane nanochannels regulated by outer-surface charges. NANOSCALE ADVANCES 2024:d4na00540f. [PMID: 39478995 PMCID: PMC11515935 DOI: 10.1039/d4na00540f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024]
Abstract
The peculiarity of ion transport at the nanoscale is revealed through electrophysiological studies of two biological ion channels: the cation-selective bacterial porin-OmpF and the mitochondrial voltage-dependent anion channel (VDAC). We provide evidence of an unprecedented scaling behavior in the power-law relationship between conductivity and concentration G ∼ c α with α > 1 when functional groups attached to the pore inner wall have opposite charges to those located in the nanochannel's outer surface. Indeed, we find α ∼ 1.4 both for OmpF in positively charged membranes and for VDAC in negatively charged ones. The experiments are analyzed using different levels of theoretical models, starting with an equivalent circuit where total electrical current is described as the sum of ionic currents. Subsequently, we show that electrical circuits incorporating simplifying assumptions such as local electroneutrality and Donnan equilibrium consistently account for the measured G-c relationships yielding extremely similar results to the numerical results of structure-based Poisson-Nernst-Planck equations computed without these assumptions. We demonstrate that unexpected scaling exponents do not correspond to deviations from these classical equilibrium/electroneutrality assumptions, but rather to the structural features of the pore that are not included in oversimplified models in terms of shape and/or charge distribution. In contrast to the predictions of widely accepted models, we demonstrate both experimentally and theoretically that the conductance of ion-selective nanochannels can be drastically reduced in dilute solutions through a mechanism in which membrane charges and pore charges do not compensate for each other but act as interacting sites of opposite charge. Our insights into the critical role of external surface charges aim to open new conceptual avenues for developing nanofluidic devices with enhanced capabilities for energy conversion and sensing properties.
Collapse
Affiliation(s)
- Laidy M Alvero-González
- Laboratory of Molecular Biophysics, Department of Physics, University Jaume I 12071 Castellón Spain
| | - Marcel Aguilella-Arzo
- Laboratory of Molecular Biophysics, Department of Physics, University Jaume I 12071 Castellón Spain
| | - D Aurora Perini
- Laboratory of Molecular Biophysics, Department of Physics, University Jaume I 12071 Castellón Spain
- Instituto de Ciencia Molecular, Universidad de Valencia Catedrático José Beltrán-2 46980 Paterna Spain
| | - Lucie A Bergdoll
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, CNRS - Aix Marseille Université 31 Chemin Joseph Aiguier Marseille France
| | - María Queralt-Martín
- Laboratory of Molecular Biophysics, Department of Physics, University Jaume I 12071 Castellón Spain
| | - Antonio Alcaraz
- Laboratory of Molecular Biophysics, Department of Physics, University Jaume I 12071 Castellón Spain
| |
Collapse
|
6
|
Gladue DP, Gomez-Lucas L, Largo E, Ramirez-Medina E, Torralba J, Queralt-Martín M, Alcaraz A, Velazquez-Salinas L, Nieva JL, Borca MV. Viroporin-like activity of the hairpin transmembrane domain of African swine fever virus B169L protein. J Virol 2024; 98:e0023124. [PMID: 38980063 PMCID: PMC11334534 DOI: 10.1128/jvi.00231-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/21/2024] [Indexed: 07/10/2024] Open
Abstract
African swine fever virus (ASFV) is the causative agent of a contagious disease affecting wild and domestic swine. The function of B169L protein, as a potential integral structural membrane protein, remains to be experimentally characterized. Using state-of-the-art bioinformatics tools, we confirm here earlier predictions indicating the presence of an integral membrane helical hairpin, and further suggest anchoring of this protein to the ER membrane, with both terminal ends facing the lumen of the organelle. Our evolutionary analysis confirmed the importance of purifying selection in the preservation of the identified domains during the evolution of B169L in nature. Also, we address the possible function of this hairpin transmembrane domain (HTMD) as a class IIA viroporin. Expression of GFP fusion proteins in the absence of a signal peptide supported B169L insertion into the ER as a Type III membrane protein and the formation of oligomers therein. Overlapping peptides that spanned the B169L HTMD were reconstituted into ER-like membranes and the adopted structures analyzed by infrared spectroscopy. Consistent with the predictions, B169L transmembrane sequences adopted α-helical conformations in lipid bilayers. Moreover, single vesicle permeability assays demonstrated the assembly of lytic pores in ER-like membranes by B169L transmembrane helices, a capacity confirmed by ion-channel activity measurements in planar bilayers. Emphasizing the relevance of these observations, pore-forming activities were not observed in the case of transmembrane helices derived from EP84R, another ASFV protein predicted to anchor to membranes through a α-helical HTMD. Overall, our results support predictions of viroporin-like function for the B169L HTMD.IMPORTANCEAfrican swine fever (ASF), a devastating disease affecting domestic swine, is widely spread in Eurasia, producing significant economic problems in the pork industry. Approaches to prevent/cure the disease are mainly restricted to the limited information concerning the role of most of the genes encoded by the large (160-170 kba) virus genome. In this report, we present the experimental data on the functional characterization of the African swine fever virus (ASFV) gene B169L. Data presented here indicates that the B169L gene encodes for an essential membrane-associated protein with a viroporin function.
Collapse
Affiliation(s)
- Douglas P. Gladue
- Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, USA
| | - Lidia Gomez-Lucas
- Instituto Biofisika (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Bilbao, Spain
| | - Eneko Largo
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | | | - Johana Torralba
- Instituto Biofisika (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Bilbao, Spain
| | - Maria Queralt-Martín
- Laboratory of Molecular Biophysics. Department of Physics, University Jaume I, Castello, Castellón, Spain
| | - Antonio Alcaraz
- Laboratory of Molecular Biophysics. Department of Physics, University Jaume I, Castello, Castellón, Spain
| | | | - Jose L. Nieva
- Instituto Biofisika (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Bilbao, Spain
| | - Manuel V. Borca
- Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, USA
| |
Collapse
|
7
|
Wang J, Mim C, Dahll G, Barro-Soria R. A metastasis-associated Pannexin1 mutant (Panx1 1-89 ) forms a minimalist ATP release channel. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584732. [PMID: 38559162 PMCID: PMC10980048 DOI: 10.1101/2024.03.12.584732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A truncated form of the ATP release channel pannexin 1 (Panx1), Panx1 1-89 , is enriched in metastatic breast cancer cells and has been proposed to mediate metastatic cell survival by increasing ATP release through mechanosensitive Panx1 channels. However, whether Panx1 1-89 on its own (without the presence of wtPanx1) mediates ATP release has not been tested. Here, we show that Panx1 1-89 by itself can form a constitutively active membrane channel, capable of releasing ATP even in the absence of wild type Panx1. Our biophysical characterization reveals that most basic structure-function features of the channel pore are conserved in the truncated Panx1 1-89 peptide. Thus, augmenting extracellular potassium ion concentrations enhances Panx1 1-89 -mediated conductance. Moreover, despite the severe truncation, Panx1 1-89 retains the sensitivity to most of wtPanx1 channel inhibitors and can thus be targeted. Therefore, Panx1 blockers have the potential to be of therapeutic value to combat metastatic cell survival. Our study not only elucidates a mechanism for ATP release from cancer cells, but it also supports that the Panx1 1-89 mutant should facilitate structure-function analysis of Panx1 channels.
Collapse
|
8
|
Alvero-Gonzalez LM, Aurora Perini D, Queralt-Martín M, Perálvarez-Marín A, Viñas C, Alcaraz A. Probing electrophysiological activity of amphiphilic Dynorphin A in planar neutral membranes reveals both ion channel-like activity and neuropeptide translocation. Bioelectrochemistry 2023; 154:108527. [PMID: 37531663 DOI: 10.1016/j.bioelechem.2023.108527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/10/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
Dynorphin A (DynA) is an endogenous neuropeptide that besides acting as a ligand of the κ-opioid receptor, presents some non-opioid pathophysiological properties associated to its ability to induce cell permeability similarly to cell-penetrating peptides (CPPs). Here, we use electrophysiology experiments to show that amphiphilic DynA generates aqueous pores in neutral membranes similar to those reported previously in charged membranes, but we also find other events thermodynamically incompatible with voltage-driven ion channel activity (i.e. non-zero currents with no applied voltage in symmetric salt conditions, reversal potentials that exceed the theoretical limit for a given salt concentration gradient). By comparison with current traces generated by other amphiphilic molecule known to spontaneously cross membranes, we hypothesize that DynA could directly translocate across neutral bilayers, a feature never observed in charged membranes following the same electrophysiological protocol. Our findings suggest that DynA interaction with the cellular membrane is modulated by the lipid charge distribution, enabling either passive ionic transport via membrane remodeling and pore formation or by peptide direct internalization independent of cellular transduction pathways.
Collapse
Affiliation(s)
- Laidy M Alvero-Gonzalez
- Laboratory of Molecular Biophysics, Department of Physics, University Jaume I, 12071 Castellón, Spain
| | - D Aurora Perini
- Laboratory of Molecular Biophysics, Department of Physics, University Jaume I, 12071 Castellón, Spain
| | - María Queralt-Martín
- Laboratory of Molecular Biophysics, Department of Physics, University Jaume I, 12071 Castellón, Spain
| | - Alex Perálvarez-Marín
- Biophysics Unit, Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Institute of Neuroscience, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Antonio Alcaraz
- Laboratory of Molecular Biophysics, Department of Physics, University Jaume I, 12071 Castellón, Spain.
| |
Collapse
|
9
|
Surya W, Tavares-Neto E, Sanchis A, Queralt-Martín M, Alcaraz A, Torres J, Aguilella VM. The Complex Proteolipidic Behavior of the SARS-CoV-2 Envelope Protein Channel: Weak Selectivity and Heterogeneous Oligomerization. Int J Mol Sci 2023; 24:12454. [PMID: 37569828 PMCID: PMC10420310 DOI: 10.3390/ijms241512454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
The envelope (E) protein is a small polypeptide that can form ion channels in coronaviruses. In SARS coronavirus 2 (SARS-CoV-2), the agent that caused the recent COVID-19 pandemic, and its predecessor SARS-CoV-1, E protein is found in the endoplasmic reticulum-Golgi intermediate compartment (ERGIC), where virion budding takes place. Several reports claim that E protein promotes the formation of "cation-selective channels". However, whether this term represents specificity to certain ions (e.g., potassium or calcium) or the partial or total exclusion of anions is debatable. Herein, we discuss this claim based on the available data for SARS-CoV-1 and -2 E and on new experiments performed using the untagged full-length E protein from SARS-CoV-2 in planar lipid membranes of different types, including those that closely mimic the ERGIC membrane composition. We provide evidence that the selectivity of the E-induced channels is very mild and depends strongly on lipid environment. Thus, despite past and recent claims, we found no indication that the E protein forms cation-selective channels that prevent anion transport, and even less that E protein forms bona fide specific calcium channels. In fact, the E channel maintains its multi-ionic non-specific neutral character even in concentrated solutions of Ca2+ ions. Also, in contrast to previous studies, we found no evidence that SARS-CoV-2 E channel activation requires a particular voltage, high calcium concentrations or low pH, in agreement with available data from SARS-CoV-1 E. In addition, sedimentation velocity experiments suggest that the E channel population is mostly pentameric, but very dynamic and probably heterogeneous, consistent with the broad distribution of conductance values typically found in electrophysiological experiments. The latter has been explained by the presence of proteolipidic channel structures.
Collapse
Affiliation(s)
- Wahyu Surya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore;
| | - Ernesto Tavares-Neto
- Laboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I, 12080 Castellon, Spain; (E.T.-N.); (M.Q.-M.); (A.A.)
| | - Andrea Sanchis
- Laboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I, 12080 Castellon, Spain; (E.T.-N.); (M.Q.-M.); (A.A.)
| | - María Queralt-Martín
- Laboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I, 12080 Castellon, Spain; (E.T.-N.); (M.Q.-M.); (A.A.)
| | - Antonio Alcaraz
- Laboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I, 12080 Castellon, Spain; (E.T.-N.); (M.Q.-M.); (A.A.)
| | - Jaume Torres
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore;
| | - Vicente M. Aguilella
- Laboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I, 12080 Castellon, Spain; (E.T.-N.); (M.Q.-M.); (A.A.)
| |
Collapse
|
10
|
Gladue DP, Gomez-Lucas L, Largo E, Velazquez-Salinas L, Ramirez-Medina E, Torralba J, Queralt M, Alcaraz A, Nieva JL, Borca MV. African Swine Fever Virus Gene B117L Encodes a Small Protein Endowed with Low-pH-Dependent Membrane Permeabilizing Activity. J Virol 2023; 97:e0035023. [PMID: 37212688 PMCID: PMC10308923 DOI: 10.1128/jvi.00350-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/16/2023] [Indexed: 05/23/2023] Open
Abstract
African swine fever virus (ASFV) is causing a devastating pandemic in domestic and wild swine in Central Europe to East Asia, resulting in economic losses for the swine industry. The virus contains a large double-stranded DNA genome that contains more than 150 genes, most with no experimentally characterized function. In this study, we evaluate the potential function of the product of ASFV gene B117L, a 115-amino-acid integral membrane protein transcribed at late times during the virus replication cycle and showing no homology to any previously published protein. Hydrophobicity distribution along B117L confirmed the presence of a single transmembrane helix, which, in combination with flanking amphipathic sequences, composes a potential membrane-associated C-terminal domain of ca. 50 amino acids. Ectopic transient cell expression of the B117L gene as a green fluorescent protein (GFP) fusion protein revealed the colocalization with markers of the endoplasmic reticulum (ER). Intracellular localization of various B117L constructs also displayed a pattern for the formation of organized smooth ER (OSER) structures compatible with the presence of a single transmembrane helix with a cytoplasmic carboxy terminus. Using partially overlapping peptides, we further demonstrated that the B117L transmembrane helix has the capacity to establish spores and ion channels in membranes at low pH. Furthermore, our evolutionary analysis showed the high conservation of the transmembrane domain during the evolution of the B117L gene, indicating that the integrity of this domain is preserved by the action of the purifying selection. Collectively our data support a viroporin-like assistant role for the B117L gene-encoded product in ASFV entry. IMPORTANCE ASFV is responsible for an extensively distributed pandemic causing important economic losses in the pork industry in Eurasia. The development of countermeasures is partially limited by the insufficient knowledge regarding the function of the majority of the more than 150 genes present on the virus genome. Here, we provide data regarding the functional experimental evaluation of a previously uncharacterized ASFV gene, B117L. Our data suggest that the B117L gene encodes a small membrane protein that assists in the permeabilization of the ER-derived envelope during ASFV infection.
Collapse
Affiliation(s)
- Douglas P. Gladue
- Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, USA
| | - Lidia Gomez-Lucas
- Instituto Biofisika (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Bilbao, Spain
| | - Eneko Largo
- Instituto Biofisika (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Bilbao, Spain
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | | | | | - Johana Torralba
- Instituto Biofisika (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Bilbao, Spain
| | - Maria Queralt
- Laboratory of Molecular Biophysics. Department of Physics. University Jaume I, Castellón, Spain
| | - Antonio Alcaraz
- Laboratory of Molecular Biophysics. Department of Physics. University Jaume I, Castellón, Spain
| | - Jose L. Nieva
- Instituto Biofisika (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Bilbao, Spain
| | - Manuel V. Borca
- Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, USA
| |
Collapse
|
11
|
Perini DA, Parra-Ortiz E, Varó I, Queralt-Martín M, Malmsten M, Alcaraz A. Surface-Functionalized Polystyrene Nanoparticles Alter the Transmembrane Potential via Ion-Selective Pores Maintaining Global Bilayer Integrity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14837-14849. [PMID: 36417698 PMCID: PMC9974068 DOI: 10.1021/acs.langmuir.2c02487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Although nanoplastics have well-known toxic effects toward the environment and living organisms, their molecular toxicity mechanisms, including the nature of nanoparticle-cell membrane interactions, are still under investigation. Here, we employ dynamic light scattering, quartz crystal microbalance with dissipation monitoring, and electrophysiology to investigate the interaction between polystyrene nanoparticles (PS NPs) and phospholipid membranes. Our results show that PS NPs adsorb onto lipid bilayers creating soft inhomogeneous films that include disordered defects. PS NPs form an integral part of the generated channels so that the surface functionalization and charge of the NP determine the pore conductive properties. The large difference in size between the NP diameter and the lipid bilayer thickness (∼60 vs ∼5 nm) suggests a particular and complex lipid-NP assembly that is able to maintain overall membrane integrity. In view of this, we suggest that NP-induced toxicity in cells could operate in more subtle ways than membrane disintegration, such as inducing lipid reorganization and transmembrane ionic fluxes that disrupt the membrane potential.
Collapse
Affiliation(s)
- D. Aurora Perini
- Laboratory
of Molecular Biophysics, Department of Physics, Universitat Jaume I, 12071Castellón, Spain
| | - Elisa Parra-Ortiz
- Department
of Pharmacy, University of Copenhagen, DK-2100Copenhagen, Denmark
| | - Inmaculada Varó
- Institute
of Aquaculture Torre de la Sal (IATS-CSIC), Ribera de Cabanes, 12595Castellón, Spain
| | - María Queralt-Martín
- Laboratory
of Molecular Biophysics, Department of Physics, Universitat Jaume I, 12071Castellón, Spain
| | - Martin Malmsten
- Department
of Pharmacy, University of Copenhagen, DK-2100Copenhagen, Denmark
- Department
of Physical Chemistry 1, University of Lund, SE-22100Lund, Sweden
| | - Antonio Alcaraz
- Laboratory
of Molecular Biophysics, Department of Physics, Universitat Jaume I, 12071Castellón, Spain
- . Tel.: +34 964 72 8044
| |
Collapse
|
12
|
González-Magaña A, Altuna J, Queralt-Martín M, Largo E, Velázquez C, Montánchez I, Bernal P, Alcaraz A, Albesa-Jové D. The P. aeruginosa effector Tse5 forms membrane pores disrupting the membrane potential of intoxicated bacteria. Commun Biol 2022; 5:1189. [PMID: 36335275 PMCID: PMC9637101 DOI: 10.1038/s42003-022-04140-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 10/20/2022] [Indexed: 11/08/2022] Open
Abstract
The type VI secretion system (T6SS) of Pseudomonas aeruginosa injects effector proteins into neighbouring competitors and host cells, providing a fitness advantage that allows this opportunistic nosocomial pathogen to persist and prevail during the onset of infections. However, despite the high clinical relevance of P. aeruginosa, the identity and mode of action of most P. aeruginosa T6SS-dependent effectors remain to be discovered. Here, we report the molecular mechanism of Tse5-CT, the toxic auto-proteolytic product of the P. aeruginosa T6SS exported effector Tse5. Our results demonstrate that Tse5-CT is a pore-forming toxin that can transport ions across the membrane, causing membrane depolarisation and bacterial death. The membrane potential regulates a wide range of essential cellular functions; therefore, membrane depolarisation is an efficient strategy to compete with other microorganisms in polymicrobial environments.
Collapse
Affiliation(s)
- Amaia González-Magaña
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB) and Departamento de Bioquímica y Biología Molecular, Instituto Biofisika (CSIC, UPV/EHU), University of the Basque Country, 48940, Leioa, Spain
| | - Jon Altuna
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB) and Departamento de Bioquímica y Biología Molecular, Instituto Biofisika (CSIC, UPV/EHU), University of the Basque Country, 48940, Leioa, Spain
| | - María Queralt-Martín
- Laboratory of Molecular Biophysics, Department of Physics, University Jaume I, 12071, Castellón, Spain
| | - Eneko Largo
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB) and Departamento de Bioquímica y Biología Molecular, Instituto Biofisika (CSIC, UPV/EHU), University of the Basque Country, 48940, Leioa, Spain
- Departamento de Inmunología, Microbiología y Parasitología, University of the Basque Country, 48940, Leioa, Spain
| | - Carmen Velázquez
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB) and Departamento de Bioquímica y Biología Molecular, Instituto Biofisika (CSIC, UPV/EHU), University of the Basque Country, 48940, Leioa, Spain
| | - Itxaso Montánchez
- Departamento de Inmunología, Microbiología y Parasitología, University of the Basque Country, 48940, Leioa, Spain
| | - Patricia Bernal
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, 41012, Sevilla, Spain
| | - Antonio Alcaraz
- Laboratory of Molecular Biophysics, Department of Physics, University Jaume I, 12071, Castellón, Spain
| | - David Albesa-Jové
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB) and Departamento de Bioquímica y Biología Molecular, Instituto Biofisika (CSIC, UPV/EHU), University of the Basque Country, 48940, Leioa, Spain.
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain.
| |
Collapse
|
13
|
Perini DA, Aguilella-Arzo M, Alcaraz A, Perálvarez-Marín A, Queralt-Martín M. Dynorphin A induces membrane permeabilization by formation of proteolipidic pores. Insights from electrophysiology and computational simulations. Comput Struct Biotechnol J 2022; 20:230-240. [PMID: 35024095 PMCID: PMC8718563 DOI: 10.1016/j.csbj.2021.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 01/14/2023] Open
Abstract
Dynorphins are endogenous neuropeptides that function as ligands for the κ-opioid receptor. In addition to opioid activity, dynorphins can induce several pathological effects such as neurological dysfunctions and cell death. Previous studies have suggested that Dynorphin A (DynA) mediates some pathogenic actions through formation of transient pores in lipid domains of the plasma membrane. Here, we use planar bilayer electrophysiology to show that DynA induces pore formation in negatively charged membranes. We find a large variability in pore conformations showing equilibrium conductance fluctuations, what disregards electroporation as the dominant mechanism of pore formation. Ion selectivity measurements showing cationic selectivity indicate that positive protein charges of DynA are stabilized by phosphatidyl serine negative charges in the formation of combined structures. We complement our study with computational simulations that assess the stability of diverse peptide arrangements in the hydrophobic core of the bilayer. We show that DynA is capable of assembling in charged membranes to form water-filled pores that conduct ions.
Collapse
Affiliation(s)
- D Aurora Perini
- Laboratory of Molecular Biophysics. Department of Physics. Universitat Jaume I, 12071 Castellón, Spain
| | - Marcel Aguilella-Arzo
- Laboratory of Molecular Biophysics. Department of Physics. Universitat Jaume I, 12071 Castellón, Spain
| | - Antonio Alcaraz
- Laboratory of Molecular Biophysics. Department of Physics. Universitat Jaume I, 12071 Castellón, Spain
| | - Alex Perálvarez-Marín
- Biophysics Unit, Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Institute of Neuroscience, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - María Queralt-Martín
- Laboratory of Molecular Biophysics. Department of Physics. Universitat Jaume I, 12071 Castellón, Spain
| |
Collapse
|
14
|
Transport mechanisms of SARS-CoV-E viroporin in calcium solutions: Lipid-dependent Anomalous Mole Fraction Effect and regulation of pore conductance. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183590. [PMID: 33621516 PMCID: PMC7896491 DOI: 10.1016/j.bbamem.2021.183590] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 02/06/2023]
Abstract
The envelope protein E of the SARS-CoV coronavirus is an archetype of viroporin. It is a small hydrophobic protein displaying ion channel activity that has proven highly relevant in virus-host interaction and virulence. Ion transport through E channel was shown to alter Ca2+ homeostasis in the cell and trigger inflammation processes. Here, we study transport properties of the E viroporin in mixed solutions of potassium and calcium chloride that contain a fixed total concentration (mole fraction experiments). The channel is reconstituted in planar membranes of different lipid compositions, including a lipid mixture that mimics the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) membrane where the virus localizes within the cell. We find that the E ion conductance changes non-monotonically with the total ionic concentration displaying an Anomalous Mole Fraction Effect (AMFE) only when charged lipids are present in the membrane. We also observe that E channel insertion in ERGIC-mimic membranes – including lipid with intrinsic negative curvature – enhances ion permeation at physiological concentrations of pure CaCl2 or KCl solutions, with a preferential transport of Ca2+ in mixed KCl-CaCl2 solutions. Altogether, our findings demonstrate that the presence of calcium modulates the transport properties of the E channel by interacting preferentially with charged lipids through different mechanisms including direct Coulombic interactions and possibly inducing changes in membrane morphology.
Collapse
|
15
|
Queralt-Martín M, Perini DA, Alcaraz A. Specific adsorption of trivalent cations in biological nanopores determines conductance dynamics and reverses ionic selectivity. Phys Chem Chem Phys 2021; 23:1352-1362. [PMID: 33367433 DOI: 10.1039/d0cp04486e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Adsorption processes are central to ionic transport in industrial and biological membrane systems. Multivalent cations modulate the conductive properties of nanofluidic devices through interactions with charged surfaces that depend principally on the ion charge number. Considering that ion channels are specialized valves that demand a sharp specificity in ion discrimination, we investigate the adsorption dynamics of trace amounts of different salts of trivalent cations in biological nanopores. We consider here OmpF from Escherichia coli, an archetypical protein nanopore, to probe the specificity of biological nanopores to multivalent cations. We systematically compare the effect of three trivalent electrolytes on OmpF current-voltage relationships and characterize the degree of rectification induced by each ion. We also analyze the open channel current noise to determine the existence of equilibrium/non-equilibrium mechanisms of ion adsorption and evaluate the extent of charge inversion through selectivity measurements. We show that the interaction of trivalent electrolytes with biological nanopores occurs via ion-specific adsorption yielding differential modulation of ion conduction and selectivity inversion. We also demonstrate the existence of non-equilibrium fluctuations likely related to ion-dependent trapping-detrapping processes. Our study provides fundamental information relevant to different biological and electrochemical systems where transport phenomena involve ion adsorption in charged surfaces under nanoscale confinement.
Collapse
Affiliation(s)
- María Queralt-Martín
- Laboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I, 12071 Castellón, Spain.
| | - D Aurora Perini
- Laboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I, 12071 Castellón, Spain.
| | - Antonio Alcaraz
- Laboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I, 12071 Castellón, Spain.
| |
Collapse
|