1
|
Abbasi F, Shawrang P, Sadeghi M, Majidi-Zahed H. Effect of gamma-irradiated honey bee venom on blood parameter and histopathological observations of liver and kidney in a mice animal model. Res Vet Sci 2023; 165:105050. [PMID: 37856942 DOI: 10.1016/j.rvsc.2023.105050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
Honey bee venom is a valuable product with a wide range of biological effects, whose use is rapidly increasing in apitherapy. In this study, the effect of gamma-irradiated honey bee venom (doses of 0, 2, 4, 6, and 8 kGy, volume of 0.1 ml, and concentration of 0.2 mg/ml) was evaluated on median lethal dose (LD50) determinations, liver and kidney histology, biochemical marker level, and serum protein analyses. Hence, the LD50 induced by the honey bee venom irradiated at 4, 6, and 8 kGy was increased, compared with the one at 0 and 2 kGy. Normal histology was observed in the liver and kidney of the mice receiving the honey bee venom irradiated at 4, 6, and 8 kGy. The serum levels of alanine aminotransferase (ALT) and all serum proteins were reduced at 4, 6, and 8 kGy compared with 0 and 2 kGy. Therefore, gamma irradiation at 4, 6, and 8 kGy had no negative effect on LD50, liver and kidney tissues, ALT, and serum protein levels by decreasing the allergen compounds of the honey bee venom.
Collapse
Affiliation(s)
- Fatemeh Abbasi
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, P. O. Box 31485-498, Karaj, Iran
| | - Parvin Shawrang
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, P. O. Box 31485-498, Karaj, Iran.
| | - Maryam Sadeghi
- University of Tehran, College of Agriculture & Natural Resources, Karaj, Iran
| | - Hamed Majidi-Zahed
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, P. O. Box 31485-498, Karaj, Iran
| |
Collapse
|
2
|
Khourcha S, Hilal I, Elbejjaj I, Karkouri M, Safi A, Hmyene A, Oukkache N. Insight into the Toxicological and Pathophysiological Effects of Moroccan Vipers' Venom: Assessing the Efficacy of Commercial Antivenom for Neutralization. Trop Med Infect Dis 2023; 8:302. [PMID: 37368720 DOI: 10.3390/tropicalmed8060302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Morocco is one of the richest countries in biodiversity in the Mediterranean region, especially in its ophidian fauna. In total, there are eight species of venomous snakes, with seven belonging to the Viperidae family, responsible for 67.2% of severe envenomation cases in the country. Cerastes cerastes, Daboia mauritanica and Bitis arietans are considered among the most venomous vipers whose bites cause high levels of morbidity, disability or mortality. Despite their wide distribution in the kingdom, the incidence of these snakebites remains poorly understood and largely underestimated. Moreover, intraspecific variations in the venom composition significantly affect the effectiveness of antivenoms. Due to the unavailability of locally produced antivenoms, we evaluated the efficacy of Inoserp-MENA, the only available antivenom in Morocco, against C. cerastes, D. mauritanica and B. arietans. First, we conducted a comprehensive characterization of these venoms, including an LD50 test to examine their toxicity and SDS-PAGE as a technique to analyze the enzymes responsible for biological activities, such as hemorrhagic and edematous activities and myotoxicity, which generate physiopathological effects in the skin, paws and muscles of envenomed mice. Then, we assessed the ability of Inoserp-MENA antivenom to neutralize the toxic activities of Moroccan vipers. Our results indicate that the venom of C. cerastes, D. mauritanica and B. arietans are toxic, causing severe alterations such as edema, myotoxicity, myonecrosis and significant hemorrhages with the formation of hemorrhagic foci. C. cerastes venom is more dangerous in terms of lethality and hemorrhages, while B. arietans venom is more edematous. The effects of C. cerastes venom were effectively neutralized, but Inoserp-MENA antivenom failed to protect mice against the toxic effects induced by B. arietans and D. mauritanica venom. The study reveals alarming shortcomings in the effectiveness of the current commercially available antivenom's dosage and neutralization capabilities, highlighting the urgent need to develop a region-specific viper envenomation therapy.
Collapse
Affiliation(s)
- Soukaina Khourcha
- Laboratory of Venoms and Toxins, Pasteur Institute of Morocco, Casablanca 20360, Morocco
- Laboratory of Biochemistry, Environment and Food Technology, Faculty of Sciences and Technologies of Mohammedia, Mohammedia 20650, Morocco
| | - Ines Hilal
- Laboratory of Venoms and Toxins, Pasteur Institute of Morocco, Casablanca 20360, Morocco
- Laboratory of Biochemistry, Environment and Food Technology, Faculty of Sciences and Technologies of Mohammedia, Mohammedia 20650, Morocco
| | - Iatimad Elbejjaj
- Laboratory of Pathological Anatomy, University Hospital Center Ibn Rochd, Casablanca 20360, Morocco
| | - Mehdi Karkouri
- Laboratory of Pathological Anatomy, University Hospital Center Ibn Rochd, Casablanca 20360, Morocco
| | - Amal Safi
- Laboratory of Biochemistry, Environment and Food Technology, Faculty of Sciences and Technologies of Mohammedia, Mohammedia 20650, Morocco
| | - Abdelaziz Hmyene
- Laboratory of Biochemistry, Environment and Food Technology, Faculty of Sciences and Technologies of Mohammedia, Mohammedia 20650, Morocco
| | - Naoual Oukkache
- Laboratory of Venoms and Toxins, Pasteur Institute of Morocco, Casablanca 20360, Morocco
| |
Collapse
|
3
|
Abbasi F, Shawrang P, Motamedi-Sedeh F, Sadeghi M. Effect of gamma-irradiated honey bee venom on gene expression of inflammatory and anti-inflammatory cytokines in mice. Int Immunopharmacol 2023; 118:110084. [PMID: 36996740 DOI: 10.1016/j.intimp.2023.110084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/05/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
In this study, the effect of gamma-irradiated honey bee venom (doses of 0, 2, 4, 6, and 8 kGy, volume of 0.1 ml and concentration of 0.2 mg/ml) was evaluated on the reduction of allergen compounds and the gene expression of inflammatory and anti-inflammatory cytokines in mice. Hence, edema activity induced by the bee venom irradiated at 4, 6, and 8 kGy was reduced, compared with the control group and that irradiated at 2 kGy. In contrast, the paw edema induced by the bee venom irradiated at 8 kGy increased, compared with 4 and 6 kGy. At all the time periods, there was a significant decrease in the gene expression of interferon gamma (IFN-γ), interleukin 6 (IL-6), and interleukin 10 (IL-10) in the bee venoms irradiated at 4, 6, and 8 kGy, compared with the control group and that irradiated at 2 kGy. In contrast, there was an increase in the gene expression of IFN-γ and IL-6 in the bee venom irradiated at 8 kGy, compared with those irradiated at 4 and 6 kGy. Therefore, gamma irradiation at 4 and 6 kGy reduced the gene expression of cytokines at each time period by decreasing the allergen compounds of honey bee venom.
Collapse
Affiliation(s)
- Fatemeh Abbasi
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, P. O. Box 31485-498, Karaj, Iran.
| | - Parvin Shawrang
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, P. O. Box 31485-498, Karaj, Iran.
| | - Farahnaz Motamedi-Sedeh
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, P. O. Box 31485-498, Karaj, Iran.
| | - Maryam Sadeghi
- University of Tehran, College of Agriculture & Natural Resources, Karaj, Iran
| |
Collapse
|
4
|
Kiouas K, Oussedik-Oumehdi H, Laraba-Djebari F. Therapeutic outcome of quercetin nanoparticles on Cerastes cerastes venom-induced hepatorenal toxicity: a preclinical study. Nanomedicine (Lond) 2023; 18:367-390. [PMID: 37125660 DOI: 10.2217/nnm-2022-0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Aim: The objective of this study was to investigate the therapeutic potential of quercetin (QT) and QT-loaded poly(lactic-co-glycolic acid) nanoparticles (QT-NPs) on Cerastes cerastes venom-mediated inflammation, redox imbalance, hepatorenal tissue damage and local hemorrhage. Methods: The developed QT-NPs were first submitted to physicochemical characterization and then evaluated in the 'challenge then treat' and 'preincubation' models of envenoming. Results: QT-NPs efficiently alleviated hepatorenal toxicity, inflammation and redox imbalance and significantly attenuated venom-induced local hemorrhage. Interestingly, QT-NPs were significantly more efficient than free QT at 24 h post-envenoming, pointing to the efficacy of this drug-delivery system. Conclusion: These findings highlight the therapeutic potential of QT-NPs on venom-induced toxicity and open up the avenue for their use in the management of snakebite envenoming.
Collapse
Affiliation(s)
- Kahina Kiouas
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular & Molecular Biology, BP 32, El-Alia, Bab Ezzouar, 16111, Algiers, Algeria
| | - Habiba Oussedik-Oumehdi
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular & Molecular Biology, BP 32, El-Alia, Bab Ezzouar, 16111, Algiers, Algeria
| | - Fatima Laraba-Djebari
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular & Molecular Biology, BP 32, El-Alia, Bab Ezzouar, 16111, Algiers, Algeria
| |
Collapse
|
5
|
Ghezellou P, Dillenberger M, Kazemi SM, Jestrzemski D, Hellmann B, Spengler B. Comparative Venom Proteomics of Iranian, Macrovipera lebetina cernovi, and Cypriot, Macrovipera lebetina lebetina, Giant Vipers. Toxins (Basel) 2022; 14:716. [PMID: 36287984 PMCID: PMC9609362 DOI: 10.3390/toxins14100716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/05/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022] Open
Abstract
Envenoming by Macrovipera lebetina subspecies causes severe life-threatening difficulties for people living in North Africa and the Middle East. To better understand the pathophysiology of envenoming and improve patient management, knowledge about the venom components of the subspecies is essential. Here, the venom proteomes of Macrovipera lebetina lebetina from Cyprus and Macrovipera lebetina cernovi from Iran were characterized using RP-HPLC separation of the crude venom proteins, SDS-PAGE of fractionated proteins, and LC-MS/MS of peptides obtained from in-gel tryptic digestion of protein bands. Moreover, we also used high-resolution shot-gun proteomics to gain more reliable identification, where the whole venom proteomes were subjected directly to in-solution digestion before LC-HR-MS/MS. The data revealed that both venoms consisted of at least 18 protein families, of which snake venom Zn2+-dependent metalloprotease (SVMP), serine protease, disintegrin, phospholipase A2, C-type lectin-like, and L-amino acid oxidase, together accounted for more than 80% of the venoms’ protein contents. Although the two viper venoms shared mostly similar protein classes, the relative occurrences of these toxins were different in each snake subspecies. For instance, P-I class of SVMP toxins were found to be more abundant than P-III class in the venoms of M. l. cernovi compared to M. l. lebetina, which gives hints at a more potent myonecrotic effect and minor systemic hemorrhage following envenoming by M. l. cernovi than M. l. lebetina. Moreover, single-shot proteomics also revealed many proteins with low abundance (<1%) within the venoms, such as aminopeptidase, hyaluronidase, glutaminyl-peptide cyclotransferase, cystatin, phospholipase B, and vascular endothelial growth factor. Our study extends the in-depth understanding of the venom complexity of M. lebetina subspecies, particularly regarding toxin families associated with envenoming pathogenesis and those hard-detected protein classes expressed in trace amounts.
Collapse
Affiliation(s)
- Parviz Ghezellou
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Melissa Dillenberger
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | | | - Daniel Jestrzemski
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University, 60590 Frankfurt am Main, Germany
- Faculty of Forest Sciences and Forest Ecology, Department of Forest Zoology and Forest Conservation, University of Göttingen, Büsgenweg 3, 37077 Göttingen, Germany
| | - Bernhard Hellmann
- Institute of Nutritional Science, Department of Nutrition in Prevention & Therapy, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
6
|
Khelfi A, Oussedik-Oumehdi H, Laraba-Djebari F. Therapeutic Outcome of Anti-inflammatory and Antioxidative Medicines on the Dermonecrotic Activity of Cerastes cerastes Venom. Inflammation 2022; 45:1700-1719. [DOI: 10.1007/s10753-022-01654-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/01/2022]
|
7
|
Güler Ö, Güler M, Urfalıoğlu S, Kilci Aİ, Hakkoymaz H. Early effects of viper envenomation on retina and optic nerve blood flow: An optical coherence tomography angiography study. Toxicon 2021; 198:54-63. [PMID: 33961847 DOI: 10.1016/j.toxicon.2021.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/08/2021] [Accepted: 04/11/2021] [Indexed: 10/21/2022]
Abstract
In this study, the early retinal and optic nerve blood flows of patients exposed to Viper bite were evaluated with non-invasive optical coherence tomography angiography (OCTA) and compared with healthy controls. The retinal and optic disc OCTA data of 31 victims of viper bite (group S) without systemic envenomation clinical symptoms and 31 healthy controls (group C) were compared. Only patients with early signs of envenomation were included in the study. Optical coherence tomography angiographies were performed with RTVue XR Avanti with AngioVue software. Vascular densities in the whole image, foveal, parafoveal regions at the superficial and the deep capillary plexus segments were acquired and statistically analyzed. The flow area parameters were measured in the superficial retinal capillary plexus, deep retinal capillary plexus, outer retinal capillary plexus, and choriocapillaris layers of the macula in 1-mm and 3-mm diameter areas. The peripapillary flow areas were measured for the optic nerve head, vitreous, radial peripapillary capillary (RPC), and choroid in a 4.50-mm diameter area. Foveal and parafoveal thicknesses were also measured and compared. The average hospital admission time of the patients in group S was 1.24 ± 0.75 (0.50-3.00) hours. Age (p = 0.103) and gender (p = 0.714) were similar in both groups. Superficial (p = 0.010), deep flow areas (p = 0.034), and superficial parafoveal vascular density (p = 0.001) were significantly reduced in group S compared to group C. The outer retinal flow area (p < 0.001) increased significantly in group S. Nerve head flow area (p = 0.035), one of the optic disc flow areas, was found to be decreased in group S. Notably, foveal (p < 0.001) and parafoveal (p = 0.003) thicknesses and superficial (p = 0.001) and deep (p < 0.001) foveal vascular densities were greater in group S. Compared to group C, the superficial (p = 0.009) and deep (p = 0.009) foveal flow areas in the central foveal area with a diameter of 1 mm increased significantly in group S. Viper venom may cause blood flow changes in the retina and optic disc and an increase in retinal thickness in the early period although there are no signs of systemic envenomation.
Collapse
Affiliation(s)
- Özlem Güler
- Kahramanmaraş Sütçü İmam University Faculty of Medicine, Department of Emergency Medicine, Turkey.
| | - Mete Güler
- Kahramanmaraş Sütçü İmam University Faculty of Medicine, Department of Ophthalmology, Turkey
| | - Selma Urfalıoğlu
- Kahramanmaraş Sütçü İmam University Faculty of Medicine, Department of Ophthalmology, Turkey
| | - Ali İhsan Kilci
- Kahramanmaraş Sütçü İmam University Faculty of Medicine, Department of Emergency Medicine, Turkey
| | - Hakan Hakkoymaz
- Kahramanmaraş Sütçü İmam University Faculty of Medicine, Department of Emergency Medicine, Turkey
| |
Collapse
|
8
|
Gamma irradiated protease from Echis pyramidum venom: A promising immunogen to improve viper bites treatment. Toxicon 2020; 188:108-116. [PMID: 33065201 DOI: 10.1016/j.toxicon.2020.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/22/2020] [Accepted: 10/12/2020] [Indexed: 11/21/2022]
Abstract
Echis pyramidum (Epy) is a venomous snake belongs to Viperidae family; it causes fetal coagulopathy systemic effects and death. Searching for more effective and safe antivenom is mandatory for viper bites treatment. Proteases are the most lethal components in viper venom inducing hemorrhage, edema and coagulation problems. Thus, the study aims to evaluate the potency of the prepared antisera and their neutralizing properties against the biological activities induced by whole Epy venom individually. Echis pyramidum metalloprotease enzyme (60 kDa) was purified using size-exclusion followed by DEAE-ion exchange chromatography. The purified Epy metalloprotease enzyme (SVMP) was detoxified with 1.5 kGy gamma rays from cobalt60 gamma cell and used for immunization. 1.5 kGy irradiated Epy metalloprotease (SVMPi) showed less lethal activity (LD50) compared to the corresponding native immunogen. The prepared antisera boosted against whole Epy venom (WV), 1.5 kGy irradiated whole Epy venom (WVi), SVMP and SVMPi were tested for neutralization of lethality and biological activities induced by Epy venom. The antibodies elicited against WVi and SVMPi were 30,000 and 20,000 EU, respectively. The anti-SVMPi serum showed the highest neutralization of lethality (ED50) compared to the other prepared antisera. In addition, it prolonged the clotting time from 49.0 ± 2.5 to 176.2 ± 1.4 s. Furthermore, it demonstrated a highly neutralizing activity against edema induction and hemorrhage of Epy venom by 66.8% and 94.3%, respectively compared with the other prepared antisera. These findings would encourage further studies for using gamma irradiated purified fraction(s) from different snake venoms as safe antigen(s) to produce more effective antivenoms.
Collapse
|
9
|
Nourreddine FZ, Oussedik-Oumehdi H, Laraba-Djebari F. Myotoxicity induced by Cerastes cerastes venom: Beneficial effect of heparin in skeletal muscle tissue regeneration. Acta Trop 2020; 202:105274. [PMID: 31738878 DOI: 10.1016/j.actatropica.2019.105274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 01/03/2023]
Abstract
Myonecrosis is a relevant tissue damage induced by snakes of Viperidae family often leading to permanent tissue and function loss and even amputation. The aim of this study was to evaluate the effect of heparin on skeletal muscle tissue regeneration after Cerastes cerastes envenomation. Mice received either the venom (1 LD50) by i.m. route, or the venom followed, by heparin administration by i.v. route at 15 min and 4 h. Obtained results showed that Cerastes cerastes venom induced deep tissue structure alterations, characterized mainly by edema, hemorrhage, myonecrosis and inflammation. Myotoxicity was correlated with increased CK levels in sera, concomitant with their decrease in muscle tissue homogenates. Muscle wet weight was restored within 2 weeks after heparin treatment and 28 days in the envenomed group. Heparin treatment significantly decreased MPO activity, suggesting an anti-inflammatory effect. NO, HGF, VEGF and G-CSF levels were increased after heparin administration. These mitogenic factors constitute potent stimuli for satellite and endothelial cells improving, thus, muscle regeneration. This study showed that muscle tissue recovery was significantly enhanced after heparin treatment. Heparin use seems to be a promising therapeutic approach after viper envenomation.
Collapse
Affiliation(s)
- Fatima Zohra Nourreddine
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32, El-Alia, Bab Ezzouar,16111, Algiers, Algeria
| | - Habiba Oussedik-Oumehdi
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32, El-Alia, Bab Ezzouar,16111, Algiers, Algeria
| | - Fatima Laraba-Djebari
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32, El-Alia, Bab Ezzouar,16111, Algiers, Algeria.
| |
Collapse
|
10
|
Abd El-Aziz TM, Shoulkamy MI, Hegazy AM, Stockand JD, Mahmoud A, Mashaly AMA. Comparative study of the in vivo toxicity and pathophysiology of envenomation by three medically important Egyptian snake venoms. Arch Toxicol 2019; 94:335-344. [DOI: 10.1007/s00204-019-02619-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/06/2019] [Indexed: 12/29/2022]
|
11
|
Siigur J, Aaspõllu A, Siigur E. Biochemistry and pharmacology of proteins and peptides purified from the venoms of the snakes Macrovipera lebetina subspecies. Toxicon 2019; 158:16-32. [DOI: 10.1016/j.toxicon.2018.11.294] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/07/2018] [Accepted: 11/11/2018] [Indexed: 12/20/2022]
|
12
|
de la Rosa G, Olvera F, Cruz E, Paniagua D, Corzo G. Use of irradiated elapid and viperid venoms for antivenom production in small and large animals. Toxicon 2018; 155:32-37. [PMID: 30315836 DOI: 10.1016/j.toxicon.2018.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/15/2018] [Accepted: 10/09/2018] [Indexed: 11/29/2022]
Abstract
This work evaluated the feasibility of using toxoids obtained by gamma radiation in the production of antivenoms in small and large animals. Mixtures of African snake venoms from viperids or elapids were used. The viperid mixture contained the crude venom of five species of the genera Echis and Bitis, while the elapid mixture contained the crude venom of six species of the genera Naja and Dendroaspis. The viperid mixture had an LD50 of 1.25 mg/kg in mice, and the elapid mixture had an LD50 of 0.46 mg/kg. Both viper and elapid aqueous mixtures were subjected to Cobalt-60 gamma irradiation in three physical states: lyophilized, frozen and liquid. Radiation doses ranged from 0.5 to 100 kGy. The LD50s of the lyophilized and frozen mixtures of both viperid and elapid mixtures remained unaltered with radiation doses as high as 100 kGy; nevertheless, in the liquid state, doses of 3.5 and 5.5 kGy reduced the venom toxicity of both the viperid and elapid mixtures to 7.25 mg/kg and 1.74 mg/kg; less toxic by factors of 5.8 and 3.8, respectively. Groups of four rabbits and three horses were immunized with either irradiated or non-irradiated mixtures. In vitro and in vivo analysis of the rabbit and horse sera revealed that neutralizing antibodies were produced against both irradiated (toxoids) and native venom mixtures. None of the animals used in this study, either immunized with native venom or toxoids, developed severe local effects due to the application of venoms mixtures. Gamma-irradiated detoxified venoms mixtures, under well-controlled and studied conditions, could be a practical alternative for the production of polyvalent equine serum with high neutralization potency against snake venoms.
Collapse
Affiliation(s)
- Guillermo de la Rosa
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Avenida Universidad 2001, Cuernavaca, Morelos, 62210, Mexico.
| | - Felipe Olvera
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Avenida Universidad 2001, Cuernavaca, Morelos, 62210, Mexico
| | - Epifanio Cruz
- Departamento de Química de Radiaciones, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 70-543, CDMX, 04510, Mexico
| | - Dayanira Paniagua
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Avenida Universidad 2001, Cuernavaca, Morelos, 62210, Mexico
| | - Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Avenida Universidad 2001, Cuernavaca, Morelos, 62210, Mexico
| |
Collapse
|
13
|
Salama WH, Abdel-Aty AM, Fahmy AS. Rosemary leaves extract: Anti-snake action against Egyptian Cerastes cerastes venom. J Tradit Complement Med 2018; 8:465-475. [PMID: 30302327 PMCID: PMC6174259 DOI: 10.1016/j.jtcme.2017.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 12/18/2022] Open
Abstract
The morbidity caused by viper bites is very dangerous and the anti-venom therapy couldn't treat the local injures such as hemorrhage, edema, necrosis and inflammation of bitten tissues. Searching for safe and effective anti-venom compounds from natural sources is very important. This study was designed to explore the neutralizing ability of Rosmarinus officinalis L. leaves aqueous extract (RMAE) against Egyptian Cerastes cerastes (Cc) viper venom toxicity. The RMAE contained a considerable amount of phenolic and flavonoid contents with 3,300 and 800 mg/100 g dry weight, respectively. The RMAE showed a considerable variation of phenolic acids by using HPLC technique. Rosmarinic acid is the major component of the RMAE which recorded 400 mg/100 g dry weight and 64% of all the identified compounds. In vitro, the RMAE neutralized the enzymatic activities of proteases, l-amino acid oxidases, and phospholipases A2 of the Cc venom dose-dependently. In addition, the RMAE effectively neutralized the gelatinolytic, fibrinogenolytic, hemolytic and procoagulant activities of Cc venom. In vivo, the RMAE markedly reduced lethality, hemorrhage, edema, muscle and liver toxicities induced by Cc venom. In conclusion, the venom neutralizing property of the RMAE gives a new prospect for efficient treatment of the lethal viper bites.
Collapse
Affiliation(s)
| | - Azza M. Abdel-Aty
- Molecular Biology Department, National Research Center, Dokki, Cairo, Egypt
| | | |
Collapse
|
14
|
The impact of low doses of gamma radiation on Echis coloratus venom and its fractions. Radiat Phys Chem Oxf Engl 1993 2018. [DOI: 10.1016/j.radphyschem.2018.04.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Bennacef-Heffar N, Laraba-Djebari F. Beneficial effects of Heparin and l Arginine on dermonecrosis effect induced by Vipera lebetina venom: Involvement of NO in skin regeneration. Acta Trop 2017; 171:226-232. [PMID: 28427959 DOI: 10.1016/j.actatropica.2017.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/03/2017] [Accepted: 04/14/2017] [Indexed: 11/17/2022]
Abstract
It is well known that snake venoms such as Viperidae caused severe local effects such as hemorrhage, myonecrosis and dermonecrosis which can lead to permanent tissue loss or the disability. The aim of this study is to evaluate the skin regeneration using heparin and l-arginine as well as the dermonecrotic effects induced by Vipera lebetina venom (VLV). To better understand the toxic effects induced by VLV and to prevent or treat these effects, we evaluate the local effects and the skin regeneration with or without drugs. The evaluation of NO as a marker of angiogenesis was also undertaken to understand its involvement in tissue wound healing and skin regeneration after envenomation. Obtained results showed that this venom is able to induce severe necrosis characterized by hemorrhage, hair follicles' destruction, glandular structure and increased of the thickness (acanthosis) in the epidermo-dermic junction. Inflammatory cells were also observed in the dermis. Pretreatment with heparin or L arginine seemed to decrease the induced dermonecrotic after one and two weeks improving the skin regeneration. The high level of NO could be involved in this regeneration, since it participates in the skin homeostatic functions' regulation and the maintenance of the skin protective barrier integrity against microorgansims. Nitric oxide plays also a key role in wound healing; it acts as a potent mitogenic stimulus to keratinocytes during skin repair and enhances the hair follicles and sebaceous gland structure that appeared after two weeks of treatment. Thus, these drugs could be used in therapeutic approach for dermonecrotic skin repair.
Collapse
Affiliation(s)
- Nouara Bennacef-Heffar
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32 El-Alia, Bab Ezzouar, Algiers, Algeria
| | - Fatima Laraba-Djebari
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32 El-Alia, Bab Ezzouar, Algiers, Algeria.
| |
Collapse
|