1
|
Thanaskody K, Jusop AS, Tye GJ, Wan Kamarul Zaman WS, Dass SA, Nordin F. MSCs vs. iPSCs: Potential in therapeutic applications. Front Cell Dev Biol 2022; 10:1005926. [PMID: 36407112 PMCID: PMC9666898 DOI: 10.3389/fcell.2022.1005926] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/21/2022] [Indexed: 01/24/2023] Open
Abstract
Over the past 2 decades, mesenchymal stem cells (MSCs) have attracted a lot of interest as a unique therapeutic approach for a variety of diseases. MSCs are capable of self-renewal and multilineage differentiation capacity, immunomodulatory, and anti-inflammatory properties allowing it to play a role in regenerative medicine. Furthermore, MSCs are low in tumorigenicity and immune privileged, which permits the use of allogeneic MSCs for therapies that eliminate the need to collect MSCs directly from patients. Induced pluripotent stem cells (iPSCs) can be generated from adult cells through gene reprogramming with ectopic expression of specific pluripotency factors. Advancement in iPS technology avoids the destruction of embryos to make pluripotent cells, making it free of ethical concerns. iPSCs can self-renew and develop into a plethora of specialized cells making it a useful resource for regenerative medicine as they may be created from any human source. MSCs have also been used to treat individuals infected with the SARS-CoV-2 virus. MSCs have undergone more clinical trials than iPSCs due to high tumorigenicity, which can trigger oncogenic transformation. In this review, we discussed the overview of mesenchymal stem cells and induced pluripotent stem cells. We briefly present therapeutic approaches and COVID-19-related diseases using MSCs and iPSCs.
Collapse
Affiliation(s)
- Kalaiselvaan Thanaskody
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Amirah Syamimi Jusop
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Wan Safwani Wan Kamarul Zaman
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia,Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sylvia Annabel Dass
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia,*Correspondence: Fazlina Nordin,
| |
Collapse
|
2
|
Fabrication of Low-Molecular-Weight Hyaluronic Acid-Carboxymethyl Cellulose Hybrid to Promote Bone Growth in Guided Bone Regeneration Surgery: An Animal Study. Polymers (Basel) 2022; 14:polym14153211. [PMID: 35956724 PMCID: PMC9370888 DOI: 10.3390/polym14153211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Guided bone regeneration surgery is an important dental operation used to regenerate enough bone to successfully heal dental implants. When this technique is performed on maxilla sinuses, hyaluronic acid (HLA) can be used as an auxiliary material to improve the graft material handling properties. Recent studies have indicated that low-molecular hyaluronic acid (L-HLA) provides a better regeneration ability than high-molecular-weight (H-HLA) analogues. The aim of this study was to fabricate an L-HLA-carboxymethyl cellulose (CMC) hybrid to promote bone regeneration while maintaining viscosity. The proliferation effect of fabricated L-HLA was tested using dental pulp stem cells (DPSCs). The mitogen-activated protein kinase (MAPK) pathway was examined using cells cultured with L-HLA combined with extracellular-signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 inhibitors. The bone growth promotion of fabricated L-HLA/CMC hybrids was tested using an animal model. Micro-computer tomography (Micro-CT) and histological images were evaluated quantitatively to compare the differences in the osteogenesis between the H-HLA and L-HLA. Our results show that the fabricated L-HLA can bind to CD44 on the DPSC cell membranes and affect MAPK pathways, resulting in a prompt proliferation rate increase. Micro CT images show that new bone formation in rabbit calvaria defects treated with L-HLA/CMC was almost two times higher than in defects filled with H-HLA/CMC (p < 0.05) at 4 weeks, a trend that remained at 8 weeks and was confirmed by HE-stained images. According to these findings, it is reasonable to conclude that L-HLA provides better bone healing than H-HLA, and that the L-HLA/CMC fabricated in this study is a potential candidate for improving bone healing efficiency when a guided bone regeneration surgery was performed.
Collapse
|
3
|
Effect of Ce-doped bioactive glass/collagen/chitosan nanocomposite scaffolds on the cell morphology and proliferation of rabbit’s bone marrow mesenchymal stem cells-derived osteogenic cells. J Genet Eng Biotechnol 2022; 20:33. [PMID: 35192077 PMCID: PMC8864049 DOI: 10.1186/s43141-022-00302-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/15/2022] [Indexed: 12/17/2022]
Abstract
Background Cerium-containing materials have wide applications in the biomedical field, because of the mimetic catalytic activities of cerium. The study aims to deeply estimate the biocompatibility of different scaffolds based on Ce-doped nanobioactive glass, collagen, and chitosan using the first passage of rabbit bone marrow mesenchymal stem cells (BM-MSCs) directed to osteogenic lineage by direct and indirect approach. One percentage of glass filler was used (30 wt. %) in the scaffold, while the percentage of CeO2 in the glass was ranged from 0 to 10 mol. %. Cytotoxicity was evaluated by monitoring of cell morphological changes and reduction in cell proliferation activity of BMMSCs maintained under osteogenic condition using proliferation assays, MTT assay for the direct contact of cells/scaffolds twice in a week, trypan blue and hemocytometer cell counting for indirect contact of cells/scaffolds extracts at day 7. Cell behaviors growth, morphology characteristics were monitored daily under a microscope and cell counting were conducted after 1 week of the incubation of the cells with the extracts of the four composite scaffolds in the osteogenic medium at the end of the week. Results Showed that at 24 h after direct contact with composite scaffold, all scaffolds showed proliferation of cells > 50% and increased in cell density on day 7. The scaffold of the highest percentage of CeO2 in bioactive glass nanoparticles (sample CL/CH/C10) showed the lowest inhibition of cell proliferation (< 25%) at day 7. Moreover, the indirect cell viability test showed that all extracts from the four composite scaffolds did not demonstrate a toxic effect on the cells (inhibition value < 25%). Conclusion The addition of CeO2 to the glass composition improved the biocompatibility of the composite scaffold for the proliferation of rabbit bone marrow mesenchymal stem cells directed to osteogenic lineage. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-022-00302-x.
Collapse
|
4
|
Liu Y, Yu X, Huang A, Zhang X, Wang Y, Geng W, Xu R, Li S, He H, Zheng B, Chen G, Xu Y. INTS7-ABCD3 Interaction Stimulates the Proliferation and Osteoblastic Differentiation of Mouse Bone Marrow Mesenchymal Stem Cells by Suppressing Oxidative Stress. Front Physiol 2021; 12:758607. [PMID: 34880777 PMCID: PMC8647813 DOI: 10.3389/fphys.2021.758607] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Increased adipocyte and decreased osteoblast differentiation, combined with the ectopic proliferation of bone marrow mesenchymal stem cells (BM-MSCs), represent the primary causes of osteoporosis. The dysregulation of numerous intracellular bioactive factors is responsible for the aberrant differentiation and growth of BM-MSCs. In this study, we focused on a new stimulative factor, integrator complex subunit 7 (INTS7), and its cooperative protein ATP-binding cassette subfamily D member 3 (ABCD3)/high-density lipoprotein-binding protein (HDLBP) in mouse BM-MSCs. We aimed to uncover the effects of the INTS7–ABCD3/HDLBP interaction on BM-MSC biological behaviors and the potential mechanism underlying these effects. Functional in vitro experiments showed that the suppression of the INTS7–ABCD3 interaction rather than HDLBP could impair BM-MSC proliferation and induce cell apoptosis. Moreover, Alizarin Red S and Oil Red O staining, respectively, revealed that INTS7 and ABCD3 knockdown but not HDLBP knockdown could decrease osteoblastic differentiation and accelerate the adipogenic differentiation of BM-MSCs. Mechanistically, reactive oxygen species (ROS) and histone γ-H2AX quantities significantly increased, whereas the levels of antioxidants declined due to INTS7 and ABCD3 inhibition in BM-MSCs. These findings indicated that the suppression of oxidative stress could be involved in the INTS7/ABCD3 co-regulatory mechanisms for BM-MSC proliferation and differentiation, identifying new potential candidates for osteoporosis therapy.
Collapse
Affiliation(s)
- Yubo Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Orthopaedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Xiao Yu
- Department of Orthopaedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Anquan Huang
- Department of Orthopaedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Xiangxin Zhang
- Department of Orthopaedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yijun Wang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Renjie Xu
- Department of Orthopaedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Suoyuan Li
- Department of Orthopaedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Hui He
- Department of Orthopaedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Bo Zheng
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China.,State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Guangxiang Chen
- Department of Orthopaedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yaozeng Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
5
|
Khalil Alyahya H, Subash-Babu P, Mohammad Salamatullah A, Hayat K, Albader N, Alkaltham MS, Ahmed MA, Arzoo S, Bourhia M. Quantification of Chlorogenic Acid and Vanillin from Coffee Peel Extract and its Effect on α-Amylase Activity, Immunoregulation, Mitochondrial Oxidative Stress, and Tumor Suppressor Gene Expression Levels in H 2O 2-Induced Human Mesenchymal Stem Cells. Front Pharmacol 2021; 12:760242. [PMID: 34795590 PMCID: PMC8593645 DOI: 10.3389/fphar.2021.760242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Polyphenols and flavonoid-rich foods help in arresting reactive oxygen species development and protecting DNA from oxidative damage. Coffee peel (CP) preparations are consumed as beverages, and their total polyphenol or flavonoid content and their effect on oxidative stress-induced human mesenchymal stem cells (hMSCs) are poorly understood. Method: We prepared hot water extracts of CP (CPE) and quantified the amount of total polyphenol and flavonoid using HPLC analysis. In addition, CPE have been studied for their α-amylase inhibitory effect and beneficial effects in oxidative stress-induced hMSCs. Results: The obtained results show that the availability of chlorogenic acid, vanillin, and salicylic acid levels in CPE is more favorable for enhancing cell growth, nuclear integrity, and mitochondrial efficiency which is confirmed by propidium iodide staining and JC-1 staining. CPE treatment to hMSCs for 48 h reduced oxidative stress by decreasing mRNA expression levels of LPO and NOX-4 and in increasing antioxidant CYP1A, GSH, GSK-3β, and GPX mRNA expressions. Decreased pro-inflammatory (TNF-α, NF-κβ, IL-1β, TLR-4) and increased tumor suppressor genes (except Bcl-2) such as Cdkn2A, p53 expressions have been observed. Conclusions: The availability of CGA in CPs effectively reduced mitochondrial oxidative stress, reduced pro-inflammatory cytokines, and increased tumor suppressor genes.
Collapse
Affiliation(s)
- Heba Khalil Alyahya
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Pandurangan Subash-Babu
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad Mohammad Salamatullah
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Khizar Hayat
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nawal Albader
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Saeed Alkaltham
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Asif Ahmed
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Shaista Arzoo
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Bourhia
- Laboratory of Chemistry-Biochemistry, Environment, Nutrition and Health, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| |
Collapse
|
6
|
Subash-Babu P, Al-Saran N, M Alshammari G, Naif Al-Harbi L, Hussain Alhussain M, Shamlan G, Abdulaziz AlSedairy S, Abdullah Alshatwi A. Evaluation of Biosafety, Antiobesity, and Endothelial Cells Proliferation Potential of Basil Seed Extract Loaded Organic Solid Lipid Nanoparticle. Front Pharmacol 2021; 12:722258. [PMID: 34671255 PMCID: PMC8521050 DOI: 10.3389/fphar.2021.722258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/25/2021] [Indexed: 01/09/2023] Open
Abstract
The present study aimed to synthesize solid lipid nanoparticles to enhance liposome-assisted intracellular uptake of basil seed active components in adipocytes and vascular smooth muscle cells to attain increased bioavailability. To obtain solid lipid nanoparticle (SLNp), the water phase containing basil seed extract (BSE) was encapsulated with lipid matrix containing chia seed phospholipids using homogenization and cold ultra-sonication method. The physicochemical characterization of BSE loaded solid lipid nanoparticles (BSE-SLNp) has been analyzed using Zetasizer, FT-IR, and TEM. The BSE-SLNp showed an average diameter of 20-110 nm on the day of preparation and it remains the same after 60 days of storage. The cytotoxicity assay confirmed that the BSE-SLNp did not produce toxicity in hMSCs, preadipocytes, or human umbilical vein endothelial cells (HUVECs) until the tested higher dose up to 64 μg/ml. During effective dose determination, 4 μg/ml of BSE-SLNp confirmed non-toxic and enhanced metabolic function in hMSCs, preadipocytes, and HUVECs. Biosafety assay confirmed normal nuclear morphology in PI staining and high mitochondrial membrane potential in JC-1 assay within 48 h in hMSCs. The maturing adipocyte treated with 4 μg/ml of BSE-SLNp significantly increased the mitochondrial efficiency and fatty acid beta-oxidation (PPARγC1α, UCP-1, and PRDM-16) related gene expression levels. Oxidative stress induced HUVECs treated with 4 μg/ml of BSE-SLNp potentially enhanced antioxidant capacity, cell growth, and microtubule development within 48 h H2O2 induced oxidative stressed HUVECs have shown 39.8% viable cells, but treatment with BSE-SLNp has shown 99% of viable cells within 48 h confirmed by Annexin-V assay. In addition, mitochondrial membrane potential (Δψm) increased to 89.4% confirmed by JC-1 assay. The observed DNA integrity, cell viability was confirmed by increased antioxidant and tumor suppressor-related gene expression levels. VEGF expression has been significantly increased and pro-inflammation-related mRNA levels were decreased in BSE-SLNp treated cells. In conclusion, enhanced adipocyte fatty acid oxidation is directly associated with decreased adipocytokine secretion which arrests obesity-associated comorbidities. In addition, suppressing vascular cell oxidative stress and metabolic inflammation supports vascular cell proliferation and arrests ageing-related vascular diseases.
Collapse
Affiliation(s)
- Pandurangan Subash-Babu
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nada Al-Saran
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ghedeir M Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Laila Naif Al-Harbi
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Maha Hussain Alhussain
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sahar Abdulaziz AlSedairy
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ali Abdullah Alshatwi
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Zhang Q, Yu J, Chen Q, Yan H, Du H, Luo W. Regulation of pathophysiological and tissue regenerative functions of MSCs mediated via the WNT signaling pathway (Review). Mol Med Rep 2021; 24:648. [PMID: 34278470 PMCID: PMC8299209 DOI: 10.3892/mmr.2021.12287] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 06/22/2021] [Indexed: 12/18/2022] Open
Abstract
Tissues have remarkable natural capabilities to regenerate for the purpose of physiological turnover and repair of damage. Adult mesenchymal stem cells (MSCs) are well known for their unique self-renewal ability, pluripotency, homing potential, paracrine effects and immunomodulation. Advanced research of the unique properties of MSCs have opened up new horizons for tissue regenerative therapies. However, certain drawbacks of the application of MSCs, such as the low survival rate of transplanted MSCs, unsatisfactory efficiency and even failure to regenerate under an unbalanced microenvironment, are concerning with regards to their wider therapeutic applications. The activity of stem cells is mainly regulated by the anatomical niche; where they are placed during their clinical and therapeutic applications. Crosstalk between various niche signals maintains MSCs in homeostasis, in which the WNT signaling pathway plays vital roles. Several external or internal stimuli have been reported to interrupt the normal bioactivity of stem cells. The irreversible tissue loss that occurs during infection at the site of tissue grafting suggests an inhibitory effect mediated by microbial infections within MSC niches. In addition, MSC-seeded tissue engineering success is difficult in various tissues, when sites of injury are under the effects of a severe infection despite the immunomodulatory properties of MSCs. In the present review, the current understanding of the way in which WNT signaling regulates MSC activity modification under physiological and pathological conditions was summarized. An effort was also made to illustrate parts of the underlying mechanism, including the inflammatory factors and their interactions with the regulatory WNT signaling pathway, aiming to promote the clinical translation of MSC-based therapy.
Collapse
Affiliation(s)
- Qingtao Zhang
- Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310085, P.R. China
| | - Jian Yu
- Department of Stomatology, Zhejiang Hospital, Hangzhou, Zhejiang 310030, P.R. China
| | - Qiuqiu Chen
- Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310085, P.R. China
| | - Honghai Yan
- Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310085, P.R. China
| | - Hongjiang Du
- Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310085, P.R. China
| | - Wenjing Luo
- Department of General Dentistry, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA
| |
Collapse
|
8
|
Denu RA, Hematti P. Optimization of oxidative stress for mesenchymal stromal/stem cell engraftment, function and longevity. Free Radic Biol Med 2021; 167:193-200. [PMID: 33677063 DOI: 10.1016/j.freeradbiomed.2021.02.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/18/2022]
Abstract
Mesenchymal stromal/stem cells (MSCs) are multipotent cells that possess great potential as a cellular therapeutic based on their ability to differentiate to different lineages and to modulate immune responses. However, their potential is limited by their low tissue abundance, and thus the need for robust ex vivo expansion prior to their application. This creates its own issues, namely replicative senescence, which could lead to reduced MSC functionality and negatively impact their engraftment. Ex vivo expansion and MSC aging are associated with greater oxidative stress. Therefore, there is great need to identify strategies to reduce oxidative stress in MSCs. This review summarizes the achievements made to date in addressing oxidative stress in MSCs and speculates about interesting avenues of future investigation to solve this critical problem.
Collapse
Affiliation(s)
- Ryan A Denu
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| | - Peiman Hematti
- Departments of Medicine, Pediatrics, Surgery and Biomedical Engineering, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
9
|
Covalently-Linked Hyaluronan versus Acid Etched Titanium Dental Implants: A Crossover RCT in Humans. Int J Mol Sci 2019; 20:ijms20030763. [PMID: 30754668 PMCID: PMC6387289 DOI: 10.3390/ijms20030763] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/24/2019] [Accepted: 02/06/2019] [Indexed: 12/11/2022] Open
Abstract
Biochemical modification of titanium surfaces (BMTiS) entails immobilization of biomolecules to implant surfaces in order to induce specific host responses. This crossover randomized clinical trial assesses clinical success and marginal bone resorption of dental implants bearing a surface molecular layer of covalently-linked hyaluronan in comparison with control implants up to 36 months after loading. Patients requiring bilateral implant rehabilitation received hyaluronan covered implants in one side of the mouth and traditional implants in the other side. Two months after the first surgery, a second surgery was undergone to uncover the screw and to place a healing abutment. After two weeks, the operator proceeded with prosthetic procedures. Implants were evaluated by periapical radiographs and the crestal bone level was recorded at mesial and distal sites—at baseline and up to 36 months. One hundred and six implants were positioned, 52 HY-coated, and 48 controls were followed up. No differences were observed in terms of insertion and stability, wound healing, implant success, and crestal bone resorption at any time considered. All interventions had an optimal healing, and no adverse events were recorded. This trial shows, for the first time, a successful use in humans of biochemical-modified implants in routine clinical practice and in healthy patients and tissues with satisfactory outcomes.
Collapse
|
10
|
Ji ST, Kim YJ, Jung SY, Kim DY, Kang S, Park JH, Jang WB, Ha J, Yun J, Kwon SM. Oleuropein attenuates hydrogen peroxide-induced autophagic cell death in human adipose-derived stem cells. Biochem Biophys Res Commun 2018; 499:675-680. [PMID: 29604275 DOI: 10.1016/j.bbrc.2018.03.211] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 03/28/2018] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent progenitor cells with self-renewing properties; thus, transplanting functionally enhanced MSCs might be a promising strategy for cell therapy against ischemic diseases. However, extensive oxidative damage in ischemic tissue affects the cell fate of transplanted MSCs, eventually resulting in cell damage and autophagic cell death. Oleuropein (OLP) is a bioactive compound isolated from olives and olive oil that harbors antioxidant properties. This study aimed to investigate the potential cytoprotective effects of OLP against oxidative stress and autophagic cell death in MSCs. We found that short-term priming with OLP attenuated H2O2-induced apoptosis by regulating the pro-apoptotic marker Bax and the anti-apoptotic markers Bcl-2 and Mcl-1. Notably, OLP inhibits H2O2 -induced autophagic cell death by modulating autophagy-related death signals, including mTOR (mammalian target of rapamycin), ULK1 (unc-51 like autophagy activating kinase 1), Beclin-1, AMPK (AMP-activated protein kinase), and LC3 (microtubule-associated protein 1a/1b-light chain 3). Our data suggest that OLP might reduce H2O2-induced autophagy and cell apoptosis in MSCs by regulating both the AMPK-ULK axis and the Bcl-2-Mcl-1 axis. Consequently, short-term cell priming with OLP might enhance the therapeutic effect of MSCs against ischemic vascular diseases, which provides an important potential improvement for emerging therapeutic strategies.
Collapse
Affiliation(s)
- Seung Taek Ji
- Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yeon-Ju Kim
- Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Seok Yun Jung
- Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Da Yeon Kim
- Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Songhwa Kang
- Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Ji Hye Park
- Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Woong Bi Jang
- Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jongseong Ha
- Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Convergence Stem Cell Research Center, Pusan National University, Yangsan, Republic of Korea
| | - Jisoo Yun
- Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Convergence Stem Cell Research Center, Pusan National University, Yangsan, Republic of Korea
| | - Sang-Mo Kwon
- Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Convergence Stem Cell Research Center, Pusan National University, Yangsan, Republic of Korea; Research Institute of Convergence Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea.
| |
Collapse
|
11
|
Cañibano-Hernández A, Saenz Del Burgo L, Espona-Noguera A, Orive G, Hernández RM, Ciriza J, Pedraz JL. Alginate Microcapsules Incorporating Hyaluronic Acid Recreate Closer in Vivo Environment for Mesenchymal Stem Cells. Mol Pharm 2017; 14:2390-2399. [PMID: 28558467 DOI: 10.1021/acs.molpharmaceut.7b00295] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The potential clinical application of alginate cell microencapsulation has advanced enormously during the past decade. However, the 3D environment created by alginate beads does not mimic the natural extracellular matrix surrounding cells in vivo, responsible of cell survival and functionality. As one of the most frequent macromolecules present in the extracellular matrix is hyaluronic acid, we have formed hybrid beads with alginate and hyaluronic acid recreating a closer in vivo cell environment. Our results show that 1% alginate-0.25% hyaluronic acid microcapsules retain 1.5% alginate physicochemical properties. Moreover, mesenchymal stem cells encapsulated in these hybrid beads show enhanced viability therapeutic protein release and mesenchymal stem cells' potential to differentiate into chondrogenic lineage. Although future studies with additional proteins need to be done in order to approach even more the extracellular matrix features, we have shown that hyaluronic acid protects alginate encapsulated mesenchymal stem cells by providing a niche-like environment and remaining them competent as a sustainable drug delivery system.
Collapse
Affiliation(s)
- Alberto Cañibano-Hernández
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU , Vitoria-Gasteiz 01006, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN , Vitoria-Gasteiz 01006, Spain
| | - Laura Saenz Del Burgo
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU , Vitoria-Gasteiz 01006, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN , Vitoria-Gasteiz 01006, Spain
| | - Albert Espona-Noguera
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU , Vitoria-Gasteiz 01006, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN , Vitoria-Gasteiz 01006, Spain
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU , Vitoria-Gasteiz 01006, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN , Vitoria-Gasteiz 01006, Spain
| | - Rosa M Hernández
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU , Vitoria-Gasteiz 01006, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN , Vitoria-Gasteiz 01006, Spain
| | - Jesús Ciriza
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU , Vitoria-Gasteiz 01006, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN , Vitoria-Gasteiz 01006, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU , Vitoria-Gasteiz 01006, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN , Vitoria-Gasteiz 01006, Spain
| |
Collapse
|
12
|
Effects of Oxidative Stress on Mesenchymal Stem Cell Biology. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2989076. [PMID: 27413419 PMCID: PMC4928004 DOI: 10.1155/2016/2989076] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/29/2016] [Indexed: 02/08/2023]
Abstract
Mesenchymal stromal/stem cells (MSCs) are multipotent stem cells present in most fetal and adult tissues. Ex vivo culture-expanded MSCs are being investigated for tissue repair and immune modulation, but their full clinical potential is far from realization. Here we review the role of oxidative stress in MSC biology, as their longevity and functions are affected by oxidative stress. In general, increased reactive oxygen species (ROS) inhibit MSC proliferation, increase senescence, enhance adipogenic but reduce osteogenic differentiation, and inhibit MSC immunomodulation. Furthermore, aging, senescence, and oxidative stress reduce their ex vivo expansion, which is critical for their clinical applications. Modulation of sirtuin expression and activity may represent a method to reduce oxidative stress in MSCs. These findings have important implications in the clinical utility of MSCs for degenerative and immunological based conditions. Further study of oxidative stress in MSCs is imperative in order to enhance MSC ex vivo expansion and in vivo engraftment, function, and longevity.
Collapse
|
13
|
Priming Adipose-Derived Mesenchymal Stem Cells with Hyaluronan Alters Growth Kinetics and Increases Attachment to Articular Cartilage. Stem Cells Int 2016; 2016:9364213. [PMID: 26981136 PMCID: PMC4770159 DOI: 10.1155/2016/9364213] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/10/2016] [Indexed: 01/06/2023] Open
Abstract
Background. Biological therapeutics such as adipose-derived mesenchymal stem cell (MSC) therapy are gaining acceptance for knee-osteoarthritis (OA) treatment. Reports of OA-patients show reductions in cartilage defects and regeneration of hyaline-like-cartilage with MSC-therapy. Suspending MSCs in hyaluronan commonly occurs in animals and humans, usually without supporting data. Objective. To elucidate the effects of different concentrations of hyaluronan on MSC growth kinetics. Methods. Using a range of hyaluronan concentrations, we measured MSC adherence and proliferation on culture plastic surfaces and a novel cartilage-adhesion assay. We employed time-course and dispersion imaging to assess MSC binding to cartilage. Cytokine profiling was also conducted on the MSC-secretome. Results. Hyaluronan had dose-dependent effects on growth kinetics of MSCs at concentrations of entanglement point (1 mg/mL). At higher concentrations, viscosity effects outweighed benefits of additional hyaluronan. The cartilage-adhesion assay highlighted for the first time that hyaluronan-primed MSCs increased cell attachment to cartilage whilst the presence of hyaluronan did not. Our time-course suggested patients undergoing MSC-therapy for OA could benefit from joint-immobilisation for up to 8 hours. Hyaluronan also greatly affected dispersion of MSCs on cartilage. Conclusion. Our results should be considered in future trials with MSC-therapy using hyaluronan as a vehicle, for the treatment of OA.
Collapse
|
14
|
Migliorini E, Valat A, Picart C, Cavalcanti-Adam EA. Tuning cellular responses to BMP-2 with material surfaces. Cytokine Growth Factor Rev 2015; 27:43-54. [PMID: 26704296 DOI: 10.1016/j.cytogfr.2015.11.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/13/2015] [Indexed: 02/08/2023]
Abstract
Bone morphogenetic protein 2 (BMP-2) has been known for decades as a strong osteoinductive factor and for clinical applications is combined solely with collagen as carrier material. The growing concerns regarding side effects and the importance of BMP-2 in several developmental and physiological processes have raised the need to improve the design of materials by controlling BMP-2 presentation. Inspired by the natural cell environment, new material surfaces have been engineered and tailored to provide both physical and chemical cues that regulate BMP-2 activity. Here we describe surfaces designed to present BMP-2 to cells in a spatially and temporally controlled manner. This is achieved by trapping BMP-2 using physicochemical interactions, either covalently grafted or combined with other extracellular matrix components. In the near future, we anticipate that material science and biology will integrate and further develop tools for in vitro studies and potentially bring some of them toward in vivo applications.
Collapse
Affiliation(s)
- Elisa Migliorini
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, D-70569 Stuttgart, Germany
- Department of Biophysical Chemistry, University of Heidelberg, INF 253, D-69120 Heidelberg, Germany, Tel: +49-6221-54 5064
| | - Anne Valat
- CNRS-UMR 5628, LMGP, 3 parvis L.Néel, F-38 016 Grenoble, France
- University Grenoble Alpes, Grenoble Institute of Technology, LMGP, 3 parvis Louis Néel, F-28016 Grenoble, France
- INSERM U823, ERL CNRS5284, Université de Grenoble Alpes, Institut Albert Bonniot, Site Santé, BP170, 38042 Grenoble cedex 9, France, Tel: +33-04-56529311
| | - Catherine Picart
- CNRS-UMR 5628, LMGP, 3 parvis L.Néel, F-38 016 Grenoble, France
- University Grenoble Alpes, Grenoble Institute of Technology, LMGP, 3 parvis Louis Néel, F-28016 Grenoble, France
| | - Elisabetta Ada Cavalcanti-Adam
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, D-70569 Stuttgart, Germany
- Department of Biophysical Chemistry, University of Heidelberg, INF 253, D-69120 Heidelberg, Germany, Tel: +49-6221-54 5064
| |
Collapse
|
15
|
Emam HA, Behiri G, El-Alaily M, Sharawy M. The efficacy of a tissue-engineered xenograft in conjunction with sodium hyaluronate carrier in maxillary sinus augmentation: a clinical study. Int J Oral Maxillofac Surg 2015; 44:1287-94. [PMID: 25998934 DOI: 10.1016/j.ijom.2015.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 01/21/2015] [Accepted: 04/21/2015] [Indexed: 11/28/2022]
Abstract
PepGen P-15 Putty comprises anorganic bovine bone matrix (ABM) coupled with a synthetic cell-binding peptide, suspended in a sodium hyaluronate carrier. The P-15 portion exhibits a similar structure and properties to the cell-binding region of type I collagen. This study was performed to evaluate ABM/P-15 putty as the sole graft in sinus augmentation. Ten patients for whom both a sinus augmentation and two implants were indicated in the posterior maxilla were enrolled. Bone cores were harvested at 8 and 16 weeks, followed by placement of one implant at 8 weeks and the second at 16 weeks. Twenty collected bone cores were evaluated histologically and by micro-computed tomography. Results showed a significant increase (P<0.05) in bone mineral density at 8 weeks (0.70±0.13g/cm(3)) and 16 weeks (0.97±0.08g/cm(3)) in the graft compared to native (control) bone (0.04±0.02g/cm(3)). There was no significant difference (P>0.05) in the percentage bone volume at the two time intervals (PBV 21.14±4.56 at 8 weeks and 26.33±5.60 at 16 weeks). The average increase in bone height at 16 weeks was 10.55±0.53mm. It is concluded that PepGen P-15 Putty is capable of conducting and accelerating new bone formation and can successfully support dental implants.
Collapse
Affiliation(s)
- H A Emam
- Oral and Maxillofacial Surgery, College of Dentistry, The Ohio State University, OH, USA.
| | - G Behiri
- Oral and Maxillofacial Surgery, Cairo University, Cairo, Egypt
| | - M El-Alaily
- Private Practice, IMMPRO Dental (Implant-Prosthodontics), Cairo, Egypt
| | - M Sharawy
- Oral Biology/Anatomy, College of Dental Medicine, Georgia Regents University, GA, USA
| |
Collapse
|
16
|
Salamanna F, Frizziero A, Pagani S, Giavaresi G, Curzi D, Falcieri E, Marini M, Abruzzo PM, Martini L, Fini M. Metabolic and cytoprotective effects of in vivo peri-patellar hyaluronic acid injections in cultured tenocytes. Connect Tissue Res 2015; 56:35-43. [PMID: 25333747 DOI: 10.3109/03008207.2014.979166] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The purpose of this study was to investigate tenocyte mechanobiology after sudden-detraining and to examine the hypothesis that repeated peri-patellar injections of hyaluronic acid (HA) on detrained patellar tendon (PT) may reduce and limit detrained-associated damage in tenocytes. Twenty-four male Sprague-Dawley rats were divided into three groups: Untrained, Trained and Detrained. In the Detrained rats, the left tendon was untreated while the right tendon received repeated peri-patellar injections of either HA or saline (NaCl). Tenocyte morphology, metabolism and synthesis of C-terminal-propeptide of type I collagen, collagen-III, fibronectin, aggrecan, tenascin-c, interleukin-1β, matrix-metalloproteinase-1 and-3 were evaluated after 1, 3, 7 and 10 days of culture. Transmission-electronic-microscopy showed a significant increase in mitochondria and rough endoplasmic reticulum in cultured tenocytes from Detrained-HA with respect to those from Detrained-NaCl. Additionally, Detrained-HA cultures showed a significantly higher proliferation rate and viability, and increased synthesis of C-terminal-Propeptide of type I collagen, fibronectin, aggrecan, tenascin-c and matrix-metalloproteinase-3 with respect to Detrained-NaCl ones, whereas synthesis of matrix-metalloproteinase-1 and interleukin-1β was decreased. Our study demonstrates that discontinuing training activity in the short-term alters tenocyte synthetic and metabolic activity and that repeated peri-patellar infiltrations of HA during detraining allow the maintenance of tenocyte anabolic activity.
Collapse
Affiliation(s)
- F Salamanna
- Laboratory of Biocompatibility, Technological Innovation and Advanced Therapy, Rizzoli RIT, Rizzoli Orthopedic Institute , Bologna , Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yeh Y, Yang Y, Yuan K. Importance of CD44 in the proliferation and mineralization of periodontal ligament cells. J Periodontal Res 2014; 49:827-35. [DOI: 10.1111/jre.12170] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Y. Yeh
- Institute of Oral Medicine; College of Medicine; National Cheng Kung University; Tainan Taiwan
| | - Y. Yang
- Institute of Oral Medicine; College of Medicine; National Cheng Kung University; Tainan Taiwan
| | - K. Yuan
- Institute of Oral Medicine; College of Medicine; National Cheng Kung University; Tainan Taiwan
- Department of Stomatology; National Cheng Kung University Hospital; Tainan Taiwan
| |
Collapse
|
18
|
Ferrari C, Olmos E, Balandras F, Tran N, Chevalot I, Guedon E, Marc A. Investigation of growth conditions for the expansion of porcine mesenchymal stem cells on microcarriers in stirred cultures. Appl Biochem Biotechnol 2013; 172:1004-17. [PMID: 24142358 DOI: 10.1007/s12010-013-0586-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/03/2013] [Indexed: 12/17/2022]
Abstract
The extensive use of mesenchymal stem cells (MCS) in tissue engineering and cell therapy increases the necessity to improve their expansion. Among these, porcine MCS are valuable models for tissue engineering and are classically expanded in static T-flasks. In this work, different processes of stirred cultures were evaluated and compared. First, the effect of glucose, glutamine, antioxidant, and growth factors concentrations on porcine MSC expansion were analyzed in a suitable medium by performing kinetic studies. Results showed that a lower glucose concentration (5.5 mM) enabled to increase maximal cell concentration by 40 % compared with a higher one (25 mM), while addition of 2 to 6 mM of glutamine increased maximal cell concentration by more than 25 % compared with no glutamine supplementation. Moreover, supplementation with 1 μM thioctic acid increased maximal cell concentration by 40 % compared with no supplementation. Using this adapted medium, microcarriers cultures were performed and compared with T-flasks expansion. Porcine MSC were shown to be able to proliferate on the five types of microcarriers tested. Moreover, cultures on Cytodex 1, Cytopore 2, and Cultispher G exhibited a MSC growth rate more than 40 % higher compared with expansion in T-flasks, while MSC metabolism was similar.
Collapse
Affiliation(s)
- Caroline Ferrari
- Laboratoire Réactions et Génie des Procédés, CNRS UMR 7274, Université de Lorraine, 2 avenue de la forêt de Haye, TSA 40602, 54518, Vandœuvre-lès-Nancy Cedex, France
| | | | | | | | | | | | | |
Collapse
|
19
|
CD44 Is Involved in Mineralization of Dental Pulp Cells. J Endod 2013; 39:351-6. [DOI: 10.1016/j.joen.2012.11.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 11/13/2012] [Accepted: 11/15/2012] [Indexed: 11/23/2022]
|
20
|
Chen X, Li Y, Aparicio C. Biofunctional Coatings for Dental Implants. THIN FILMS AND COATINGS IN BIOLOGY 2013. [DOI: 10.1007/978-94-007-2592-8_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
|
22
|
Colombo M, Carregal-Romero S, Casula MF, Gutiérrez L, Morales MP, Böhm IB, Heverhagen JT, Prosperi D, Parak WJ. Biological applications of magnetic nanoparticles. Chem Soc Rev 2012; 41:4306-34. [PMID: 22481569 DOI: 10.1039/c2cs15337h] [Citation(s) in RCA: 706] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this review an overview about biological applications of magnetic colloidal nanoparticles will be given, which comprises their synthesis, characterization, and in vitro and in vivo applications. The potential future role of magnetic nanoparticles compared to other functional nanoparticles will be discussed by highlighting the possibility of integration with other nanostructures and with existing biotechnology as well as by pointing out the specific properties of magnetic colloids. Current limitations in the fabrication process and issues related with the outcome of the particles in the body will be also pointed out in order to address the remaining challenges for an extended application of magnetic nanoparticles in medicine.
Collapse
Affiliation(s)
- Miriam Colombo
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mochizuki S, Kano A, Shimada N, Maruyama A. Uptake of Enzymatically-Digested Hyaluronan by Liver Endothelial Cells in Vivo and in Vitro. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 20:83-97. [DOI: 10.1163/156856208x393518] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Shinichi Mochizuki
- a Institute for Materials Chemistry and Engineering, Kyushu University, CE11 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Arihiro Kano
- b Institute for Materials Chemistry and Engineering, Kyushu University, CE11 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Naohiko Shimada
- c Institute for Materials Chemistry and Engineering, Kyushu University, CE11 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Atsushi Maruyama
- d Institute for Materials Chemistry and Engineering, Kyushu University, CE11 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan; CREST, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi-shi, Saitama, 332-0012, Japan
| |
Collapse
|
24
|
Hyaluronan regulates cell behavior: a potential niche matrix for stem cells. Biochem Res Int 2012; 2012:346972. [PMID: 22400115 PMCID: PMC3287012 DOI: 10.1155/2012/346972] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/24/2011] [Accepted: 11/18/2011] [Indexed: 12/20/2022] Open
Abstract
Hyaluronan is a linear glycosaminoglycan that has received special attention in the last few decades due to its extraordinary physiological functions. This highly viscous polysaccharide is not only a lubricator, but also a significant regulator of cellular behaviors during embryogenesis, morphogenesis, migration, proliferation, and drug resistance in many cell types, including stem cells. Most hyaluronan functions require binding to its cellular receptors CD44, LYVE-1, HARE, layilin, and RHAMM. After binding, proteins are recruited and messages are sent to alter cellular activities. When low concentrations of hyaluronan are applied to stem cells, the proliferative activity is enhanced. However, at high concentrations, stem cells acquire a dormant state and induce a multidrug resistance phenotype. Due to the influence of hyaluronan on cells and tissue morphogenesis, with regards to cardiogenesis, chondrogenesis, osteogenesis, and neurogenesis, it is now been utilized as a biomaterial for tissue regeneration. This paper summarizes the most important and recent findings regarding the regulation of hyaluronan in cells.
Collapse
|
25
|
Yeh KD, Popowics T. Molecular and structural assessment of alveolar bone during tooth eruption and function in the miniature pig, sus scrofa. Anat Histol Embryol 2011; 40:283-91. [PMID: 21434979 DOI: 10.1111/j.1439-0264.2011.01067.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The development of alveolar bone adjacent to the tooth root during tooth eruption is not well understood. This study tested the hypothesis that predominantly woven bone forms adjacent to tooth roots during tooth eruption, but that this immature structure transitions to lamellar bone when the tooth comes into function. Additionally, bone resorption was predicted to play a key role in transitioning immature bone to more mature, load-bearing tissue. Miniature pigs were compared at two occlusal stages, 13 weeks (n = 3), corresponding with the mucosal penetration stage of M(1) tooth eruption, and 23 weeks (n = 3), corresponding with early occlusion of M(1) /M(1) . Bone samples for RNA extraction and qRT-PCR analysis were harvested from the diastema and adjacent to M(1) roots on one side. Following euthanasia, bone samples for haematoxylin and eosin and TRAP staining were harvested from these regions on the other side. In contrast to expectations, both erupting and functioning molars had reticular fibrolamellar structure in alveolar bone adjacent to M(1) . However, the woven bone matrix in older pigs was thicker and had denser primary osteons. Gene expression data and osteoclast cell counts showed a tendency for more bone resorptive activity near the molars than at distant sites, but no differences between eruptive stages. Thus, although resorption does occur, it is not a primary mechanism in the transition in alveolar bone from eruption to function. Incremental growth of existing woven bone and filling in of primary osteons within the mineralized scaffold generated the fortification necessary to support an erupted and functioning tooth.
Collapse
Affiliation(s)
- Kuang-Dah Yeh
- Hualien Armed Forces General Hospital, Hualien, Taiwan
| | | |
Collapse
|
26
|
Garcia-Fuentes M, Meinel AJ, Hilbe M, Meinel L, Merkle HP. Silk fibroin/hyaluronan scaffolds for human mesenchymal stem cell culture in tissue engineering. Biomaterials 2009; 30:5068-76. [PMID: 19564040 DOI: 10.1016/j.biomaterials.2009.06.008] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 06/08/2009] [Indexed: 02/07/2023]
Abstract
The design of new bioactive scaffolds mimicking the physiologic environment present during tissue formation is an important frontier in biomaterials research. Herein, we evaluated scaffolds prepared from blends of two biopolymers: silk fibroin and hyaluronan. Our rationale was that such blends would allow the combination of silk fibroin's superior mechanical properties with the biological characteristics of hyaluronan. We prepared scaffolds with porous microstructures by freeze-drying aqueous solutions of silk fibroin and hyaluronan and subsequent incubation in methanol to induce water insolubility of silk fibroin. Hyaluronan acted as an efficient porogenic excipient for the silk fibroin scaffolding process, allowing the formation of microporous structures within the scaffolds under mild processing conditions. Mesenchymal stem cells were seeded on silk fibroin/hyaluronan scaffolds and cultured for three weeks. Histology of the constructs after cell culture showed enhanced cellular ingrowth into silk fibroin/hyaluronan scaffolds as compared to plain silk fibroin scaffolds. In the presence of tissue-inductive stimuli, in vitro stem cell culture on silk fibroin/hyaluronan scaffolds resulted in more efficient tissue formation when measured by glycosaminoglycan and type-I and type-III collagen gene expression, as compared to plain silk fibroin scaffolds. In conclusion, our data encourages further exploration of silk fibroin/hyaluronan scaffolds as biomimetic platform for mesenchymal stem cells in tissue engineering.
Collapse
Affiliation(s)
- Marcos Garcia-Fuentes
- Drug Formulation and Delivery Group, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
27
|
Morra M, Cassinelli C, Cascardo G, Fini M, Giavaresi G, Giardino R. Covalently-linked hyaluronan promotes bone formation around Ti implants in a rabbit model. J Orthop Res 2009; 27:657-63. [PMID: 18991337 DOI: 10.1002/jor.20797] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The goal of this study was the in vivo evaluation of nanoporous titanium (Ti) implants bearing a covalently linked surface hyaluronan (HA) layer. Implant surface topography and surface chemistry were previously evaluated by scanning electron microscopy and X-ray photoelectron spectroscopy. Results showed that the surface modification process did not affect surface topography, yielding a homogeneously HA-coated nanotextured implant surface. In vivo evaluation of implants in both cortical and trabecular bone of rabbit femurs showed a significant improvement of both bone-to-implant contact and bone ingrowth at HA-bearing implant interfaces at 4 weeks. The improvement in osteointegration rate was particularly evident in the marrow-rich trabecular bone (bone-to-implant contact: control 22.5%; HA-coated 69.0%, p < 0.01). Mechanical testing (push-out test) and evaluation of interfacial bone microhardness confirmed a faster bone maturation around HA-coated implants (Bone Maturation Index: control 79.1%; HA-coated 90.6%, p < 0.05). Suggestions based on the biochemical role of HA are presented to account for the observed behavior.
Collapse
Affiliation(s)
- Marco Morra
- Nobil Bio Ricerche, Str. S. Rocco 36, 14018 Villafranca d'Asti, Italy.
| | | | | | | | | | | |
Collapse
|
28
|
Stevens B, Yang Y, Mohandas A, Stucker B, Nguyen KT. A review of materials, fabrication methods, and strategies used to enhance bone regeneration in engineered bone tissues. J Biomed Mater Res B Appl Biomater 2008; 85:573-82. [PMID: 17937408 DOI: 10.1002/jbm.b.30962] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Over the last decade, bone engineered tissues have been developed as alternatives to autografts and allografts to repair and reconstruct bone defects. This article provides a review of the current technologies in bone tissue engineering. Factors used for fabrication of three-dimensional bone scaffolds such as materials, cells, and biomolecular signals, as well as required properties for ideal bone scaffolds, are reviewed. In addition, current fabrication techniques including rapid prototyping are elaborated upon. Finally, this review article further discusses some effective strategies to enhance cell ingrowth in bone engineered tissues; for example, nanotopography, biomimetic materials, embedded growth factors, mineralization, and bioreactors. In doing so, it suggests that there is a possibility to develop bone substitutes that can repair bone defects and promote new bone formation for orthopedic applications.
Collapse
Affiliation(s)
- Brian Stevens
- Department of Biological and Irrigation Engineering, Utah State University, Logan, Utah, USA
| | | | | | | | | |
Collapse
|
29
|
Zou L, Zou X, Chen L, Li H, Mygind T, Kassem M, Bünger C. Effect of hyaluronan on osteogenic differentiation of porcine bone marrow stromal cells in vitro. J Orthop Res 2008; 26:713-20. [PMID: 18050326 DOI: 10.1002/jor.20539] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Hyaluronan (HA) plays a predominant role in tissue morphogenesis, cell migration, proliferation, and cell differentiation. The aims of the present study were to investigate whether (i) prolonged presence of high concentration (4.0 mg/mL) 800 KDa HA and (ii) pretreatment with HA can modify osteogenic differentiation of pig bone marrow stromal cells (pBMSC). Cell proliferation and mineralization were measured. Expression of differentiation-related genes was evaluated by means of real-time reverse transcription polymerase chain reaction (RT-PCR). HA increased cell proliferation on day 7. HA decreased the basal level of bone-related gene expression and increased the basal level of sox9 marginally during 7-day pretreatment with HA. HA increased calcium deposit on day 21. cbfa1, ALP, and type 1 alpha collagen (Col1) expression was increased when pBMSC were cultivated in osteogenic medium, whereas their expression was decreased in the presence of HA on day 7. On day 14, the addition of HA upregulated cbfa1 and ALP expression compared to osteogenic medium group; there was no significant difference in Col1 expression. At day 21, osteocalcin (OC) expression showed 2.5-fold upregulation over osteogenic medium. These results suggest that exogenous HA stimulates endogenous HA, which together may play a synergetic role in osteogenic differentiation under osteoinducing conditions although gene expression was inhibited at the early stage.
Collapse
Affiliation(s)
- Lijin Zou
- Orthopaedic Research Laboratory, Aarhus University Hospital, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | |
Collapse
|
30
|
Zou L, Zou X, Chen L, Li H, Mygind T, Kassem M, Bünger C. Multilineage differentiation of porcine bone marrow stromal cells associated with specific gene expression pattern. J Orthop Res 2008; 26:56-64. [PMID: 17676606 DOI: 10.1002/jor.20467] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
There are increasing reports regarding differentiation of bone marrow stromal cells (BMSC) from human and various species of animals including pigs. The phenotype and function of BMSC along a mesenchymal lineage differentiation are well characterized by specific transcription factors and marker genes. However, it is not fully clear whether multilineage differentiation (osteogenesis, chondrogenesis, and adipogenesis) of BMSC is associated with a specific gene expression pattern. In the present study, we investigated the gene expression pattern of representative transcription factors and marker genes along those three mesenchymal lineages during a particular lineage differentiation of porcine BMSC by means of real-time PCR measurement. In an osteogenic medium, the mRNA levels of cbfa1, osterix, alkaline phosphatase, type 1 collagen, osteonectin, bone sialoprotein, and osteocalcin were induced stepwise. Meanwhile, sox9, specific to chondrogenic differentiation, was inhibited but not PPARgamma2 specific to adipogenic differentiation. In an adipogenic medium, adipogenic differentiation was confirmed by upregulation of PPARgamma2 and aP2 and downregulation of osteogenic genes and sox9. Chondrogenic differentiation was induced in cell pellet culture by expression of sox9, type 2 collagen, and aggrecan. Cbfa1 and PPARgamma2 were inhibited in chondrogenic medium. These results indicate that the differentiation potential of BMSC to a particular mesenchymal lineage relies upon specific gene expression pattern, namely upregulation of genes specific for this lineage and suppression of other lineage differentiation.
Collapse
Affiliation(s)
- Lijin Zou
- Orthopaedic Research Laboratory, Aarhus University Hospital, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | |
Collapse
|
31
|
Bessa PC, Casal M, Reis RL. Bone morphogenetic proteins in tissue engineering: the road from laboratory to clinic, part II (BMP delivery). J Tissue Eng Regen Med 2008; 2:81-96. [DOI: 10.1002/term.74] [Citation(s) in RCA: 417] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
32
|
Abstract
In this review, surface modification of implant devices by immobilization of biological molecules is discussed. A brief introduction to the development of biomolecular surface science is presented, followed by a review of current activities in selected fields. Bone-contacting devices and some cardiovascular implant devices are reviewed as paradigmatic examples of research that is currently taking place. Advances in the basic fields of cell and tissue biology, in addition to concurrent developments in surface science tools, suggest that 'peri-implant biologics', or the control and direction of the host response at the implant-tissue interface by implant-surface-linked biomolecules, could be a major area of growth in the medical devices field in the next few years.
Collapse
Affiliation(s)
- Marco Morra
- Nobil Bio Ricerche srl, Strada San Rocco 36, 14018 Villafranca d'Asti, Italy.
| |
Collapse
|
33
|
Pan Z, Jiang P, Fan Q, Ma B, Cai H. Mechanical and biocompatible influences of chitosan fiber and gelatin on calcium phosphate cement. J Biomed Mater Res B Appl Biomater 2007; 82:246-52. [PMID: 17183561 DOI: 10.1002/jbm.b.30727] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Calcium phosphate cement (CPC) is a widely used bone substitute in the clinic; however, the low strength of CPC limits its utilization. In this study, we investigated mechanical influences of chitosan fiber combined with gelatin on CPC, and examined the biocompatibility of the new composite with rat bone marrow stromal cells. Compared to the fiber impregnated in phosphate buffered saline (80.5 MPa), our study showed that tensile strength of chitosan fiber increased 106 and 114% with the impregnation of gelatin at the mass fraction 5 and 10%, although this increase was not statistically significant. It was demonstrated by Fourier transform infrared spectroscopy that the characteristic absorption bands of chitosan were changed with the addition of gelatin. The optimal flexural strength enhancement was obtained when CPC was reinforced with fiber at volume fraction of 30% and gelatin at mass fraction of 5% (maximum: 12.31 MPa). The fiber morphology was more compact when the chitosan fibers impregnated with gelatin at mass fraction of 5 or 10% than chitosan alone. The fracture analysis showed that the new CPC-chitosan fiber-gelatin composite presented many remnants of CPC adhered to fibers. Short minimum essential medium extract test showed no cell growth inhibition after the addition of the new composite. Rat bone marrow stromal cells retain the ability to spread and grow on the composite. Our studies demonstrated that the flexural strength is greatly increased by using CPC incorporated with proper ratio of CF and gelatin. More over, the new composite demonstrated biocompatibility in vitro.
Collapse
Affiliation(s)
- Zhaohui Pan
- Orthopedics Institute of Chinese PLA, 89th Hospital, Weifang, Shandong Province 261021, People's Republic of China.
| | | | | | | | | |
Collapse
|
34
|
Chen PY, Huang LLH, Hsieh HJ. Hyaluronan preserves the proliferation and differentiation potentials of long-term cultured murine adipose-derived stromal cells. Biochem Biophys Res Commun 2007; 360:1-6. [PMID: 17586465 DOI: 10.1016/j.bbrc.2007.04.211] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2007] [Accepted: 04/12/2007] [Indexed: 01/27/2023]
Abstract
For long-term culture, murine adipose-derived stromal cells (mADSCs) at latter passages demonstrated a marked decline in proliferative activity, exhibited senescent morphology and reduced differentiation potentials, particularly osteogenesis. To extend the lifespan of mADSCs, two culture conditions containing hyaluronan (HA) was compared in our study, one as a culture medium supplement (SHA), and the other where HA was pre-coated on culture surface (CHA). mADSCs cultivated with SHA exhibited a prolonged lifespan, reduced cellular senescence, and enhanced osteogenic potential compared to regular culture condition (control). Upon CHA treatment, mADSCs tended to form cell aggregates with gradual growth profiles, while their differentiation activities remained similar to SHA groups. After transferring mADSCs from CHA to control surface, they were shown to have an extended lifespan and an increase of osteogenic potential. Our results suggested that HA can be useful for preserving the proliferation and differentiation potentials of long-term cultured mADSCs.
Collapse
Affiliation(s)
- Po-Yang Chen
- Department of Chemical Engineering, National Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | | | | |
Collapse
|
35
|
Morra M, Cassinelli C, Carpi A, Giardino R, Fini M. Effects of molecular weight and surface functionalization on surface composition and cell adhesion to Hyaluronan coated titanium. Biomed Pharmacother 2006; 60:365-9. [PMID: 16930939 DOI: 10.1016/j.biopha.2006.07.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
This paper describes the effect of surface functionalization on surface composition and cell adhesion to titanium samples by high and low molecular weight Hyaluronan (HA). HA was covalently linked to aminated Ti surfaces obtained by two different surface functionalization techniques, that is polyethyleneimine (PEI) adsorption and deposition from allylamine plasma. The two approaches yield very different surface densities of available amino groups, affecting this way the number and frequency of surface-HA bonds and the configurational freedom of the latter. Results of cell adhesion test are dependent on the surface functionalization approach adopted, low molecular weight HA coupled to PEI functionalized Ti does not yield the same degree of resistance to cell adhesion found on other samples. These results indicate that the details of the surface functionalization step are crucial for surface engineering of implant devices by biological molecules.
Collapse
Affiliation(s)
- M Morra
- Nobil Bio Ricerche, Strada San Rocco, Villafranca d'Asti, Italy.
| | | | | | | | | |
Collapse
|
36
|
Honda MJ, Shinohara Y, Sumita Y, Tonomura A, Kagami H, Ueda M. Shear stress facilitates tissue-engineered odontogenesis. Bone 2006; 39:125-33. [PMID: 16469551 DOI: 10.1016/j.bone.2005.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 10/27/2005] [Accepted: 12/07/2005] [Indexed: 11/27/2022]
Abstract
Numerous studies have demonstrated the effect of shear stress on osteoblasts, but its effect on odontogenic cells has never been reported. In this study, we focused on the effect of shear stress on facilitating tissue-engineered odontogenesis by dissociated single cells. Cells were harvested from the porcine third molar tooth at the early stage of crown formation, and the isolated heterogeneous cells were seeded on a biodegradable polyglycolic acid fiber mesh. Then, cell-polymer constructs with and without exposure to shear stress were evaluated by in vitro and in vivo studies. In in vitro studies, the expression of both epithelial and mesenchymal odontogenic-related mRNAs was significantly enhanced by shear stress for 2 h. At 12 h after exposure to shear stress, the expression of amelogenin, bone sialoprotein and vimentin protein was significantly enhanced compared with that of control. Moreover, after 7 days, alkaline phosphatase activity exhibited a significant increase without any significant effect on cell proliferation in vitro. In vivo, enamel and dentin tissues formed after 15 weeks of in vivo implantation in constructs exposure to in vitro shear stress for 12 h. Such was not the case in controls. We concluded that shear stress facilitates odontogenic cell differentiation in vitro as well as the process of tooth tissue engineering in vivo.
Collapse
Affiliation(s)
- M J Honda
- Tooth Regeneration, The Division of Stem Cell Engineering, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | | | | | | | | | | |
Collapse
|