1
|
Deffo G, Tonleu Temgoua RC, Njanja E, Puzari P. Bionanocomposite materials for electroanalytical applications: current status and future challenges. NANOSCALE ADVANCES 2024; 6:d3na01111a. [PMID: 39170768 PMCID: PMC11333954 DOI: 10.1039/d3na01111a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
Bionanocomposites are materials composed of particles with at least one dimension in the range of 1-100 nm and a constituent of biological origin or biopolymers. They are the subject of current research interest as they provide exciting platforms and act as an interface between materials science, biology, and nanotechnology and find applications in disciplines such as electrochemistry, biomedicine, biosorption, aerospace, tissue engineering and packaging. They have different properties such as high conductivity, thermal stability, electrocatalytic ability, biocompatibility, adsorption ability and biodegradability, which can be tuned by their preparation methods, functionalities and applications. However, depending on the objective or the goal of a research project, specific preparation and characterization of bionanocomposites can be undertaken to understand the behavior and confirm the applicability of a bionanocomposite in a given field. Like in electroanalysis applications, electrode materials should be porous (meso- and macro-porosities), having large specific area (at least having a Brunauer-Emmett-Teller surface of 200 m2 g-1), higher stability over time with acceptable power recovery between 95% and 105%, good electrocatalytic ability, and be a good absorbent and a good conductor of electricity (that is to say, it facilitates the transfer of electrons from the solution to the surface of the electrode and vice versa). The present review focuses on the most used method of preparation of bionanocomposites with the critical aspect and their physicochemical and electrochemical characterization techniques, and finally, the practical situations of application of bionanocomposite materials as modified electrodes for electroanalysis of several groups of analytes and a comparison with non-bionanocomposite electrodes are discussed. The future scope of bionanocomposites in the field of electroanalysis is also addressed in this review. But before that, a general overview of bionanocomposite materials in relation to other types of materials is presented to avoid any misunderstanding.
Collapse
Affiliation(s)
- Gullit Deffo
- Department of Chemistry, Electrochemistry and Chemistry of Materials, Faculty of Science, University of Dschang P. O. Box 67 Dschang Cameroon
- Department of Chemical Sciences, Tezpur University Tezpur Assam 784028 India
| | - Ranil Clément Tonleu Temgoua
- Department of Chemistry, Electrochemistry and Chemistry of Materials, Faculty of Science, University of Dschang P. O. Box 67 Dschang Cameroon
| | - Evangéline Njanja
- Department of Chemistry, Electrochemistry and Chemistry of Materials, Faculty of Science, University of Dschang P. O. Box 67 Dschang Cameroon
| | - Panchanan Puzari
- Department of Chemical Sciences, Tezpur University Tezpur Assam 784028 India
| |
Collapse
|
2
|
Chen C, Wang X, Chen W, Liu Q, Wang L. Encapsulation of phenolic acids within food-grade carriers systems: a systematic review. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 38764436 DOI: 10.1080/10408398.2024.2350616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Phenolic acids are natural compounds with potential therapeutic effects against various diseases. However, their incorporation into food and pharmaceutical products is limited by challenges such as instability, low solubility, and reduced bioavailability. This systematic review summarizes recent advances in phenolic acid encapsulation using food-grade carrier systems, focusing on proteins, lipids, and polysaccharides. Encapsulation efficiency, release behavior, and bioavailability are examined, as well as the potential health benefits of encapsulated phenolic acids in food products. Strategies to address limitations of current encapsulation systems are also proposed. Encapsulation has emerged as a promising method to enhance the stability and bioavailability of phenolic acids in food products, and various encapsulation technologies have been developed for this purpose. The use of proteins, lipids, and carbohydrates as carriers in food-grade encapsulation systems remains a common approach, but it is associated with certain limitations. Future research on phenolic acid encapsulation should focus on developing environmentally friendly, organic solvent-free, low-energy, scalable, and stable encapsulation systems, as well as co-encapsulation methods that combine multiple phenolic acids or phenolic acids with other bioactive substances to produce synergistic effects.
Collapse
Affiliation(s)
- Chao Chen
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| | - Xiao Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wenqi Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qin Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lifeng Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Wang Y, Lin J, Fu H, Yu B, Zhang G, Hu Y, Xu FJ. A Janus Gelatin Sponge with a Procoagulant Nanoparticle-Embedded Surface for Coagulopathic Hemostasis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:353-363. [PMID: 38148331 DOI: 10.1021/acsami.3c15517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Apart from the wide and safe application of natural polymer-based hemostatic materials/devices, it is still desirable to develop new types of hemostatic materials that can achieve both potent coagulopathic hemostasis and a facile preparation process. In this work, one Janus gelatin sponge (J-ZGS) is readily constructed for both coagulation-dependent and coagulopathic hemostasis by embedding zein nanoparticles on the surface of a self-prepared gelatin sponge (S-GS): zein nanoparticles were facilely prepared by an antisolvent method to achieve procoagulant blood-material interactions, while S-GS was prepared by freeze-drying a foaming gelatin solution. Due to the distinct secondary structure, the optimal zein nanoparticles possessed a higher in vitro hemostatic property than the pristine zein powder and other nanoparticles, the underlying mechanism of which was revealed as the superior RBC/platelet adhesion property in the presence/absence of plasma proteins. Compared with S-GS and a commercial gelatin sponge, J-ZGS achieved a significantly higher in vitro hemostatic property and similarly good blood compatibility/cytocompatibility. Moreover, in vivo artery-injury models confirmed the outstanding hemostatic performance of J-ZGS under both coagulation-dependent and coagulopathic conditions. Our work offers an appealing approach for developing potent hemostatic sponges from natural polymer-based nanoparticles that could be further extended to versatile hemostatic materials for coagulopathic hemostasis.
Collapse
Affiliation(s)
- Yu Wang
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P.R. China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Jie Lin
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P.R. China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Hao Fu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P.R. China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Bingran Yu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P.R. China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Guochao Zhang
- Department of General Surgery, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Yang Hu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P.R. China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Fu-Jian Xu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P.R. China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|
4
|
Vishnevetskii DV, Mekhtiev AR, Averkin DV, Polyakova EE. Cysteine-Silver-Polymer Systems for the Preparation of Hydrogels and Films with Potential Applications in Regenerative Medicine. Gels 2023; 9:924. [PMID: 38131910 PMCID: PMC10742544 DOI: 10.3390/gels9120924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
Herein, the problem concerning the poorer mechanical properties of gels based on low molecular weight gelators (LMWGs)-L-cysteine and silver nitrate-was solved by the addition of various polymers-polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP) and polyethylene glycol (PEG)-to the initial cysteine-silver sol (CSS). The physicochemical methods of analysis-viscosimetry, UV spectroscopy, DLS, and SEM-identified that cysteine-silver hydrogels (CSG) based on PVA possess the best rheological properties and porous microstructure (the average pore size is 2-10 µm) compared to gels without the polymer or with PVP or PEG. Such gels are able to form cysteine-silver cryogels (CSC) and then porous cysteine-silver films (CSF) with an average pore size of 10-20 µm and good mechanical, swelling, and adhesion to skin characteristics as long as the structure of CSS particles remains stable. In vitro experiments have shown that hydrogels are non-toxic to normal human fibroblast cells. The obtained materials could potentially be applied to regenerative medicine.
Collapse
Affiliation(s)
- Dmitry V. Vishnevetskii
- Department of Physical Chemistry, Tver State University, Building 33, Zhelyabova Str., Tver 170100, Russia;
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Str., Moscow 191121, Russia
| | - Arif R. Mekhtiev
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Str., Moscow 191121, Russia
| | - Dmitry V. Averkin
- Russian Metrological Institute of Technical Physics and Radio Engineering, Worker’s Settlement Mendeleevo, Building 11, Moscow 141570, Russia;
| | - Elizaveta E. Polyakova
- Department of Physical Chemistry, Tver State University, Building 33, Zhelyabova Str., Tver 170100, Russia;
| |
Collapse
|
5
|
Maeyouf K, Sakpakdeejaroen I, Somani S, Meewan J, Ali-Jerman H, Laskar P, Mullin M, MacKenzie G, Tate RJ, Dufès C. Transferrin-Bearing, Zein-Based Hybrid Lipid Nanoparticles for Drug and Gene Delivery to Prostate Cancer Cells. Pharmaceutics 2023; 15:2643. [PMID: 38004621 PMCID: PMC10675605 DOI: 10.3390/pharmaceutics15112643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Gene therapy holds great promise for treating prostate cancer unresponsive to conventional therapies. However, the lack of delivery systems that can transport therapeutic DNA and drugs while targeting tumors without harming healthy tissues presents a significant challenge. This study aimed to explore the potential of novel hybrid lipid nanoparticles, composed of biocompatible zein and conjugated to the cancer-targeting ligand transferrin. These nanoparticles were designed to entrap the anti-cancer drug docetaxel and carry plasmid DNA, with the objective of improving the delivery of therapeutic payloads to prostate cancer cells, thereby enhancing their anti-proliferative efficacy and gene expression levels. These transferrin-bearing, zein-based hybrid lipid nanoparticles efficiently entrapped docetaxel, leading to increased uptake by PC-3 and LNCaP cancer cells and significantly enhancing anti-proliferative efficacy at docetaxel concentrations exceeding 1 µg/mL. Furthermore, they demonstrated proficient DNA condensation, exceeding 80% at polymer-DNA weight ratios of 1500:1 and 2000:1. This resulted in increased gene expression across all tested cell lines, with the highest transfection levels up to 11-fold higher than those observed with controls, in LNCaP cells. These novel transferrin-bearing, zein-based hybrid lipid nanoparticles therefore exhibit promising potential as drug and gene delivery systems for prostate cancer therapy.
Collapse
Affiliation(s)
- Khadeejah Maeyouf
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (K.M.); (I.S.); (S.S.); (J.M.); (H.A.-J.); (P.L.); (G.M.); (R.J.T.)
| | - Intouch Sakpakdeejaroen
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (K.M.); (I.S.); (S.S.); (J.M.); (H.A.-J.); (P.L.); (G.M.); (R.J.T.)
- Faculty of Medicine, Thammasat University, Klong Nueng, Klong Luang, Pathumthani 12121, Thailand
| | - Sukrut Somani
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (K.M.); (I.S.); (S.S.); (J.M.); (H.A.-J.); (P.L.); (G.M.); (R.J.T.)
| | - Jitkasem Meewan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (K.M.); (I.S.); (S.S.); (J.M.); (H.A.-J.); (P.L.); (G.M.); (R.J.T.)
| | - Hawraa Ali-Jerman
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (K.M.); (I.S.); (S.S.); (J.M.); (H.A.-J.); (P.L.); (G.M.); (R.J.T.)
| | - Partha Laskar
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (K.M.); (I.S.); (S.S.); (J.M.); (H.A.-J.); (P.L.); (G.M.); (R.J.T.)
- Department of Chemistry, School of Science, Gandhi Institute of Technology and Management, Visakhapatnam 530045, Andhra Pradesh, India
| | - Margaret Mullin
- Glasgow Imaging Facility, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Graeme MacKenzie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (K.M.); (I.S.); (S.S.); (J.M.); (H.A.-J.); (P.L.); (G.M.); (R.J.T.)
| | - Rothwelle J. Tate
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (K.M.); (I.S.); (S.S.); (J.M.); (H.A.-J.); (P.L.); (G.M.); (R.J.T.)
| | - Christine Dufès
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (K.M.); (I.S.); (S.S.); (J.M.); (H.A.-J.); (P.L.); (G.M.); (R.J.T.)
| |
Collapse
|
6
|
Yang Y, Chen Q, Liu Q, Wang X, Bai W, Chen Z. Effect of High-Hydrostatic-Pressure Treatment on the Physicochemical Properties of Kafirin. Foods 2023; 12:4077. [PMID: 38002135 PMCID: PMC10670736 DOI: 10.3390/foods12224077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The kafirin derived from Jin Nuo 3 sorghum underwent a high-hydrostatic-pressure (HHP) treatment of 100, 300, and 600 MPa for 10 min to investigate alterations in its physicochemical attributes. The findings exhibited a reduction in protein solubility, declining from 83% to 62%, consequent to the application of the HHP treatment. However, this treatment did not lead to subunit-specific aggregation. The absorption intensity of UV light diminished, and the peak fluorescence absorption wavelength exhibited a shift from 342 nm to 344 nm, indicating an increased polarity within the amino acid microenvironment. In an aqueous solution, the specific surface area expanded from 294.2 m2/kg to 304.5 m2/kg, while the average particle-size value in a 70% ethanol solution rose to 26.3 nm. Conversely, the zeta-potential value decreased from 3.4 mV to 1.3 mV, suggesting a propensity for aggregation in ethanol solutions. A notable rise in the intermolecular β-sheet content to 21.06% was observed, along with a shift in the peak denaturation temperature from 76.33 °C to 86.33 °C. Additionally, the content of disulfide bonds increased to 14.5 μmol/g. Collectively, the application of the HHP treatment not only enhanced the thermal stability but also induced a more ordered secondary structure within the kafirin.
Collapse
Affiliation(s)
- Yajing Yang
- College of Food Science and Engineering, Shanxi Agricultural University, No. 1, Mingxian South Road, Taigu Direct, Jinzhong 030801, China; (Y.Y.); (Q.C.); (X.W.)
| | - Qiongling Chen
- College of Food Science and Engineering, Shanxi Agricultural University, No. 1, Mingxian South Road, Taigu Direct, Jinzhong 030801, China; (Y.Y.); (Q.C.); (X.W.)
| | - Qingshan Liu
- The Sorghum Research Institute, Shanxi Agricultural University, No. 238, Yunhua West Road, Yuci Direct, Jinzhong 030600, China; (Q.L.); (W.B.)
| | - Xiaowen Wang
- College of Food Science and Engineering, Shanxi Agricultural University, No. 1, Mingxian South Road, Taigu Direct, Jinzhong 030801, China; (Y.Y.); (Q.C.); (X.W.)
| | - Wenbin Bai
- The Sorghum Research Institute, Shanxi Agricultural University, No. 238, Yunhua West Road, Yuci Direct, Jinzhong 030600, China; (Q.L.); (W.B.)
| | - Zhenjia Chen
- College of Food Science and Engineering, Shanxi Agricultural University, No. 1, Mingxian South Road, Taigu Direct, Jinzhong 030801, China; (Y.Y.); (Q.C.); (X.W.)
| |
Collapse
|
7
|
Nathan KG, Genasan K, Kamarul T. Polyvinyl Alcohol-Chitosan Scaffold for Tissue Engineering and Regenerative Medicine Application: A Review. Mar Drugs 2023; 21:md21050304. [PMID: 37233498 DOI: 10.3390/md21050304] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Tissue engineering and regenerative medicine (TERM) holds great promise for addressing the growing need for innovative therapies to treat disease conditions. To achieve this, TERM relies on various strategies and techniques. The most prominent strategy is the development of a scaffold. Polyvinyl alcohol-chitosan (PVA-CS) scaffold emerged as a promising material in this field due to its biocompatibility, versatility, and ability to support cell growth and tissue regeneration. Preclinical studies showed that the PVA-CS scaffold can be fabricated and tailored to fit the specific needs of different tissues and organs. Additionally, PVA-CS can be combined with other materials and technologies to enhance its regenerative capabilities. Furthermore, PVA-CS represents a promising therapeutic solution for developing new and innovative TERM therapies. Therefore, in this review, we summarized the potential role and functions of PVA-CS in TERM applications.
Collapse
Affiliation(s)
- Kavitha Ganesan Nathan
- Department of Orthopedic Surgery, Faculty of Medicine, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Krishnamurithy Genasan
- Department of Physiology, Faculty of Medicine, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Tunku Kamarul
- Department of Orthopedic Surgery, Faculty of Medicine, University Malaya, Kuala Lumpur 50603, Malaysia
- Advanced Medical and Dental Institute (AMDI), University Sains Malaysia, Bertam, Kepala Batas 13200, Malaysia
| |
Collapse
|
8
|
Zhang Y, Raza A, Xue YQ, Yang G, Hayat U, Yu J, Liu C, Wang HJ, Wang JY. Water-responsive 4D printing based on self-assembly of hydrophobic protein “Zein” for the control of degradation rate and drug release. Bioact Mater 2023; 23:343-352. [DOI: 10.1016/j.bioactmat.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/13/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
|
9
|
Shahbazi K, Akbari I, Baniasadi H. Electrosprayed curcumin‐zein@polycaprolactone‐mucilage capsules for an improved sustained release. POLYM ENG SCI 2023. [DOI: 10.1002/pen.26289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Kimia Shahbazi
- Department of Chemical Engineering, Science and Research Branch Islamic Azad University Tehran Iran
| | - Iman Akbari
- Department of Chemical Engineering, Science and Research Branch Islamic Azad University Tehran Iran
| | - Hossein Baniasadi
- Department of Chemical Engineering, Science and Research Branch Islamic Azad University Tehran Iran
| |
Collapse
|
10
|
Liu X, Zhao L, Wu B, Chen F. Improving solubility of poorly water-soluble drugs by protein-based strategy: A review. Int J Pharm 2023; 634:122704. [PMID: 36758883 DOI: 10.1016/j.ijpharm.2023.122704] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
Poorly water-soluble drugs are frequently encountered and present a most challengeable difficulty in pharmaceutical development. Poor solubility of drugs can lead to suboptimal bioavailability and therapeutic efficiency. Increasing efforts have been contributed to improve the solubility of poorly water-soluble drugs for better pharmacokinetics and pharmacodynamics. Among various solubility enhancement technologies, protein-based strategy to address poorly water-soluble drugs issues has special interests for natural advantages including versatile interactions between proteins and hydrophobic drugs, biocompatibility, biodegradation, and metabolization of proteins. The protein-drug formulations could be formed by covalent conjugations or noncovalent interactions to facilitate solubility of poorly water-soluble drugs. This review is to summarize the advances using proteins including plant proteins, mammalian proteins, and recombinant proteins, to enhance water solubility of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Xiaowen Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China; Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai 200433, China.
| | - Limin Zhao
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China; Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai 200433, China
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China; Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai 200433, China.
| |
Collapse
|
11
|
Liu G, An D, Li J, Deng S. Zein-based nanoparticles: Preparation, characterization, and pharmaceutical application. Front Pharmacol 2023; 14:1120251. [PMID: 36817160 PMCID: PMC9930992 DOI: 10.3389/fphar.2023.1120251] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
Zein, as one of the natural and GRAS proteins in plant, is renewable, nontoxic, biocompatible and biodegradable. Over the past decade, many research efforts have been devoted to zein-based biomaterials for several industrial applications. Combining with research experiences in our research group, the preparation methods, characterizations and pharmaceutical applications of zein-based nanoparticles were summarized in this review. Zein NPs with different particle nanostructures have been prepared by chemical crosslinking, desolvating, dispersing and micromixing strategies. The pharmaceutical applications of zein NPs are mainly focus on the drug delivery. Zein NPs can improve the drug stability, increase the oral bioavailability, control the drug release and enhance the drug targeting, thereby improving the pharmaceutical effect effectively. More efforts are required to analyze the relationship among preparation methods, particle nanostructures and pharmaceutical properties in virtue of quality by design approach, and further promote the scale-up production and clinical application of zein NPs.
Collapse
Affiliation(s)
- Guijin Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | | | - Junjian Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Shiming Deng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| |
Collapse
|
12
|
Shwetha HJ, Arathi BP, Beto Mukherjee M, Ambedkar R, Shivaprasad S, Raichur AM, Lakshminarayana R. Zein-Alginate-Phosphatidylcholine Nanocomplex Efficiently Delivers Lycopene and Lutein over Dietary-Derived Carotenoid Mixed Micelles in Caco-2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15474-15486. [PMID: 36456189 DOI: 10.1021/acs.jafc.2c05008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This study evaluated the potency of zein-alginate-phosphatidylcholine nanoparticles (NPs) on bioaccessibility/intestinal uptake of encapsulated lycopene (LY) and lutein (LT) versus dietary absorption using simulated digestion and human intestinal Caco-2 cells. LY-zein-alginate-PC (LYZAP) and LT-zein-alginate-PC (LTZAP) NPs yield desired properties, which exhibit sustained release and are suitable for oral administration. Interestingly, co-treatment of LYZAP + LTZAP showed better release of carotenoids instead of individual treatment at intestinal pH. Bioaccessibility, cellular uptake, and basolateral secretion of LY and LT from NPs were significantly enhanced than micellar carotenoids (dietary mode of absorption). The increased absorption of carotenoids from NPs correlated with triglyceride levels. The intestinal cell uptake of carotenoids by nanoencapsulation may be due to endocytosis, paracellular, and SRB-1 protein-mediated transport. Overall, LYZAP and LTZAP NPs possess superior properties to control the release and cellular uptake of unique or distinct carotenoids. The inclusion of alginate and phosphatidylcholine in zein-based nanoencapsulation could be a promising strategy to improve carotenoid bioavailability.
Collapse
Affiliation(s)
- Hulikere Jagdish Shwetha
- Department of Microbiology and Biotechnology, Bangalore University, Jnana Bharathi Campus, Bengaluru560 056, India
| | | | - Mousumi Beto Mukherjee
- Department of Materials Engineering, Indian Institute of Science, Bengaluru560 012, India
| | - Rudrappa Ambedkar
- Department of Microbiology and Biotechnology, Bangalore University, Jnana Bharathi Campus, Bengaluru560 056, India
| | - Shilpa Shivaprasad
- Department of Microbiology and Biotechnology, Bangalore University, Jnana Bharathi Campus, Bengaluru560 056, India
| | - Ashok M Raichur
- Department of Materials Engineering, Indian Institute of Science, Bengaluru560 012, India
| | - Rangaswamy Lakshminarayana
- Department of Microbiology and Biotechnology, Bangalore University, Jnana Bharathi Campus, Bengaluru560 056, India
| |
Collapse
|
13
|
Wang Y, Du Y, Liang C, Li S, Du K. One-step preparation of macroporous zein microspheres by solvent diffusion for dye adsorption. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
14
|
Theoretical and experimental perspectives of interaction mechanism between zein and lysozyme. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Self-assembled zein organogels as in situ forming implant drug delivery system and 3D printing ink. Int J Pharm 2022; 627:122206. [PMID: 36126824 DOI: 10.1016/j.ijpharm.2022.122206] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 01/16/2023]
Abstract
Recently, biomedical applications of organogels have been increasing; however, there is a demand for bio-based polymers. Here, we report self-assembled zein organogels in N-methyl pyrrolidone (NMP), Dimethyl sulfoxide (DMSO), and glycerol formal (GF). The gel formation was driven by the solvent's polarity and the hydrogen bonding component of Hansen Solubility Parameters was important in promoting gelation. Gels exhibited shear-thinning and thixotropic properties. Furthermore, water-induced self-assembly of zein allows mechanically robust in situ implant formation by solvent exchange. Ciprofloxacin was incorporated as a model drug and sustained release depending upon the solvent exchange rate was observed. In situ implants in agarose gel retained antibacterial efficacy against S. aureus for more than 14 days. Zein-based organogels were further applied as 3D printing ink and it was found that zein gel in DMSO had superior printability than gels prepared in NMP and GF. Using three solvents to prepare organogels can enable the encapsulation of various drugs and facilitate the preparation of composite gels with other biocompatible polymers. These organogel systems can further be used for developing 3D printed drug delivery systems or scaffolds for tissue engineering.
Collapse
|
16
|
Recent progress in the application of plant-based colloidal drug delivery systems in the pharmaceutical sciences. Adv Colloid Interface Sci 2022; 307:102734. [DOI: 10.1016/j.cis.2022.102734] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/24/2022] [Accepted: 07/13/2022] [Indexed: 01/11/2023]
|
17
|
De Marco I. Zein Microparticles and Nanoparticles as Drug Delivery Systems. Polymers (Basel) 2022; 14:polym14112172. [PMID: 35683844 PMCID: PMC9182932 DOI: 10.3390/polym14112172] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/24/2022] [Indexed: 12/18/2022] Open
Abstract
Zein is a natural, biocompatible, and biodegradable polymer widely used in the pharmaceutical, biomedical, and packaging fields because of its low water vapor permeability, antibacterial activity, and hydrophobicity. It is a vegetal protein extracted from renewable resources (it is the major storage protein from corn). There has been growing attention to producing zein-based drug delivery systems in the recent years. Being a hydrophobic biopolymer, it is used in the controlled and targeted delivery of active principles. This review examines the present-day landscape of zein-based microparticles and nanoparticles, focusing on the different techniques used to obtain particles, the optimization of process parameters, advantages, disadvantages, and final applications.
Collapse
Affiliation(s)
- Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| |
Collapse
|
18
|
Jafari DA, Baspinar Y, Ustundas M, Bayraktar O, Kara HG, Sezgin C. Cytotoxicity and Gene Expression Studies of Curcumin and Piperine Loaded Nanoparticles on Breast Cancer Cells. RUSS J APPL CHEM+ 2022. [DOI: 10.1134/s1070427222010177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Santos J, Trujillo-Cayado LA, Carrello H, Cidade MT, Alfaro MC. Optimization of sonication parameters to obtain food emulsions stabilized by zein: formation of zein-diutan gum/zein-guar gum complexes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2127-2134. [PMID: 34605029 DOI: 10.1002/jsfa.11554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 09/02/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Zein as a sole material is not suitable for technological applications since it is not flexible. A possible solution to extend the applications of zein is the formation of zein-polysaccharide complexes. As a first step, sonication parameters were optimized to obtain finer emulsions formulated with zein, rosemary essential oil as food preservative, and sunflower oil, by means of response surface methodology. After the formation of these guar- or diutan-zein complexes the rheological properties of these food emulsions were evaluated. RESULTS An increase in sonication power, sonication time and cycles provoked a decrease in mean droplet size and a lack of recoalescence. The optimized emulsion was the starting point to form two different complexes: zein with diutan gum and zein with guar gum at different concentrations. Rheological properties as well as the microstructure observed by field emission scanning electron microscopy (FESEM) were analyzed. Interestingly, zein-guar gum complexes did not form a rheological gel; as a consequence, emulsions containing them seem to undergo a destabilization process with aging time. In contrast, emulsions formulated with zein-diutan gum presented a 3D network, observed by FESEM technique and proved by rheological measurements. CONCLUSION While emulsions containing zein-guar gum complexes did not form networks to stabilize oil droplets, zein-diutan gum complexes did. This work brings to light the importance of the selection of polysaccharide used in food emulsions formulated with zein. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jenifer Santos
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, Seville, Spain
| | - Luis A Trujillo-Cayado
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, Seville, Spain
| | - Henrique Carrello
- i3N/CENIMAT, Department of Materials Science, Faculty of Sciences and Technology, Universidade, NOVA de Lisboa, Caparica, Portugal
| | - Maria T Cidade
- i3N/CENIMAT, Department of Materials Science, Faculty of Sciences and Technology, Universidade, NOVA de Lisboa, Caparica, Portugal
| | - Maria-Carmen Alfaro
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
20
|
Meewan J, Somani S, Laskar P, Irving C, Mullin M, Woods S, Roberts CW, Alzahrani AR, Ferro VA, McGill S, Weidt S, Burchmore R, Dufès C. Limited Impact of the Protein Corona on the Cellular Uptake of PEGylated Zein Micelles by Melanoma Cancer Cells. Pharmaceutics 2022; 14:pharmaceutics14020439. [PMID: 35214171 PMCID: PMC8877401 DOI: 10.3390/pharmaceutics14020439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 12/17/2022] Open
Abstract
The formation of a protein layer “corona” on the nanoparticle surface upon entry into a biological environment was shown to strongly influence the interactions with cells, especially affecting the uptake of nanomedicines. In this work, we present the impact of the protein corona on the uptake of PEGylated zein micelles by cancer cells, macrophages, and dendritic cells. Zein was successfully conjugated with poly(ethylene glycol) (PEG) of varying chain lengths (5K and 10K) and assembled into micelles. Our results demonstrate that PEGylation conferred stealth effects to the zein micelles. The presence of human plasma did not impact the uptake levels of the micelles by melanoma cancer cells, regardless of the PEG chain length used. In contrast, it decreased the uptake by macrophages and dendritic cells. These results therefore make PEGylated zein micelles promising as potential drug delivery systems for cancer therapy.
Collapse
Affiliation(s)
- Jitkasem Meewan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; (J.M.); (S.S.); (P.L.); (S.W.); (C.W.R.); (A.R.A.); (V.A.F.)
| | - Sukrut Somani
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; (J.M.); (S.S.); (P.L.); (S.W.); (C.W.R.); (A.R.A.); (V.A.F.)
| | - Partha Laskar
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; (J.M.); (S.S.); (P.L.); (S.W.); (C.W.R.); (A.R.A.); (V.A.F.)
- Department of Immunology and Microbiology, University of Texas Health Rio Grande Valley, 5300 North L Street 881 Madison, McAllen, TX 78504, USA
| | - Craig Irving
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK;
| | - Margaret Mullin
- Glasgow Imaging Facility, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Stuart Woods
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; (J.M.); (S.S.); (P.L.); (S.W.); (C.W.R.); (A.R.A.); (V.A.F.)
| | - Craig W. Roberts
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; (J.M.); (S.S.); (P.L.); (S.W.); (C.W.R.); (A.R.A.); (V.A.F.)
| | - Abdullah R. Alzahrani
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; (J.M.); (S.S.); (P.L.); (S.W.); (C.W.R.); (A.R.A.); (V.A.F.)
- Department of Pharmacology & Toxicology, Faculty of Medicine, Umm Al-Qura University, Al-Abidiyah, P.O. Box 13578, Makkah 21955, Saudi Arabia
| | - Valerie A. Ferro
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; (J.M.); (S.S.); (P.L.); (S.W.); (C.W.R.); (A.R.A.); (V.A.F.)
| | - Suzanne McGill
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK; (S.M.); (S.W.); (R.B.)
| | - Stefan Weidt
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK; (S.M.); (S.W.); (R.B.)
| | - Richard Burchmore
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK; (S.M.); (S.W.); (R.B.)
| | - Christine Dufès
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; (J.M.); (S.S.); (P.L.); (S.W.); (C.W.R.); (A.R.A.); (V.A.F.)
- Correspondence: ; Tel.: +44-141-548-3796
| |
Collapse
|
21
|
Tortorella S, Maturi M, Vetri Buratti V, Vozzolo G, Locatelli E, Sambri L, Comes Franchini M. Zein as a versatile biopolymer: different shapes for different biomedical applications. RSC Adv 2021; 11:39004-39026. [PMID: 35492476 PMCID: PMC9044754 DOI: 10.1039/d1ra07424e] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/11/2021] [Indexed: 12/25/2022] Open
Abstract
In recent years, the interest regarding the use of proteins as renewable resources has deeply intensified. The strongest impact of these biomaterials is clear in the field of smart medicines and biomedical engineering. Zein, a vegetal protein extracted from corn, is a suitable biomaterial for all the above-mentioned purposes due to its biodegradability and biocompatibility. The controlled drug delivery of small molecules, fabrication of bioactive membranes, and 3D assembly of scaffold for tissue regeneration are just some of the topics now being extensively investigated and reported in the literature. Herein, we review the recent literature on zein as a biopolymer and its applications in the biomedical world, focusing on the different shapes and sizes through which it can be manipulated. Zein a versatile biomaterial in the biomedical field. Easy to chemically functionalize with good emulsification properties, can be employed in drug delivery, fabrication of bioactive membranes and 3D scaffolds for tissue regeneration.![]()
Collapse
Affiliation(s)
- Silvia Tortorella
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum - University of Bologna Viale Risorgimento 4 40136 Bologna Italy .,Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore" (IEOS), Consiglio Nazionale delle Ricerche (CNR) Via S. Pansini 5 80131 Naples Italy
| | - Mirko Maturi
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum - University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Veronica Vetri Buratti
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum - University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Giulia Vozzolo
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum - University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Erica Locatelli
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum - University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Letizia Sambri
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum - University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Mauro Comes Franchini
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum - University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| |
Collapse
|
22
|
Bakhshandeh B, Nateghi SS, Gazani MM, Dehghani Z, Mohammadzadeh F. A review on advances in the applications of spider silk in biomedical issues. Int J Biol Macromol 2021; 192:258-271. [PMID: 34627845 DOI: 10.1016/j.ijbiomac.2021.09.201] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/25/2021] [Accepted: 09/29/2021] [Indexed: 01/09/2023]
Abstract
Spider silk, as one of the hardest natural and biocompatible substances with extraordinary strength and flexibility, have become an ideal option in various areas of science and have made their path onto the biomedical industry. Despite its growing popularity, the difficulties in the extraction of silks from spiders and farming them have made it unaffordable and almost impossible for industrial scale. Biotechnology helped production of spider silks recombinantly in different hosts and obtaining diverse morphologies out of them based on different processing and assembly procedures. Herein, the characteristics of these morphologies and their advantages and disadvantages are summarized. A detailed view about applications of recombinant silks in skin regeneration and cartilage, tendon, bone, teeth, cardiovascular, and neural tissues engineering are brought out, where there is a need for strong scaffolds to support cell growth. Likewise, spider silk proteins have applications as conduit constructs, medical sutures, and 3D printer bioinks. Other characteristics of spider silks, such as low immunogenicity, hydrophobicity, homogeneity, and adjustability, have attracted much attention in drug and gene delivery. Finally, the challenges and obstacles ahead for industrializing the production of spider silk proteins in sufficient quantities in biomedicine, along with solutions to overcome these barriers, are discussed.
Collapse
Affiliation(s)
- Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| | - Seyedeh Saba Nateghi
- Department of Microbiology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Maddah Gazani
- Department of Microbiology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Biology, College of Science, Tehran University, Tehran, Iran
| | - Zahra Dehghani
- Department of Cellular and Molecular Biology, Faculty of Biology, College of Science, Tehran University, Tehran, Iran
| | - Fatemeh Mohammadzadeh
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
23
|
Karki S, Gohain MB, Yadav D, Ingole PG. Nanocomposite and bio-nanocomposite polymeric materials/membranes development in energy and medical sector: A review. Int J Biol Macromol 2021; 193:2121-2139. [PMID: 34780890 DOI: 10.1016/j.ijbiomac.2021.11.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 01/13/2023]
Abstract
Nanocomposite and bio-nanocomposite polymer materials/membranes have fascinated prominent attention in the energy as well as the medical sector. Their composites make them appropriate choices for various applications in the medical, energy and industrial sectors. Composite materials are subject of interest in the polymer industry. Different kinds of fillers, such as cellulose-based fillers, carbon black, clay nanomaterials, glass fibers, ceramic nanomaterial, carbon quantum dots, talc and many others have been incorporated into polymers to improve the quality of the final product. These results are dependent on a variety of factors; however, nanoparticle dispersion and distribution are major obstacles to fully using nanocomposites/bio-nanocomposites materials/membranes in various applications. This review examines the various nanocomposite and bio-nanocomposite materials applications in the energy and medical sector. The review also covers the variety of ways for increasing nanocomposite and bio-nanocomposite materials features, each with its own set of applications. Recent researches on composite materials have shown that polymeric nanocomposites and bio-nanocomposites are promising materials that have been intensively explored for many applications that include electronics, environmental remediation, energy, sensing (biosensor) and energy storage devices among other applications. In this review, we studied various nanocomposite and bio-nanocomposite materials, their controlling parameters to develop the product and examine their features and applications in the fields of energy and the medical sector.
Collapse
Affiliation(s)
- Sachin Karki
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Moucham Borpatra Gohain
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
| | - Diksha Yadav
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Pravin G Ingole
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
24
|
Monteiro RA, Camara MC, de Oliveira JL, Campos EVR, Carvalho LB, Proença PLDF, Guilger-Casagrande M, Lima R, do Nascimento J, Gonçalves KC, Polanczyk RA, Fraceto LF. Zein based-nanoparticles loaded botanical pesticides in pest control: An enzyme stimuli-responsive approach aiming sustainable agriculture. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126004. [PMID: 33992010 DOI: 10.1016/j.jhazmat.2021.126004] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/15/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Nanoencapsulation of biopesticides is an important strategy to increase the efficiency of these compounds, reducing losses and adverse effects on non-target organisms. This study describes the preparation and characterisation of zein nanoparticles containing the botanical compounds limonene and carvacrol, responsive to proteolytic enzymes present in the insects guts. The spherical nanoparticles, prepared by the anti-solvent precipitation method, presented in the nanoparticle tracking analysis (NTA) a concentration of 4.7 × 1012 ± 1.3 × 1011 particles.mL-1 and an average size of 125 ± 2 nm. The formulations showed stability over time, in addition to not being phytotoxic to Phaseolus vulgaris plants. In vivo tests demonstrated that formulations of zein nanoparticles containing botanical compounds showed higher mortality to Spodoptera frugiperda larvae. In addition, the FTIC probe (fluorescein isothiocyanate) showed wide distribution in the larvae midgut, as well as being identified in the feces. The trypsin enzyme, as well as the enzymatic extract from insects midgut, was effective in the degradation of nanoparticles containing the mixture of botanical compounds, significantly reducing the concentration of nanoparticles and the changes in size distribution. The zein degradation was confirmed by the disappearance of the protein band in the electrophoresis gel, by the formation of the lower molecular weight fragments and also by the greater release of FTIC after enzymes incubation. In this context, the synthesis of responsive nanoparticles has great potential for application in pest management, increasing the selectivity and specificity of the system and contributing to a more sustainable agriculture.
Collapse
Affiliation(s)
- Renata Aparecida Monteiro
- Institute of Science and Technology, São Paulo State University (UNESP), Sorocaba, São Paulo 18087-180, Brazil
| | - Marcela Candido Camara
- Institute of Science and Technology, São Paulo State University (UNESP), Sorocaba, São Paulo 18087-180, Brazil
| | - Jhones Luiz de Oliveira
- Faculty of Agronomy and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo 14884-900, Brazil
| | | | - Lucas Bragança Carvalho
- Institute of Science and Technology, São Paulo State University (UNESP), Sorocaba, São Paulo 18087-180, Brazil
| | | | - Mariana Guilger-Casagrande
- Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials (LABiToN), University of Sorocaba (UNISO), Sorocaba, São Paulo 18023-000, Brazil
| | - Renata Lima
- Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials (LABiToN), University of Sorocaba (UNISO), Sorocaba, São Paulo 18023-000, Brazil
| | - Joacir do Nascimento
- Faculty of Agronomy and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo 14884-900, Brazil
| | - Kelly Cristina Gonçalves
- Faculty of Agronomy and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo 14884-900, Brazil
| | - Ricardo Antônio Polanczyk
- Faculty of Agronomy and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo 14884-900, Brazil
| | - Leonardo Fernandes Fraceto
- Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials (LABiToN), University of Sorocaba (UNISO), Sorocaba, São Paulo 18023-000, Brazil.
| |
Collapse
|
25
|
Nataraj D, Guna V, Battampara P, Shivashankara NG, Rizzarelli P, Reddy N. Extraction and characterisation of bioactive proteins from Pongamia pinnata and their conversion into bioproducts for food packaging applications. J BIOACT COMPAT POL 2021. [DOI: 10.1177/08839115211043280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this research, proteins were obtained from Pongamia pinnata oil meal and subsequently converted into films and compression molded into various packaging products. Films with a maximum tensile strength of 1.9 MPa were obtained when 15% citric acid was used as the crosslinker. Minimum swelling of 120% was seen in 20% citric acid crosslinked film whereas the uncrosslinked films readily disintegrated in water. The protein films had excellent antioxidant properties with an IC50 value of 14.6 µg/ml compared to 26.9 µg/ml for the standard ascorbic acid. The pongamia protein-based bioproducts showed good activity against Bacillus cereus and Aspergillus niger. Unique properties, low cost, and large availability make pongamia proteins an ideal biopolymer for the development of green and sustainable materials and bioproducts.
Collapse
Affiliation(s)
- Divya Nataraj
- Center for Incubation, Innovation, Research and Consultancy, Jyothy Institute of Technology, Bengaluru, India
| | - Vijaykumar Guna
- Center for Incubation, Innovation, Research and Consultancy, Jyothy Institute of Technology, Bengaluru, India
| | - Prajwal Battampara
- Center for Incubation, Innovation, Research and Consultancy, Jyothy Institute of Technology, Bengaluru, India
| | | | - Paola Rizzarelli
- CNR – Istituto per i Polimeri, Compositi e Biomateriali (IPCB) – SS di Catania, Catania, Italy
| | - Narendra Reddy
- Center for Incubation, Innovation, Research and Consultancy, Jyothy Institute of Technology, Bengaluru, India
| |
Collapse
|
26
|
Tavares-Negrete JA, Aceves-Colin AE, Rivera-Flores DC, Díaz-Armas GG, Mertgen AS, Trinidad-Calderón PA, Olmos-Cordero JM, Gómez-López EG, Pérez-Carrillo E, Escobedo-Avellaneda ZJ, Tamayol A, Alvarez MM, Trujillo-de Santiago G. Three-Dimensional Printing Using a Maize Protein: Zein-Based Inks in Biomedical Applications. ACS Biomater Sci Eng 2021; 7:3964-3979. [PMID: 34197076 DOI: 10.1021/acsbiomaterials.1c00544] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The use of three-dimensional (3D) printing for biomedical applications has expanded exponentially in recent years. However, the current portfolio of 3D printable inks is still limited. For instance, only few protein matrices have been explored as printing/bioprinting materials. Here, we introduce the use of zein, the primary constitutive protein in maize seeds, as a 3D printable material. Zein-based inks were prepared by dissolving commercial zein powder in ethanol with or without polyethylene glycol (PEG400) as a plasticizer. The rheological characteristics of our materials, studied during 21 days of aging/maturation, showed an increase in the apparent viscosity as a function of time in all formulations. The addition of PEG400 decreased the apparent viscosity. Inks with and without PEG400 and at different maturation times were tested for printability in a BioX bioprinter. We optimized the 3D printing parameters for each ink formulation in terms of extrusion pressure and linear printing velocity. Higher fidelity structures were obtained with inks that had maturation times of 10 to 14 days. We present different proof-of-concept experiments to demonstrate the versatility of the engineered zein inks for diverse biomedical applications. These include printing of complex and/or free-standing 3D structures, tablets for controlled drug release, and scaffolds for cell culture.
Collapse
Affiliation(s)
- Jorge Alfonso Tavares-Negrete
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico.,Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico
| | - Alberto Emanuel Aceves-Colin
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico.,Departamento de Ingeniería Mecatrónica y Eléctrica, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico
| | - Delia Cristal Rivera-Flores
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico.,Departamento de Ciencias, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico
| | - Gladys Guadalupe Díaz-Armas
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico.,Departamento de Ingeniería Mecatrónica y Eléctrica, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico
| | - Anne-Sophie Mertgen
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico.,Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico
| | - Plinio Alejandro Trinidad-Calderón
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico.,Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico
| | - Jorge Miguel Olmos-Cordero
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico.,Departamento de Ingeniería Mecatrónica y Eléctrica, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico
| | - Elda Graciela Gómez-López
- Departamento de Ciencias, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico
| | - Esther Pérez-Carrillo
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico.,Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico
| | - Zamantha Judith Escobedo-Avellaneda
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico.,Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - Mario Moisés Alvarez
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico.,Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico
| | - Grissel Trujillo-de Santiago
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico.,Departamento de Ingeniería Mecatrónica y Eléctrica, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico
| |
Collapse
|
27
|
Abstract
The cultured meat market has been growing at an accelerated space since the first creation of cultured meat burger back in 2013. Substantial efforts have been made to reduce costs by eliminating serum in growth media and improving process efficiency by employing bioreactors. In parallel, efforts are also being made on scaffolding innovations to offer better cells proliferation, differentiation and tissue development. So far, scaffolds used in cultured meat research are predominantly collagen and gelatin, which are animal-derived. To align with cell-based meat vision i.e. environment conservation and animal welfare, plant-derived biomaterials for scaffolding are being intensively explored. This paper reviews and discusses the advantages and disadvantages of scaffold materials and potential scaffolding related to scale-up solution for the production of cultured meat.
Collapse
Affiliation(s)
- Jasmine Si Han Seah
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Satnam Singh
- Biomanufacturing Technology, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Lay Poh Tan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Deepak Choudhury
- Biomanufacturing Technology, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
28
|
Uddin E, Islam R, Ashrafuzzaman, Bitu NA, Hossain MS, Islam AN, Asraf A, Hossen F, Mohapatra RK, Kudrat-E-Zahan M. Potential Drugs for the Treatment of COVID-19: Synthesis, Brief History and Application. Curr Drug Res Rev 2021; 13:184-202. [PMID: 34126913 DOI: 10.2174/2589977513666210611155426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 02/02/2021] [Accepted: 03/04/2021] [Indexed: 11/22/2022]
Abstract
Coronaviruses (CoVs) belonging to the Betacoronavirus group, an unusually large RNA genome, are characterized by club-like spikes that project from their surface. An outbreak of a novel coronavirus 2019 (nCOVID-19) showing a unique replication strategy and infection has posed a significant threat to international health and the economy around the globe. Scientists around the world are investigating few previously used clinical drugs for the treatment of COVID-19. This review provides synthesis and mode of action of recently investigated drugs like Chloroquine, Hydroxychloroquine, Ivermectin, Selamectin, Remdesivir, Baricitinib, Darunavir, Favipiravir, Lopinavir/ritonavir and Mefloquine hydrochloride that constitute an option for COVID-19 treatment.
Collapse
Affiliation(s)
- Ekhlass Uddin
- Department of chemistry, Rajshahi University, Rajshahi 6205, Bangladesh
| | - Raisul Islam
- Department of chemistry, Rajshahi University, Rajshahi 6205, Bangladesh
| | - Ashrafuzzaman
- Department of chemistry, Rajshahi University, Rajshahi 6205, Bangladesh
| | - Nur Amin Bitu
- Department of chemistry, Rajshahi University, Rajshahi 6205, Bangladesh
| | - Md Saddam Hossain
- Department of Chemistry, Begum Rokeya University, Rangpur, Bangladesh
| | - Abm Nazmul Islam
- Chemistry Discipline, Khulna University, Khulna-9208, Bangladesh
| | - Ali Asraf
- Department of chemistry, Rajshahi University, Rajshahi 6205, Bangladesh
| | - Faruk Hossen
- Department of chemistry, Rajshahi University, Rajshahi 6205, Bangladesh
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Odisha, India
| | - Md Kudrat-E-Zahan
- Department of chemistry, Rajshahi University, Rajshahi 6205, Bangladesh
| |
Collapse
|
29
|
Kim S, Peterson SC. Optimal conditions for the encapsulation of menthol into zein nanoparticles. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Sridhar K, Sharma M, Choudhary A, Dikkala PK, Narsaiah K. Fish and garlic oils hybridized microcapsules: Fortification in functional bread. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Kandi Sridhar
- Department of Food Science Fu Jen Catholic University New Taipei City Taiwan
| | - Minaxi Sharma
- Central Institute of Post‐Harvest Engineering and Technology Ludhiana India
| | - Alka Choudhary
- Central Institute of Post‐Harvest Engineering and Technology Ludhiana India
| | | | - Kairam Narsaiah
- Central Institute of Post‐Harvest Engineering and Technology Ludhiana India
| |
Collapse
|
31
|
Fabrication and characterization of core–shell TiO2-containing nanofibers of PCL-zein by coaxial electrospinning method as an erythromycin drug carrier. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03591-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Alqahtani MS, Kazi M, Alsenaidy MA, Ahmad MZ. Advances in Oral Drug Delivery. Front Pharmacol 2021; 12:618411. [PMID: 33679401 PMCID: PMC7933596 DOI: 10.3389/fphar.2021.618411] [Citation(s) in RCA: 265] [Impact Index Per Article: 88.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
The oral route is the most common route for drug administration. It is the most preferred route, due to its advantages, such as non-invasiveness, patient compliance and convenience of drug administration. Various factors govern oral drug absorption including drug solubility, mucosal permeability, and stability in the gastrointestinal tract environment. Attempts to overcome these factors have focused on understanding the physicochemical, biochemical, metabolic and biological barriers which limit the overall drug bioavailability. Different pharmaceutical technologies and drug delivery systems including nanocarriers, micelles, cyclodextrins and lipid-based carriers have been explored to enhance oral drug absorption. To this end, this review will discuss the physiological, and pharmaceutical barriers influencing drug bioavailability for the oral route of administration, as well as the conventional and novel drug delivery strategies. The challenges and development aspects of pediatric formulations will also be addressed.
Collapse
Affiliation(s)
- Mohammed S. Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Nanobiotechnology Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad A. Alsenaidy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Nanobiotechnology Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Z. Ahmad
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
33
|
Tiwari P, Bharti I, Bohidar HB, Quadir S, Joshi MC, Arfin N. Complex Coacervation and Overcharging during Interaction between Hydrophobic Zein and Hydrophilic Laponite in Aqueous Ethanol Solution. ACS OMEGA 2020; 5:33064-33074. [PMID: 33403268 PMCID: PMC7774070 DOI: 10.1021/acsomega.0c04647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
In this paper, for the first time, we have reported the formation of complex coacervate during interaction between hydrophobic protein, zein, and hydrophilic nanoclay, Laponite, in a 60% v/v ethanol solution at pH 4. Dynamic light scattering and viscosity measurements revealed the formation of zein-Laponite complexes during the interaction between zein at fixed concentration, C Z = 1 mg/mL, and varying concentrations of Laponite, C L (7.8 × 10-4 - 0.25% w/v). Further investigation of the zein-Laponite complexes using turbidity and zeta potential data showed that these complexes could be demarcated in three different regions: Region I, below the charge neutralization region (C Z = 1 mg/mL, C L ≤ 0.00625% w/v) where soluble complexes was formed during interaction between oppositely charged zein and Laponite; Region II, the charge neutralization region (C Z = 1 mg/mL, 0.00625 < C L ≤ 0.05% w/v) where zein-Laponite complexes form neutral coacervates; and Region III, the interesting overcharged coacervates region (C Z = 1 mg/mL, C L > 0.05% w/v). Investigation of coacervates using a fluorescence imaging technique showed that the size of neutral coacervates in region II was large (mean size = 1223.7 nm) owing to aggregation as compared to the small size of coacervates (mean size = 464.7 nm) in region III owing to repulsion between overcharged coacervates. Differential scanning calorimeter, DSC, revealed the presence of an ample amount of bound water in region III. The presence of bound water was evident from the presence of an additional peak at 107 °C in region III apart from normal enthalpy of evaporation of water from coacervates.
Collapse
Affiliation(s)
- Preeti Tiwari
- Soft
condense matter laboratory, Centre for Interdisciplinary Research
In Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Indu Bharti
- Soft
condense matter laboratory, Centre for Interdisciplinary Research
In Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Himadri B Bohidar
- School
of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shabina Quadir
- Multidisciplinary
Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohan C Joshi
- Multidisciplinary
Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi 110025, India
| | - Najmul Arfin
- Soft
condense matter laboratory, Centre for Interdisciplinary Research
In Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
34
|
DeFrates K, Markiewicz T, Xue Y, Callaway K, Gough C, Moore R, Bessette K, Mou X, Hu X. Air-jet spinning corn zein protein nanofibers for drug delivery: Effect of biomaterial structure and shape on release properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111419. [PMID: 33255020 DOI: 10.1016/j.msec.2020.111419] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 01/09/2023]
Abstract
Nanofiber materials are commonly used as delivery vehicles for dermatological drugs due to their high surface-area-to-volume ratio, porosity, flexibility, and reproducibility. In this study air-jet spinning was used as a novel and economic method to fabricate corn zein nanofiber meshes with model drugs of varying solubility, molecular weight and charge. The release profiles of these drugs were compared to their release from corn zein films to elucidate the effect of geometry and structure on drug delivery kinetics. In film samples, over 50% of drug was released after only 2 h. However, fiber samples exhibited more sustained release, releasing less than 50% after one day. FTIR, SEM, and DSC were performed on nanofibers and films before and after release of the drugs. Structural analysis revealed that the incorporation of model drugs into the fibers would transform the zein proteins from a random coil network to a more alpha helical structure. Upon release, the protein fiber reverted to its original random coil network. In addition, thermal analysis indicated that fibers can protect the drug molecules in high temperature above 160 °C, while drugs within films will degrade below 130 °C. These findings can likely be attributed to the mechanical infiltration of the drug molecules into the ordered structure of the zein fibers during their solution fabrication. The slow release from fiber samples can be attributed to this biophysical interaction, illustrating that release is dictated by more than diffusion in protein-based carriers. The controlled release of a wide variety of drugs from the air-jet spun corn zein nanofiber meshes demonstrates their success as drug delivery vehicles that can potentially be incorporated into different biological materials in the future.
Collapse
Affiliation(s)
- Kelsey DeFrates
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Theodore Markiewicz
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Ye Xue
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Kayla Callaway
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA
| | - Christopher Gough
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Robert Moore
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA
| | - Kristen Bessette
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Xiaoyang Mou
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA.
| |
Collapse
|
35
|
Kairam N, Kandi S, Choudhary A, Sharma M. Development of flaxseed and garlic oil hydrogel beads by novel ionotropic gelation method. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Narsaiah Kairam
- Central Institute of Post‐Harvest Engineering and Technology Ludhiana India
| | - Sridhar Kandi
- Department of Tropical Agriculture and International Cooperation National Pingtung University of Science and Technology Neipu Taiwan
| | - Alka Choudhary
- Central Institute of Post‐Harvest Engineering and Technology Ludhiana India
| | - Minaxi Sharma
- Central Institute of Post‐Harvest Engineering and Technology Ludhiana India
| |
Collapse
|
36
|
Soulié S, Bilem I, Chevallier P, Elkoun S, Robert M, Naudé N, Laroche G. Milkweed scaffold: A new candidate for bone cell growth. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2019.1626391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Simon Soulié
- Laboratoire d’Ingénierie de Surface, Centre de Recherche sur les Matériaux Avancés, Département de génie des mines, de la métallurgie et des matériaux, Université Laval, Québec, Québec, Canada
- Centre de recherche du CHU de Québec, Hôpital St François d’Assise, Québec, Québec, Canada
- LAPLACE, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Ibrahim Bilem
- Laboratoire d’Ingénierie de Surface, Centre de Recherche sur les Matériaux Avancés, Département de génie des mines, de la métallurgie et des matériaux, Université Laval, Québec, Québec, Canada
- Centre de recherche du CHU de Québec, Hôpital St François d’Assise, Québec, Québec, Canada
| | - Pascale Chevallier
- Laboratoire d’Ingénierie de Surface, Centre de Recherche sur les Matériaux Avancés, Département de génie des mines, de la métallurgie et des matériaux, Université Laval, Québec, Québec, Canada
- Centre de recherche du CHU de Québec, Hôpital St François d’Assise, Québec, Québec, Canada
| | - Saïd Elkoun
- Carrefour d’innovations en technologies Écologiques (CITÉ), Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Mathieu Robert
- Carrefour d’innovations en technologies Écologiques (CITÉ), Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Nicolas Naudé
- Laboratoire d’Ingénierie de Surface, Centre de Recherche sur les Matériaux Avancés, Département de génie des mines, de la métallurgie et des matériaux, Université Laval, Québec, Québec, Canada
- LAPLACE, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Gaétan Laroche
- Laboratoire d’Ingénierie de Surface, Centre de Recherche sur les Matériaux Avancés, Département de génie des mines, de la métallurgie et des matériaux, Université Laval, Québec, Québec, Canada
- Centre de recherche du CHU de Québec, Hôpital St François d’Assise, Québec, Québec, Canada
| |
Collapse
|
37
|
Calliari CM, Campardelli R, Pettinato M, Perego P. Encapsulation of
Hibiscus sabdariffa
Extract into Zein Nanoparticles. Chem Eng Technol 2020. [DOI: 10.1002/ceat.202000194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Caroline Maria Calliari
- Universidade Tecnológica Federal do Paraná Departamento Acadêmico de Alimentos Avenida dos Pioneiros 3131 86036-370 Londrina (PR) Brazil
| | - Roberta Campardelli
- University of Genoa Department of Civil, Chemical and Environmental Engineering Via Opera Pia 15 6145 Genova Italy
| | - Margherita Pettinato
- University of Genoa Department of Civil, Chemical and Environmental Engineering Via Opera Pia 15 6145 Genova Italy
| | - Patrizia Perego
- University of Genoa Department of Civil, Chemical and Environmental Engineering Via Opera Pia 15 6145 Genova Italy
| |
Collapse
|
38
|
Gough CR, Bessette K, Xue Y, Mou X, Hu X. Air-Jet Spun Corn Zein Nanofibers and Thin Films with Topical Drug for Medical Applications. Int J Mol Sci 2020; 21:E5780. [PMID: 32806616 PMCID: PMC7461119 DOI: 10.3390/ijms21165780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetic patients are especially susceptible to chronic wounds of the skin, which can lead to serious complications. Sodium citrate is one potential therapeutic molecule for the topical treatment of diabetic ulcers, but its viability requires the assistance of a biomaterial matrix. In this study, nanofibers and thin films fabricated from natural corn zein protein are explored as a drug delivery vehicle for the topical drug delivery of sodium citrate. Corn zein is cheap and abundant in nature, and easily extracted with high purity, while nanofibers are frequently cited as ideal drug carriers due to their high surface area and high porosity. To further reduce costs, the 1-D nanofibers in this study were fabricated through an air jet-spinning method rather than the conventional electrospinning method. Thin films were also created as a comparative 2-D material. Corn zein composite nanofibers and thin films with different concentration of sodium citrate (1-30%) were analyzed through FTIR, DSC, TGA, and SEM. Results reveal that nanofibers are a much more effective vehicle than films, with the ability to interact with sodium citrate. Thermal analysis results show a stable material with low degradation, while FTIR reveals strong control over the protein secondary structures and hold of citrate. These tunable properties and morphologies allow the fibers to provide a sustained release of citrate and then revert to their structure prior to citrate loading. A statistical analysis via t-test confirmed a significant difference between fiber and film drug release. A biocompatibility study also confirms that cells are much more tolerant of the porous nanofiber structure than the nonporous protein films, and lower percentages of sodium citrate (1-5%) were outperformed to higher percentages (15-30%). This study demonstrated that protein-based nanofiber materials have high potential as vehicles for the delivery of topical diabetic drugs.
Collapse
Affiliation(s)
- Christopher R. Gough
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (C.R.G.); (K.B.); (Y.X.)
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA;
| | - Kristen Bessette
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (C.R.G.); (K.B.); (Y.X.)
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Ye Xue
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (C.R.G.); (K.B.); (Y.X.)
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Xiaoyang Mou
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA;
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (C.R.G.); (K.B.); (Y.X.)
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
39
|
Zein-based micro- and nano-constructs and biologically therapeutic cues with multi-functionalities for oral drug delivery systems. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101818] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
40
|
Qiao X, Yang L, Gu J, Cao Y, Li Z, Xu J, Xue C. Kinetic interactions of nanocomplexes between astaxanthin esters with different molecular structures and β-lactoglobulin. Food Chem 2020; 335:127633. [PMID: 32739813 DOI: 10.1016/j.foodchem.2020.127633] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 12/27/2022]
Abstract
The influence of different fatty acid carbon chains on the kinetic interactions of nanocomplexes between esterified astaxanthin (E-Asta) and β-lactoglobulin (β-Lg) were investigated by multi-spectroscopy and molecular modeling techniques. We synthesized ten different E-Asta bound to β-Lg and formed nanocomplexes (< 300 nm). Fluorescence spectroscopy showed moderate affinities (binding constants Ka = 103-104 M-1). Docosahexaenoic acid astaxanthin monoester (Asta-C22:6) had the strongest binding affinity towards β-Lg (Ka = 3.77 × 104 M-1). The fluorescence quenching of β-Lg upon binding of E-Asta displayed a static mechanism, with binding sites (n) equal to 1. Fourier transform infrared spectroscopy and ultraviolet-visible absorption spectroscopy revealed that E-Asta might enter the β-Lg hydrophobic cavity, leading to unfolding of the peptide chain skeleton. In summary, β-Lg and E-Asta can form stable nanocomplex emulsions to achieve an effective delivery process for E-Asta.
Collapse
Affiliation(s)
- Xing Qiao
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China.
| | - Lu Yang
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China.
| | - Jiayu Gu
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China.
| | - Yunrui Cao
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China.
| | - Zhaojie Li
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China.
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China; Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266235, China.
| |
Collapse
|
41
|
Wang D, Tao S, Yin SW, Sun Y, Li Y. Facile preparation of zein nanoparticles with tunable surface hydrophobicity and excellent colloidal stability. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124554] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
42
|
Gagliardi A, Froiio F, Salvatici MC, Paolino D, Fresta M, Cosco D. Characterization and refinement of zein-based gels. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105555] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Raza A, Hayat U, Wang HJ, Wang JY. Preparation and evaluation of captopril loaded gastro-retentive zein based porous floating tablets. Int J Pharm 2020; 579:119185. [PMID: 32112929 DOI: 10.1016/j.ijpharm.2020.119185] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/10/2020] [Accepted: 02/25/2020] [Indexed: 11/19/2022]
Abstract
In this study, gastro-retentive porous floating tablets of captopril based on zein are reported using l-menthol as a porogen. Tablets were prepared by the direct compression method. Removing of l-menthol through sublimation process generated pores in tablets, which decreased the density to promote floating over gastric fluid. Prepared tablets showed no floating lag time and prolong total floating time (>24 h). Drug release was found dependent upon porosity of tablets, an increase in porosity of tablets resulted in increased drug release, so it can be tuned by varying concentration of l-menthol. In addition to floating and sustained release properties, porous tablets showed robust mechanical behavior in wet conditions, which can enable them to withstand real gastric environment stress. In vivo studies using New Zealand rabbits also confirmed the prolonged gastric retention (24 h) and plasma drug concentration-time profile showed sustained release of captopril with higher Tmax and MRT as compared to marketed immediate-release tablets. Overall, it was concluded that effective gastric retention can be achieved using porous zein tablets using l-menthol as a porogen.
Collapse
Affiliation(s)
- Ali Raza
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Uzma Hayat
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Hua-Jie Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; JiaxingYaojiao Medical Device Co. Ltd., 321 Jiachuang Road, Jiaxing 314032, China
| | - Jin-Ye Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
44
|
Zhou B, Pu Y, Lin H, Yue W, Yin H, Yin Y, Ren W, Zhao C, Chen Y, Xu H. In situ phase-changeable 2D MXene/zein bio-injection for shear wave elastography-guided tumor ablation in NIR-II bio-window. J Mater Chem B 2020; 8:5257-5266. [PMID: 32436561 DOI: 10.1039/d0tb00519c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein, we report in situ phase-changeable 2D MXene/zein bio-injection for shear wave elastography-guided tumor ablation in NIR-II bio-window.
Collapse
|
45
|
Varanko A, Saha S, Chilkoti A. Recent trends in protein and peptide-based biomaterials for advanced drug delivery. Adv Drug Deliv Rev 2020; 156:133-187. [PMID: 32871201 PMCID: PMC7456198 DOI: 10.1016/j.addr.2020.08.008] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Engineering protein and peptide-based materials for drug delivery applications has gained momentum due to their biochemical and biophysical properties over synthetic materials, including biocompatibility, ease of synthesis and purification, tunability, scalability, and lack of toxicity. These biomolecules have been used to develop a host of drug delivery platforms, such as peptide- and protein-drug conjugates, injectable particles, and drug depots to deliver small molecule drugs, therapeutic proteins, and nucleic acids. In this review, we discuss progress in engineering the architecture and biological functions of peptide-based biomaterials -naturally derived, chemically synthesized and recombinant- with a focus on the molecular features that modulate their structure-function relationships for drug delivery.
Collapse
Affiliation(s)
| | | | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
46
|
Palazzo I, Campardelli R, Scognamiglio M, Reverchon E. Zein/luteolin microparticles formation using a supercritical fluids assisted technique. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.09.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Jahangirian H, Azizi S, Rafiee-Moghaddam R, Baratvand B, Webster TJ. Status of Plant Protein-Based Green Scaffolds for Regenerative Medicine Applications. Biomolecules 2019; 9:E619. [PMID: 31627453 PMCID: PMC6843632 DOI: 10.3390/biom9100619] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 12/20/2022] Open
Abstract
In recent decades, regenerative medicine has merited substantial attention from scientific and research communities. One of the essential requirements for this new strategy in medicine is the production of biocompatible and biodegradable scaffolds with desirable geometric structures and mechanical properties. Despite such promise, it appears that regenerative medicine is the last field to embrace green, or environmentally-friendly, processes, as many traditional tissue engineering materials employ toxic solvents and polymers that are clearly not environmentally friendly. Scaffolds fabricated from plant proteins (for example, zein, soy protein, and wheat gluten), possess proper mechanical properties, remarkable biocompatibility and aqueous stability which make them appropriate green biomaterials for regenerative medicine applications. The use of plant-derived proteins in regenerative medicine has been especially inspired by green medicine, which is the use of environmentally friendly materials in medicine. In the current review paper, the literature is reviewed and summarized for the applicability of plant proteins as biopolymer materials for several green regenerative medicine and tissue engineering applications.
Collapse
Affiliation(s)
- Hossein Jahangirian
- Department of Chemical Engineering, College of Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| | - Susan Azizi
- Applied Science and Technology Education Center of Ahvaz Municipality, Ahvaz 617664343, Iran.
| | - Roshanak Rafiee-Moghaddam
- Department of Chemical Engineering, College of Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| | - Bahram Baratvand
- Department of Physiotherapy, Faculty of Health and Sport, Mahsa University, Bandar Saujana Putra, Jenjarum Selangor 42610, Malaysia.
| | - Thomas J Webster
- Department of Chemical Engineering, College of Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| |
Collapse
|
48
|
Tran PHL, Duan W, Lee BJ, Tran TTD. Drug stabilization in the gastrointestinal tract and potential applications in the colonic delivery of oral zein-based formulations. Int J Pharm 2019; 569:118614. [PMID: 31415877 DOI: 10.1016/j.ijpharm.2019.118614] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/30/2019] [Accepted: 08/11/2019] [Indexed: 12/13/2022]
Abstract
In recent years, various oral dosage forms using biomaterials have been developed to deliver drugs to the colon for therapy due to the advantages of local treatment and its ideal location for drug delivery. To achieve site-specific delivery, the complete drug should be released in the colon, while the drug must be protected or their delivery minimized in the stomach and small intestine. The use of natural or synthetic polymers has been reported for these purposes. The roles of zein in drug delivery have been identified with various types of formulations for improving bioavailability, controlled drug release and targeted delivery. Although zein has been demonstrated as a potential material for pharmaceutical applications, a review of zein in the gastrointestinal tract for stabilizing drug- and colon-specific delivery is still missing. In the present review, we aim to provide typical strategies for using zein in formulations to minimize drug release/ensure drug protection in the upper part of the gastrointestinal tract. Furthermore, effective fabrications or modifications for drug release in the colon will be highlighted. This primary resource of related methods of using zein in the gastrointestinal tract will advance technologies for using it as a natural polymer for drug delivery.
Collapse
Affiliation(s)
- Phuong H L Tran
- Deakin University, Geelong Australia, School of Medicine, Australia
| | - Wei Duan
- Deakin University, Geelong Australia, School of Medicine, Australia
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon, Republic of Korea
| | - Thao T D Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
49
|
Sharun K, Shyamkumar TS, Aneesha VA, Dhama K, Pawde AM, Pal A. Current therapeutic applications and pharmacokinetic modulations of ivermectin. Vet World 2019; 12:1204-1211. [PMID: 31641298 PMCID: PMC6755388 DOI: 10.14202/vetworld.2019.1204-1211] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 06/29/2019] [Indexed: 12/22/2022] Open
Abstract
Ivermectin is considered to be a wonder drug due to its broad-spectrum antiparasitic activity against both ectoparasites and endoparasites (under class of endectocide) and has multiple applications in both veterinary and human medicine. In particular, ivermectin is commonly used in the treatment of different kinds of infections and infestations. By altering the vehicles used in the formulations, the pharmacokinetic properties of different ivermectin preparations can be altered. Since its development, various vehicles have been evaluated to assess the efficacy, safety, and therapeutic systemic concentrations of ivermectin in different species. A subcutaneous route of administration is preferred over a topical or an oral route for ivermectin due to superior bioavailability. Different formulations of ivermectin have been developed over the years, such as stabilized aqueous formulations, osmotic pumps, controlled release capsules, silicone carriers, zein microspheres, biodegradable microparticulate drug delivery systems, lipid nanocapsules, solid lipid nanoparticles, sustained-release ivermectin varnish, sustained-release ivermectin-loaded solid dispersion suspension, and biodegradable subcutaneous implants. However, several reports of ivermectin resistance have been identified in different parts of the world over the past few years. Continuous use of suboptimal formulations or sub-therapeutic plasma concentrations may predispose an individual to resistance toward ivermectin. The current research trend is focused toward the need for developing ivermectin formulations that are stable, effective, and safe and that reduce the number of doses required for complete clinical cure in different parasitic diseases. Therefore, single-dose long-acting preparations of ivermectin that provide effective therapeutic drug concentrations need to be developed and commercialized, which may revolutionize drug therapy and prophylaxis against various parasitic diseases in the near future. The present review highlights the current advances in pharmacokinetic modulation of ivermectin formulations and their potent therapeutic applications, issues related to emergence of ivermectin resistance, and future trends of ivermectin usage.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - T. S. Shyamkumar
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - V. A. Aneesha
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Abhijit Motiram Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Amar Pal
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
50
|
Tran PH, Duan W, Lee BJ, Tran TT. The use of zein in the controlled release of poorly water-soluble drugs. Int J Pharm 2019; 566:557-564. [DOI: 10.1016/j.ijpharm.2019.06.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022]
|