1
|
Manetsberger J, Gómez NC, Benomar N, Christie G, Abriouel H. Phenotypic and Genomic Insights Into Bacillus spp. and Peribacillus spp. of Spanish Olive Groves With Biotechnological Potential. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70053. [PMID: 39604090 PMCID: PMC11602404 DOI: 10.1111/1758-2229.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Spore-forming organisms are an integral component of the rhizosphere, providing plants with significant advantages. Previous studies determined the antimicrobial activity of the olive sporobiota, identifying five candidates of particular relevance, belonging to the Bacillus subtilis, Peribacillus simplex and Bacillus cereus clade. This study aimed to determine their biotechnological properties, safety aspects, spore structure and resistance, and interaction with the environment through a combined microbiological and genomic approach. We report on the ability of these strains to produce hydrolytic and surface-active enzymes and provide evidence for differences in population behaviour through the formation of strong sessile or floating biofilms. Electron microscopic analysis revealed for the first time the presence of an exosporium layer in olive sporobiota isolates belonging to the P. simplex and B. cereus clade, including numerous pili-like structures on the latter. Spores showed significant differences in their resistance to wet heat, oxidising agents, and UV exposure. Whole genome sequencing of isolate Peribacillus frigoritolerans yielded information on its antimicrobial compound biosynthesis and environmental safety. Overall, our findings provide insights into the phenotypic, morphological and genetic variations of spore-formers from Spanish olive groves, which can be useful for the development of bioactive compounds in sustainable agriculture.
Collapse
Affiliation(s)
- Julia Manetsberger
- Area of Microbiology, Department of Health Sciences, Faculty of Experimental SciencesUniversity of JaénJaénSpain
| | - Natacha Caballero Gómez
- Area of Microbiology, Department of Health Sciences, Faculty of Experimental SciencesUniversity of JaénJaénSpain
| | - Nabil Benomar
- Area of Microbiology, Department of Health Sciences, Faculty of Experimental SciencesUniversity of JaénJaénSpain
| | - Graham Christie
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeUK
| | - Hikmate Abriouel
- Area of Microbiology, Department of Health Sciences, Faculty of Experimental SciencesUniversity of JaénJaénSpain
| |
Collapse
|
2
|
Fessia A, Sartori M, Orlando J, Barros G, Nesci A. Draft genome sequences of two biocontrol agents isolated from the maize phyllosphere : Bacillus subtilis strain EM-A7 and Bacillus velezensis strain EM-A8. Heliyon 2024; 10:e32607. [PMID: 39021968 PMCID: PMC11252862 DOI: 10.1016/j.heliyon.2024.e32607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/06/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024] Open
Abstract
In the present study, the genomes of B. subtilis EM-A7 and B. velezensis EM-A8 were sequenced and annotated. The Illumina sequencing platform (NovaSeq PE150) was used to sequence the genomic DNA. There were 6 277 054 raw reads for EM-A7, with a Q20 of 97.52 % and 43.78 % GC, and 8 030 262 raw reads for EM-A8, with a Q20 of 97.53 % and 46.21 % GC. Annotation was carried out by the NCBI Prokaryotic Genome Annotation Pipeline (PGAP). The strains were classified taxonomically on the basis of an average nucleotide identity analysis (ANI), as well as through a dDDh analysis on the Genome-to-Genome Distance Calculator (GGDC v3.0). The pipeline predicted 4062 protein-coding sequences (CDSs) and 73 RNA genes (62 tRNA and 6 rRNA) for EM-A7, and 3797 protein-coding sequences (CDSs) and 80 RNA genes for EM-A8. These findings enhance our understanding of the two strains' potential as biocontrol agents to manage disease in maize.
Collapse
Affiliation(s)
- Aluminé Fessia
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, X5804ZAB Río Cuarto, Córdoba, Argentina. - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Melina Sartori
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, X5804ZAB Río Cuarto, Córdoba, Argentina. - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Julieta Orlando
- Laboratorio de Ecología Microbiana, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Germán Barros
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, X5804ZAB Río Cuarto, Córdoba, Argentina. - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Andrea Nesci
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, X5804ZAB Río Cuarto, Córdoba, Argentina. - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
3
|
Zheng L, Han Z, Wang S, Gao A, Liu L, Pan H, Zhang H. Transcriptomic analysis and knockout experiments reveal the role of suhB in the biocontrol effects of Pantoea jilinensis D25 on Botrytis cinerea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170771. [PMID: 38336045 DOI: 10.1016/j.scitotenv.2024.170771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Tomato gray mold, caused by Botrytis cinerea, is an important disease in tomato. Pantoea jilinensis D25, isolated form tomato rhizosphere soil, can prevent B. cinerea infection in tomato. To determine the underlying biocontrol mechanism, the transcriptome of P. jilinensis D25 was assessed. Differential expression analysis revealed that 941 genes were upregulated and 997 genes were downregulated. Through transcriptome analysis, the suhB gene was knocked out. ΔPj-suhB exhibited lower swimming motility and colonization abilities than strain D25. After 4 days of co-cultivation, ΔPj-suhB could reduce the colony diameter, mycelial weight, and spore production of B. cinerea with the inhibitory rates of 31.72 %, 39.62 %, and 47.42 %, respectively, compared with control. However, the inhibitory rates of strain D25 were 52.91 %, 60.09 %, and 76.85 %, respectively, compared with control. Strain D25 could significantly downregulate pathogenesis-related genes in B. cinerea, whereas the expression level of these genes in B. cinerea was higher after treatment with ΔPj-suhB than after that with strain D25. In vitro experiments revealed that the lesion area and disease control efficacy were 1.520 and 0.038 cm2 and 68.7 % and 99.0 %, respectively, after ΔPj-suhB and strain D25 treatments. Pot experiments revealed that ΔPj-suhB and strain D25 could prevent tomato plants from B. cinerea infection with the disease reduction rate of 37.5 % and 75.0 %, respectively. Though the activities of defense-related enzymes and expression level of defense related genes in tomato plants were increased under ΔPj-suhB treatment, these effects were higher after strain D25 treatment. Thus, these results demonstrated that suhB was the key gene in strain D25 underlying its biocontrol effect and mobility.
Collapse
Affiliation(s)
- Lining Zheng
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, PR China
| | - Zhe Han
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, PR China
| | - Shengyi Wang
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, PR China
| | - Ao Gao
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, PR China
| | - Ling Liu
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, PR China
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun 130062, PR China
| | - Hao Zhang
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, PR China.
| |
Collapse
|
4
|
Fessia A, Ponzio R, Arcibia L, Barros G, Nesci A. Effects of different light wavelengths on Bacillus subtilis and Bacillus velezensis, two biocontrol agents isolated from the maize phyllosphere. Arch Microbiol 2024; 206:104. [PMID: 38363376 DOI: 10.1007/s00203-024-03836-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 02/17/2024]
Abstract
In previous studies, two strains isolated from the maize phyllosphere were identified as Bacillus subtilis (EM-A7) and Bacillus velezensis (EM-A8) and selected as potential biocontrol agents against Exserohilum turcicum. This study aimed to assess the ability of EM-A7 and EM-A8 to form biofilm and have antagonistic activity under varying light conditions. LED sources were custom-designed so that each corresponded to a given spectrum at a specific photosynthetically active photon flux density. Significant differences were observed in growth parameters (generation time and constant growth rate) under different LED sources. Blue light inhibited the growth of both strains. Red increased k rate in EM-A8, while the g values increased in EM-A7. Red and white light generally increased biofilm formation, and blue light inhibited it. EM-A7 and EM-A8 significantly reduced their ability to swim under blue LED, but it was not affected by red, green, or white light. The ability to swarm was negatively affected. Fungal growth decreased significantly compared to the control when the bacterium growing on the same plate had been previously incubated under red and white light or in the dark. These results indicate that different light wavelengths clearly influenced the aspects assessed in B. subtilis and B. velezensis, with the effects of blue light being overall negative and those of red and white overall positive. Given that, all these factors can be important for the establishment and survival of Bacillus strains on leaves, as well as for their effectiveness against pathogens, light could be a significant factor to consider in the design of biocontrol strategies.
Collapse
Affiliation(s)
- Aluminé Fessia
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Rodrigo Ponzio
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Física, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, CONICET, X5804BYA, Río Cuarto, Argentina
| | - Luciana Arcibia
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina
| | - Germán Barros
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrea Nesci
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
5
|
Zheng L, Gu X, Sun L, Dong M, Gao A, Han Z, Pan H, Zhang H. Adding Metal Ions to the Bacillus mojavensis D50 Promotes Biofilm Formation and Improves Ability of Biocontrol. J Fungi (Basel) 2023; 9:jof9050526. [PMID: 37233237 DOI: 10.3390/jof9050526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Bacillus mojavensis D50, a biocontrol strain, is used to prevent and treat the fungal plant pathogen Botrytis cinerea. Bacillus mojavensis D50's biofilms can affect its colonization; thus, the effects of different metal ions and culture conditions on biofilm formation were determined in this study. The results of medium optimization showed that Ca2+ had the best ability to promote biofilm formation. The optimal medium composition for the formation of biofilms contained tryptone (10 g/L), CaCl2 (5.14 g/L), and yeast extract (5.0 g/L), and the optimal fermentation conditions included pH 7, a temperature of 31.4 °C, and a culture time of 51.8 h. We found that the antifungal activity and abilities to form biofilms and colonize roots were improved after optimization. In addition, the levels of expression of the genes luxS, SinR, FlhA, and tasA were up-regulated by 37.56-, 2.87-, 12.46-, and 6.22-fold, respectively. The soil enzymatic activities which related biocontrol-related enzymes were the highest when the soil was treated by strain D50 after optimization. In vivo biocontrol assays indicated that the biocontrol effect of strain D50 after optimization was improved.
Collapse
Affiliation(s)
- Lining Zheng
- College of Plant Protection, Jilin Agricultural University, Changchu 130118, China
| | - Xuehu Gu
- College of Plant Protection, Jilin Agricultural University, Changchu 130118, China
| | - Liangpeng Sun
- College of Plant Protection, Jilin Agricultural University, Changchu 130118, China
| | - Meiqi Dong
- College of Plant Protection, Jilin Agricultural University, Changchu 130118, China
| | - Ao Gao
- College of Plant Protection, Jilin Agricultural University, Changchu 130118, China
| | - Zhe Han
- College of Plant Protection, Jilin Agricultural University, Changchu 130118, China
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Hao Zhang
- College of Plant Protection, Jilin Agricultural University, Changchu 130118, China
| |
Collapse
|