1
|
Rabbitt D, Villapún VM, Carter LN, Man K, Lowther M, O'Kelly P, Knowles AJ, Mottura A, Tang YT, Luerti L, Reed RC, Cox SC. Rethinking Biomedical Titanium Alloy Design: A Review of Challenges from Biological and Manufacturing Perspectives. Adv Healthc Mater 2025; 14:e2403129. [PMID: 39711273 PMCID: PMC11804846 DOI: 10.1002/adhm.202403129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/14/2024] [Indexed: 12/24/2024]
Abstract
Current biomedical titanium alloys have been repurposed from other industries, which has contributed to several biologically driven implant failure mechanisms. This review highlights the added value that may be gained by building an appreciation of implant biological responses at the onset of alloy design. Specifically, the fundamental mechanisms associated with immune response, angiogenesis, osseointegration and the potential threat of infection are discussed, including how elemental selection can modulate these pivotal systems. With a view to expedite inclusion of these interactions in alloy design criteria, methods to analyze these performance characteristics are also summarized. While machine learning techniques are being increasingly used to unearth complex relationships between alloying elements and material properties, much is still unknown about the correlation between composition and some bio-related properties. To bridge this gap, high-throughput methods are also reviewed to validate biological response along with cutting edge manufacturing approaches that may support rapid discovery. Taken together, this review encourages the alloy development community to rethink their approach to enable a new generation of biomedical implants intrinsically designed for a life in the body, including functionality to tackle biological challenges thereby offering improved patient outcomes.
Collapse
Affiliation(s)
- Daisy Rabbitt
- School of Chemical EngineeringUniversity of BirminghamBirminghamB15 2TTUK
| | - Victor M. Villapún
- School of Chemical EngineeringUniversity of BirminghamBirminghamB15 2TTUK
| | - Luke N. Carter
- School of Chemical EngineeringUniversity of BirminghamBirminghamB15 2TTUK
| | - Kenny Man
- Department of Oral and Maxillofacial Surgery & Special Dental CareUniversity Medical Center UtrechtUtrecht3508 GAThe Netherlands
- Regenerative Medicine Center UtrechtUniversity Medical Center UtrechtUtrecht3584 CTThe Netherlands
| | - Morgan Lowther
- Paihau‐Robinson Research InstituteVictoria University of WellingtonWellington5010New Zealand
| | - Paraic O'Kelly
- Center for the Accelerated Maturation of MaterialsDepartment of Materials Science and EngineeringThe Ohio State University1305 Kinnear RoadColumbusOH43212USA
| | | | - Alessandro Mottura
- School of Metallurgy and MaterialsUniversity of BirminghamBirminghamB15 2TTUK
| | - Yuanbo T. Tang
- School of Metallurgy and MaterialsUniversity of BirminghamBirminghamB15 2TTUK
| | - Lorenzo Luerti
- Alloyed LtdUnit 15, Oxford Industrial ParkYarntonOX5 1QUUK
| | - Roger C. Reed
- School of Metallurgy and MaterialsUniversity of BirminghamBirminghamB15 2TTUK
- Department of MaterialsUniversity of OxfordParks RoadOxfordOX1 3PJUK
| | - Sophie C. Cox
- School of Chemical EngineeringUniversity of BirminghamBirminghamB15 2TTUK
| |
Collapse
|
2
|
Calais GB, Garcia GD, de Moura Júnior CF, Soares JDM, Lona LMF, Beppu MM, Hernandez-Montelongo J, Rocha Neto JBM. Therapeutic functions of medical implants from various material categories with integrated biomacromolecular systems. Front Bioeng Biotechnol 2025; 12:1509397. [PMID: 39867472 PMCID: PMC11757644 DOI: 10.3389/fbioe.2024.1509397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/02/2024] [Indexed: 01/28/2025] Open
Abstract
Medical implants are designed to replace missing parts or improve body functions and must be capable of providing structural support or therapeutic intervention for a medical condition. Advances in materials science have enabled the development of devices made from metals, polymers, bioceramics, and composites, each with its specific advantages and limitations. This review analyzes the incorporation of biopolymers, proteins, and other biomacromolecules into implants, focusing on their role in biological integration and therapeutic functions. It synthesizes advancements in surface modification, discusses biomacromolecules as carriers for controlled drug release, and explores the application of nanoceramics and composites to improve osseointegration and tissue regeneration. Biomacromolecule systems are capable of interacting with device components and therapeutic agents - such as growth factors (GFs), antibiotics, and nanoceramics - allowing control over substance release. Incorporating therapeutic agents into these systems enables localized treatments for tissue regeneration, osseointegration, post-surgery infection control, and disease and pre-existing conditions. The review highlights these materials' therapeutic advantages and customization opportunities, by covering mechanical and biological perspectives. Developing composites and hybrid drug delivery systems align with recent efforts in interdisciplinary personalized medicine and implant innovations. For instance, a trend was observed for integrating inorganic (especially nanoceramics, e.g., hydroxyapatite) and organic phases in composites for better implant interaction with biological tissues and faster recovery. This article supports understanding how integrating these materials can create more personalized, functional, durable, and biocompatible implant devices.
Collapse
Affiliation(s)
- Guilherme Bedeschi Calais
- Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering, Department of Materials Engineering and Bioprocesses, Campinas, Brazil
| | - Guilherme Domingos Garcia
- Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering, Department of Materials Engineering and Bioprocesses, Campinas, Brazil
| | - Celso Fidelis de Moura Júnior
- Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering, Department of Materials Engineering and Bioprocesses, Campinas, Brazil
| | - José Diego Magalhães Soares
- Federal University of Alagoas, Center of Technology, Maceió, Brazil
- Federal Institute of Alagoas (IFAL), Chemistry Coordination Office (Campus Maceió), Maceió, Brazil
| | - Liliane Maria Ferrareso Lona
- Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering, Department of Materials Engineering and Bioprocesses, Campinas, Brazil
| | - Marisa Masumi Beppu
- Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering, Department of Materials Engineering and Bioprocesses, Campinas, Brazil
| | - Jacobo Hernandez-Montelongo
- Universidad Católica de Temuco, Department of Mathematical and Physical Sciences, Bioproducts and Advanced Materials Research Center (BioMA), Temuco, Chile
- Universidad de Guadalajara, Department of Translational Bioengineering, Guadalajara, Mexico
| | | |
Collapse
|
3
|
Gazo Hanna E, Younes K, Roufayel R, Khazaal M, Fajloun Z. Engineering innovations in medicine and biology: Revolutionizing patient care through mechanical solutions. Heliyon 2024; 10:e26154. [PMID: 38390063 PMCID: PMC10882044 DOI: 10.1016/j.heliyon.2024.e26154] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
The overlap between mechanical engineering and medicine is expanding more and more over the years. Engineers are now using their expertise to design and create functional biomaterials and are continually collaborating with physicians to improve patient health. In this review, we explore the state of scientific knowledge in the areas of biomaterials, biomechanics, nanomechanics, and computational fluid dynamics (CFD) in relation to the pharmaceutical and medical industry. Focusing on current research and breakthroughs, we provide an overview of how these fields are being used to create new technologies for medical treatments of human patients. Barriers and constraints in these fields, as well as ways to overcome them, are also described in this review. Finally, the potential for future advances in biomaterials to fundamentally change the current approach to medicine and biology is also discussed.
Collapse
Affiliation(s)
- Eddie Gazo Hanna
- College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait
| | - Khaled Younes
- College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait
| | - Rabih Roufayel
- College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait
| | - Mickael Khazaal
- École Supérieure des Techniques Aéronautiques et de Construction Automobile, ISAE-ESTACA, France
| | - Ziad Fajloun
- Faculty of Sciences 3, Department of Biology, Lebanese University, Campus Michel Slayman Ras Maska, 1352, Tripoli, Lebanon
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, 1300, Tripoli, Lebanon
| |
Collapse
|
4
|
Lukose CC, Anestopoulos I, Panagiotidis IS, Zoppi G, Black AM, Dover LG, Bowen L, Serrano-Aroca Á, Liu TX, Mendola L, Morrone D, Panayiotidis MI, Birkett M. Biocompatible Ti 3Au-Ag/Cu thin film coatings with enhanced mechanical and antimicrobial functionality. Biomater Res 2023; 27:93. [PMID: 37749659 PMCID: PMC10521510 DOI: 10.1186/s40824-023-00435-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Biofilm formation on medical device surfaces is a persistent problem that shelters bacteria and encourages infections and implant rejection. One promising approach to tackle this problem is to coat the medical device with an antimicrobial material. In this work, for the first time, we impart antimicrobial functionality to Ti3Au intermetallic alloy thin film coatings, while maintaining their superior mechanical hardness and biocompatibility. METHODS A mosaic Ti sputtering target is developed to dope controlled amounts of antimicrobial elements of Ag and Cu into a Ti3Au coating matrix by precise control of individual target power levels. The resulting Ti3Au-Ag/Cu thin film coatings are then systematically characterised for their structural, chemical, morphological, mechanical, corrosion, biocompatibility-cytotoxicity and antimicrobial properties. RESULTS X-ray diffraction patterns reveal the formation of a super hard β-Ti3Au phase, but the thin films undergo a transition in crystal orientation from (200) to (211) with increasing Ag concentration, whereas introduction of Cu brings no observable changes in crystal orientation. Scanning and transmission electron microscopy analysis show the polyhedral shape of the Ti3Au crystal but agglomeration of Ag particles between crystal grains begins at 1.2 at% Ag and develops into large granules with increasing Ag concentration up to 4.1 at%. The smallest doping concentration of 0.2 at% Ag raises the hardness of the thin film to 14.7 GPa, a 360% improvement compared to the ∼4 GPa hardness of the standard Ti6Al4V base alloy. On the other hand, addition of Cu brings a 315-330% improvement in mechanical hardness of films throughout the entire concentration range of 0.5-7.1 at%. The thin films also show good electrochemical corrosion resistance and a > tenfold reduction in wear rate compared to Ti6Al4V alloy. All thin film samples exhibit very safe cytotoxic profiles towards L929 mouse fibroblast cells when analysed with Alamar blue assay, with ion leaching concentrations lower than 0.2 ppm for Ag and 0.08 ppm for Cu and conductivity tests reveal the positive effect of increased conductivity on myogenic differentiation. Antimicrobial tests show a drastic reduction in microbial survival over a short test period of < 20 min for Ti3Au films doped with Ag or Cu concentrations as low as 0.2-0.5 at%. CONCLUSION Therefore, according to these results, this work presents a new antimicrobial Ti3Au-Ag/Cu coating material with excellent mechanical performance with the potential to develop wear resistant medical implant devices with resistance to biofilm formation and bacterial infection.
Collapse
Affiliation(s)
- Cecil Cherian Lukose
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | - Ioannis Anestopoulos
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, 1683, Nicosia, Cyprus
| | - Iraklis-Stavros Panagiotidis
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, 1683, Nicosia, Cyprus
| | - Guillaume Zoppi
- Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | - Anna M Black
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | - Lynn G Dover
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | - Leon Bowen
- Department of Physics, G.J. Russell Microscopy Facility, Durham University, Durham, DH1 3LE, UK
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, C/Guillem de Castro 94, 46001, Valencia, Spain
| | - Terence Xiaoteng Liu
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | | | | | - Mihalis I Panayiotidis
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, 1683, Nicosia, Cyprus
| | - Martin Birkett
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK.
| |
Collapse
|
5
|
Mendes TA, Vilhena L, Portugal J, Caramês J, Ramalho AL, Lopes LP. Wear of Titanium Implant Platforms with Different Abutment Connections and Abutment Materials: A Pilot Study. J Funct Biomater 2023; 14:jfb14040178. [PMID: 37103268 PMCID: PMC10146395 DOI: 10.3390/jfb14040178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/28/2023] Open
Abstract
The most commonly used material in dental implants and their abutments is titanium. Zirconia is a more aesthetic alternative to titanium abutments; however, it is much harder. There are concerns that zirconia could damage the surface of the implant over time, especially in less stable connections. The aim was to evaluate the wear of implants with different platforms connected to titanium and zirconia abutments. A total of six implants were evaluated, two of each connection type: external hexagon, tri-channel, and conical connections (n = 2). Half of the implants were connected to zirconia abutments, and the other half to titanium abutments (n = 3). The implants were then cyclically loaded. The implant platforms were evaluated by digital superimposing micro CT files and calculating the area of the loss surface (wear). In all the implants, a statistically significant loss of the surface area (p = 0.028) was observed when comparing the area before and after cyclic loading. The average lost surface area was 0.38 mm2 with titanium abutments and 0.41 mm2 with zirconia abutments. The average lost surface area was 0.41 mm2 with the external hexagon, 0.38 mm2 with the tri-channel, and 0.40 mm2 with the conical connection. In conclusion, the cyclic loads induced implant wear. However, neither the type of abutment (p = 0.700) nor the connection (p = 0.718) influenced the amount of surface area lost.
Collapse
Affiliation(s)
- Teresa A Mendes
- Faculdade de Medicina Dentária, Universidade de Lisboa, 1600-277 Lisbon, Portugal
| | - Luis Vilhena
- Department of Mechanical Engineering, Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), University of Coimbra, 3004-516 Coimbra, Portugal
| | - Jaime Portugal
- Faculdade de Medicina Dentária, Universidade de Lisboa, 1600-277 Lisbon, Portugal
| | - João Caramês
- Faculdade de Medicina Dentária, Universidade de Lisboa, 1600-277 Lisbon, Portugal
- Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys), 1600-277 Lisbon, Portugal
| | - Amilcar L Ramalho
- Department of Mechanical Engineering, Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), University of Coimbra, 3004-516 Coimbra, Portugal
| | - Luis P Lopes
- Faculdade de Medicina Dentária, Universidade de Lisboa, 1600-277 Lisbon, Portugal
- Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys), 1600-277 Lisbon, Portugal
| |
Collapse
|
6
|
Kaymaz I, Murat F, Korkmaz İH, Yavuz O. A new design for the humerus fixation plate using a novel reliability-based topology optimization approach to mitigate the stress shielding effect. Clin Biomech (Bristol, Avon) 2022; 99:105768. [PMID: 36150287 DOI: 10.1016/j.clinbiomech.2022.105768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Due to high stiffness, metal fixation plates are prone to stress shielding of the peri-prosthetic bones, leading to bone loss. Therefore, it has become important to design implants with reduced rigidity but increased load-carrying capacity. Considering the uncertainties in the parameters affecting the implant-bone structure is critical in making more reliable implant designs. In this study, a Response Surface Method based Reliability-based Topology Optimization approach was proposed to design a fixation plate for humerus fracture having less stiffness than the conventional plate. METHODS The design of the fixation plate was described as an Reliability-based Topology Optimization problem in which the probabilistic constraint was replaced with a meta-model generated using the Kriging method. The artificial humerus bone model was scanned, and the 3D simulation model was used in the finite element analysis required in the solution. The optimum plate was manufactured using Selective Laser Melting. Both designs were experimentally compared in terms of rigidity. FINDINGS The volume of the conventional plate was reduced from 2512.5 mm3 to 1667.3 mm3; nevertheless, the optimum plate had almost one-third less rigidity than the conventional plate. The probability of failure of the conventional plate was computed as 0.994. However, this value was almost half for the optimum fixation plate. Interpretation The studies showed that the new fixation plate design was less rigid but more reliable than the conventional one. The computation time required to have the optimum plate was reduced by one-tenth by applying the Response Surface Method for the Reliability-based Topology Optimization problem.
Collapse
Affiliation(s)
- Irfan Kaymaz
- Department of Mechanical Engineering, Faculty of Engineering and Architecture, Erzurum Technical University, Erzurum 25050, Turkey; Biomechanics Research Group, Faculty of Engineering and Architecture, Erzurum Technical University, Erzurum 25050, Turkey.
| | - Fahri Murat
- Department of Mechanical Engineering, Faculty of Engineering and Architecture, Erzurum Technical University, Erzurum 25050, Turkey; Biomechanics Research Group, Faculty of Engineering and Architecture, Erzurum Technical University, Erzurum 25050, Turkey.
| | - İsmail H Korkmaz
- Department of Mechanical Engineering, Faculty of Engineering and Architecture, Erzurum Technical University, Erzurum 25050, Turkey; Biomechanics Research Group, Faculty of Engineering and Architecture, Erzurum Technical University, Erzurum 25050, Turkey.
| | - Osman Yavuz
- Department of Mechanical Engineering, Faculty of Engineering and Architecture, Erzurum Technical University, Erzurum 25050, Turkey; Biomechanics Research Group, Faculty of Engineering and Architecture, Erzurum Technical University, Erzurum 25050, Turkey.
| |
Collapse
|
7
|
Influence of Successive Chemical and Thermochemical Treatments on Surface Features of Ti6Al4V Samples Manufactured by SLM. METALS 2021. [DOI: 10.3390/met11020313] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ti6Al4V samples, obtained by selective laser melting (SLM), were subjected to successive treatments: acid etching, chemical oxidation in hydrogen peroxide solution and thermochemical processing. The effect of temperature and time of acid etching on the surface roughness, morphology, topography and chemical and phase composition after the thermochemical treatment was studied. The surfaces were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and contact profilometry. The temperature used in the acid etching had a greater influence on the surface features of the samples than the time. Acid etching provided the original SLM surface with a new topography prior to oxidation and thermochemical treatments. A nanostructure was observed on the surfaces after the full process, both on their protrusions and pores previously formed during the acid etching. After the thermochemical treatment, the samples etched at 40 °C showed macrostructures with additional submicro and nanoscale topographies. When a temperature of 80 °C was used, the presence of micropores and a thicker anatase layer, detectable by X-ray diffraction, were also observed. These surfaces are expected to generate greater levels of bioactivity and high biomechanics fixation of implants as well as better resistance to fatigue.
Collapse
|
8
|
Ou P, Hao C, Liu J, He R, Zhang T, Wang Y, Yang H, Ruan J. Evaluation of biocompatibility and osseointegration of Nb-xTi-Zr alloys for use as dental implant materials. Biomed Mater 2020; 16. [PMID: 33296892 DOI: 10.1088/1748-605x/abd1f8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
The aim of this study was to evaluate the biocompatibility and osteogenic potential of 50%Nb-xTi-Zr (NTZ, x=20%, 30%, 40% by weight) alloys as compared with dental commercial pure titanium (cpTi). Cell cytotoxity assay, fluorescence microscopy and electron microscopy were used to measure the in vitro biocompatibility of NTZ. The expression of alkaline phosphatase (ALP), integrin β1, osteocalcin (OC), Ki67 and collagen-I (Col-I) at the mRNA level was measured by real-time reverse transcription-polymerase chain reaction (RT-PCR). Osseointegration ability was determined using X-ray evaluation and histological analysis in vivo. Compared with the MG63 cells grown on cpTi on day 3, the viability, adherence and proliferation rates of cells cultured on NTZ alloys were significantly improved (p < 0.05). Furthermore, similar expression levels of Ki67, Col-Ⅰ, OC and ALP were found in the MG63 cells grown on NTZ alloys and those grown on cpTi. The Cbf α1 level was significantly higher for the 50%Nb-30%Ti-Zr (NTZ3) than for the cpTi group on day 6 (p < 0.01), indicating that NTZ alloys can induce osteogenesis. A considerable amount of new bone formation and osseointegration was observed around NTZ3 implants compared with cpTi implants in vivo. Collectively, NTZ3 showed superior biocompatibility and osteogenic activity; therefore, NTZ3 may be an excellent replacement for dental Ti implants.
Collapse
Affiliation(s)
- Pinghua Ou
- State Key Laboratory of Powder Metallurgy, Central South University, State Key Laboratory of Powder Metallurgy, Central South University, changsha, China, 410083, CHINA
| | - Cong Hao
- Department of Orthopedics, Xiangya Hospital Central South University, Xiangya Hospital, Central South University, Changsha 410008, PR China, Changsha, Hunan, 410008, CHINA
| | - Jue Liu
- Hunan Province Key Laboratory of Engineering Rheology, Central South University of Forestry and Technology, Central South University of Forestry and Technology, Changsha, 410004, PR China, Changsha, Hunan, 410004, CHINA
| | - Rengui He
- State Key Laboratory of Powder Metallurgy, Central South University, State Key Laboratory of Powder Metallurgy, Central South University, changsha, China, 410083, CHINA
| | - Taomei Zhang
- State Key Laboratory of Powder Metallurgy, Central South University, State Key Laboratory of Powder Metallurgy, Central South University, changsha, China, 410083, CHINA
| | - Yali Wang
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, PR China, Changsha, Hunan, 410008, CHINA
| | - Hailin Yang
- Central South University, State Key Laboratory of Powder Metallurgy, Central South University, changsha, China, 410083, CHINA
| | - Jianming Ruan
- State Key Laboratory of Powder Metallurgy, Central South University, State Key Laboratory of Powder Metallurgy, Central South University, changsha, China, 410083, CHINA
| |
Collapse
|
9
|
Singh S, Prakash C, Pramanik A, Basak A, Shabadi R, Królczyk G, Bogdan-Chudy M, Babbar A. Magneto-Rheological Fluid Assisted Abrasive Nanofinishing of β-Phase Ti-Nb-Ta-Zr Alloy: Parametric Appraisal and Corrosion Analysis. MATERIALS 2020; 13:ma13225156. [PMID: 33207671 PMCID: PMC7698243 DOI: 10.3390/ma13225156] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 11/21/2022]
Abstract
The present work explores the potential of magneto-rheological fluid assisted abrasive finishing (MRF-AF) for obtaining precise surface topography of an in-house developed β-phase Ti-Nb-Ta-Zr (TNTZ) alloy for orthopedic applications. Investigations have been made to study the influence of the concentration of carbonyl iron particles (CIP), rotational speed (Nt), and working gap (Gp) in response to material removal (MR) and surface roughness (Ra) of the finished sample using a design of experimental technique. Further, the corrosion performance of the finished samples has also been analyzed through simulated body fluid (SBF) testing. It has been found that the selected input process parameters significantly influenced the observed MR and Ra values at 95% confidence level. Apart from this, it has been found that Gp and Nt exhibited the maximum contribution in the optimized values of the MR and Ra, respectively. Further, the corrosion analysis of the finished samples specified that the resistance against corrosion is a direct function of the surface finish. The morphological analysis of the corroded morphologies indicated that the rough sites of the implant surface have provided the nuclei for corrosion mechanics that ultimately resulted in the shredding of the appetite layer. Overall results highlighted that the MRF-AF is a potential technique for obtaining nano-scale finishing of the high-strength β-phase Ti-Nb-Ta-Zr alloy.
Collapse
Affiliation(s)
- Sunpreet Singh
- Department of Mechanical Engineering, National University of Singapore, Singapore 119077, Singapore;
| | - Chander Prakash
- School of Mechanical Engineering, Lovely Professional University, Phagwara, Punjab 144411, India
- Correspondence: (C.P.); (G.K.)
| | - Alokesh Pramanik
- Department of Mechanical Engineering, Curtin University Australia, Perth 6102, Australia;
| | - Animesh Basak
- Adelaide Microscopy, The University of Adelaide, Adelaide, SA 5005, Australia;
| | - Rajasekhara Shabadi
- Unité Matériaux et Transformations CNRS UMR 8207, Université de Lille, 59000 Lille, France;
| | - Grzegorz Królczyk
- Department of Mechanical engineering, Opole University of Technology, 45-758 Opole, Poland;
- Correspondence: (C.P.); (G.K.)
| | - Marta Bogdan-Chudy
- Department of Mechanical engineering, Opole University of Technology, 45-758 Opole, Poland;
| | - Atul Babbar
- Mechanical Engineering Department, Shree Guru Gobind Singh Tricentenary University, Gurugram 122505, India;
| |
Collapse
|
10
|
Preparation of highly wettable coatings on Ti-6Al-4V ELI alloy for traumatological implants using micro-arc oxidation in an alkaline electrolyte. Sci Rep 2020; 10:19780. [PMID: 33188241 PMCID: PMC7666130 DOI: 10.1038/s41598-020-76448-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/21/2020] [Indexed: 01/13/2023] Open
Abstract
Pulsed micro-arc oxidation (MAO) in a strongly alkaline electrolyte (pH > 13), consisting of Na2SiO3⋅9H2O and NaOH, was used to form a thin porous oxide coating consisting of two layers differing in chemical and phase composition. The unique procedure, combining MAO and removal of the outer layer by blasting, enables to prepare a coating suitable for application in temporary traumatological implants. A bilayer formed in an alkaline electrolyte environment during the application of MAO enables the formation of a wear-resistant layer with silicon incorporated in the oxide phase. Following the removal of the outer rutile-containing porous layer, the required coating properties for traumatological applications were determined. The prepared surfaces were characterized by scanning electron microscopy, X-ray diffraction patterns, X-ray photoelectron spectroscopy, atomic force microscopy and contact angle measurements. Cytocompatibility was evaluated using human osteoblast-like Saos-2 cells. The newly-developed surface modifications of Ti–6Al–4V ELI alloy performed satisfactorily in all cellular tests in comparison with MAO-untreated alloy and standard tissue culture plastic. High cell viability was supported, but the modifications allowed only relatively slow cell proliferation, and showed only moderate osseointegration potential without significant support for matrix mineralization. Materials with these properties are promising for utilization in temporary traumatological implants.
Collapse
|
11
|
Abstract
Niobium (Nb), Titanium (Ti), and Zirconium (Zr) have attracted much attention as implant materials due to it's excellent mechanical properties and biocompatibility. However, little attention has been paid to high Nb-containing biomedical alloys. Here, the 50 wt.%Nb-XTi-Zr ternary alloy(x = 20wt.%, 30 wt.%, 40 wt.%) with relative density over 90% was prepared by powder metallurgy method. The massive α(Zr) distributed along the grain boundaries and lamellar β(Zr) appeared in the grains of β(Nb) in the 50 wt.%Nb-20wt.%Ti-Zr alloy. The acicular α phase is mainly distributed in the β-grain of 50 wt.%Nb-30wt.%Ti-Zr alloy. And α(Ti)-colonies in the β-grains and continuous α(Ti)GB at β-grain boundary can be observed in the 50 wt.%Nb-40wt.%Ti-Zr alloy. Comparing with Nb-20wt.%Ti-Zr alloy and 50 wt.%Nb-40wt.%Ti-Zr alloy, the 50 wt.%Nb-30wt.%Ti-Zr alloy showed lower Vickers hardness and elastic modulus. Furthermore, the as-sintered 50 wt.%Nb-XTi-Zr alloy promoted the cell proliferation and cell adhesion of MG-63 cells on the surface of alloys. In conclusion, the 50 wt.%Nb-XTi-Zr alloy combines excellent mechanical and biological properties, and the 50 wt.%Nb-30wt.%Ti-Zr alloy with lower elastic modulus (close to the bone) is a more promising candidate for bone implant material.
Collapse
Affiliation(s)
- Taomei Zhang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, PR China
| | - Pinghua Ou
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, PR China
| | - Jianming Ruan
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, PR China
| | - Hailin Yang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, PR China
| |
Collapse
|
12
|
Voltrova B, Jarolimova P, Hybasek V, Blahnova VH, Sepitka J, Sovkova V, Matějka R, Daniel M, Fojt J, Filova E. In vitro evaluation of a novel nanostructured Ti-36Nb-6Ta alloy for orthopedic applications. Nanomedicine (Lond) 2020; 15:1843-1859. [PMID: 32752935 DOI: 10.2217/nnm-2020-0123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/05/2020] [Indexed: 11/21/2022] Open
Abstract
Aim: To evaluate the impact of a nanostructured surface created on β-titanium alloy, Ti-36Nb-6Ta, on the growth and differentiation of human mesenchymal stem cells. Materials & methods: The nanotubes, with average diameters 18, 36 and 46 nm, were prepared by anodic oxidation. Morphology, hydrophilicity and mechanical properties of the nanotube layers were characterized. The biocompatibility and osteogenic potential of the nanostructured surfaces were established using various in vitro assays, scanning electron microscopy and confocal microscopy. Results: The nanotubes lowered elastic modulus close to that of bone, positively influenced cell adhesion, improved ALP activity, synthesis of type I collagen and osteocalcin expression, but diminished early cell proliferation. Conclusion: Nanostructured Ti-36Nb-6Ta with nanotube diameters 36 nm was the most promising material for bone implantation.
Collapse
Affiliation(s)
- Barbora Voltrova
- Department of Tissue Engineering, Institute of Experimental Medicine of The Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University in Prague, Albertov 2038/6, 128 00, Prague, Czech Republic
| | - Petra Jarolimova
- Department of Metals & Corrosion Engineering, University of Chemistry & Technology, Technická 5, 166 29, Prague, Czech Republic
| | - Vojtech Hybasek
- Department of Metals & Corrosion Engineering, University of Chemistry & Technology, Technická 5, 166 29, Prague, Czech Republic
| | - Veronika Hefka Blahnova
- Department of Tissue Engineering, Institute of Experimental Medicine of The Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
- Second Faculty of Medicine, Charles University in Prague, V Úvalu 84, 150 06, Prague, Czech Republic
| | - Josef Sepitka
- Faculty of Mechanical Engineering, Czech Technical University in Prague, Technická 4, 160 00, Prague, Czech Republic
| | - Vera Sovkova
- Department of Tissue Engineering, Institute of Experimental Medicine of The Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Roman Matějka
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Náměstí Sítná 3105, 272 01, Kladno, Czech Republic
| | - Matej Daniel
- Faculty of Mechanical Engineering, Czech Technical University in Prague, Technická 4, 160 00, Prague, Czech Republic
| | - Jaroslav Fojt
- Department of Metals & Corrosion Engineering, University of Chemistry & Technology, Technická 5, 166 29, Prague, Czech Republic
| | - Eva Filova
- Department of Tissue Engineering, Institute of Experimental Medicine of The Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
- Second Faculty of Medicine, Charles University in Prague, V Úvalu 84, 150 06, Prague, Czech Republic
| |
Collapse
|
13
|
Dadbakhsh S, Mertens R, Vanmeensel K, Ji G, Kruth JP. In situ transformations during SLM of an ultra-strong TiC reinforced Ti composite. Sci Rep 2020; 10:10523. [PMID: 32601438 PMCID: PMC7324562 DOI: 10.1038/s41598-020-67434-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/08/2020] [Indexed: 11/19/2022] Open
Abstract
This work demonstrates a successful in situ method capable of producing an ultra-strong novel Ti composite without aluminium and vanadium. In this method, selective laser melting is used to conduct in situ alloying and reinforcing of a Ti/10.5 wt% Mo2C powder mixture. It is shown that this leads to a metastable β-Ti matrix homogeneously reinforced by high aspect ratio, 50–200 nm wide and up to several micrometre long TiC whiskers. The transformations of the phases are controlled by decomposition, dissolution, diffusion, and reformation of constituents. The whisker morphology of in situ formed TiC particles is associated with directional crystal growth along the TiC<110> direction. The developed TiC reinforced β-Ti alloy combines a hardness over 500 HV, a Young’s modulus of 126 GPa, and an ultimate compressive strength of 1642 MPa. Improving the ductility of this composite is the subject of another work.
Collapse
Affiliation(s)
- Sasan Dadbakhsh
- PMA, Department of Mechanical Engineering, KU Leuven and Member of Flanders Make, 3001, Leuven, Belgium. .,Department of Production Engineering, KTH Royal Institute of Technology, 10044, Stockholm, Sweden.
| | - Raya Mertens
- PMA, Department of Mechanical Engineering, KU Leuven and Member of Flanders Make, 3001, Leuven, Belgium
| | - Kim Vanmeensel
- Department of Materials Engineering, KU Leuven, 3001, Leuven, Belgium
| | - Gang Ji
- CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Univ. Lille, 59000, Lille, France
| | - Jean-Pierre Kruth
- PMA, Department of Mechanical Engineering, KU Leuven and Member of Flanders Make, 3001, Leuven, Belgium
| |
Collapse
|
14
|
Koolen M, Amin Yavari S, Lietaert K, Wauthle R, Zadpoor AA, Weinans H. Bone Regeneration in Critical-Sized Bone Defects Treated with Additively Manufactured Porous Metallic Biomaterials: The Effects of Inelastic Mechanical Properties. MATERIALS 2020; 13:ma13081992. [PMID: 32344664 PMCID: PMC7215733 DOI: 10.3390/ma13081992] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 02/05/2023]
Abstract
Additively manufactured (AM) porous metallic biomaterials, in general, and AM porous titanium, in particular, have recently emerged as promising candidates for bone substitution. The porous design of such materials allows for mimicking the elastic mechanical properties of native bone tissue and showed to be effective in improving bone regeneration. It is, however, not clear what role the other mechanical properties of the bulk material such as ductility play in the performance of such biomaterials. In this study, we compared the bone tissue regeneration performance of AM porous biomaterials made from the commonly used titanium alloy Ti6Al4V-ELI with that of commercially pure titanium (CP-Ti). CP-Ti was selected because of its high ductility as compared to Ti6Al4V-ELI. Critical-sized (6 mm diameter) femoral defects in rats were treated with implants made from both Ti6Al4V-ELI and CP-Ti. Bone regeneration was assessed up to 11 weeks using micro-CT scanning. The regenerated bone volume was assessed ex vivo followed by histology and biomechanical testing to assess osseointegration of the implants. The bony defects treated with AM CP-Ti implants generally showed higher volumes of regenerated bone as compared to those treated with AM Ti6Al4V-ELI. The torsional strength of the two titanium groups were similar however, and both considerably lower than those measured for intact bony tissue. These findings show the importance of material type and ductility of the bulk material in the ability for bone tissue regeneration of AM porous biomaterials.
Collapse
Affiliation(s)
- Marianne Koolen
- Department of Orthopaedics, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands
| | - Saber Amin Yavari
- Department of Orthopaedics, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands
| | - Karel Lietaert
- 3D Systems Healthcare, 3D Systems Leuven, 3001 Leuven, Belgium
| | - Ruben Wauthle
- 3D Systems Healthcare, 3D Systems Leuven, 3001 Leuven, Belgium
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, 2628 CN Delft, The Netherlands
| | - Harrie Weinans
- Department of Orthopaedics, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, 2628 CN Delft, The Netherlands
| |
Collapse
|
15
|
Jarolimova P, Voltrova B, Blahnova V, Sovkova V, Pruchova E, Hybasek V, Fojt J, Filova E. Mesenchymal stem cell interaction with Ti 6Al 4V alloy pre-exposed to simulated body fluid. RSC Adv 2020; 10:6858-6872. [PMID: 35493900 PMCID: PMC9049760 DOI: 10.1039/c9ra08912h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/13/2020] [Indexed: 11/21/2022] Open
Abstract
Titanium and its alloys are widely used for substitution of hard tissues, especially in orthopaedic and dental surgery. Despite the benefit of the use of titanium for such applications, there are still questions which must be sorted out. Surface properties are crucial for cell adhesion, proliferation and differentiation. Mainly, micro/nanostructured surfaces positively influence osteogenic differentiation of human mesenchymal stem cells. Ti6Al4V is a biocompatible α + β alloy which is widely used in orthopaedics. The aim of this study was to investigate the interaction of the nanostructured and ground Ti6Al4V titanium alloys with simulated body fluid complemented by the defined precipitation of hydroxyapatite-like coating and to study the cytotoxicity and differentiation capacity of cells with such a modified titanium alloy. Nanostructures were fabricated using electrochemical oxidation. Human mesenchymal stem cells (hMSC) were used to evaluate cell adhesion, metabolic activity and proliferation on the specimens. The differentiation potential of the samples was investigated using PCR and specific staining of osteogenic markers collagen type I and osteocalcin. Our results demonstrate that both pure Ti6Al4V, nanostructured samples, and hydroxyapatite-like coating supported hMSC growth and metabolic activity. Nanostructured samples improved collagen type I synthesis after 14 days, while both nanostructured and hydroxyapatite-like coated samples enhanced collagen synthesis on day 21. Osteocalcin synthesis was the most enhanced by hydroxyapatite-like coating on the nanostructured surfaces. Our results indicate that hydroxyapatite-like coating is a useful tool guiding hMSC osteogenic differentiation.
Collapse
Affiliation(s)
- Petra Jarolimova
- Department of Metals and Corrosion Engineering, Faculty of Chemical Technology, University of Chemistry and Technology Technická 5 166 28 Prague Czech Republic
| | - Barbora Voltrova
- Department of Tissue Engineering, Institute of Experimental Medicine of the Czech Academy of Sciences Vídeňská 1083 Prague 4 142 20 Czech Republic
- Faculty of Science, Charles University in Prague Albertov 2038/6 128 00 Prague Czech Republic
| | - Veronika Blahnova
- Department of Tissue Engineering, Institute of Experimental Medicine of the Czech Academy of Sciences Vídeňská 1083 Prague 4 142 20 Czech Republic
- Second Faculty of Medicine, Charles University in Prague V Úvalu 84 150 06 Prague Czech Republic
- University Centre for Energy Efficient Buildings, Czech Technical University in Prague Třinecká 1024 273 43 Buštěhrad Czech Republic
| | - Vera Sovkova
- Department of Tissue Engineering, Institute of Experimental Medicine of the Czech Academy of Sciences Vídeňská 1083 Prague 4 142 20 Czech Republic
- University Centre for Energy Efficient Buildings, Czech Technical University in Prague Třinecká 1024 273 43 Buštěhrad Czech Republic
| | - Eva Pruchova
- Department of Metals and Corrosion Engineering, Faculty of Chemical Technology, University of Chemistry and Technology Technická 5 166 28 Prague Czech Republic
| | - Vojtech Hybasek
- Department of Metals and Corrosion Engineering, Faculty of Chemical Technology, University of Chemistry and Technology Technická 5 166 28 Prague Czech Republic
| | - Jaroslav Fojt
- Department of Metals and Corrosion Engineering, Faculty of Chemical Technology, University of Chemistry and Technology Technická 5 166 28 Prague Czech Republic
| | - Eva Filova
- Department of Tissue Engineering, Institute of Experimental Medicine of the Czech Academy of Sciences Vídeňská 1083 Prague 4 142 20 Czech Republic
- Second Faculty of Medicine, Charles University in Prague V Úvalu 84 150 06 Prague Czech Republic
| |
Collapse
|
16
|
Effect of Fe addition on properties of Ti-6Al-xFe manufactured by blended elemental process. J Mech Behav Biomed Mater 2019; 102:103518. [PMID: 31877522 DOI: 10.1016/j.jmbbm.2019.103518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/13/2019] [Accepted: 10/31/2019] [Indexed: 11/22/2022]
Abstract
The mechanical properties of titanium alloys produced by powder metallurgy (PM) are dependent on the amount of porosity within the fabricated component. The space between powder particles and the behaviour of alloying elements during sintering contribute to the formation of pores. Iron (Fe) is well known to be a cost-effective alloying element for titanium alloys which acts to stabilise the β-phase. This study aims to investigate the effects of Fe addition on the sintering response of titanium alloys containing aluminium. Ti-6Al-xFe(x = 1, 3, and 5 wt %) alloy systems were manufactured by press and sinter PM from blended-elemental powders. The density, mechanical properties, microstructures and pore distribution in the sintered parts were evaluated. The compressive strength of the alloys was positively correlated to the levels of Fe. Grain boundary and solid solution strengthening accounted for the strength improvements. Furthermore, Ti-6Al-3Fe exhibited the highest strength/modulus ratio. Evaluation of the pore distributions revealed that the number of fine pores was reduced significantly as the amount of Fe was increased, though concomitantly the number of larger pores increased. It is argued that the increasing number of larger pores with higher levels of Fe is due to coalescence of fine Kirkendall porosity during the latter stages of sintering. With excessive iron additions, large pores counteract any beneficial impacts on the sintering response. It is suggested to limit the amount of Fe additions to around 3 wt% to reduce adverse effects from large pores and to maximise the strength/modulus ratio.
Collapse
|
17
|
Kaur M, Singh K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:844-862. [PMID: 31147056 DOI: 10.1016/j.msec.2019.04.064] [Citation(s) in RCA: 432] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/20/2019] [Accepted: 04/20/2019] [Indexed: 02/07/2023]
Abstract
Variety of implant materials have been employed in various disciplines of medical science depending on the requirement of a particular application. Metals, alloys, ceramics, and polymers are the commonly used biomaterials. The main focus of this study is to review the various structural and microstructural properties of titanium and titanium based alloys used as orthopaedic implants. Orthopaedic implants need to possess certain important qualities to ensure their safe and effective use. These properties like the biocompatibility, relevant mechanical properties, high corrosion and wear resistance and osseointegration are summarized in this review. Various attempts to improve upon these properties like different processing routes, surface modifications have also been inculcated in the paper to provide an insight into the extent of research and effort that has been put into developing a highly superior titanium orthopaedic implant.
Collapse
Affiliation(s)
- Manmeet Kaur
- School of Physics and Materials Science, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India
| | - K Singh
- School of Physics and Materials Science, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India.
| |
Collapse
|
18
|
Semetse L, Obadele BA, Raganya L, Geringer J, Olubambi PA. Fretting corrosion behaviour of Ti-6Al-4V reinforced with zirconia in foetal bovine serum. J Mech Behav Biomed Mater 2019; 100:103392. [PMID: 31430704 DOI: 10.1016/j.jmbbm.2019.103392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 07/08/2019] [Accepted: 08/06/2019] [Indexed: 01/09/2023]
Abstract
Fretting corrosion is a critical challenge in the design of hip prosthesis used in total hip arthroplasty (THA) surgeries. Currently, the design of hip implants includes a tapered junction which introduces additional interfaces that connect different parts of the hip implant such as the femoral neck and head or stem and neck interface. Micro motions that occur under the influence of load, together with chemical changes in the host environment, make these interfaces susceptible to tribocorrosion processes, particularly fretting corrosion. Commonly used metallic biomaterials are based on stainless steels, cobalt chrome-based alloys as well as titanium and titanium alloys. Each of these materials possess some degree of limitations, particularly where tribocorrosion events are concerned. Titanium alloy Ti-6Al-4V is widely used in biomedical applications for non-bearing components of total joint arthroplasty (TJA) surgeries. Its poor wear resistance continues to remain a challenge in load-bearing joints where parts articulate against one another as in the case of modular junctions. Some of the attempts made to improve the wear properties of Ti-6Al-4V is through the incorporation of second phase particles like ceramics in its matrix to produce metal matrix composites of Ti-6Al-4V. The aim of this work is to investigate the effect of zirconia reinforcement on spark plasma sintered Ti-6Al-4V composites (zirconium oxide particles incorporated into Ti-6Al-4V matrix) on the fretting corrosion properties of Ti-6Al-4V. Fretting corrosion tests were carried out on as-sintered Ti-6Al-4V and Ti-6Al-4V with 5 and 10 wt.% ZrO2. The tests were carried out in foetal bovine serum under applied normal loads of 85 and 115 N using the cylinder-on-flat contact configuration. The evolution of OCP, dissipated energy and friction coefficient were recorded throughout the test. Microstructural analysis of the samples before fretting corrosion tests showed the presence of globular agglomerates throughout the Ti-6Al-4V matrix due to zirconia additions; the volume of the agglomerates was higher in the composites having 10 wt.% ZrO2. Ti-6Al-4V composites having zirconia additions produced a nobler OCP during fretting in foetal bovine serum, compared to pure Ti-6Al-4V. Furthermore, the fretting corrosion results showed a significant improvement in the tribocorrosion resistance of Ti-6Al-4V with 10 wt.% ZrO2 at all loads. This composition also produced the least amount of degradation. and metal ion release. Mechanical data showed that increasing the applied normal load promoted a transition from gross slip to partial slip conditions for all compositions. Partial slip was found to be prevalent at a higher normal load (drastic decrease of the dissipated energy and consequently the friction coefficient). This mechanical condition prevents a large amount of degradation.
Collapse
Affiliation(s)
- Lerato Semetse
- Centre for Nanoengineering and Tribocorrosion, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa.
| | - Babatunde Abiodun Obadele
- Centre for Nanoengineering and Tribocorrosion, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - Lerato Raganya
- Centre for Nanoengineering and Tribocorrosion, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa; Light Metals, Materials Science & Manufacturing, Council for Scientific and Industrial Research, Meiring Naudé Road, Brummeria, Pretoria, 0185, South Africa
| | - Jean Geringer
- Univ Lyon, IMT Mines Saint-Etienne, Centre CIS, [STBio] Univ Jean Monnet, INSERM, SainBioSE, F-42023, Saint-Etienne, France
| | - Peter Apata Olubambi
- Centre for Nanoengineering and Tribocorrosion, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| |
Collapse
|
19
|
|
20
|
Cordeiro JM, Beline T, Ribeiro ALR, Rangel EC, da Cruz NC, Landers R, Faverani LP, Vaz LG, Fais LMG, Vicente FB, Grandini CR, Mathew MT, Sukotjo C, Barão VAR. Development of binary and ternary titanium alloys for dental implants. Dent Mater 2017; 33:1244-1257. [PMID: 28778495 DOI: 10.1016/j.dental.2017.07.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/10/2017] [Accepted: 07/13/2017] [Indexed: 01/21/2023]
Abstract
OBJECTIVE The aim of this study was to develop binary and ternary titanium (Ti) alloys containing zirconium (Zr) and niobium (Nb) and to characterize them in terms of microstructural, mechanical, chemical, electrochemical, and biological properties. METHODS The experimental alloys - (in wt%) Ti-5Zr, Ti-10Zr, Ti-35Nb-5Zr, and Ti-35Nb-10Zr - were fabricated from pure metals. Commercially pure titanium (cpTi) and Ti-6Al-4V were used as controls. Microstructural analysis was performed by means of X-ray diffraction and scanning electron microscopy. Vickers microhardness, elastic modulus, dispersive energy spectroscopy, X-ray excited photoelectron spectroscopy, atomic force microscopy, surface roughness, and surface free energy were evaluated. The electrochemical behavior analysis was conducted in a body fluid solution (pH 7.4). The albumin adsorption was measured by the bicinchoninic acid method. Data were evaluated through one-way ANOVA and the Tukey test (α=0.05). RESULTS The alloying elements proved to modify the alloy microstructure and to enhance the mechanical properties, improving the hardness and decreasing the elastic modulus of the binary and ternary alloys, respectively. Ti-Zr alloys displayed greater electrochemical stability relative to that of controls, presenting higher polarization resistance and lower capacitance. The experimental alloys were not detrimental to albumin adsorption. SIGNIFICANCE The experimental alloys are suitable options for dental implant manufacturing, particularly the binary system, which showed a better combination of mechanical and electrochemical properties without the presence of toxic elements.
Collapse
Affiliation(s)
- Jairo M Cordeiro
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontology, Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil; Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN), Brazil and USA
| | - Thamara Beline
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontology, Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil; Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN), Brazil and USA
| | - Ana Lúcia R Ribeiro
- Faculdade de Ciências do Tocantins (FACIT), Rua D 25, Qd 11, Lt 10, Setor George Yunes, Araguaína, Tocantins 77818-650, Brazil; Faculdade de Ciências Humanas, Econômicas e da Saúde de Araguaína/Instituto Tocantinense Presidente Antônio Carlos (FAHESA/ITPAC), Av. Filadélfia, 568, Araguaína, Tocantins 77816-540, Brazil
| | - Elidiane C Rangel
- Univ Estadual Paulista (UNESP), Engineering College, Laboratory of Technological Plasmas, Av. Três de Março, 511, Sorocaba, São Paulo 18087-180, Brazil
| | - Nilson C da Cruz
- Univ Estadual Paulista (UNESP), Engineering College, Laboratory of Technological Plasmas, Av. Três de Março, 511, Sorocaba, São Paulo 18087-180, Brazil
| | - Richard Landers
- University of Campinas (UNICAMP), Institute of Physics Gleb Wataghin, Cidade Universitária Zeferino Vaz-Barão Geraldo, Campinas, São Paulo 13083-859, Brazil
| | - Leonardo P Faverani
- Univ Estadual Paulista (UNESP), Aracatuba Dental School, Department of Surgery and Integrated Clinic, R. José Bonifácio, 1193, Aracatuba, São Paulo 16015-050, Brazil
| | - Luís Geraldo Vaz
- Univ Estadual Paulista (UNESP), Araraquara Dental School, Department of Dental Materials and Prosthodontics, R. Humaitá, 1680, Araraquara, São Paulo 14801-903, Brazil
| | - Laiza M G Fais
- Univ Estadual Paulista (UNESP), Araraquara Dental School, Department of Dental Materials and Prosthodontics, R. Humaitá, 1680, Araraquara, São Paulo 14801-903, Brazil
| | - Fabio B Vicente
- Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN), Brazil and USA; Universidade Paulista (UNIP), Av. Nossa Sra. de Fátima, 9-50, Bauru, São Paulo 17017-337, Brazil
| | - Carlos R Grandini
- Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN), Brazil and USA; Univ Estadual Paulista (UNESP), Laboratório de Anelasticidade e Biomateriais, Av. Eng. Luiz Edmundo Carrijo Coube, Bauru, São Paulo 17033-360, Brazil
| | - Mathew T Mathew
- Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN), Brazil and USA; University of Illinois College of Medicine at Rockford, Department of Biomedical Sciences, 1601 Parkview Avenue, Rockford, IL 61107, USA; University of Illinois at Chicago, College of Dentistry, Department of Restorative Dentistry, 801 S Paulina, Chicago, IL 60612, USA
| | - Cortino Sukotjo
- Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN), Brazil and USA; University of Illinois at Chicago, College of Dentistry, Department of Restorative Dentistry, 801 S Paulina, Chicago, IL 60612, USA
| | - Valentim A R Barão
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontology, Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil; Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN), Brazil and USA.
| |
Collapse
|
21
|
Is there scientific evidence favoring the substitution of commercially pure titanium with titanium alloys for the manufacture of dental implants? MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:1201-1215. [DOI: 10.1016/j.msec.2016.10.025] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 10/07/2016] [Accepted: 10/16/2016] [Indexed: 11/22/2022]
|
22
|
Hong D, Chou DT, Velikokhatnyi OI, Roy A, Lee B, Swink I, Issaev I, Kuhn HA, Kumta PN. Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys. Acta Biomater 2016; 45:375-386. [PMID: 27562611 DOI: 10.1016/j.actbio.2016.08.032] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 08/10/2016] [Accepted: 08/18/2016] [Indexed: 02/08/2023]
Abstract
3D printing of various biomaterials including titanium and stainless steel has been studied for treating patients with cranio-maxillofacial bone defect. The potential long term complications with use of inert biometals have opened the opportunities for use of biodegradable metals in the clinical arena. The authors previously reported that binder-jet 3D printing technique enhanced the degradation rates of biodegradable Fe-Mn alloy by creating engineered micropores rendering the system attractive as biodegradable implantable devices. In the present study, the authors employed CALPHAD modeling to systematically study and modify the Fe-Mn alloy composition to achieve enhanced degradation rates. Accordingly, Ca and Mg addition to Fe-35wt% Mn solid solution predicted increase in degradation rates. In order to validate the CALPHAD results, Fe - (35-y)wt% Mn - ywt% X (X=Ca, Mg, and y=0, 1, 2) were synthesized by using high energy mechanical alloying (HEMA). Sintered pellets of Fe-Mn-Ca and Fe-Mn-Mg were then subjected to potentiodynamic polarization (PDP) and live/dead cell viability tests. Sintered pellets of Fe-Mn, Fe-Mn-Ca, and Fe-Mn-Mg also exhibited MC3T3 murine pre-osteoblast cells viability in the live/dead assay results. Fe-Mn and Fe-Mn-1Ca were thus accordingly selected for 3D printing and the results further confirmed enhanced degradation of Ca addition to 3D printed constructs validating the theoretical and alloy development studies. Live/dead and MTT cell viability results also confirmed good cytocompatibility of the 3D-printed Fe-Mn and Fe-Mn-1Ca constructs. STATEMENT OF SIGNIFICANCE Bone grafting is widely used for the treatment of cranio-maxillofacial bone injuries. 3D printing of biodegradable Fe alloy is anticipated to be advantageous over current bone grafting techniques. 3D printing offers the fabrication of precise and tailored bone grafts to fit the patient specific bone defect needs. Biodegradable Fe alloy is a good candidate for 3D printing synthetic grafts to regenerate bone tissue without eliciting complications. CALPHAD theoretical models were used to develop new Fe-Mn-Ca/Mg alloys to enhance the degradation rates of traditional Fe-Mn alloys. In vitro experimental results also showed enhanced degradation rates and good cytocompatibility of sintered Fe-Mn-Ca/Mg compacts. 3D printing of Fe-Mn and Fe-Mn-1Ca alloys further demonstrated their feasibility as potentially viable bone grafts for the future.
Collapse
|
23
|
Moser R, Zaccarini F, Moser W, Schrittwieser R, Kerbl R. Metals in Human Gall, Bladder, and Kidney Stones Based on an Electron Microprobe Investigation. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2015; 21:1167-1172. [PMID: 26016509 DOI: 10.1017/s1431927615000690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Several particles of copper accompanied by a few particles of nickel, lead, and a compound composed of selenium containing minor Ni, Si, Cu, and Co were found in human gall, kidney, and bladder stones. The investigated particles occur as tiny grains, <10 µm in size, that are irregularly dispersed in the stones. Therefore, they were studied by scanning electron microscopy and qualitatively analyzed by energy dispersive system. One grain of copper contained a small amount of Ni and Zn, and some grains of nickel proved to contain Cr as trace element. Most of the discovered metals formed a single-phase grain. However, a few grains found in two gallstones were associated with inclusions of calcium and apatite. Based on the results presented in this contribution, we argue that most of the studied metals can be classified as endogenous particles, i.e., directly precipitated from the same fluids that formed their host human stones. This observation suggests that the precipitation and accumulation of metals in some human stones can be considered an efficient way to eliminate them from the human body.
Collapse
Affiliation(s)
- Reinhard Moser
- 1LKH-Hospital of Leoben,Vordernbergerstraße 42,A 8700,Leoben,Austria
| | - Federica Zaccarini
- 2Department of Applied Geosciences and Geophysics,University of Leoben,Peter Tunner Str. 5,A 8700,Leoben,Austria
| | - Waltraud Moser
- 3LKH-Hospital of Bruck an der Mur,Tragösserstrasse 1,A 8600,Bruck an der Mur,Austria
| | - Rudolf Schrittwieser
- 3LKH-Hospital of Bruck an der Mur,Tragösserstrasse 1,A 8600,Bruck an der Mur,Austria
| | - Reinhold Kerbl
- 1LKH-Hospital of Leoben,Vordernbergerstraße 42,A 8700,Leoben,Austria
| |
Collapse
|
24
|
Matykina E, Arrabal R, Valiev R, Molina-Aldareguia J, Belov P, Sabirov I. Electrochemical Anisotropy of Nanostructured Titanium for Biomedical Implants. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.07.128] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Cao XL, Sun T, Yu Y. Ti-O-N/Ti composite coating on Ti-6Al-4V: surface characteristics, corrosion properties and cellular responses. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:144. [PMID: 25737126 DOI: 10.1007/s10856-015-5413-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 10/24/2014] [Indexed: 06/04/2023]
Abstract
To enhance the corrosion resistance of Ti-6Al-4V and extend its lifetime in medical applications, Ti-O-N/Ti composite coating was synthesized on the surface via plasma immersion ion implantation and deposition (PIIID). Surface morphology and cross sectional morphology of the composite coating were characterized using atomic force microscopy and scanning electron microscopy, respectively. Although X-ray photoelectron spectroscopic analysis revealed that the Ti-O-N/Ti composite coating was composed of non-stoichiometric titanium oxide, titanium nitride and titanium oxynitride, no obvious characteristic peak corresponding to the crystalline phases of them was detected in the X-ray diffraction pattern. In accordance with Owens-Wendt equation, surface free energy of the uncoated and coated samples was calculated and compared. Moreover, the corrosion behavior of uncoated and coated samples was evaluated by means of electrochemical impedance spectroscopy measurement, and an equivalent circuit deriving from Randles model was used to fit Bode plots and describe the electrochemical processes occurring at the sample/electrolyte interface. On the basis of the equivalent circuit model, the resistance of the composite coating was 4.7 times higher than that of the passive layer on uncoated samples, indicating the enhanced corrosion resistance after PIIID treatment. Compared to uncoated Ti-6Al-V, Ti-O-N/Ti-coated samples facilitated ostoblast proliferation within 7 days of cell culture, while there was no statistically significant difference in alkaline phosphate activity between uncoated and coated samples during 21 days of cell culture.
Collapse
Affiliation(s)
- Xiao-Lin Cao
- Department of Ultrasound, Southern Building Clinic Division, Chinese PLA General Hospital, Beijing, 100853, China
| | | | | |
Collapse
|
26
|
Gantar A, da Silva LP, Oliveira JM, Marques AP, Correlo VM, Novak S, Reis RL. Nanoparticulate bioactive-glass-reinforced gellan-gum hydrogels for bone-tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 43:27-36. [DOI: 10.1016/j.msec.2014.06.045] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/22/2014] [Accepted: 06/30/2014] [Indexed: 01/12/2023]
|
27
|
Abstract
Human activities have circumvented the efficient geochemical cycling of aluminium within the lithosphere and therewith opened a door, which was previously only ajar, onto the biotic cycle to instigate and promote the accumulation of aluminium in biota and especially humans. Neither these relatively recent activities nor the entry of aluminium into the living cycle are showing any signs of abating and it is thus now imperative that we understand as fully as possible how humans are exposed to aluminium and the future consequences of a burgeoning exposure and body burden. The aluminium age is upon us and there is now an urgent need to understand how to live safely and effectively with aluminium.
Collapse
Affiliation(s)
- Christopher Exley
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Staffordshire, UK.
| |
Collapse
|
28
|
Capellato P, Smith BS, Popat KC, Claro APA. Fibroblast functionality on novel Ti 30Ta nanotube array. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012; 32:2060-2067. [DOI: 10.1016/j.msec.2012.05.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 03/27/2012] [Accepted: 05/22/2012] [Indexed: 12/19/2022]
|
29
|
Sampson B, Hart A. Clinical usefulness of blood metal measurements to assess the failure of metal-on-metal hip implants. Ann Clin Biochem 2012; 49:118-31. [PMID: 22155921 PMCID: PMC4527411 DOI: 10.1258/acb.2011.011141] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2011] [Indexed: 02/06/2023]
Abstract
In April 2010, a Medicines and Healthcare Products Regulatory Agency safety alert concerning all metal-on-metal (MOM) hip replacements recommended measuring chromium and cobalt concentrations when managing patients with painful prostheses. The need for this review is illustrated by the recent surge in requests for these blood tests from orthopaedic surgeons following this alert. The aim is to provide guidance to laboratories in assessing these requests and advising clinicians on interpretation. First, we summarize the basic terminology regarding the types of hip replacements, with emphasis on the MOM type. Second, we describe the clinical concerns over implant-derived wear debris in the local tissues and distant sites. Analytical aspects of the measurement of the relevant metal ions and what factors affect the levels measured are discussed. The application of inductively coupled plasma mass spectrometry techniques to the measurement of these metals is considered in detail. The biological effects of metal wear products are summarized with local toxicity and systemic biological effects considered, including carcinogenicity, genotoxicity and systemic toxicity. Clinical cases are used to illustrate pertinent points.
Collapse
Affiliation(s)
- Barry Sampson
- Department of Clinical Biochemistry, Charing Cross Hospital, Imperial College Healthcare NHS Trust, Fulham Palace Road, London, UK.
| | | |
Collapse
|
30
|
Suppressive effects of aluminum trichloride on the T lymphocyte immune function of rats. Food Chem Toxicol 2011; 50:532-5. [PMID: 22198605 DOI: 10.1016/j.fct.2011.12.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/19/2011] [Accepted: 12/07/2011] [Indexed: 11/21/2022]
Abstract
Aluminum (Al) has increasingly been used in the daily life, and could cause the change of human health because it can accumulate in the organs. A rat model was thus used to examine potential effect of Al on the immune function. Forty male Wistar rats (5 weeks old) weighed 110-120 g were randomly allocated into four groups and were orally exposed to 0, 64.18, 128.36, and 256.72 mg/kg body weight aluminum trichloride (AlCl3) in drinking water for 120 days. The levels of CD3+, CD4+, CD8+ T lymphocyte, acid non-specific activity esterase (ANAE+) in blood, and interleukin-2 (IL-2) and tumor necrosis factor-α (TNF-α) in serum were determined at the end of experiment. The results showed that the proportions of CD3+, CD4+ T lymphocyte, the ratio of CD4+/CD8+, and the levels of ANAE+, IL-2, and TNF-α were significantly reduced in AlCl3-treated rats, while the proportion of CD8+ T lymphocyte was increased in an AlCl3-dose dependent manner. Our findings indicate that a long term exposure of AlCl3 could suppress the T lymphocyte immune function of rats.
Collapse
|
31
|
Neelakantan L, Pareek A, Hassel AW. Electro-dissolution of 30Nb–Ti alloys in methanolic sulfuric acid—Optimal conditions for electropolishing. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.05.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Palazzo E, Andreola S, Battistini A, Gentile G, Zoja R. Release of metals from osteosynthesis implants as a method for identification: post-autopsy histopathological and ultrastructural forensic study. Int J Legal Med 2009; 125:21-6. [PMID: 19956966 DOI: 10.1007/s00414-009-0394-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 11/09/2009] [Indexed: 12/01/2022]
Abstract
Metal structures--especially of stainless steel, titanium and their alloys (biomaterials)--are widely used in orthopaedic practice and the subject of constant study in bioengineering and preventive medicine. This study presents the first experience of forensic research into the presence of permanent tissue variations around metal implants in various bone structures for the purpose of identification, with particular reference to skeletal remains or severely decomposed corpses in the absence of other identifying elements. The evaluation was conducted on 12 corpses who had undergone osteosynthesis intra-vitam, whose implants were still in place or had been removed, in comparison with five controls who had never undergone osteosynthesis. Bone fragments taken during autopsy were subjected to histopathological and scanning electron microscope-energy dispersive electroscopy examination in order to reveal and characterise any metal particles originating from osteosynthesis. The study enabled the discovery of intra-bone metal particles in tissues treated by osteosynthesis even in bone areas where the implants had been removed and even where there were no longer any radiological signs of their application. These results are therefore of considerable forensic importance, especially in the area of identification, providing a valid means of recognition beyond that of the well-established use of in situ metal implants.
Collapse
Affiliation(s)
- Elisa Palazzo
- Dipartimento di Morfologia Umana e Scienze Biomediche, Sezione di Medicina Legale e delle Assicurazioni, Università degli Studi di Milano, Via Luigi Mangiagalli, 37, 20133, Milan, Italy
| | | | | | | | | |
Collapse
|
33
|
Corrosion of anodic TiO coatings on Ti–6Al–4V in simulated body fluid. J Biomed Mater Res A 2008; 86:502-9. [DOI: 10.1002/jbm.a.31631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
Xu L, Zhang E, Yin D, Zeng S, Yang K. In vitro corrosion behaviour of Mg alloys in a phosphate buffered solution for bone implant application. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2008; 19:1017-25. [PMID: 17665099 DOI: 10.1007/s10856-007-3219-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Accepted: 01/10/2007] [Indexed: 05/16/2023]
Abstract
The corrosion behaviour of Mg-Mn and Mg-Mn-Zn magnesium alloy in a phosphate buffered simulated body fluid (SBF) has been investigated by electrochemical testing and weight loss experiment for bone implant application. Long passivation stage and noble breakdown potential in the polarization curves indicated that a passive layer could be rapidly formed on the surface of magnesium alloy in the phosphate buffered SBF, which in turn can protect magnesium from fast corrosion. Surfaces of the immersed magnesium alloy were characterized by SEM, EDS, SAXS and XPS. Results have shown that Mg-Mn and Mg-Mn-Zn alloy were covered completely by an amorphous Mg-containing phosphate reaction layer after 24 h immersion. The corrosion behaviour of magnesium alloys can be described by the dissolving of magnesium through the reaction between magnesium and solution and the precipitating of Mg-containing phosphate on the magnesium surface. Weight loss rate and weight gain rate results have indicated that magnesium alloys were corroded seriously at the first 48 h while Mg-containing phosphate precipitated fast on the surface of magnesium alloy. After 48-96 h immersion, the corrosion reaction and the precipitation reaction reach a stable stage, displaying that the phosphate layer on magnesium surface, especially Zn-containing phosphate layer could provide effective protection for magnesium alloy.
Collapse
Affiliation(s)
- Liping Xu
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | | | | | | | | |
Collapse
|
35
|
Narayanan R, Seshadri SK, Kwon TY, Kim KH. Calcium phosphate-based coatings on titanium and its alloys. J Biomed Mater Res B Appl Biomater 2008; 85:279-99. [PMID: 17853421 DOI: 10.1002/jbm.b.30932] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Use of titanium as biomaterial is possible because of its very favorable biocompatibility with living tissue. Titanium implants having calcium phosphate coatings on their surface show good fixation to the bone. This review covers briefly the requirements of typical biomaterials and narrowly focuses on the works on titanium. Calcium phosphate ceramics for use in implants are introduced and various methods of producing calcium phosphate coating on titanium substrates are elaborated. Advantages and disadvantages of each type of coating from the view point of process simplicity, cost-effectiveness, stability of the coatings, coating integration with the bone, cell behavior, and so forth are highlighted. Taking into account all these factors, the efficient method(s) of producing these coatings are indicated finally.
Collapse
Affiliation(s)
- R Narayanan
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
| | | | | | | |
Collapse
|
36
|
Tarallo L, Zaffe D, Adani R, Krajewski A, Ravaglioli A. Extracorporeal hydroxyapatite-chamber for bone and biomaterial studies. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2008; 19:159-66. [PMID: 17597378 DOI: 10.1007/s10856-006-0102-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Accepted: 12/04/2006] [Indexed: 05/16/2023]
Abstract
Hydroxyapatite (HA) spherules and autologous bone (AB) with a central vascular pedicle were housed inside an HA-chamber to form the skeletal segment of specific shape. Experimental chambers were then inserted in a pocket between medial thigh muscles in 13 New Zealand male rabbits for 3 months. Three graft group were scheduled: (A) HA and AB without vascular pedicle, (B) HA with vascular pedicle, (C) HA and AB with vascular pedicle. At term, histology showed tissue and cellular degeneration in group A chambers. Due to spherules coalescence, fibrous tissue is formed in group B chambers. Group C chambers contained living osteocytes in the implanted bone, several newly formed vessels in soft tissue, bone and partial hydroxyapatite erosions. New bone was formed in apposition to both autologous bone and hydroxyapatite. Our study suggests that this experimental model could be used to grow adequately sized vascularized skeletal segments.
Collapse
Affiliation(s)
- Luigi Tarallo
- Department of Emergency/Urgency, Section of Orthopaedic Clinic, University of Modena and Reggio Emilia, Via del pozzo 71, Policlinico, Modena 41100, Italy
| | | | | | | | | |
Collapse
|
37
|
Popa MV, Demetrescu I, Suh SH, Vasilescu E, Drob P, Ionita D, Vasilescu C. Monitoring of titanium base alloys–biofluids interface. Bioelectrochemistry 2007; 71:126-34. [PMID: 17409027 DOI: 10.1016/j.bioelechem.2007.02.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2006] [Revised: 02/12/2007] [Accepted: 02/22/2007] [Indexed: 11/29/2022]
Abstract
Monitoring of the titanium, Ti-5Al-4V, Ti-6Al-4Fe implant materials--Ringer 1 and Ringer 2 solutions (of different pH values) interface for long term was studied in this work. In Ringer 1 solution (with high chloride ion content) all biomaterials present self-passivation. On Ti-6Al-4Fe alloy, the breakdown of the passive film was registered but at high pitting potential; pitting protection potential is very noble and can not be reached in human fluids. In Ringer 2 solution was obtained more electropositive corrosion potential values than in Ringer 1 solution; pitting corrosion of Ti-6Al-4Fe alloy is characterised by nobler breakdown and pitting protection potential values, therefore a better pitting corrosion resistance and tendency. Ion release increases in time, for the first 400-600 immersion hours and then tend to a constant level with very low values, non-dangerous for human body. All open circuit potentials oscillate around some electropositive values. The potential gradients calculated for extreme pH values have low values during 20,000 exposure hours and can not accelerate the corrosion. Atomic Force Microscopy images obtained after different exposure periods in Ringer 1 solution revealed that the roughness increased in time, suggesting a dynamic process at biomaterial-biofluid interface. X-ray Photoelectron spectra obtained after 2880 immersion hours in Ringer 2 solution show the existence of protective titanium dioxide TiO(2) and TiO and Ti(2)O(3) oxides both for titanium and Ti-5Al-4V alloy. Also, Al(2)O(3) oxide was detected.
Collapse
Affiliation(s)
- M V Popa
- Institute of Physical Chemistry "Ilie Murgulescu", Spl. Independentei 202, PO BOX 12-194, 060021 Bucharest, Romania
| | | | | | | | | | | | | |
Collapse
|
38
|
Hoffmann B, Feldmann M, Ziegler G. Sol–gel and precursor-derived coatings with cover function on medical alloys. ACTA ACUST UNITED AC 2007. [DOI: 10.1039/b707996f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Zaffe D. Some considerations on biomaterials and bone. Micron 2005; 36:583-92. [PMID: 16169740 DOI: 10.1016/j.micron.2005.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 05/19/2005] [Accepted: 05/20/2005] [Indexed: 10/25/2022]
Abstract
Osteoinduction is a property not traditionally attributed to Calcium Phosphate ceramics. Histologic, SEM and X-ray microanalyses of a biopsy of pulmonary alveolar microlithiasis allow to discredit this opinion. Bone, even lamellar type, was ectopically formed on microliths undergoing osteoclastic erosion. The SEM and X-ray microanalyses of coral granules implanted in humans indicate an osteoconductive property for both Calcium and Phosphorus. Analysis of in vitro allows to propose an enhancement of the osteocapability of coral. Lamellar bone formation in the near absence of loads undermines the opinion which sees a correlation between lamellar bone and mechanical loads. Analysis of the bone surrounding an uncemented titanium hip prosthesis highlights that both remodeled and newly formed bone have lamellae oriented parallel to prosthesis surfaces, i.e. orthogonal to loads, as opposed to that of lamellar bone of osteons which are oriented parallel to loads. Analysis of longitudinal sections of cortical bone under polarized light points out that lamellae are displaced parallel to the cement line surface both in the conic end of osteons and in Volkman's canals with thick wall, i.e. undergoing sloped load directions. In conclusion, there may be a relationship between lamellae formation and gravity.
Collapse
Affiliation(s)
- Davide Zaffe
- Department of Anatomy and Histology, Section of Human Anatomy, University of Modena and Reggio Emilia, 41100 Modena, Italy.
| |
Collapse
|
40
|
Ng BS, Annergren I, Soutar AM, Khor KA, Jarfors AEW. Characterisation of a duplex TiO2/CaP coating on Ti6Al4V for hard tissue replacement. Biomaterials 2005; 26:1087-95. [PMID: 15451628 DOI: 10.1016/j.biomaterials.2004.04.022] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Accepted: 04/18/2004] [Indexed: 11/22/2022]
Abstract
An initial TiO(2) coating was applied on Ti6Al4V by electrochemical anodisation in two dissimilar electrolytes. The secondary calcium phosphate (CaP) coating was subsequently applied by immersing the substrates in a simulated body fluid (SBF) with three times concentration (SBFx3), mimicking biomineralisation of biological bone. Electrochemical impedance spectroscopy and potentiodynamic polarisation assessments in SBF revealed that the anodic TiO(2) layer is compact, exhibiting up to four-folds improvement in in vitro corrosion resistance over unanodised Ti6Al4V. X-ray photoelectron spectroscopy analysis indicates that the anodic Ti oxide is thicker than air-formed ones with a mixture of TiO(2-x) compound between the TiO(2)/Ti interfaces. The morphology of the dense CaP film formed, when observed using scanning electron microscopy, is made up of linked globules 0.1-0.5microm in diameter without observable delamination. Fourier transform infrared spectrometry with an attenuated total internal reflection analysis revealed that this film is an amorphous/poorly crystallised calcium-deficient-carbonated CaP system. The calculated Ca:P ratios of all samples (1.14-1.28) are lower than stoichiometric hydroxyapatite (1.67). These results show that a duplex coating consisting of (1) a compact TiO(2) with enhanced in vitro corrosion resistance and (2) bone-like apatite coating can be applied on Ti6Al4V by anodisation and subsequent immersion in SBF.
Collapse
Affiliation(s)
- Boon Sing Ng
- School of Mechanical and Production Engineering, Division of Materials Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | | | | | | | | |
Collapse
|