1
|
Ding C, Lv H, Huang S, Hu M, Liao Y, Meng X, Gao M, Chen H, Feng X, Wu Z. The Application Progress of Nonthermal Plasma Technology in the Modification of Bone Implant Materials. ACS Biomater Sci Eng 2024; 10:5893-5914. [PMID: 39227180 DOI: 10.1021/acsbiomaterials.4c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
With the accelerating trend of global aging, bone damage caused by orthopedic diseases, such as osteoporosis and fractures, has become a shared international event. Traffic accidents, high-altitude falls, and other incidents are increasing daily, and the demand for bone implant treatment is also growing. Although extensive research has been conducted in the past decade to develop medical implants for bone regeneration and healing of body tissues, due to their low biocompatibility, weak bone integration ability, and high postoperative infection rates, pure titanium alloys, such as Ti-6A1-4V and Ti-6A1-7Nb, although widely used in clinical practice, have poor induction of phosphate deposition and wear resistance, and Ti-Zr alloy exhibits a lack of mechanical stability and processing complexity. In contrast, the Ti-Ni alloy exhibits toxicity and low thermal conductivity. Nonthermal plasma (NTP) has aroused widespread interest in synthesizing and modifying implanted materials. More and more researchers are using plasma to modify target catalysts such as changing the dispersion of active sites, adjusting electronic properties, enhancing metal carrier interactions, and changing their morphology. NTP provides an alternative option for catalysts in the modification processes of oxidation, reduction, etching, coating, and doping, especially for materials that cannot tolerate thermodynamic or thermosensitive reactions. This review will focus on applying NTP technology in bone implant material modification and analyze the overall performance of three common types of bone implant materials, including metals, ceramics, and polymers. The challenges faced by NTP material modification are also discussed.
Collapse
Affiliation(s)
- Chengbiao Ding
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Hao Lv
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230602, China
| | - Suoni Huang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Mengxuan Hu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Yanxinyue Liao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Xinyue Meng
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Ming Gao
- Department of Emergency Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Hemu Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Xiaojun Feng
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Zhengwei Wu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
2
|
Gupta R, Gaddam A, Prajapati D, Dimov S, Mishra A, Vadali M. Enhancing Bactericidal Properties of Ti6Al4V Surfaces through Micro and Nano Hierarchical Laser Texturing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39086155 DOI: 10.1021/acs.langmuir.4c01173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Orthopedic and dental implants made from Ti6Al4V are widely used due to their excellent mechanical properties and biocompatibility. However, the long-term performance of these implants can be compromised by bacterial infections. This study explores the development of hierarchically textured surfaces with enhanced bactericidal properties to address such challenges. Hierarchical surface structures were developed by combining microscale features produced by a microsecond laser and superimposed submicron features produced using a femtosecond laser. Microscale patterns were produced by the pulsed laser surface melting process, whereas submicrometer laser-induced periodic surface structures were created on top of them by femtosecond laser processing. Escherichia coli bacterial cells were cultured on the textured surface. After 24 h, a staining analysis was performed using SYTO9 and PI dyes to investigate the samples with a confocal microscope for live dead assays. Results showed bacterial colony formation onto the microscale surface textures with live bacterial cells, whereas the hierarchical surface textures display segregated and physically damaged bacterial cell attachments on surfaces. The hierarchical surface textures showed ∼98% dead bacterial cells due to the combined effect of its multiscale surface features and oxide formation during the laser processing steps. The efficacy of hierarchical surface textures in enhancing the antibacterial behavior of Ti6Al4V implants is evident from the conducted research. Such laser-based surface treatments can find potential applications in different industrial sectors.
Collapse
Affiliation(s)
- Rohit Gupta
- Mechanical Engineering Department, IIT Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Anvesh Gaddam
- Department of Mechanical Engineering, University of Birmingham, Birmingham B15 2TT, U.K
| | - Deepak Prajapati
- Microbiology Laboratory, Materials Engineering Department, IIT Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Stefan Dimov
- Department of Mechanical Engineering, University of Birmingham, Birmingham B15 2TT, U.K
| | - Abhijit Mishra
- Microbiology Laboratory, Materials Engineering Department, IIT Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Madhu Vadali
- Mechanical Engineering Department, IIT Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
3
|
Calazans Neto JV, Kreve S, Valente MLDC, Reis ACD. Protein absorption on titanium surfaces treated with a high-power laser: A systematic review. J Prosthet Dent 2024; 131:591-597. [PMID: 35418317 DOI: 10.1016/j.prosdent.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/25/2022]
Abstract
STATEMENT OF PROBLEM The surface of titanium dental implants treated with a high-power laser has been reported to favor osseointegration, mainly by altering protein uptake. Despite the large number of articles that address the topic, the heterogeneity of methodologies and results makes an understanding of the treatment's benefits difficult, and a systematic review is needed. PURPOSE The purpose of this systematic review was to further the knowledge on protein uptake on titanium surfaces that have undergone treatment with a high-power laser. MATERIAL AND METHODS This review followed the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines and was registered with the Open Science Framework (OSF) (osf.io/gcbna). Searches were performed in PubMed, Scopus, Web of Science, Embase, and Google Scholar databases. The articles were selected in 2 steps by 2 independent reviewers according to the previously selected eligibility criteria. The risk of bias was analyzed by using the Joanna Briggs Institute (JBI)-adapted quasi-experimental study evaluation tool. RESULTS The studies addressed have shown that applying a high-power laser to the implant surface, depending on its settings, generates topographical changes that can optimize the protein absorption process and thus accelerate the other biological processes. CONCLUSIONS The studies identified in this systematic review showed that surface treatment with a high-power laser represents a promising technique with a positive influence on protein uptake and osseointegration.
Collapse
Affiliation(s)
- João Vicente Calazans Neto
- Masters student, Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Simone Kreve
- Doctoral student, Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Mariana Lima da Costa Valente
- Postdoctoral student, Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Andréa Cândido Dos Reis
- Professor, Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo (USP), Ribeirão Preto, Brazil.
| |
Collapse
|
4
|
Chen ST, He SY, Li Y, Gu N, Wen C, Lu J. Metallurgical manipulation of surface Volta potential in bimetals and cell response of human mesenchymal stem cells. BIOMATERIALS ADVANCES 2023; 153:213529. [PMID: 37348184 DOI: 10.1016/j.bioadv.2023.213529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/02/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
Bioelectricity plays an overriding role in directing cell migration, proliferation, differentiation etc. Tailoring the electro-extracellular environment through metallurgical manipulation could modulate the surrounding cell behaviors. In this study, different electric potential patterns, in terms of Volta potential distribution and gradient, were created on the metallic surface as an electric microenvironment, and their effects on adherent human mesenchymal stem cells were investigated. Periodically and randomly distributed Volta potential pattern, respectively, were generated on the surface through spark plasma sintering of two alternatively stacked dissimilar metals films and of a mixture of metallic powders. Actin cytoskeleton staining demonstrated that the Volta potential pattern strongly affected cell attachment and deformation. The cytoskeletons of cells were observed to elongate along the Volta potential gradient and across the border of adjacent regions with higher and lower potentials. Moreover, the steepest potential gradient resulting from the drastic compositional changes on the periodic borders gave rise to the strongest osteogenic tendency among all the samples. This study suggests that tailoring the Volta potential distribution and gradient of metallic biomaterials via metallurgical manipulation is a promising approach to activate surrounding cells, providing an extra degree of freedom for designing desirable bone-repairing metallic implants.
Collapse
Affiliation(s)
- Shi-Ting Chen
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Si-Yuan He
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, PR China.
| | - Yan Li
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Ning Gu
- Medical School, Nanjing University, Nanjing 210093, PR China
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Jian Lu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong
| |
Collapse
|
5
|
Bussola Tovani C, Divoux T, Manneville S, Azaïs T, Laurent G, de Frutos M, Gloter A, Ciancaglini P, Ramos AP, Nassif N. Strontium-driven physiological to pathological transition of bone-like architecture: A dose-dependent investigation. Acta Biomater 2023; 169:579-588. [PMID: 37516416 DOI: 10.1016/j.actbio.2023.07.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/19/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
Whilst strontium (Sr2+) is widely investigated for treating osteoporosis, it is also related to mineralization disorders such as rickets and osteomalacia. In order to clarify the physiological and pathological effects of Sr2+ on bone biomineralization , we performed a dose-dependent investigation in bone components using a 3D scaffold that displays the hallmark features of bone tissue in terms of composition (osteoblast, collagen, carbonated apatite) and architecture (mineralized collagen fibrils hierarchically assembled into a twisted plywood geometry). As the level of Sr2+ is increased from physiological-like to excess, both the mineral and the collagen fibrils assembly are destabilized, leading to a drop in the Young modulus, with strong implications on pre-osteoblastic cell proliferation. Furthermore, the microstructural and mechanical changes reported here correlate with that observed in bone-weakening disorders induced by Sr2+ accumulation, which may clarify the paradoxical effects of Sr2+ in bone mineralization. More generally, our results provide physicochemical insights into the possible effects of inorganic ions on the assembly of bone extracellular matrix and may contribute to the design of safer therapies for treating osteoporosis. STATEMENT OF SIGNIFICANCE: Physiological-like (10% Sr2+) and excess accumulation-like (50% Sr2+) doses of Sr2+ are investigated in 3D biomimetic assemblies possessing the high degree of organization found in the extracellular of bone. Above the physiological dose, the organic and inorganic components of the bone-like scaffold are destabilized, resulting in impaired cellular activity, which correlates with bone-weakening disorders induced by Sr2+.
Collapse
Affiliation(s)
- Camila Bussola Tovani
- Laboratoire Chimie de la Matière Condensée de Paris, CNRS, Sorbonne Université, Collège de France, LCMCP, F-75005 Paris, France; Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Thibaut Divoux
- Laboratoire de Physique, ENSL, CNRS, F-69342 Lyon, France
| | | | - Thierry Azaïs
- Laboratoire Chimie de la Matière Condensée de Paris, CNRS, Sorbonne Université, Collège de France, LCMCP, F-75005 Paris, France
| | - Guillaume Laurent
- Laboratoire Chimie de la Matière Condensée de Paris, CNRS, Sorbonne Université, Collège de France, LCMCP, F-75005 Paris, France
| | - Marta de Frutos
- Laboratoire de Physique des Solides (LPS), CNRS, Université Paris Saclay, F-91405 Orsay, France
| | - Alexandre Gloter
- Laboratoire de Physique des Solides (LPS), CNRS, Université Paris Saclay, F-91405 Orsay, France
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Ana P Ramos
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Nadine Nassif
- Laboratoire Chimie de la Matière Condensée de Paris, CNRS, Sorbonne Université, Collège de France, LCMCP, F-75005 Paris, France.
| |
Collapse
|
6
|
Printzell L, Reseland JE, Edin NFJ, Ellingsen JE, Tiainen H. Backscatter from therapeutic doses of ionizing irradiation does not impair cell migration on titanium implants in vitro. Clin Oral Investig 2023; 27:5073-5082. [PMID: 37410152 PMCID: PMC10492688 DOI: 10.1007/s00784-023-05128-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023]
Abstract
OBJECTIVE The influence of radiation backscatter from titanium on DNA damage and migration capacity of human osteoblasts (OBs) and mesenchymal stem cells (MSCs) may be critical for the osseointegration of dental implants placed prior to radiotherapy. In order to evaluate effects of radiation backscatter, the immediate DNA damage and migration capacity of OBs and MSCs cultured on titanium or plastic were compared after exposure to ionizing irradiation. MATERIALS AND METHODS Human OBs and MSCs were seeded on machined titanium, moderately rough fluoride-modified titanium, or tissue culture polystyrene, and irradiated with nominal doses of 2, 6, 10, or 14 Gy. Comet assay was performed immediately after irradiation, while a scratch wound healing assay was initiated 24 h post-irradiation. Fluorescent live cell imaging documented the migration. RESULTS DNA damage increased with higher dose and with backscatter from titanium, and MSCs were significantly more affected than OBs. All doses of radiation accelerated the cell migration on plastic, while only the highest dose of 10 Gy inhibited the migration of both cell types on titanium. CONCLUSIONS High doses (10 Gy) of radiation inhibited the migration capacity of both cell types on titanium, whereas lower doses (2 and 6 Gy) did not affect the migration of either OBs or MSCs. CLINICAL RELEVANCE Fractionated doses of 2 Gy/day, as distributed in conventional radiotherapy, appear not to cause severe DNA damage or disturb the migration of OBs or MSCs during osseointegration of dental implants.
Collapse
Affiliation(s)
- Lisa Printzell
- Department of Prosthodontics, Institute of Clinical Dentistry, Faculty for Dentistry, University of Oslo, PO box 1109, 0317, Blindern, Oslo, Norway.
| | - Janne Elin Reseland
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty for Dentistry, University of Oslo, Oslo, Norway
| | | | - Jan Eirik Ellingsen
- Department of Prosthodontics, Institute of Clinical Dentistry, Faculty for Dentistry, University of Oslo, PO box 1109, 0317, Blindern, Oslo, Norway
| | - Hanna Tiainen
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty for Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Yildiz T, Durdu S, Ozcan K, Usta M. Characterization and investigation of biological properties of silver nanoparticle-doped hydroxyapatite-based surfaces on zirconium. Sci Rep 2023; 13:6773. [PMID: 37101002 PMCID: PMC10130180 DOI: 10.1038/s41598-023-33992-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/21/2023] [Indexed: 04/28/2023] Open
Abstract
The infections leading to failed implants can be controlled mainly by metal and metal oxide-based nanoparticles. In this work, the randomly distributed AgNPs-doped onto hydroxyapatite-based surfaces were produced on zirconium by micro arc oxidation (MAO) and electrochemical deposition processes. The surfaces were characterized by XRD, SEM, EDX mapping and EDX area and contact angle goniometer. AgNPs-doped MAO surfaces, which is beneficial for bone tissue growth exhibited hydrophilic behaviors. The bioactivity of the AgNPs-doped MAO surfaces is improved compared to bare Zr substrate under SBF conditions. Importantly, the AgNPs-doped MAO surfaces exhibited antimicrobial activity for E. coli and S. aureus compared to control samples.
Collapse
Affiliation(s)
- Tuba Yildiz
- Materials Science and Engineering, Gebze Technical University, 41400, Gebze, Turkey
| | - Salih Durdu
- Industrial Engineering, Giresun University, 28200, Giresun, Turkey.
- Genetics and Bioengineering, Giresun University, 28200, Giresun, Turkey.
- Faculty of Engineering, Giresun University, 28200, Giresun, Turkey.
| | - Kadriye Ozcan
- Genetics and Bioengineering, Giresun University, 28200, Giresun, Turkey
| | - Metin Usta
- Materials Science and Engineering, Gebze Technical University, 41400, Gebze, Turkey.
- Aluminum Research Center (GTU-AAUM), Gebze Technical University, 41400, Gebze, Turkey.
| |
Collapse
|
8
|
Zhang B, Leng J, Ouyang Z, Yang Z, Zhang Q, Li Q, Li D, Zhao H. Superhydrophilic and topography-regulatable surface grafting on PEEK to improve cellular affinity. BIOMATERIALS ADVANCES 2023; 146:213310. [PMID: 36716597 DOI: 10.1016/j.bioadv.2023.213310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/29/2022] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
Polyetheretherketone (PEEK) has been widely used in the preparation of orthopedic implants due to its biological inertness and similar mechanical modulus to natural bone. However, the affinity between biological tissue (bone and soft tissue) and PEEK surface is weak, leading to low osseointegration and an increased risk of inflammation. The situation could be improved by modifying PEEK surface. Surfaces with good hydrophilicity and proper microtopography would promote cellular adhesion and proliferation. This work presented a two-step surface modification method to achieve the effect. Polyacrylic acid (PAA) chains were grafted on PEEK surface by UV irradiation. Then, ethylenediamine (EDA) was added to introduce amino groups and promote the cross-linking of PAA chains. Furthermore, a mathematical model was built to describe and regulate the surface topography growth process semi-quantitatively. The model fits experimental data quite well (adjusted R2 = 0.779). Results showed that the modified PEEK surface obtained superhydrophilicity. It significantly improved the adhesion and proliferation of BMSCs and MFBs by activating the FAK pathway and Rho family GTPase. The cellular affinity performed better when the surface topography was in network structure with holes in about 25 μm depth and 20-50 μm diameter. Good hydrophilicity seems necessary for the FAK pathway activation, but simply improving surface hydrophilicity might not be enough for cellular affinity improvement. Surface topography at micron scale should be a more important cue. This simple surface modification method could be contributed to further study of cell-microtopography interaction and have potential applications in clinical PEEK orthopedic implants.
Collapse
Affiliation(s)
- Bowen Zhang
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, 710054 Xi'an, Shaanxi, China; National Medical Products Administration (NMPA), Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, 710054 Xi'an, Shaanxi, China
| | - Junqing Leng
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, 710054 Xi'an, Shaanxi, China; National Medical Products Administration (NMPA), Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, 710054 Xi'an, Shaanxi, China
| | - Zhicong Ouyang
- Academy of Orthopedics·Guangdong Province, Orthopedic Hospital of Guangdong Province, Department of Spine Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, 510665 Guangzhou, China
| | - Zijian Yang
- Academy of Orthopedics·Guangdong Province, Orthopedic Hospital of Guangdong Province, Department of Spine Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, 510665 Guangzhou, China
| | - Qing Zhang
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, 710054 Xi'an, Shaanxi, China; Center for Medical Device Evaluation, National Medical Products Administration (NMPA), 100081 Beijing, China
| | - Qingchu Li
- Academy of Orthopedics·Guangdong Province, Orthopedic Hospital of Guangdong Province, Department of Spine Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, 510665 Guangzhou, China
| | - Dichen Li
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, 710054 Xi'an, Shaanxi, China; National Medical Products Administration (NMPA), Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, 710054 Xi'an, Shaanxi, China.
| | - Huiyu Zhao
- Academy of Orthopedics·Guangdong Province, Orthopedic Hospital of Guangdong Province, Department of Spine Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, 510665 Guangzhou, China.
| |
Collapse
|
9
|
Tuna T, Wein M, Altmann B, Steinberg T, Fischer J, Att W. Effect of Hydrogen Peroxide on the Surface and Attractiveness of Various Zirconia Implant Materials on Human Osteoblasts: An In Vitro Study. MATERIALS (BASEL, SWITZERLAND) 2023; 16:961. [PMID: 36769968 PMCID: PMC9918077 DOI: 10.3390/ma16030961] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
The aim of this in vitro study was to investigate the effect of hydrogen peroxide (H2O2) on the surface properties of various zirconia-based dental implant materials and the response of human alveolar bone osteoblasts. For this purpose, discs of two zirconia-based materials with smooth and roughened surfaces were immersed in 20% H2O2 for two hours. Scanning electron and atomic force microscopy showed no topographic changes after H2O2-treatment. Contact angle measurements (1), X-ray photoelectron spectroscopy (2) and X-ray diffraction (3) indicated that H2O2-treated surfaces (1) increased in hydrophilicity (p < 0.05) and (2) on three surfaces the carbon content decreased (33-60%), while (3) the monoclinic phase increased on all surfaces. Immunofluorescence analysis of the cell area and DNA-quantification and alkaline phosphatase activity revealed no effect of H2O2-treatment on cell behavior. Proliferation activity was significantly higher on three of the four untreated surfaces, especially on the smooth surfaces (p < 0.05). Within the limitations of this study, it can be concluded that exposure of zirconia surfaces to 20% H2O2 for 2 h increases the wettability of the surfaces, but also seems to increase the monoclinic phase, especially on roughened surfaces, which can be considered detrimental to material stability. Moreover, the H2O2-treatment has no influence on osteoblast behavior.
Collapse
Affiliation(s)
- Taskin Tuna
- Department of Prosthodontics and Biomaterials, School of Dentistry, RWTH University Aachen, Pauwelsstr. 30, 52062 Aachen, Germany
| | - Martin Wein
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Brigitte Altmann
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Prosthetic Dentistry, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Thorsten Steinberg
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Jens Fischer
- Division of Biomaterials and Technology, Clinic for Reconstructive Dentistry University Center for Dental Medicine UZB, University of Basel, 4058 Basel, Switzerland
| | - Wael Att
- Department of Prosthodontics, School of Dental Medicine Tufts University, Boston, MA 02111, USA
| |
Collapse
|
10
|
Chen KT, Huang JW, Lin WT, Kuo TY, Chien CS, Chang CP, Lin YD. Effects of Micro-Arc Oxidation Discharge Parameters on Formation and Biomedical Properties of Hydroxyapatite-Containing Flower-like Structure Coatings. MATERIALS (BASEL, SWITZERLAND) 2022; 16:ma16010057. [PMID: 36614396 PMCID: PMC9821538 DOI: 10.3390/ma16010057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 05/12/2023]
Abstract
The micro-arc oxidation (MAO) process was used to prepare hydroxyapatite-containing flower-like structure coatings on commercially pure titanium substrates with various values of the applied voltage (330, 390, 450 V), applied current (0.4, 0.5, 0.6 A), and duration time (1, 3, 5 min). It was found that the surface morphology of the coatings was determined primarily by the applied voltage. A voltage of 330 V yielded a flower-like/plate-like structure, while voltages of 390 V and 450 V produced a flower-like structure and a porous morphology, respectively. The applied current and duration time mainly affected the coating formation speed and petal size of the flower-like structures, respectively. The coatings prepared using voltages of 330 V and 390 V (0.6 A, 5 min) both contained Ti, TiO2-A (anatase), TiO2-R (rutile), DCPD (CaHPO4·2H2O, calcium hydrogen phosphate), and hydroxyapatite (HA). However, the latter coating contained less DCPD and had a higher HA/DCPD ratio and a Ca/P ratio closer to the ideal value of HA. The coating prepared with a voltage of 450 V consisted mainly of Ti, TiO2-A, TiO2-R, and CaTiO3. For the coatings prepared with a voltage of 390 V, the flower-like structures consisted mainly of HA-containing compounds. DCPD plate-like structures were observed either between the HA-containing flower-like structures (330 V samples) or within the flower-like structures themselves (390 V samples). The coating surfaces with flower-like/plate-like or flower-like structures had a greater roughness, which increased their hydrophilicity and resulted in superior bioactivity (SBF immersion) and biocompatibility (MG-63 cell culture). The optimal biomedical performance was found in the 390 V coating due to its flower-like structure and high HA/DCPD ratio.
Collapse
Affiliation(s)
- Kuan-Ting Chen
- Department of Orthopaedics, Chi Mei Medical Center, No. 901, Zhonghua Rd., Yongkang District, Tainan 710, Taiwan
| | - Jun-Wei Huang
- Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, 1 Nan-Tai St., Tainan 710, Taiwan
| | - Wei-Ting Lin
- Department of Orthopaedics, Chi Mei Medical Center, No. 901, Zhonghua Rd., Yongkang District, Tainan 710, Taiwan
- Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, 1 Nan-Tai St., Tainan 710, Taiwan
| | - Tsung-Yuan Kuo
- Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, 1 Nan-Tai St., Tainan 710, Taiwan
- Correspondence: (T.-Y.K.); (C.-S.C.)
| | - Chi-Sheng Chien
- Department of Orthopaedics, Chi Mei Medical Center, No. 901, Zhonghua Rd., Yongkang District, Tainan 710, Taiwan
- Correspondence: (T.-Y.K.); (C.-S.C.)
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, No. 901, Zhonghua Rd., Yongkang District, Tainan City 710, Taiwan
| | - Yung-Ding Lin
- School of Intelligent Engineering, Shaoguan University, Shaoguan 512005, China
| |
Collapse
|
11
|
Qiu P, Feng L, Fu Q, Dai T, Liu M, Wang P, Lan Y. Dual-Functional Polyetheretherketone Surface with an Enhanced Osteogenic Capability and an Antibacterial Adhesion Property In Vitro by Chitosan Modification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14712-14724. [PMID: 36420594 DOI: 10.1021/acs.langmuir.2c02267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A chitosan layer was covalently bonded to a polyetheretherketone (PEEK) surface using a simple facile self-assembly method to address inadequate biological activity and infection around the implant. The surface characterization, layer degradation, biological activity, and antibacterial adhesion properties of chitosan-modified PEEK (PEEK-CS) were studied. Through chitosan grafting, the surface morphology changed, the surface roughness increased, and the contact angle decreased significantly. PEEK-CS boosted cell adhesion, proliferation, increased alkaline phosphate activity, extracellular matrix mineralization, and expression of osteogenic genes. PEEK-CS demonstrated less adhesion to Porphyromonas gingivalis as well as less bacterial adhesion to P. gingivalis and Streptococcus mutans. According to our findings, chitosan modification significantly improved the osteogenic ability and antibacterial adhesion of PEEK in vitro.
Collapse
Affiliation(s)
- Peng Qiu
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou646000, China
| | - Le Feng
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou646000, China
| | - Qilin Fu
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou646000, China
| | - Tao Dai
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou646000, China
| | - Min Liu
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou646000, China
| | - Pin Wang
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou646000, China
| | - Yuyan Lan
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou646000, China
| |
Collapse
|
12
|
Corado HPR, Moura de Souza Soraes F, Barbosa DM, Lima AM, Elias CN. Titanium Coated with Graphene and Niobium Pentoxide for Biomaterial Applications. Int J Biomater 2022; 2022:2786101. [PMID: 36506263 PMCID: PMC9729051 DOI: 10.1155/2022/2786101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/02/2022] [Accepted: 10/26/2022] [Indexed: 12/03/2022] Open
Abstract
Graphene and niobium oxide are used in biomaterial coatings. In this work, commercially pure titanium (cp Ti) was coated with graphene oxide (GO), niobium pentoxide (Nb2O5), and a mixture of both materials (NbGO) by the electrochemical deposition method. The surface morphology, roughness, wettability, and degradation of coated and uncoated samples were analyzed by scanning electron microscopy, interferometry, and contact angle. The results showed that the specimens coated with NbGO (cp Ti-NbGO) showed the highest surface roughness (Ra = 0.64 μm) and were hydrophobic. The contact (θ) angle between water and the surface of uncoated specimens (cp Ti), coated with GO (cp Ti-GO), coated with a mixture with GO and Nb2O5) (cp Ti-NbGO), and coated with Nb2O5 were 50.74°, 44.35°, 55.86°, and 100.35°, respectively. The electrochemical corrosion tests showed that coating with graphene oxide increased the corrosion resistance and coating with Nb2O5 decreased the corrosion resistance. The negative effect of the effect of Nb2O5 coating in corrosion resistance compensated for the release of Nb2O5, which helps osseointegration, increasing cell viability, and proliferation of osteoblasts. The NbGO coating may be a good way to combine the bactericidal effect of graphene oxide with the osseointegration effect of Nb2O5.
Collapse
Affiliation(s)
- Hazel Paloma Reis Corado
- Instituto Militar de Engenharia—IME, Department of Materials Science, Praça General Tibúrcio, 80, Praia Vermelha, Urca, CEP 22290-270, Rio de Janeiro, RJ, Brazil
| | - Francielly Moura de Souza Soraes
- Instituto Militar de Engenharia—IME, Department of Materials Science, Praça General Tibúrcio, 80, Praia Vermelha, Urca, CEP 22290-270, Rio de Janeiro, RJ, Brazil
| | - Dyanni Manhães Barbosa
- Instituto Militar de Engenharia—IME, Department of Materials Science, Praça General Tibúrcio, 80, Praia Vermelha, Urca, CEP 22290-270, Rio de Janeiro, RJ, Brazil
| | - Andreza Menezes Lima
- Instituto Militar de Engenharia—IME, Department of Materials Science, Praça General Tibúrcio, 80, Praia Vermelha, Urca, CEP 22290-270, Rio de Janeiro, RJ, Brazil
| | - Carlos Nelson Elias
- Instituto Militar de Engenharia—IME, Department of Materials Science, Praça General Tibúrcio, 80, Praia Vermelha, Urca, CEP 22290-270, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
13
|
Alves CH, Russi KL, Rocha NC, Bastos F, Darrieux M, Parisotto TM, Girardello R. Host-microbiome interactions regarding peri-implantitis and dental implant loss. Lab Invest 2022; 20:425. [PMID: 36138430 PMCID: PMC9502891 DOI: 10.1186/s12967-022-03636-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022]
Abstract
In the last decades, the ortho-aesthetic-functional rehabilitation had significant advances with the advent of implantology. Despite the success in implantology surgeries, there is a percentage of failures mainly due to in loco infections, through bacterial proliferation, presence of fungi and biofilm formation, originating peri-implantitis. In this sense, several studies have been conducted since then, seeking answers to numerous questions that remain unknown. Thus, the present work aims to discuss the interaction between host-oral microbiome and the development of peri-implantitis. Peri-implantitis was associated with a diversity of bacterial species, being Porphiromonas gingivalis, Treponema denticola and Tannerella forsythia described in higher proportion of peri-implantitis samples. In a parallel role, the injury of peri-implant tissue causes an inflammatory response mediated by activation of innate immune cells such as macrophages, dendritic cells, mast cells, and neutrophils. In summary, the host immune system activation may lead to imbalance of oral microbiota, and, in turn, the oral microbiota dysbiosis is reported leading to cytokines, chemokines, prostaglandins, and proteolytic enzymes production. These biological processes may be responsible for implant loss.
Collapse
Affiliation(s)
- Carlos Henrique Alves
- Laboratório de Microbiologia Molecular E Clínica, Programa de Pós-Graduação Em Ciências da Saúde, Universidade São Francisco, 218, São Francisco Ave., Bragança Paulista, São Paulo, Zip code: # 12916900, Brazil
| | - Karolayne Larissa Russi
- Laboratório de Microbiologia Molecular E Clínica, Programa de Pós-Graduação Em Ciências da Saúde, Universidade São Francisco, 218, São Francisco Ave., Bragança Paulista, São Paulo, Zip code: # 12916900, Brazil
| | - Natália Conceição Rocha
- Laboratório de Microbiologia Molecular E Clínica, Programa de Pós-Graduação Em Ciências da Saúde, Universidade São Francisco, 218, São Francisco Ave., Bragança Paulista, São Paulo, Zip code: # 12916900, Brazil
| | | | - Michelle Darrieux
- Laboratório de Microbiologia Molecular E Clínica, Programa de Pós-Graduação Em Ciências da Saúde, Universidade São Francisco, 218, São Francisco Ave., Bragança Paulista, São Paulo, Zip code: # 12916900, Brazil
| | - Thais Manzano Parisotto
- Laboratório de Microbiologia Molecular E Clínica, Programa de Pós-Graduação Em Ciências da Saúde, Universidade São Francisco, 218, São Francisco Ave., Bragança Paulista, São Paulo, Zip code: # 12916900, Brazil
| | - Raquel Girardello
- Laboratório de Microbiologia Molecular E Clínica, Programa de Pós-Graduação Em Ciências da Saúde, Universidade São Francisco, 218, São Francisco Ave., Bragança Paulista, São Paulo, Zip code: # 12916900, Brazil.
| |
Collapse
|
14
|
Chang H, Wang Q, Meng X, Chen X, Deng Y, Li L, Yang Y, Song G, Jia H. Effect of Titanium Dioxide Nanoparticles on Mammalian Cell Cycle In Vitro: A Systematic Review and Meta-Analysis. Chem Res Toxicol 2022; 35:1435-1456. [PMID: 35998370 DOI: 10.1021/acs.chemrestox.1c00402] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although most studies that explore the cytotoxicity of titanium dioxide nanoparticles (nano-TiO2) have focused on cell viability and oxidative stress, the cell cycle, a basic process of cell life, can also be affected. However, the results on the effects of nano-TiO2 on mammalian cell cycle are still inconsistent. A systematic review and meta-analysis were therefore performed in this research based on the effects of nano-TiO2 on the mammalian cell cycle in vitro to explore whether nano-TiO2 can induce cell cycle arrest. Meanwhile, the impact of physicochemical properties of nano-TiO2 on the cell cycle in vitro was investigated, and the response of normal cells and cancer cells was compared. A total of 33 articles met the eligibility criteria after screening. We used Review Manager 5.4 and Stata 15.1 for analysis. The results showed an increased percentage of cells in the sub-G1 phase and an upregulation of the p53 gene after being exposed to nano-TiO2. Nevertheless, nano-TiO2 had no effect on cell percentage in other phases of the cell cycle. Furthermore, subgroup analysis revealed that the cell percentage in both the sub-G1 phase of normal cells and S phase of cancer cells were significantly increased under anatase-form nano-TiO2 treatment. Moreover, nano-TiO2 with a particle size <25 nm or exposure duration of nano-TiO2 more than 24 h induced an increased percentage of normal cells in the sub-G1 phase. In addition, the cell cycle of cancer cells was arrested in the S phase no matter if the exposure duration of nano-TiO2 was more than 24 h or the exposure concentration was over 50 μg/mL. In conclusion, this study demonstrated that nano-TiO2 disrupted the cell cycle in vitro. The cell cycle arrest induced by nano-TiO2 varies with cell status and physicochemical properties of nano-TiO2.
Collapse
Affiliation(s)
- Hongmei Chang
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Qianqian Wang
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Xiaojia Meng
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Xinyu Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, 210019 Nanjing, China
| | - Yaxin Deng
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Li Li
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Yaqian Yang
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Guanling Song
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Huaimiao Jia
- Department of Endemic Disease, Shihezi Center for Disease Control and Prevention, Shihezi 832003, Xinjiang, China
| |
Collapse
|
15
|
Wahed SB, Dunstan CR, Boughton PA, Ruys AJ, Faisal SN, Wahed TB, Salahuddin B, Cheng X, Zhou Y, Wang CH, Islam MS, Aziz S. Functional Ultra-High Molecular Weight Polyethylene Composites for Ligament Reconstructions and Their Targeted Applications in the Restoration of the Anterior Cruciate Ligament. Polymers (Basel) 2022; 14:polym14112189. [PMID: 35683861 PMCID: PMC9182730 DOI: 10.3390/polym14112189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022] Open
Abstract
The selection of biomaterials as biomedical implants is a significant challenge. Ultra-high molecular weight polyethylene (UHMWPE) and composites of such kind have been extensively used in medical implants, notably in the bearings of the hip, knee, and other joint prostheses, owing to its biocompatibility and high wear resistance. For the Anterior Cruciate Ligament (ACL) graft, synthetic UHMWPE is an ideal candidate due to its biocompatibility and extremely high tensile strength. However, significant problems are observed in UHMWPE based implants, such as wear debris and oxidative degradation. To resolve the issue of wear and to enhance the life of UHMWPE as an implant, in recent years, this field has witnessed numerous innovative methodologies such as biofunctionalization or high temperature melting of UHMWPE to enhance its toughness and strength. The surface functionalization/modification/treatment of UHMWPE is very challenging as it requires optimizing many variables, such as surface tension and wettability, active functional groups on the surface, irradiation, and protein immobilization to successfully improve the mechanical properties of UHMWPE and reduce or eliminate the wear or osteolysis of the UHMWPE implant. Despite these difficulties, several surface roughening, functionalization, and irradiation processing technologies have been developed and applied in the recent past. The basic research and direct industrial applications of such material improvement technology are very significant, as evidenced by the significant number of published papers and patents. However, the available literature on research methodology and techniques related to material property enhancement and protection from wear of UHMWPE is disseminated, and there is a lack of a comprehensive source for the research community to access information on the subject matter. Here we provide an overview of recent developments and core challenges in the surface modification/functionalization/irradiation of UHMWPE and apply these findings to the case study of UHMWPE for ACL repair.
Collapse
Affiliation(s)
- Sonia B. Wahed
- School of Biomedical Engineering, University of Sydney, Sydney, NSW 2006, Australia; (C.R.D.); (P.A.B.); (A.J.R.); (X.C.)
- Correspondence: (S.B.W.); (S.A.)
| | - Colin R. Dunstan
- School of Biomedical Engineering, University of Sydney, Sydney, NSW 2006, Australia; (C.R.D.); (P.A.B.); (A.J.R.); (X.C.)
| | - Philip A. Boughton
- School of Biomedical Engineering, University of Sydney, Sydney, NSW 2006, Australia; (C.R.D.); (P.A.B.); (A.J.R.); (X.C.)
| | - Andrew J. Ruys
- School of Biomedical Engineering, University of Sydney, Sydney, NSW 2006, Australia; (C.R.D.); (P.A.B.); (A.J.R.); (X.C.)
| | - Shaikh N. Faisal
- ARC Centre of Excellence for Electromaterials Science & Intelligent Polymer Research Institute, Australian Institute of Innovative Materials, University of Wollongong, Wollongong, NSW 2522, Australia;
| | - Tania B. Wahed
- Department of Pharmacy, Jahangirnagar University, Savar 1342, Bangladesh;
| | - Bidita Salahuddin
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Xinying Cheng
- School of Biomedical Engineering, University of Sydney, Sydney, NSW 2006, Australia; (C.R.D.); (P.A.B.); (A.J.R.); (X.C.)
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (Y.Z.); (C.H.W.); (M.S.I.)
| | - Yang Zhou
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (Y.Z.); (C.H.W.); (M.S.I.)
| | - Chun H. Wang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (Y.Z.); (C.H.W.); (M.S.I.)
| | - Mohammad S. Islam
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (Y.Z.); (C.H.W.); (M.S.I.)
| | - Shazed Aziz
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia;
- Correspondence: (S.B.W.); (S.A.)
| |
Collapse
|
16
|
Amid R, Kadkhodazadeh M, Mojahedi SM, Gilvari Sarshari M, Zamani Z. Physicochemical Changes of Contaminated Titanium Discs Treated With Erbium-Doped Yttrium Aluminum Garnet (Er:YAG) Laser Irradiation or Air-Flow Abrasion: An In Vitro Study. J Lasers Med Sci 2022; 12:e67. [PMID: 35155152 DOI: 10.34172/jlms.2021.67] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/22/2021] [Indexed: 11/09/2022]
Abstract
Introduction: Peri-implantitis is a common complication of dental implant treatment. A cause-and-effect relationship has been previously documented between microbial plaque and peri-implantitis and implant failure. A difference has been reported in the disinfection efficacy of erbium laser irradiation and air-flow abrasion for contaminated titanium surfaces. Also, the surface changes caused by lasers and air-flow abrasion have not been well studied. Thus, the purpose of this study was to compare the surface changes of contaminated titanium discs following decontamination by erbium-doped yttrium aluminum garnet (Er:YAG) laser irradiation and air-flow abrasion. Methods: Twenty-eight intact, sandblasted, and acid-etched (SLA) titanium discs were used. Twenty-four titanium discs were contaminated with Escherichia coli. Then, they were decontaminated by using Er:YAG laser irradiation and air-flow abrasion. Four discs remained intact. The mean and standard deviation of the contact angle and the weight percentage of aluminum, titanium, oxygen, carbon, phosphorus, and calcium were measured. Qualitative changes in surface topography of titanium discs were assessed by scanning electron microscopy (SEM). Results: The mean weight percentage of carbon in the air-flow abrasion group (4.98%) experienced a significant reduction compared with the contaminated (positive control) group (P=0.035). The contact angles were 46.54° and 38.67° in the laser and air-flow abrasion groups respectively, which were significantly lower than the value in the positive control group (75.15°) (P ≤0.001). SEM micrographs showed no significant change in the surface area in either technique. Conclusion: Air-flow abrasion was more successful in improving the surface characteristics of titanium discs with no alteration in surface topography or elements, compared with Er:YAG laser irradiation. Further studies regarding the safety of the Er:YAG laser for the decontamination of titanium surfaces are recommended.
Collapse
Affiliation(s)
- Reza Amid
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Evin, Tehran, Iran
| | - Mahdi Kadkhodazadeh
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Evin, Tehran, Iran
| | - Seyed Massoud Mojahedi
- Department of Laser, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maedeh Gilvari Sarshari
- Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Zamani
- Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Tamay DG, Gokyer S, Schmidt J, Vladescu A, Yilgor Huri P, Hasirci V, Hasirci N. Corrosion Resistance and Cytocompatibility of Magnesium-Calcium Alloys Modified with Zinc- or Gallium-Doped Calcium Phosphate Coatings. ACS APPLIED MATERIALS & INTERFACES 2022; 14:104-122. [PMID: 34958199 DOI: 10.1021/acsami.1c16307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In orthopedic surgery, metals are preferred to support or treat damaged bones due to their high mechanical strength. However, the necessity for a second surgery for implant removal after healing creates problems. Therefore, biodegradable metals, especially magnesium (Mg), gained importance, although their extreme susceptibility to galvanic corrosion limits their applications. The focus of this study was to control the corrosion of Mg and enhance its biocompatibility. For this purpose, surfaces of magnesium-calcium (MgCa1) alloys were modified with calcium phosphate (CaP) or CaP doped with zinc (Zn) or gallium (Ga) via microarc oxidation. The effects of surface modifications on physical, chemical, and mechanical properties and corrosion resistance of the alloys were studied using surface profilometry, goniometry, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), nanoindentation, and electrochemical impedance spectroscopy (EIS). The coating thickness was about 5-8 μm, with grain sizes of 43.1 nm for CaP coating and 28.2 and 58.1 nm for Zn- and Ga-doped coatings, respectively. According to EIS measurements, the capacitive response (Yc) decreased from 11.29 to 8.72 and 0.15 Ω-1 cm-2 sn upon doping with Zn and Ga, respectively. The Ecorr value, which was -1933 mV for CaP-coated samples, was found significantly electropositive at -275 mV for Ga-doped ones. All samples were cytocompatible according to indirect tests. In vitro culture with Saos-2 cells led to changes in the surface compositions of the alloys. The numbers of cells attached to the Zn-doped (2.6 × 104 cells/cm2) and Ga-doped (6.3 × 104 cells/cm2) coatings were higher than that on the surface of the undoped coating (1.0 × 103 cells/cm2). Decreased corrosivity and enhanced cell affinity of the modified MgCa alloys (CaP coated and Zn and Ga doped, with Ga-doped ones having the greatest positive effect) make them novel and promising candidates as biodegradable metallic implant materials for the treatment of bone damages and other orthopedic applications.
Collapse
Affiliation(s)
- Dilara Goksu Tamay
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University (METU), Ankara 06800, Turkey
- Department of Biotechnology, Middle East Technical University (METU), Ankara 06800, Turkey
| | - Seyda Gokyer
- Department of Biomedical Engineering, Ankara University, Ankara 06830, Turkey
| | - Jürgen Schmidt
- Team Leader Electrochemistry, INNOVENT e.V. Technology Development, Prüssingstraße 27b, Jena 07745, Germany
| | - Alina Vladescu
- National Institute of Research and Development for Optoelectronics - INOE 2000, 409 Atomistilor St., Magurele 077125, Romania
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Lenin Avenue 43, Tomsk 634050, Russia
| | - Pinar Yilgor Huri
- Department of Biomedical Engineering, Ankara University, Ankara 06830, Turkey
| | - Vasif Hasirci
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University (METU), Ankara 06800, Turkey
- Department of Medical Engineering, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey
- Biomaterials Center, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey
| | - Nesrin Hasirci
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University (METU), Ankara 06800, Turkey
- Department of Biotechnology, Middle East Technical University (METU), Ankara 06800, Turkey
- Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
- Tissue Engineering and Biomaterial Research Center, Near East University, 99138 Nicosia, TRNC, Mersin 10, Turkey
| |
Collapse
|
18
|
A Two-Step Approach to Tune the Micro and Nanoscale Morphology of Porous Niobium Oxide to Promote Osteointegration. MATERIALS 2022; 15:ma15020473. [PMID: 35057189 PMCID: PMC8778385 DOI: 10.3390/ma15020473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/17/2022]
Abstract
We present a two-step surface modification process to tailor the micro and nano morphology of niobium oxide layers. Niobium was firstly anodized in spark regime in a Ca- and P-containing solution and subsequently treated by acid etching. The effects of anodizing time and applied potential on the surface morphology is investigated with SEM and AFM, complemented by XPS compositional analysis. Anodizing with a limiting potential of 250 V results in the fast growth of oxide layers with a homogeneous distribution of micro-sized pores. Cracks are, however, observed on 250 V grown layers. Limiting the anodizing potential to 200 V slows down the oxide growth, increasing the anodizing time needed to achieve a uniform pore coverage but produces fracture-free oxide layers. The surface nano morphology is further tuned by a subsequent acid etching process that leads to the formation of nano-sized pits on the anodically grown oxide surface. In vitro tests show that the etching-induced nanostructure effectively promotes cell adhesion and spreading onto the niobium oxide surface.
Collapse
|
19
|
Huang P, Chen X, Chen Z, Chen M, He J, Peng L. Efficacy of Er:YAG laser irradiation for decontamination and its effect on biocompatibility of different titanium surfaces. BMC Oral Health 2021; 21:649. [PMID: 34922525 PMCID: PMC8684230 DOI: 10.1186/s12903-021-02006-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/30/2021] [Indexed: 02/08/2023] Open
Abstract
Background Erbium yttrium–aluminum–garnet (Er:YAG) laser have been shown to be suitable for decontamination of titanium surfaces at a wide range of energy settings, however, high intensity of laser irradiation destroy titanium surface and low intensity cannot remove enough microbial biofilm. The aim of this study was to investigate the optimal energy setting of Er:YAG laser for decontamination of sandblasted/acid-etched (SLA) and hydroxyapatite (HA) titanium surfaces. Material and methods After supragingival biofilm construction in vivo, SLA and HA titanium discs were divided into three groups: blank control (BC, clean discs), experimental control (EC, contaminated discs) and experimental groups (EP, contaminated discs irradiated by Er:YAG laser at 40, 70, and 100 mJ/pulse). Scanning electron microscopy (SEM), live/dead bacterial fluorescent detection, and colony counting assay were used to detect the efficacy of laser decontamination. To investigate the effect of laser decontamination on titanium surface biocompatibility, MC3T3-E1 cell adhesion and proliferation activity were examined by SEM and CCK-8 assay. Results Er:YAG laser irradiation at 100 mJ/pulse removed 84.1% of bacteria from SLA titanium surface; laser irradiation at 70 and 100 mJ/pulse removed 76.4% and 77.85% of bacteria from HA titanium surface respectively. Laser irradiation improved MC3T3-E1 cell adhesion on both titanium surfaces. For SLA titanium discs, 100 mJ/pulse group displayed excellent cellular proliferation activity higher than that in BC group (P < 0.01). For HA titanium discs, 70 mJ/pulse group showed the highest activity comparable to BC group (P > 0.05). Conclusions With regards to efficient microbial biofilm decontamination and biocompatibility maintenance, Er:YAG laser at 100 mJ/pulse and 70 mJ/pulse are considered as the optimal energy settings for SLA titanium and HA titanium surface respectively. This study provides theoretical basis for the clinical application of Er:YAG laser in the treatment of peri-implantitis.
Collapse
Affiliation(s)
- Peijun Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xue Chen
- Chongqing Key Laboratory of Oral Diseases and Biomedical Science, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Zhongren Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Min Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jinzhi He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lin Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
20
|
In vitro evaluation of chemical decontamination of titanium discs. Sci Rep 2021; 11:22753. [PMID: 34815486 PMCID: PMC8611041 DOI: 10.1038/s41598-021-02220-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/09/2021] [Indexed: 11/30/2022] Open
Abstract
Peri-implant diseases are caused by bacterial biofilm colonizing implant surfaces. Prevention and management of peri-implant mucositis and peri-implantitis rely on effective biofilm removal. This study aimed to evaluate biofilm removal and cytocompatibility following chemo-mechanical surface decontamination of biofilm-coated titanium discs. Biofilm-coated (Streptococcus gordonii) discs, with either non-modified (smooth) or modified (rough) surfaces, were instrumented using a sterile gauze soaked in one out of four solutions: saline (NaCl), alkaline electrized water (AEW), citric acid (CA) or N-acetyl-l-cysteine (NAC). Non-contaminated, untreated titanium discs served as controls (C). Residual deposits (bacteria and gauze fibers) and cytocompatibility for osteoblast-like cells were evaluated using SEM and immunofluorescence. Cytotoxicity was assessed using WST-8 assay and immunofluorescence. All protocols were equally effective in removing bacteria from smooth surfaces, while AEW and CA were found to be superior at rough surfaces. AEW and NAC were superior in promoting cytocompatibility over NaCl. NAC and CA had a strong cytotoxic effect on osteoblast-like and fibroblast cells. In conclusion, AEW may be beneficial in the decontamination of implant surfaces, effectively removing bacterial biofilm and restoring cytocompatibility.
Collapse
|
21
|
Rivas M, Turon P, Alemán C, Puiggalí J, del Valle LJ. Incorporation of Functionalized Calcium Phosphate Nanoparticles in Living Cells. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02182-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractIntracellular calcium (Ca2+) is a key signaling element that is involved in a great variety of fundamental biological processes. Thus, Ca2+ deregulation would be involved in the cancer cell progression and damage of mitochondrial membrane and DNA, which lead to apoptosis and necrosis. In this study, we have prepared amorphous calcium phosphate nanoparticles (ACP NPs) for studied their incorporation by endocytosis or electroporation to epithelial, endothelial and fibroblast cells (MCF-7, HUVEC and COS-1 cells, respectively). Our results showed that internalized ACP NPs have cytotoxic effects as a consequence of the increase of the intracellular calcium content. The endocytosis pathways showed a greater cytotoxic effect since calcium ions could easily be released from the nanoparticles and be accumulated in the lysosomes and mitochondria. In addition, the cytotoxic effect could be reversed when calcium ion was chelated with ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA). Modification of ACP NPs by coating with different compounds based on phosphates was also evaluated. The results indicated a reduction of the cytotoxic effect, in the order polyphosphate < phosphonic acid < orthophosphate. A differential cytotoxic effect of ACP-NPs was observed in function of the cell type; the cytotoxic effect can be ordered as i.e., HUVEC > COS-1 > MCF-7. The greater cytotoxic effect caused by the increase of intracellular calcium that is observed in normal cells and the greater resistance of cancer cells suggests new perspectives for cancer research.
Collapse
|
22
|
Microbial Adhesion and Biofilm Formation on Bioactive Surfaces of Ti-35Nb-7Zr-5Ta Alloy Created by Anodization. Microorganisms 2021; 9:microorganisms9102154. [PMID: 34683474 PMCID: PMC8539148 DOI: 10.3390/microorganisms9102154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
This study evaluated the microbial colonization (adhesion and biofilm) on modified surfaces of a titanium alloy, Ti-35Nb-7Zr-5Ta, anodized with Ca and P or F ions, with and without silver deposition. The chemical composition, surface topography, roughness (Ra), and surface free energy were evaluated before and after the surface modifications (anodizing). Adhesion and biofilm formation on saliva-coated discs by primary colonizing species (Streptococcus sanguinis, Streptococcus gordonii, Actinomyces naeslundii) and a periodontal pathogen (Porphyromonasgingivalis) were assessed. The surfaces of titanium alloys were modified after anodizing with volcano-shaped micropores with Ca and P or nanosized with F, both with further silver deposition. There was an increase in the Ra values after micropores formation; CaP surfaces became more hydrophilic than other surfaces, showing the highest polar component. For adhesion, no difference was detected for S. gordonii on all surfaces, and some differences were observed for the other three species. No differences were found for biofilm formation per species on all surfaces. However, S. gordonii biofilm counts on distinct surfaces were lower than S. sanguinis, A. naeslundii, and P. gingivalis on some surfaces. Therefore, anodized Ti-35Nb-7Zr-5Ta affected microbial adhesion and subsequent biofilm, but silver deposition did not hinder the colonization of these microorganisms.
Collapse
|
23
|
Zhang R, Zhong S, Zeng L, Li H, Zhao R, Zhang S, Duan X, Huang J, Zhao Y. Novel Mg-Incorporated Micro-Arc Oxidation Coatings for Orthopedic Implants Application. MATERIALS 2021; 14:ma14195710. [PMID: 34640102 PMCID: PMC8510346 DOI: 10.3390/ma14195710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/29/2022]
Abstract
In this study, Ti-6Al-4V alloy samples were processed by micro-arc oxidation (MAO) in phytic acid (H12Phy) electrolytes with the addition of different concentrations of EDTA-MgNa2 (Na2MgY) and potassium hydroxide (KOH). The surface characterization and cytocompatibility of MAO-treated samples were evaluated systematically. H12Phy is a necessary agent for MAO coating formation, and the addition of Na2MgY and KOH into the electrolytes increases the surface roughness, micropore size and Mg contents in the coatings. The MAO coatings are primarily composed of anatase, rutile, MgO and Mg3(PO4)2. Magnesium (Mg) ions in the electrolytes enter into MAO coatings by diffusion and electromigration. The MAO coatings containing 2.97 at% Mg show excellent cell viability, adhesion, proliferation, alkaline phosphatase activity, extracellular matrix (ECM) mineralization and collagen secretion, but the cytocompatibility of the MAO coatings containing 6.82 at% Mg was the worst due to the excessively high Mg content. Our results revealed that MAO coatings with proper Mg contents improve the cytocompatibility of the Ti-6Al-4V alloys and have large potential in orthopedic applications.
Collapse
Affiliation(s)
- Rongfa Zhang
- School of Materials and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330038, China; (S.Z.); (R.Z.); (S.Z.); (X.D.); (J.H.)
- Correspondence: (R.Z.); (Y.Z.)
| | - Sheng Zhong
- School of Materials and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330038, China; (S.Z.); (R.Z.); (S.Z.); (X.D.); (J.H.)
| | - Lilan Zeng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (L.Z.); (H.L.)
| | - Hongyu Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (L.Z.); (H.L.)
| | - Rongfang Zhao
- School of Materials and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330038, China; (S.Z.); (R.Z.); (S.Z.); (X.D.); (J.H.)
| | - Shufang Zhang
- School of Materials and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330038, China; (S.Z.); (R.Z.); (S.Z.); (X.D.); (J.H.)
| | - Xinting Duan
- School of Materials and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330038, China; (S.Z.); (R.Z.); (S.Z.); (X.D.); (J.H.)
| | - Jingsong Huang
- School of Materials and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330038, China; (S.Z.); (R.Z.); (S.Z.); (X.D.); (J.H.)
| | - Ying Zhao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (L.Z.); (H.L.)
- Correspondence: (R.Z.); (Y.Z.)
| |
Collapse
|
24
|
Yao M, Cheng S, Zhong G, Zhou J, Shao H, Ma L, Du C, Peng F, Zhang Y. Enhanced osteogenesis of titanium with nano-Mg(OH) 2 film and a mechanism study via whole genome expression analysis. Bioact Mater 2021; 6:2729-2741. [PMID: 33665504 PMCID: PMC7895731 DOI: 10.1016/j.bioactmat.2021.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Titanium (Ti) has been the most widely used orthopedic implant in the past decades. However, their inert surface often leads to insufficient osteointegration of Ti implant. To solve this issue, two bioactive Mg(OH)2 films were developed on Ti surfaces using hydrothermal treatment (Ti-M1# and Ti-M2#). The Mg(OH)2 films showed nano-flake structures: sheets on Ti-M1# with a thickness of 14.7 ± 0.7 nm and a length of 131.5 ± 2.9 nm, and on Ti-M2# with a thickness of 13.4 ± 2.2 nm and a length of 56.9 ± 5.6 nm. Both films worked as Mg ions releasing platforms. With the gradual degradation of Mg(OH)2 films, weakly alkaline microenvironments will be established surrounding the modified implants. Benefiting from the sustained release of Mg ions, nanostructures, and weakly alkaline microenvironments, the as-prepared nano-Mg(OH)2 coated Ti showed better in vitro and in vivo osteogenesis. Notably, Ti-M2# showed better osteogenesis than Ti-M1#, which can be ascribed to its smaller nanostructure. Moreover, whole genome expression analysis was applied to study the osteogenic mechanism of nano-Mg(OH)2 films. For both coated samples, most of the genes related to ECM-receptor interaction, focal adhesion, and TGF-β pathways were upregulated, indicating that these signaling pathways were activated, leading to better osteogenesis. Furthermore, cells cultured on Ti-M2# showed markedly upregulated BMP-4 gene expression, suggesting that the nanostructure with Mg ion release ability can better activate BMP-4 related signaling pathways, resulting in better osteogenesis. Nano-Mg(OH)2 films demonstrated a superior osteogenesis and are promising surface modification strategy for orthopedic applications.
Collapse
Affiliation(s)
- Mengyu Yao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Shi Cheng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Guoqing Zhong
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
- Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Jielong Zhou
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Hongwei Shao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Limin Ma
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Chang Du
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Corresponding author.
| | - Feng Peng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
- Corresponding author.
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
- Corresponding author.
| |
Collapse
|
25
|
Rony L, Aguado E, Verlee B, Pascaretti-Grizon F, Chappard D. Microarchitecture of titanium cylinders obtained by additive manufacturing does not influence osseointegration in the sheep. Regen Biomater 2021; 8:rbab021. [PMID: 34188953 PMCID: PMC8226111 DOI: 10.1093/rb/rbab021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/19/2021] [Accepted: 04/25/2021] [Indexed: 12/15/2022] Open
Abstract
Large bone defects are a challenge for orthopedic surgery. Natural (bone grafts) and synthetic biomaterials have been proposed but several problems arise such as biomechanical resistance or viral/bacterial safety. The use of metallic foams could be a solution to improve mechanical resistance and promote osseointegration of large porous metal devices. Titanium cylinders have been prepared by additive manufacturing (3D printing/rapid prototyping) with a geometric or trabecular microarchitecture. They were implanted in the femoral condyles of aged ewes; the animals were left in stabling for 90 and 270 days. A double calcein labeling was done before sacrifice; bones were analyzed by histomorphometry. Neither bone volume, bone/titanium interface nor mineralization rate were influenced by the cylinder's microarchitecture; the morphometric parameters did not significantly increase over time. Bone anchoring occurred on the margins of the cylinders and some trabeculae extended in the core of the cylinders but the amount of bone inside the cylinders remained low. The rigid titanium cylinders preserved bone cells from strains in the core of the cylinders. Additive manufacturing is an interesting tool to prepare 3D metallic scaffolds, but microarchitecture does not seem as crucial as expected and anchoring seems limited to the first millimeters of the graft.
Collapse
Affiliation(s)
- Louis Rony
- GEROM-Groupe Etudes Remodelage Osseux et bioMatériaux, LabCom NextBone, Univ-Angers, IRIS-IBS Institut de Biologie en Santé, 49933 Angers, France
| | - Eric Aguado
- GEROM-Groupe Etudes Remodelage Osseux et bioMatériaux, LabCom NextBone, Univ-Angers, IRIS-IBS Institut de Biologie en Santé, 49933 Angers, France
| | - Bruno Verlee
- SIRRIS Liège Science Park, Rue du bois St Jean 12, Seraing 4102, Belgium
| | - Florence Pascaretti-Grizon
- GEROM-Groupe Etudes Remodelage Osseux et bioMatériaux, LabCom NextBone, Univ-Angers, IRIS-IBS Institut de Biologie en Santé, 49933 Angers, France
| | - Daniel Chappard
- GEROM-Groupe Etudes Remodelage Osseux et bioMatériaux, LabCom NextBone, Univ-Angers, IRIS-IBS Institut de Biologie en Santé, 49933 Angers, France
| |
Collapse
|
26
|
Zeolite Socony Mobil-Five Coating on Ti-24 Nb-4 Zr-7.9 Sn Promotes Biocompatibility and Osteogenesis In Vitro and In Vivo. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5529368. [PMID: 34368350 PMCID: PMC8346306 DOI: 10.1155/2021/5529368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 07/18/2021] [Indexed: 11/17/2022]
Abstract
The aim of this study was to evaluate the biocompatibility and osteogenic potential of a Zeolite Socony Mobil-5 (ZSM-5) coating on a Ti-24 Nb-4 Zr-7.9 Sn (Ti-2448) surface. ZSM-5-modified Ti-2448 (ZSM-5/Ti-2448) and Ti-2448 (control) groups were employed. The physical and chemical properties of the two types of samples were evaluated by scanning electron microscopy, Fourier-transform infrared spectroscopy, nitrogen adsorption/desorption, and contact angle methods. The surface of the ZSM-5/Ti-2448 was rougher than that of the original Ti-2448, while the contact angle of the ZSM-5/Ti-2448 was smaller than that of Ti-2448. In addition, the ZSM-5/Ti-2448 largely increased the specific surface area and introduced silanol groups. A bone-like apatite layer could be formed on the surface of ZSM-5/Ti-2448 after 14 days of incubation in a simulated body fluid. ZSM-5/Ti-2448 was not cytotoxic. The number and alkaline phosphatase (ALP) activity of osteoblasts on ZSM-5/Ti-2448 were significantly higher than those on Ti-2448 surfaces, obtained in vitro using 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide and ALP activity assays. Few inflammatory cells were observed around ZSM-5/Ti-2448 after insertion into the femurs of Japanese white rabbits after 4, 12, and 26 weeks through hematoxylin-eosin staining. The average gray scale of transforming growth factor-β1 (TGF-β1) on ZSM-5/Ti-2448 peaked earlier than that on Ti-2448, according to immunohistochemical staining. These results indicate that ZSM-5/Ti-2448 has a good biocompatibility and improved early osteogenic potential compared to a noncoated Ti-2448.
Collapse
|
27
|
Boonrawd W, Awad KR, Varanasi V, Meletis EI. Wettability and in-vitro study of titanium surface profiling prepared by electrolytic plasma processing. SURFACE & COATINGS TECHNOLOGY 2021; 414:127119. [PMID: 34966191 PMCID: PMC8713727 DOI: 10.1016/j.surfcoat.2021.127119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrolytic plasma processing (EPP) was used to create hydrophilic surface profiles on titanium. The wettability, surface morphology characteristics and chemical composition of the treated samples were studied as a function of EPP processing parameters. The EPP profiled surfaces comprised of a characteristic "hills and valleys" morphology because of continuous surface melting and freezing cycles. A bimodal surface profile was produced with 2-3 μm height hills and valleys with nano-roughness (≤200 nm). The produced profile resulted in a significant contact angle decrease (from 38.7° to 5.4°). Ratios of actual surface area to projection area (r) and fraction of solid surface remaining dry (φ) were obtained from profilometry. The surface characteristics and large r values produced by EPP were able to induce hemi-wicking. Hence, EPP produced superhydrophilic surfaces on Ti. The bioactivity of EPP treated Ti was evaluated using cell free and MC3T3 cells in-vitro studies. The treated Ti surface significantly increased the bioactivity and formed stoichiometric hydroxyapatite after immersion in a bone cell culture medium for 21 days. Cells' attachment and proliferation studies indicated that EPP treated surface significantly enhances the cells' adhesion and growth after 24 and 48 h compared to the untreated surface. The results show that Ti surface profiling by EPP constitutes a promising method to potentially improve bone implant bonding.
Collapse
Affiliation(s)
- Wisanu Boonrawd
- Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Kamal R. Awad
- Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington, TX 76019, USA
- Bone Muscle Research Center, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Venu Varanasi
- Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington, TX 76019, USA
- Bone Muscle Research Center, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Efstathios I. Meletis
- Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
28
|
D'Agostino A, Tana F, Ettorre A, Pavarini M, Serafini A, Cochis A, Scalia AC, Rimondini L, De Giglio E, Cometa S, Chiesa R, De Nardo L. Mesoporous zirconia surfaces with anti-biofilm properties for dental implants. Biomed Mater 2021; 16. [PMID: 33857927 DOI: 10.1088/1748-605x/abf88d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/15/2021] [Indexed: 01/30/2023]
Abstract
Cytocompatible bioactive surface treatments conferring antibacterial properties to osseointegrated dental implants are highly requested to prevent bacteria-related peri-implantitis. Here we focus on a newly designed family of mesoporous coatings based on zirconia (ZrO2) microstructure doped with gallium (Ga), exploiting its antibacterial and pro-osseo-integrative properties. The ZrO2films were obtained via sol-gel synthesis route using Pluronic F127 as templating agent, while Ga doping was gained by introducing gallium nitrate hydrate. Chemical characterization by means of x-ray photoelectron spectroscopy and glow discharge optical emission spectroscopy confirmed the effective incorporation of Ga. Then, coatings morphological and structural analysis were carried out by transmission electron microscopy and selected area electron diffraction unveiling an effective stabilization of both the mesoporous structure and the tetragonal ZrO2phase. Specimens' cytocompatibility was confirmed towards gingival fibroblast and osteoblasts progenitors cultivated directly onto the coatings showing comparable metabolic activity and morphology in respect to controls cultivated on polystyrene. The presence of Ga significantly reduced the metabolic activity of the adhered oral pathogensPorphyromonas gingivalisandAggregatibacter actinomycetemcomitansin comparison to untreated bulk zirconia (p< 0.05); on the opposite, Ga ions did not significantly reduce the metabolism of the oral commensalStreptococcus salivarius(p> 0.05) thus suggesting for a selective anti-pathogens activity. Finally, the coatings' ability to preserve cells from bacterial infection was proved in a co-culture method where cells and bacteria were cultivated in the same environment: the presence of Ga determined a significant reduction of the bacteria viability while allowing at the same time for cells proliferation. In conclusion, the here developed coatings not only demonstrated to satisfy the requested antibacterial and cytocompatibility properties, but also being promising candidates for the improvement of implantable devices in the field of implant dentistry.
Collapse
Affiliation(s)
- Agnese D'Agostino
- Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, Milan, Italy
| | - Francesca Tana
- Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, Milan, Italy.,National Interuniversity Consortium of Materials Science and Technology (INSTM), Local Unit Politecnico di Milano, Florence, Italy
| | - Alessandro Ettorre
- Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, Milan, Italy
| | - Matteo Pavarini
- Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, Milan, Italy
| | - Andrea Serafini
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Local Unit Politecnico di Milano, Florence, Italy
| | - Andrea Cochis
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases CAAD, Università del Piemonte Orientale UPO, Novara, Italy
| | - Alessandro Calogero Scalia
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases CAAD, Università del Piemonte Orientale UPO, Novara, Italy
| | - Lia Rimondini
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases CAAD, Università del Piemonte Orientale UPO, Novara, Italy
| | - Elvira De Giglio
- Department of Chemistry, Università di Bari Aldo Moro, Bari, Italy
| | | | - Roberto Chiesa
- Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, Milan, Italy.,National Interuniversity Consortium of Materials Science and Technology (INSTM), Local Unit Politecnico di Milano, Florence, Italy
| | - Luigi De Nardo
- Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, Milan, Italy.,National Interuniversity Consortium of Materials Science and Technology (INSTM), Local Unit Politecnico di Milano, Florence, Italy
| |
Collapse
|
29
|
Acceleration of Bone Formation and Adhesion Ability on Dental Implant Surface via Plasma Electrolytic Oxidation in a Solution Containing Bone Ions. METALS 2021. [DOI: 10.3390/met11010106] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The present study examined the in vitro and in vivo bone formation and adhesion ability on the surface of a titanium dental implant made by plasma electrolytic oxidation (PEO) in electrolytes containing bioactive ions. To achieve this goal, screw-shaped fabricated Ti-6Al-4V alloy implants were processed via PEO using an electrolyte solution containing calcium (Ca), phosphorous (P), magnesium (Mg), zinc (Zn), strontium (Sr), silicon (Si), and manganese (Mn) species. The screw implants doped with bioactive elements via PEO were placed in rabbit tibia, and the results were compared to the sand-blasted Ti-6Al-4V alloy implants. At eight-week post-surgery, there was no significant difference in the values of removal torque between sand-blasted and PEO-treated implants. However, it was observed that the PEO treatment of dental implants led to the formation of more periphery bone as compared to the case of sand-blasted implants. Accordingly, the PEO-treated implants have the potential to be used as promising materials for dental applications.
Collapse
|
30
|
Yu M, Wan Y, Ren B, Wang H, Zhang X, Qiu C, Liu A, Liu Z. 3D Printed Ti-6Al-4V Implant with a Micro/Nanostructured Surface and Its Cellular Responses. ACS OMEGA 2020; 5:31738-31743. [PMID: 33344827 PMCID: PMC7745418 DOI: 10.1021/acsomega.0c04373] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Three-dimensional (3D) printing technology has been proved to be a powerful tool for the free-form fabrication of titanium (Ti) implants. However, the surface quality of 3D printed Ti implants is not suitable for clinical application directly. Therefore, surface modification of 3D printed Ti implants is required in order to achieve good biocompatibility and osseointegration. In this study, a novel surface modification method of 3D printed Ti-6Al-4V implants has been proposed, which combined acid etching with hydrothermal treatment to construct micro/nanostructures. Polished TC4 sheets (P), electron beam melting Ti sheets (AE), and micro/nanostructured Ti sheets (AMH) were used in this study to evaluate the effects of different surface morphologies on cellular responses. The surface morphology and 3D topography after treatment were detected via scanning electron microscopy and laser scanning microscopy. The results illustrated that a hierarchical structure comprising micro-valleys and nanowires with a surface roughness of 14.388 μm was successfully constructed. Compared with group P samples, the hydrophilicity of group AMH samples significantly increased with a reduced water contact angle from 54.9° to 4.5°. Cell culture experiments indicated that the micro/nanostructures on the material surface could enhance the cell adhesion and proliferation of MC3T3s. The microstructure could enhance bone-to-implant contact, and the nanostructure could directly interact with some cell membrane receptors. Overall, this study proposes a new strategy to construct micro/nanostructures on the surface of 3D printed Ti-6Al-4V implants and may further serve as a potential modification method for better osteogenesis ability.
Collapse
Affiliation(s)
- Mingzhi Yu
- Key
Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical
Engineering, Shandong University, Jinan 250061, China
| | - Yi Wan
- Key
Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical
Engineering, Shandong University, Jinan 250061, China
| | - Bing Ren
- Department
of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Hongwei Wang
- Key
Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical
Engineering, Shandong University, Jinan 250061, China
| | - Xiao Zhang
- Key
Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical
Engineering, Shandong University, Jinan 250061, China
| | - Cheng Qiu
- Cheeloo
College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Anqi Liu
- Key
Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical
Engineering, Shandong University, Jinan 250061, China
| | - Zhanqiang Liu
- Key
Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical
Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
31
|
Akiyama Y, Iwasa F, Hotta Y, Matsumoto T, Oshima Y, Baba K. Effects of surface roughness of ceria-stabilized zirconia/alumina nanocomposite on the morphology and function of human gingival fibroblasts. Dent Mater J 2020; 40:472-480. [PMID: 33268692 DOI: 10.4012/dmj.2019-435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We evaluated the biological effects of implant abutments made from ceria-stabilized zirconia/alumina nanocomposite (Ce-TZP/Al2O3) with surface roughness variations using human gingival fibroblasts (HGF-1) in the transmucosal region. Two types of titanium (Ti) and Ce-TZP/Al2O3 disks with different surface roughness profiles were prepared (Ra0.9 and Ra0.02). Surface properties were evaluated using SEM, EDX, and wettability analysis. Biological parameters including cell adhesion, proliferation and morphology, collagen deposition, and inflammatory cytokine expression were evaluated for each disk. Surface morphology analysis of Ce-TZP/Al2O3 and Ti elucidated the uniform linear structures of Ra0.9 and the smooth and flat structures of Ra0.02. Cell morphology showed spindle-shaped and large, circular forms, respectively. Cell adhesion and proliferation and collagen deposition were significantly increased on Ce-TZP/Al2O3 Ra0.02 disk compared with the others, with no significant differences in cytokine expression among all the disks. The reduced surface roughness of Ce-TZP/Al2O3 was advantageous for promoting biological effects in the transmucosal region.
Collapse
Affiliation(s)
- Yuri Akiyama
- Department of Prosthodontics, School of Dentistry, Showa University
| | - Fuminori Iwasa
- Department of Prosthodontics, School of Dentistry, Showa University
| | - Yasuhiro Hotta
- Department of Conservative Dentistry, Division of Biomaterials and Engineering, School of Dentistry, Showa University
| | | | - Yoko Oshima
- Department of Prosthodontics, School of Dentistry, Showa University
| | - Kazuyoshi Baba
- Department of Prosthodontics, School of Dentistry, Showa University
| |
Collapse
|
32
|
Szewczenko J, Kajzer W, Kajzer A, Basiaga M, Kaczmarek M, Major R, Jaworska J, Jelonek K, Karpeta-Jarząbek P, Jaworska-Kik M, Kasperczyk J. Influence of surface modification of Ti6Al7Nb alloy on adhesion of poly (lactide-co-glycolide) coating (PLGA). Colloids Surf B Biointerfaces 2020; 196:111280. [DOI: 10.1016/j.colsurfb.2020.111280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 01/27/2023]
|
33
|
Degradation Resistance and In Vitro Cytocompatibility of Iron-Containing Coatings Developed on WE43 Magnesium Alloy by Micro-Arc Oxidation. COATINGS 2020. [DOI: 10.3390/coatings10111138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Iron (Fe) is an important trace element for life and plays vital functions in maintaining human health. In order to simultaneously endow magnesium alloy with good degradation resistance, improved cytocompatibility, and the proper Fe amount for the body accompanied with degradation of Mg alloy, Fe-containing ceramic coatings were fabricated on WE43 Mg alloy by micro-arc oxidation (MAO) in a nearly neutral pH solution with added 0, 6, 12, and 18 g/L ferric sodium ethylenediaminetetraacetate (NaFeY). The results show that compared with the bare Mg alloy, the MAO samples with developed Fe-containing ceramic coatings significantly improve the degradation resistance and in vitro cytocompatibility. Fe in anodic coatings is mainly present as Fe2O3. The increased NaFeY concentration favorably contributes to the enhancement of Fe content but is harmful to the degradation resistance of MAO coatings. Our study reveals that the developed Fe-containing MAO coating on Mg alloy exhibits potential in clinical applications.
Collapse
|
34
|
Porous Tantalum VS. Titanium Implants: Enhanced Mineralized Matrix Formation after Stem Cells Proliferation and Differentiation. J Clin Med 2020; 9:jcm9113657. [PMID: 33203015 PMCID: PMC7697356 DOI: 10.3390/jcm9113657] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 02/05/2023] Open
Abstract
Titanium dental implants are used routinely, with surgical procedure, to replace missing teeth. Even though they lead to satisfactory results, novel developments with implant materials can still improve implant treatment outcomes. The aim of this study was to investigate the efficiency of porous tantalum (Ta) dental implants for osseointegration, in comparison to classical titanium (Ti). Mesenchymal stem cells from the dental pulp (DPSC) were incubated on Ta, smooth titanium (STi), and rough titanium (RTi) to assess their adhesion, proliferation, osteodifferentiation, and mineralized matrix production. Cell proliferation was measured at 4 h, 24 h, 48 h with MTT test. Early osteogenic differentiation was followed after 4, 8, 12 days by alkaline phosphatase (ALP) quantification. Cells organization and matrix microstructure were studied with scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). Collagen production and matrix mineralization were evaluated by immunostaining and histological staining. MTT test showed significantly higher proliferation of DPSC on Ta at 24 h and 48 h. However, APL quantification after 8 and 12 days was significantly lower for Ta, revealing a delayed differentiation, where cells were proliferating the more. After 3 weeks, collagen immunostaining showed an efficient production of collagen on all samples. However, Red Alizarin staining clearly revealed a higher calcification on Ta. The overall results tend to demonstrate that DPSC differentiation is delayed on Ta surface, due to a longer proliferation period until cells cover the 3D porous Ta structure. However, after 3 weeks, a more abundant mineralized matrix is produced on and inside Ta implants. Cell populations on porous Ta proliferate greater and faster, leading to the production of more calcium phosphate deposits than cells on roughened and smooth titanium surfaces, revealing a potential enhanced capacity for osseointegration.
Collapse
|
35
|
Selected Physicochemical Properties of Diamond Like Carbon (DLC) Coating on Ti-13Nb-13Zr Alloy Used for Blood Contacting Implants. MATERIALS 2020; 13:ma13225077. [PMID: 33187087 PMCID: PMC7697592 DOI: 10.3390/ma13225077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 01/22/2023]
Abstract
Despite high interest in the issues of hemocompatibility of titanium implants, particularly those made of the Ti-13Nb-13Zr alloy, the applied methods of surface modification still do not always guarantee the physicochemical properties required for their safe operation. The factors that reduce the efficiency of the application of titanium alloys in the treatment of conditions of the cardiovascular system include blood coagulation and fibrous proliferation within the vessel’s internal walls. They result from their surfaces’ physicochemical properties not being fully adapted to the specifics of the circulatory system. Until now, the generation and development mechanics of these adverse processes are not fully known. Thus, the fundamental problem in this work is to determine the correlation between the physicochemical properties of the diamond like carbon (DLC) coating (shaped by the technological conditions of the process) applied onto the Ti-13Nb-13Zr alloy designed for contact with blood and its hemocompatibility. In the paper, microscopic metallographic, surface roughness, wettability, free surface energy, hardness, coating adhesion to the substrate, impendence, and potentiodynamic studies in artificial plasma were carried out. The surface layer with the DLC coating ensures the required surface roughness and hydrophobic character and sufficient pitting corrosion resistance in artificial plasma. On the other hand, the proposed CrN interlayer results in better adhesion of the coating to the Ti-13Nb-13Zr alloy. This type of coating is an alternative to the modification of titanium alloy surfaces using various elements to improve the blood environment’s hemocompatibility.
Collapse
|
36
|
Ma Z, Li L, Shi X, Wang Z, Guo M, Wang Y, Jiao Z, Zhang C, Zhang P. Enhanced osteogenic activities of polyetheretherketone surface modified by poly(sodium p‐styrene sulfonate) via ultraviolet‐induced polymerization. J Appl Polym Sci 2020. [DOI: 10.1002/app.49157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhangyu Ma
- Department of StomatologyThe First Hospital of Jilin University Changchun China
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun China
| | - Linlong Li
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun China
- University of Chinese Academy of Sciences Beijing China
| | - Xincui Shi
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun China
| | - Zongliang Wang
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun China
| | - Min Guo
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun China
| | - Yu Wang
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun China
| | - Zixue Jiao
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun China
| | - Congxiao Zhang
- Department of StomatologyThe First Hospital of Jilin University Changchun China
| | - Peibiao Zhang
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun China
| |
Collapse
|
37
|
Ruan D, Wu C, Deng S, Zhang Y, Guan G. The Anatase Phase of Nanotopography Titania with Higher Roughness Has Better Biocompatibility in Osteoblast Cell Morphology and Proliferation. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8032718. [PMID: 33029524 PMCID: PMC7527892 DOI: 10.1155/2020/8032718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/01/2020] [Accepted: 09/11/2020] [Indexed: 01/19/2023]
Abstract
Previous studies have concluded that surface-modified titanium oxide (titania, TiO2) surface properties promote osteoblast cell morphology and proliferation. To screen a suitable structured titania coating with the best biocompatibility to be used in dental implants, five titania films (two amorphous, one rutile, and two anatases) with different surfaces were successfully synthesized on polished titanium by radio frequency (RF) magnetron sputtering. We applied atomic force microscopy (AFM) and X-ray diffraction (XRD) to depict the formulations. Furthermore, MC3T3-E1, the mouse osteoblast precursor cell, was used to assess cell proliferation and observe morphologic changes at the film surface. The data indicated that the overall number of MC3T3-E1 cells on anatase films was significantly higher as compared with cells on rutile and amorphous films. Meanwhile, the actin filaments of the cells grown on the anatase phase films were well defined and fully spread. In addition, the film with higher roughness had enhanced biocompatibility than that with lower roughness. The results showed that the crystal phase and titania coated roughness had a greater influence on the biocompatibility of nanostructured titania film. The higher the roughness of the anatase phase was, the better bioactivity for the morphology and proliferation of osteoblast. This is a good surface-modified biological material and may have a good application prospect in dental implants.
Collapse
Affiliation(s)
- Danping Ruan
- Minhang Branch, Zhongshan Hospital, Fudan University, China
| | - Chunyun Wu
- Minhang Branch, Zhongshan Hospital, Fudan University, China
| | - Sinan Deng
- Minhang Branch, Zhongshan Hospital, Fudan University, China
| | - Yu Zhang
- Minhang Branch, Zhongshan Hospital, Fudan University, China
| | - Guoling Guan
- Minhang Branch, Zhongshan Hospital, Fudan University, China
| |
Collapse
|
38
|
The Effects of Erbium-Doped Yttrium Aluminum Garnet Laser (Er: YAG) Irradiation on Sandblasted and Acid-Etched (SLA) Titanium, an In Vitro Study. MATERIALS 2020; 13:ma13184174. [PMID: 32961798 PMCID: PMC7560302 DOI: 10.3390/ma13184174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 11/16/2022]
Abstract
The treatment of peri-implantitis implies the decontamination of the surface of the fixture. This study aims to analyze the effect of the erbium-doped yttrium aluminum garnet laser (Er: YAG) on sandblasted and acid-etched (SLA) titanium. 30 titanium SLA disks were divided into three groups. In Group 1, the disks were left intact; on the contrary, both Groups 2 and 3 were irradiated with the Er: YAG laser at different settings, with a pulse duration of 300 μs and a period of 30 s. Group 2 was irradiated at 1 W and 100 mJ/pulse and Group 3 at 4 W and 400 mJ/pulse. The superficial changes at chemical, nano, and microscopical levels were detected through the use of Fourier-transform infrared spectroscopy, atomic force microscopy, and scanning electron microscope. The Kruskal–Wallis test, followed by the Dunn–Bonferroni Post Hoc analysis, detected the presence of statistically significant differences among the groups. The level of significance was p ≤ 0.05. Results showed that Er: YAG irradiation promoted a significant (p < 0.05) increase of oxides and a decrease of microscopical roughness and porosity on SLA disks. However, the protocol tested on group 3 seemed to be too aggressive for the titanium surface, as shown by the presence of micro-cracks and signs of coagulation, melting, and microfractures. In conclusion, Group 2 showed significantly minor surface alterations with respect to Group 3, and the increase of superficial oxide level, the decrease of porosity, and micro-roughness represent a positive alteration that could protect the materials against bacterial adhesion.
Collapse
|
39
|
Lai M, Yan X, Shen K, Tang Q, Fang X, Zhang C, Zhu Z, Hou Y. The effect of calcitonin gene-related peptide functionalized TiO2 nanotubes on osteoblast and osteoclast differentiation in vitro. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Micropatterning Decellularized ECM as a Bioactive Surface to Guide Cell Alignment, Proliferation, and Migration. Bioengineering (Basel) 2020; 7:bioengineering7030102. [PMID: 32878055 PMCID: PMC7552701 DOI: 10.3390/bioengineering7030102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/21/2022] Open
Abstract
Bioactive surfaces and materials have displayed great potential in a variety of tissue engineering applications but often struggle to completely emulate complex bodily systems. The extracellular matrix (ECM) is a crucial, bioactive component in all tissues and has recently been identified as a potential solution to be utilized in combination with biomaterials. In tissue engineering, the ECM can be utilized in a variety of applications by employing the biochemical and biomechanical cues that are crucial to regenerative processes. However, viable solutions for maintaining the dimensionality, spatial orientation, and protein composition of a naturally cell-secreted ECM remain challenging in tissue engineering. Therefore, this work used soft lithography to create micropatterned polydimethylsiloxane (PDMS) substrates of a three-dimensional nature to control cell adhesion and alignment. Cells aligned on the micropatterned PDMS, secreted and assembled an ECM, and were decellularized to produce an aligned matrix biomaterial. The cells seeded onto the decellularized, patterned ECM showed a high degree of alignment and migration along the patterns compared to controls. This work begins to lay the groundwork for elucidating the immense potential of a natural, cell-secreted ECM for directing cell function and offers further guidance for the incorporation of natural, bioactive components for emerging tissue engineering technologies.
Collapse
|
41
|
Balakin S, Yun YS, Lee J, Kang EH, Spohn J, Yun IS, Opitz J, Cuniberti G, Yeo JS. In vitro characterization of osteoblast cells on polyelectrolyte multilayers containing detonation nanodiamonds. ACTA ACUST UNITED AC 2020; 15:055026. [PMID: 32526712 DOI: 10.1088/1748-605x/ab9baf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Nanoparticle-enhanced coatings of bone implants are a promising method to facilitate sustainable wound healing, leading to an increase in patient well-being. This article describes the in vitro characterization of osteoblast cells interacting with polyelectrolyte multilayers, which contain detonation nanodiamonds (NDs), as a novel class of carbon-based coating material, which presents a unique combination of photoluminescence and drug-binding properties. The cationic polyelectrolyte, namely polydiallyldimethylammonium chloride (PDDA), has been used to immobilize NDs on silica glass. The height of ND-PDDA multilayers varies from a minimum of 10 nm for one bilayer to a maximum of 90 nm for five bilayers of NDs and PDDA. Human fetal osteoblasts (hFOBs) cultured on ND-PDDA multilayers show a large number of focal adhesions, which were studied via quantitative fluorescence imaging analysis. The influence of the surface roughness on the filopodia formation was assessed via scanning electron microscopy and atomic force microscopy. The nano-rough surface of five bilayers constrained the filopodia formation. The hFOBs grown on NDs tend to show not only a similar cell morphology compared to cells cultured on extracellular matrix protein-coated silica glass substrates, but also increased cell viability by about 40%. The high biocompatibility of the ND-PDDA multilayers, indicated via high cell proliferation and sound cell adhesion, shows their potential for biomedical applications such as drug-eluting coatings and biomaterials in general.
Collapse
Affiliation(s)
- Sascha Balakin
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany. Bio- and Nanotechnology, Fraunhofer Institute for Ceramic Technologies and Systems IKTS Material Diagnostics, Dresden, Germany. Both authors contributed equally to this manuscript
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Yan S, Li M, Komasa S, Agariguchi A, Yang Y, Zeng Y, Takao S, Zhang H, Tashiro Y, Kusumoto T, Kobayashi Y, Chen L, Kashiwagi K, Matsumoto N, Okazaki J, Kawazoe T. Decontamination of Titanium Surface Using Different Methods: An In Vitro Study. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2287. [PMID: 32429186 PMCID: PMC7287776 DOI: 10.3390/ma13102287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/10/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022]
Abstract
Contamination of implants is inevitable during different steps of production as well as during the clinical use. We devised a new implant cleaning strategy to restore the bioactivities on dental implant surfaces. We evaluated the efficiency of the Finevo cleaning system, and Ultraviolet and Plasma treatments to decontaminate hydrocarbon-contaminated titanium disks. The surfaces of the contaminated titanium disks cleaned using the Finevo cleaning system were similar to those of the uncontaminated titanium disks in scanning electron microscopy and X-ray photoelectron spectroscopy analysis, but no obvious change in the roughness was observed in the scanning probe microscopy analysis. The rat bone marrow mesenchymal stem cells (rBMMSCs) cultured on the treated titanium disks attached to and covered the surfaces of disks cleaned with the Finevo cleaning system. The alkaline phosphatase activity, calcium deposition, and osteogenesis-related gene expression in rBMMSCs on disks cleaned using the Finevo cleaning system were higher compared to those in the ultraviolet and plasma treatments, displaying better cell functionality. Thus, the Finevo cleaning system can enhance the attachment, differentiation, and mineralization of rBMMSCs on treated titanium disk surfaces. This research provides a new strategy for cleaning the surface of contaminated titanium dental implants and for restoration of their biological functions.
Collapse
Affiliation(s)
- Sifan Yan
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.Y.); (M.L.); (S.K.); (A.A.); (Y.Y.); (Y.Z.); (S.T.); (H.Z.); (Y.T.)
| | - Min Li
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.Y.); (M.L.); (S.K.); (A.A.); (Y.Y.); (Y.Z.); (S.T.); (H.Z.); (Y.T.)
| | - Satoshi Komasa
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.Y.); (M.L.); (S.K.); (A.A.); (Y.Y.); (Y.Z.); (S.T.); (H.Z.); (Y.T.)
| | - Akinori Agariguchi
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.Y.); (M.L.); (S.K.); (A.A.); (Y.Y.); (Y.Z.); (S.T.); (H.Z.); (Y.T.)
| | - Yuanyuan Yang
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.Y.); (M.L.); (S.K.); (A.A.); (Y.Y.); (Y.Z.); (S.T.); (H.Z.); (Y.T.)
| | - Yuhao Zeng
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.Y.); (M.L.); (S.K.); (A.A.); (Y.Y.); (Y.Z.); (S.T.); (H.Z.); (Y.T.)
| | - Seiji Takao
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.Y.); (M.L.); (S.K.); (A.A.); (Y.Y.); (Y.Z.); (S.T.); (H.Z.); (Y.T.)
| | - Honghao Zhang
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.Y.); (M.L.); (S.K.); (A.A.); (Y.Y.); (Y.Z.); (S.T.); (H.Z.); (Y.T.)
| | - Yuichiro Tashiro
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.Y.); (M.L.); (S.K.); (A.A.); (Y.Y.); (Y.Z.); (S.T.); (H.Z.); (Y.T.)
| | - Tetsuji Kusumoto
- Department of Oral Health Engineering, Faculty of Health Sciences, Osaka Dental University, Osaka 573-1121, Japan;
| | - Yasuyuki Kobayashi
- Osaka Research Institute of Industrial Science and Technology Morinomiya Center, 1-6-50, Morinomiya, Joto-ku, Osaka-shi 536-8553, Japan;
| | - Liji Chen
- Department of Orthodntics, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (L.C.); (N.M.)
| | - Kosuke Kashiwagi
- Department of Fixed Prosthodontics, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (K.K.); (T.K.)
| | - Naoyuki Matsumoto
- Department of Orthodntics, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (L.C.); (N.M.)
| | - Joji Okazaki
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.Y.); (M.L.); (S.K.); (A.A.); (Y.Y.); (Y.Z.); (S.T.); (H.Z.); (Y.T.)
| | - Takayoshi Kawazoe
- Department of Fixed Prosthodontics, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (K.K.); (T.K.)
| |
Collapse
|
43
|
K R R, Bontha S, M R R, Das M, Balla VK. Degradation, wettability and surface characteristics of laser surface modified Mg-Zn-Gd-Nd alloy. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:42. [PMID: 32350617 DOI: 10.1007/s10856-020-06383-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
This work evaluates the effects of laser surface modification on Mg-Zn-Gd-Nd alloy which is a potential biodegradable material for temporary bone implant applications. The laser surface melted (LSM) samples were investigated for microstructure, wettability, surface hardness and in vitro degradation. The microstructural study was carried out using scanning and transmission electron microscopes (SEM, TEM) and the phases present were analyzed using X-ray diffraction. The in vitro degradation behaviour was assessed in hank's balanced salt solution (HBSS) by immersion corrosion technique and the effect of LSM process parameters on the wettability was analyzed through contact angle measurements. The microstructural examination showed remarkable grain refinement as well as uniform redistribution of intermetallic phases throughout the matrix after LSM. These microstructural changes increased the hardness of LSM samples with an increase in energy density. The wetting behaviour of processed samples showed hydrophilic nature when processed at lower (12.5 and 17.5 J/mm2) and intermediate energy density (22.5 and 25 J/mm2), which can potentially improve cell-materials interaction. The corrosion rate of as cast Mg-Zn-Gd-Nd alloy decreased by ~83% due to LSM.
Collapse
Affiliation(s)
- Rakesh K R
- Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, 575025, India
- HMT Machine Tools Ltd, Kalamassery, 683503, India
| | - Srikanth Bontha
- Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, 575025, India.
| | - Ramesh M R
- Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, 575025, India
| | - Mitun Das
- Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata, West Bengal, 700 032, India
| | - Vamsi Krishna Balla
- Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata, West Bengal, 700 032, India.
- Material Innovation Guild, Department of Mechanical Engineering, University of Louisville, Louisville, KY, 40208, USA.
| |
Collapse
|
44
|
Ma J, Sun Y, Zan R, Ni J, Zhang X. Cellular different responses to different nanotube inner diameter on surface of pure tantalum. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110520. [DOI: 10.1016/j.msec.2019.110520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/21/2019] [Accepted: 12/02/2019] [Indexed: 01/13/2023]
|
45
|
Nano-morphology, crystallinity and surface potential of anatase on micro-arc oxidized titanium affect its protein adsorption, cell proliferation and cell differentiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 107:110204. [DOI: 10.1016/j.msec.2019.110204] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/29/2019] [Accepted: 09/12/2019] [Indexed: 12/26/2022]
|
46
|
Yakufu M, Wang Z, Wang Y, Jiao Z, Guo M, Liu J, Zhang P. Covalently functionalized poly(etheretherketone) implants with osteogenic growth peptide (OGP) to improve osteogenesis activity. RSC Adv 2020; 10:9777-9785. [PMID: 35498607 PMCID: PMC9050223 DOI: 10.1039/d0ra00103a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 02/15/2020] [Indexed: 11/21/2022] Open
Abstract
Polyetheretherketone (PEEK), as the most promising implant material for orthopedics and dental applications, has bone-like stiffness, excellent fatigue resistance, X-ray transparency, and near absence of immune toxicity. However, due to biological inertness, its bone conduction and bone ingrowth performance is limited. The surface modification of PEEK is an option to overcome these shortcomings and retain most of its favorable properties, especially when excellent osseointegration is desired. In this study, a simple reaction procedure was employed to bind the osteogenic growth peptide (OGP) on the surface of PEEK materials by covalent chemical grafting to construct a bioactive interface. The PEEK surface was activated by N,N′-disuccinimidyl carbonate (DSC) after hydroxylation, and then OGP was covalently grafted with amino groups. The functionalized surface of PEEK samples were characterized by X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FT-IR), water contact angle measurement and biological evaluation in vitro. OGP-functionalized PEEK surface significantly promoted the attachment, proliferation, alkaline phosphatase (ALP) activity and mineralization of pre-osteoblast cells (MC3T3-E1). The in vivo rat tibia implantation model is adopted and micro-CT analyses demonstrated that the OGP coating significantly promoted new bone formation around the samples. The in vitro and in vivo results reveal that the modification by covalent chemical functionalization with OGP on PEEK surface can augment new bone formation surrounding implants compared to bare PEEK and PEEK implant modified by covalently attached OGP is promising in orthopedic and dental applications. Polyetheretherketone (PEEK), as the most promising implant material for orthopedics and dental applications, has bone-like stiffness, excellent fatigue resistance, X-ray transparency, and near absence of immune toxicity.![]()
Collapse
Affiliation(s)
- Maihemuti Yakufu
- Department of Orthopaedics
- The First Hospital of Jilin University
- Changchun
- China
- Key Laboratory of Polymer Ecomaterials
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Yu Wang
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Zixue Jiao
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Min Guo
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Jianguo Liu
- Department of Orthopaedics
- The First Hospital of Jilin University
- Changchun
- China
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| |
Collapse
|
47
|
Mixed Modification of the Surface Microstructure and Chemical State of Polyetheretherketone to Improve Its Antimicrobial Activity, Hydrophilicity, Cell Adhesion, and Bone Integration. ACS Biomater Sci Eng 2019; 6:842-851. [DOI: 10.1021/acsbiomaterials.9b01148] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
48
|
Xu L, Li J, Xu X, Lei X, Zhang K, Wu C, Zhang Z, Shi X, Wang X, Ding J. A Novel Cytocompatibility Strengthening Strategy of Ultrafine-Grained Pure Titanium. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47680-47694. [PMID: 31789503 DOI: 10.1021/acsami.9b13554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ultrafine-grained pure (UFG) titanium processed by equal channel angular pressing possesses mechanical properties comparable to those of Ti-6Al-4V and features more favorable friction resistance, biocompatibility, and corrosion resistance than does commercially pure (CP) titanium. Nevertheless, UFG titanium is still a bio-inert material with a lack of bone-inducing ability. Here, TiO2-hydroxyapatite (TiO2-HA) coatings were fabricated on CP titanium and UFG titanium through combining micro-arc oxidation and hydrothermal treatment together to improve their cytocompatibility. The results indicate that, compared with conventional coatings that use CP titanium as the substrate, such coatings formed on the UFG titanium possess additional hydrophilicity and in vitro cytocompatibility. The fantastic hierarchical structure of the UFG TiO2-HA coating (UG-MH coating), including microscale and nanoscale pores and short column-shaped and sheet-shaped HA grains with varying geometric shapes, excellent hydrophilicity, and high polar force, enhances the mutual effects between the osteoblasts and titanium implant since it provides an adequate microenvironment for the ingrowth of osteoblasts, inducing osteoblast adhesion, proliferation, and differentiation. The UG-MH coating has a synergistic effect due to its fantastic hydrophilic hierarchical structure and high polar force on the up-regulated expression of cytoskeletal actin proteins as well as osteocalcin, protein kinase C (PKC), nuclear factor of activated T-cells (NFAT), and Wnt5, enabling osteoblasts to differentiate via the Wnt calcium-dependent signaling pathway. This study highlights the idea that the modified UFG titanium will be more suitable than CP titanium in dental and orthopedic applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xingling Shi
- School of Materials Science and Engineering , Jiangsu University of Science and Technology , Zhenjiang 212003 , China
| | | | - Jianning Ding
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering , Changzhou University , Changzhou 213164 , China
| |
Collapse
|
49
|
Lu JZ, Joshi SS, Pantawane MV, Ho YH, Wu TC, Dahotre NB. Optimization of biocompatibility in a laser surface treated Mg-AZ31B alloy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110028. [DOI: 10.1016/j.msec.2019.110028] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/19/2019] [Accepted: 07/26/2019] [Indexed: 11/24/2022]
|
50
|
Yu Z, Yin S, Zhang W, Jiang X, Hu J. Picosecond laser texturing on titanium alloy for biomedical implants in cell proliferation and vascularization. J Biomed Mater Res B Appl Biomater 2019; 108:1494-1504. [PMID: 31692202 DOI: 10.1002/jbm.b.34497] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/30/2019] [Accepted: 09/16/2019] [Indexed: 01/09/2023]
Abstract
Introducing specific textures to titanium alloy implant surface is helpful to modify the surface properties of materials. In this article, biomedical TC4 (Ti-6Al-4V) alloy was textured by a 10-ps infrared laser. Laser parameters that directly affected the detailed dimension of textures and its characteristics were optimized within laser power, defocusing amount, and scanning parameters via response surface methodology. These textures consisted of groove array about 30-90 μm in depth and 100 μm in width were prepared and their surface property (including surface morphology, element composition, wetting behavior, and biocompatibility) was analyzed. Surface characteristic analysis indicated that picosecond laser texturing improved surface properties and biocompatibility mainly by altering the microstructure and morphology of materials. In addition, laser textured groove array promoted contact area and hydrophobicity of material surface. Cell culture experiments and animal studies showed that titanium alloy implants with 30- and 60-μm-deep groove arrays on the surface-enhanced cell proliferation and adhesion. Meanwhile, compared to the polished samples, these groove arrays promoted the growth of new blood vessels and enhanced the combination of blood vessel and implants in vivo. That is, the deeper groove array was, and the better vascularizing effect the blood vessel exhibited.
Collapse
Affiliation(s)
- Zhou Yu
- College of Mechanical Engineering, Donghua University, Shanghai, China
| | - Shi Yin
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; National Clinical Research Center of Stomatology, Shanghai, China
| | - Wenjie Zhang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; National Clinical Research Center of Stomatology, Shanghai, China
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; National Clinical Research Center of Stomatology, Shanghai, China
| | - Jun Hu
- College of Mechanical Engineering, Donghua University, Shanghai, China
| |
Collapse
|