1
|
Lim ASS, Tan KY, Quraishi NH, Farooque S, Khoso ZA, Ratanabanangkoon K, Tan CH. Proteomic Analysis, Immuno-Specificity and Neutralization Efficacy of Pakistani Viper Antivenom (PVAV), a Bivalent Anti-Viperid Antivenom Produced in Pakistan. Toxins (Basel) 2023; 15:toxins15040265. [PMID: 37104203 PMCID: PMC10145215 DOI: 10.3390/toxins15040265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Snakebite envenoming is a neglected tropical disease prevalent in South Asia. In Pakistan, antivenoms are commonly imported from India despite the controversy over their effectiveness. To solve the problem, the locals have developed the Pakistani Viper Antivenom (PVAV), raised against Sochurek’s Saw-scaled Viper (Echis carinatus sochureki) and Russell’s Viper (Daboia russelii) of Pakistani origin. This study is set to evaluate the composition purity, immuno-specificity and neutralization efficacy of PVAV. Chromatographic and electrophoretic profiling coupled with proteomic mass spectrometry analysis showed PVAV containing high-purity immunoglobulin G with minimum impurities, notably the absence of serum albumin. PVAV is highly immuno-specific toward the venoms of the two vipers and Echis carinatus multisquamatus, which are indigenous to Pakistan. Its immunoreactivity, however, reduces toward the venoms of other Echis carinatus subspecies and D. russelii from South India as well as Sri Lanka. Meanwhile, its non-specific binding activities for the venoms of Hump-nosed Pit Vipers, Indian Cobras and kraits were extremely low. In the neutralization study, PVAV effectively mitigated the hemotoxic and lethal effects of the Pakistani viper venoms, tested in vitro and in vivo. Together, the findings suggest the potential utility of PVAV as a new domestic antivenom for the treatment of viperid envenoming in Pakistan.
Collapse
Affiliation(s)
- Andy Shing Seng Lim
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Kae Yi Tan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Naeem H. Quraishi
- Snake Antivenom/Antirabies Serology Laboratory, Department of Community Medicine & Public Health Sciences, People’s University of Medical and Health Sciences for Women, Nawabshah 67450, Pakistan
| | - Saud Farooque
- Snake Antivenom/Antirabies Serology Laboratory, Department of Community Medicine & Public Health Sciences, People’s University of Medical and Health Sciences for Women, Nawabshah 67450, Pakistan
| | - Zahoor Ahmed Khoso
- Snake Antivenom/Antirabies Serology Laboratory, Department of Community Medicine & Public Health Sciences, People’s University of Medical and Health Sciences for Women, Nawabshah 67450, Pakistan
| | - Kavi Ratanabanangkoon
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 73170, Thailand
| | - Choo Hock Tan
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
2
|
Palasuberniam P, Tan KY, Chan YW, Blanco FB, Tan CH. Decomplexation proteomic analysis and purity assessment of a biologic for snakebite envenoming: Philippine Cobra Antivenom. Trans R Soc Trop Med Hyg 2023:6972591. [PMID: 36611268 DOI: 10.1093/trstmh/trac125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/02/2022] [Accepted: 12/10/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Philippine Cobra Antivenom (PCAV) is the only snake antivenom manufactured in the Philippines. It is used clinically to treat envenoming caused by the Philippine Spitting Cobra (Naja philippinensis). While PCAV is effective pharmacologically, it is crucial to ensure the safety profile of this biologic that is derived from animal plasma. METHODS This study examined the composition purity of PCAV through a decomplexation proteomic approach, applying size-exclusion chromatography (SEC), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and tandem mass spectrometry liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS SDS-PAGE and SEC showed that the major protein in PCAV (constituting ∼80% of total proteins) is approximately 110 kDa, consistent with the F(ab')2 molecule. This protein is reducible into two subunits suggestive of the light and heavy chains of immunoglobulin G. LC-MS/MS further identified the proteins as equine immunoglobulins, representing the key therapeutic ingredient of this biologic product. However, protein impurities, including fibrinogens, alpha-2-macroglobulins, albumin, transferrin, fibronectin and plasminogen, were detected at ∼20% of the total antivenom proteins, unveiling a concern for hypersensitivity reactions. CONCLUSIONS Together, the findings show that PCAV contains a favorable content of F(ab')2 for neutralization, while the antibody purification process awaits improvement to minimize the presence of protein impurities.
Collapse
Affiliation(s)
- Praneetha Palasuberniam
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia.,Venom Research & Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kae Yi Tan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yi Wei Chan
- Department of Emergency Medicine, Ospital ng Muntinlupa, 1781 Muntinlupa, Manila, Philippines
| | - Francis Bonn Blanco
- Department of Emergency Medicine, Ospital ng Muntinlupa, 1781 Muntinlupa, Manila, Philippines.,Department of Internal Medicine, Davao Medical School Foundation Hospital, 8000 Davao City, Philippines
| | - Choo Hock Tan
- Venom Research & Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
da Costa CBP, Carvalho VRD, Ferreira LLC, Mattos JLC, Garcia LDM, Antunes MDS, Martins FJ, Ratcliffe NA, Cisne R, Castro HC. Production of hyperimmune sera: a study of digestion and fractionation methodologies for the purification process of heterologous immunoglobulins. TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2124421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Camila Braz Pereira da Costa
- Instituto Vital Brazil, Niterói, Brazil
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | | | | | | | | | | | - Francislene Juliana Martins
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
- Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, Brazil
| | - Norman A. Ratcliffe
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
- Department of Biosciences, Swansea University, Swansea, UK
| | - Rafael Cisne
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Helena C. Castro
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| |
Collapse
|
4
|
Patra A, Kalita B, Khadilkar MV, Salvi NC, Shelke PV, Mukherjee AK. Assessment of quality and pre-clinical efficacy of a newly developed polyvalent antivenom against the medically important snakes of Sri Lanka. Sci Rep 2021; 11:18238. [PMID: 34521877 PMCID: PMC8440654 DOI: 10.1038/s41598-021-97501-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 07/06/2021] [Indexed: 02/08/2023] Open
Abstract
Snake envenomation is a severe problem in Sri Lanka (SL) and Indian polyvalent antivenom (PAV) is mostly used for treating snakebite albeit due to geographical variation in venom composition, Indian PAV shows poor efficacy in neutralizing the lethality and toxicity of venom from the same species of snakes in SL. Therefore, the quality and in vivo venom neutralization potency of a country-specific PAV produced against the venom of the five most medically important snakes of SL (Daboia russelii, Echis carinatus, Hypnale hypnale, Naja naja, Bungarus caeruleus) was assessed. LC-MS/MS analysis of two batches of PAV showed the presence of 88.7-97.2% IgG and traces of other plasma proteins. The tested PAVs contained minor amounts of undigested IgG and F(ab')2 aggregates, showed complement activation, were devoid of IgE, endotoxin, and content of preservative was below the threshold level. Immunological cross-reactivity and in vitro neutralization of enzymatic activities, pharmacological properties demonstrated superior efficacy of SL PAV compared to Indian PAV against SL snake venoms. The in vivo neutralization study showed that the tested PAVs are potent to neutralize the lethality and venom-induced toxicity of SL snake venoms. Therefore, our study suggests that introduction of SL-specific PAV will improve snakebite management in SL.
Collapse
Affiliation(s)
- Aparup Patra
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Science, Tezpur University, Tezpur, Assam, 784028, India
| | - Bhargab Kalita
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Science, Tezpur University, Tezpur, Assam, 784028, India
| | - Milind V Khadilkar
- Premium Serums and Vaccines Pvt. Ltd, Narayangaon, Pune, Maharashtra, 410504, India
| | - Nitin C Salvi
- Premium Serums and Vaccines Pvt. Ltd, Narayangaon, Pune, Maharashtra, 410504, India
| | - Pravin V Shelke
- Premium Serums and Vaccines Pvt. Ltd, Narayangaon, Pune, Maharashtra, 410504, India
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Science, Tezpur University, Tezpur, Assam, 784028, India.
- Institute of Advanced Study in Science and Technology, Vigyan Path, Garchuk, Paschim Boragaon, Guwahati, Assam, 781035, India.
| |
Collapse
|
5
|
Patra A, Herrera M, Gutiérrez JM, Mukherjee AK. The application of laboratory-based analytical tools and techniques for the quality assessment and improvement of commercial antivenoms used in the treatment of snakebite envenomation. Drug Test Anal 2021; 13:1471-1489. [PMID: 34089574 DOI: 10.1002/dta.3108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022]
Abstract
Snakebite envenomation is a public health problem of high impact, particularly for the developing world. Antivenom, which contains whole or protease-digested immunoglobulin G, purified from the plasma of hyper-immunized animals (mainly horses), is the mainstay for the treatment of snakebite envenomation. The success of antivenom therapy depends upon its ability to abrogate or reduce the local and systemic toxicity of envenomation. In addition, antivenom administration must be safe for the patients. Therefore, antivenom manufacturers must ensure that these products are effective and safe in the treatment of envenomations. Antivenom efficacy and safety are determined by the physicochemical characteristics of formulations, purity of the immunoglobulin fragments and antibodies, presence of protein aggregates, endotoxin burden, preservative load, and batch to batch variation, as well as on the ability to neutralize the most important toxins of the venoms against which the antivenom is designed. In this context, recent studies have shown that laboratory-based simple analytical techniques, for example, size exclusion chromatography, sodium dodecyl sulphate polyacrylamide gel electrophoresis, mass spectrometry, immunological profiling including immuno-turbidimetry and enzyme-linked immunosorbent assays, Western blotting, immune-chromatographic technique coupled to mass spectrometry analysis, reverse-phase high performance liquid chromatography, spectrofluorometric analysis, in vitro neutralization of venom enzymatic activities, and other methodologies, can be applied for the assessment of antivenom quality, safety, stability, and efficacy. This article reviews the usefulness of different analytical techniques for the quality assessment of commercial antivenoms. It is suggested that these tests should be applied for screening the quality of commercial antivenoms before their preclinical and clinical assessment.
Collapse
Affiliation(s)
- Aparup Patra
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - María Herrera
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India.,Life Science Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Garchuk, Paschim Boragaon, Guwahati, 781035, India
| |
Collapse
|