1
|
Liang T, Chen J, Yan R, Jiang H, Li H. Research on Detection of Ultra-Low Concentration Anthrax Protective Antigen Using Graphene Field-Effect Transistor Biosensor. SENSORS (BASEL, SWITZERLAND) 2023; 23:5820. [PMID: 37447669 DOI: 10.3390/s23135820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND Protective antigen (PA) is an important biomarker for the early diagnosis of anthrax, and the accurate detection of protective antigen under extremely low concentration conditions has always been a hot topic in the biomedical field. To complete the diagnosis of anthrax in a timely manner, it is necessary to detect PA at extremely low concentrations, as the amount of PA produced in the early stage of anthrax invasion is relatively small. Graphene field-effect transistor (Gr-FET) biosensors are a new type of material for preparing biosensors, with the advantages of a short detection time and ultra-low detection limit. METHODS The effect of different concentrations of diluents on the affinity of PA monoclonal antibodies was determined via an ELISA experiment. Combined with the Debye equation, 0.01 × PBS solution was finally selected as the diluent for the experiment. Then, a PA monoclonal antibody was selected as the bio-recognition element to construct a Gr-FET device based on CVD-grown graphene, which was used to detect the concentration of PA while recording the response time, linear range, detection limit, and other parameters. RESULTS The experimental results showed that the biosensor could quickly detect PA, with a linear range of 10 fg/mL to 100 pg/mL and a detection limit of 10 fg/mL. In addition, the biosensor showed excellent specificity and repeatability. CONCLUSIONS By constructing a Gr-FET device based on CVD-grown graphene and selecting a PA monoclonal antibody as the bio-recognition element, a highly sensitive, specific, and repeatable Gr-FET biosensor was successfully prepared for detecting extremely low concentrations of anthrax protective antigen (PA). This biosensor is expected to have a wide range of applications in clinical medicine and biological safety monitoring.
Collapse
Affiliation(s)
- Ting Liang
- The Institute of NBC Defense PLA Army, Beijing 102205, China
| | | | - Rui Yan
- The Institute of NBC Defense PLA Army, Beijing 102205, China
| | - Huaning Jiang
- The Institute of NBC Defense PLA Army, Beijing 102205, China
- Unit No. 32281 of PLA, Chengdu 610200, China
| | - Hexi Li
- The Institute of NBC Defense PLA Army, Beijing 102205, China
- Unit No. 31666 of PLA, Zhangye 610200, China
| |
Collapse
|
2
|
Song Y, Zhao Y, Pan K, Shen B, Fang R, Hu M, Zhao J, Zhou Y. Characterization and evaluation of a recombinant multiepitope peptide antigen MAG in the serological diagnosis of Toxoplasma gondii infection in pigs. Parasit Vectors 2021; 14:408. [PMID: 34404476 PMCID: PMC8369689 DOI: 10.1186/s13071-021-04917-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/02/2021] [Indexed: 11/28/2022] Open
Abstract
Background Toxoplasmosis caused by Toxoplasma gondii is a serious disease threatening human and animal health. People can be infected with T. gondii by ingesting raw pork contaminated with cysts or oocysts. Serological test is a sensitive and specific method usually used for large-scale diagnosis of T. gondii infection in humans and animals (such as pigs). Commercial pig Toxoplasma antibody ELISA diagnostic kits are expensive, which limits their use; moreover, the wide antigen composition used in these diagnostic kits is still unclear and difficult to standardize. The multiepitope peptide antigen is a novel diagnostic marker, and it has potential to be developed into more accurate and inexpensive diagnostic kits. Methods The synthetic multiepitope antigen (MAG) cDNA encoding a protein with epitopes from five T. gondii-dominant antigens (SAG1, GRA1, ROP2, GRA4, and MIC3) was designed, synthesized, and expressed in Escherichia coli BL21 (DE3) strain. The recombinant protein was detected through western blot with pig anti-T. gondii-positive and -negative serum, and then IgG enzyme-linked immunosorbent assay (ELISA) named MAG-ELISA was designed. The MAG-ELISA was evaluated in terms of specificity, sensitivity, and stability. The MAG-ELISA was also compared with a commercial PrioCHECK®Toxoplasma Ab porcine ELISA (PrioCHECK ELISA). Finally, the trend of pig anti-T. gondii IgG levels after artificial infection with RH tachyzoites was evaluated using MAG-ELISA and two other ELISA methods (rMIC3-ELISA and PrioCHECK ELISA). Results MAG antigen could be specifically recognized by pig anti-T. gondii-positive but not -negative serum. MAG-ELISA showed high diagnostic performance in terms of specificity (88.6%) and sensitivity (79.1%). MAG-ELISA could be used for detecting anti-T. gondii IgG in the early stage of T. gondii infection in pigs (at least 7 days after artificial infection). Conclusions Our results suggest that MAG antigen can be applied to specifically recognize anti-T. gondii IgG in pig, and MAG-ELISA has the potential for large-scale screening tests of T. gondii infection in pig farms and intensive industries. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04917-w.
Collapse
Affiliation(s)
- Yongle Song
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Yongjuan Zhao
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Ke Pan
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Bang Shen
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Rui Fang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Min Hu
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Junlong Zhao
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Yanqin Zhou
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China. .,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| |
Collapse
|
3
|
Development of a PCR Lateral Flow Assay for Rapid Detection of Bacillus anthracis, the Causative Agent of Anthrax. Mol Biotechnol 2021; 63:702-709. [PMID: 33982268 DOI: 10.1007/s12033-021-00335-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
Bacillus anthracis, the causative agent of anthrax is one of the most potent listed biological warfare agents. The conventional microbiological methods of its detection are labor intensive and time consuming, whereas molecular assays are fast, sensitive and specific. PCR is one of the most reliable diagnostic tools in molecular biology. The combination of PCR with lateral flow strips can reduce the diagnostic/detection time. It gives an alternative to gel electrophoresis and offers easy and clear interpretation of results. In the present study, a PCR Lateral flow (PCR-LF) assay targeting cya gene present on pXO1 plasmid of B. anthracis has been developed. The forward and reverse primers were tagged with 6-carboxyflourescein (6-FAM) and biotin, respectively, at 5' end. The dual labeled PCR products were detected using lateral flow (LF) strips developed in this study. The PCR-LF assay could detect ≥ 5 pg of genomic DNA and ≥ 500 copies of target DNA harboured in a recombinant plasmid. The assay was able to detect as few as 103 and 10 CFU/mL of B. anthracis Sterne cells spiked in human blood after 6 and 24 h of enrichment, respectively.
Collapse
|
4
|
Janik E, Ceremuga M, Niemcewicz M, Bijak M. Dangerous Pathogens as a Potential Problem for Public Health. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E591. [PMID: 33172013 PMCID: PMC7694656 DOI: 10.3390/medicina56110591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 12/22/2022]
Abstract
Pathogens are various organisms, such as viruses, bacteria, fungi, and protozoa, which can cause severe illnesses to their hosts. Throughout history, pathogens have accompanied human populations and caused various epidemics. One of the most significant outbreaks was the Black Death, which occurred in the 14th century and caused the death of one-third of Europe's population. Pathogens have also been studied for their use as biological warfare agents by the former Soviet Union, Japan, and the USA. Among bacteria and viruses, there are high priority agents that have a significant impact on public health. Bacillus anthracis, Francisella tularensis, Yersinia pestis, Variola virus, Filoviruses (Ebola, Marburg), Arenoviruses (Lassa), and influenza viruses are included in this group of agents. Outbreaks and infections caused by them might result in social disruption and panic, which is why special operations are needed for public health preparedness. Antibiotic-resistant bacteria that significantly impede treatment and recovery of patients are also valid threats. Furthermore, recent events related to the massive spread of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are an example of how virus-induced diseases cannot be ignored. The impact of outbreaks, such as SARS-CoV-2, have had far-reaching consequences beyond public health. The economic losses due to lockdowns are difficult to estimate, but it would take years to restore countries to pre-outbreak status. For countries affected by the 2019 coronavirus disease (COVID-19), their health systems have been overwhelmed, resulting in an increase in the mortality rate caused by diseases or injuries. Furthermore, outbreaks, such as SARS-CoV-2, will induce serious, wide-ranging (and possibly long-lasting) psychological problems among, not only health workers, but ordinary citizens (this is due to isolation, quarantine, etc.). The aim of this paper is to present the most dangerous pathogens, as well as general characterizations, mechanisms of action, and treatments.
Collapse
Affiliation(s)
- Edyta Janik
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.); (M.N.)
| | - Michal Ceremuga
- Military Institute of Armament Technology, Prymasa Stefana Wyszyńskiego 7, 05-220 Zielonka, Poland;
| | - Marcin Niemcewicz
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.); (M.N.)
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.); (M.N.)
| |
Collapse
|
5
|
Kumar M, Puranik N, Varshney A, Tripathi N, Pal V, Goel AK. BA3338, a surface layer homology domain possessing protein augments immune response and protection efficacy of protective antigen against Bacillus anthracis in mouse model. J Appl Microbiol 2020; 129:443-452. [PMID: 32118336 DOI: 10.1111/jam.14624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/20/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023]
Abstract
AIM Category A classified Bacillus anthracis is highly fatal pathogen that causes anthrax and creates challenges for global security and public health. In this study, development of a safe and ideal next-generation subunit anthrax vaccine has been evaluated in mouse model. METHOD AND RESULTS Protective antigen (PA) and BA3338, a surface layer homology (SLH) domain possessing protein were cloned, expressed in heterologous system and purified by IMAC. Recombinant PA and BA3338 with alum were administered in mouse alone or in combination. The humoral and cell-mediated immune response was measured by ELISA and vaccinated animals were challenged with B. anthracis spores via intraperitoneal route. The circulating IgG antibody titre of anti-PA and anti-BA3338 was found significantly high in the first and second booster sera. A significant enhanced level of IL-4, IFN-γ and IL-12 was observed in antigens stimulated supernatant of splenocytes of PA + BA3338 vaccinated animals. A combination of PA and BA3338 provided 80% protection against 20 LD50 lethal dose of B. anthracis spores. CONCLUSION Both antigens induced admirable humoral and cellular immune response as well as protective efficacy against B. anthracis spores. SIGNIFICANCE AND IMPACT OF THE STUDY This study has been evaluated for the first time using BA3338 as a vaccine candidate alone or in combination with well-known anthrax vaccine candidate PA. The findings of this study demonstrated that BA3338 could be a co-vaccine candidate for development of dual subunit vaccine against anthrax.
Collapse
Affiliation(s)
- M Kumar
- Bioprocess Technology Division, Defence Research and Development Establishment, Gwalior, India
| | - N Puranik
- Bioprocess Technology Division, Defence Research and Development Establishment, Gwalior, India
| | - A Varshney
- Bioprocess Technology Division, Defence Research and Development Establishment, Gwalior, India
| | - N Tripathi
- Bioprocess Technology Division, Defence Research and Development Establishment, Gwalior, India
| | - V Pal
- Bioprocess Technology Division, Defence Research and Development Establishment, Gwalior, India
| | - A K Goel
- Bioprocess Technology Division, Defence Research and Development Establishment, Gwalior, India
| |
Collapse
|
6
|
Development of a novel chimeric PA-LF antigen of Bacillus anthracis, its immunological characterization and evaluation as a future vaccine candidate in mouse model. Biologicals 2019; 61:38-43. [PMID: 31416791 DOI: 10.1016/j.biologicals.2019.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/28/2019] [Accepted: 07/29/2019] [Indexed: 02/07/2023] Open
Abstract
Tremendous efforts are being made to develop an anthrax vaccine with long term protection. The main component of traditional anthrax vaccine is protective antigen (PA) with the trace amount of other proteins and bacterial components. In this study, we developed a recombinant PA-LF chimera antigen of Bacillus anthracis by fusing the PA domain 2-4 with lethal factor (LF) domain 1 and evaluated its protective potential against B. anthracis in mouse model. The anti-PA-LF chimera serum reacted with both PA and LF antigen, individually. The chimera elicited a strong antibody titer in mice with predominance of IgG1 isotype followed by IgG2b, IgG2a and IgG3. Cytokines were assessed in splenocytes of immunized mice and a significant up-regulation in the expression of IL-4, IL-10, IFN-γ and TNF-α was observed. The PA-LF chimera immunized mice exhibited 80% survival after challenge with virulent spores of B. anthracis. Pathological studies showed normal architecture in vital organs (spleen, lung, liver and kidney) of recovered immunized mice on 20 DPI after spore challenge. These findings suggested that PA-LF chimera of B. anthracis elicited good humoral as well as cell mediated immune response in mice, and thus, can be a potent vaccine candidate against anthrax.
Collapse
|