1
|
Lindtner RA, Wurm A, Pirchner E, Putzer D, Arora R, Coraça-Huber DC, Schirmer M, Badzoka J, Kappacher C, Huck CW, Pallua JD. Enhancing Bone Infection Diagnosis with Raman Handheld Spectroscopy: Pathogen Discrimination and Diagnostic Potential. Int J Mol Sci 2023; 25:541. [PMID: 38203710 PMCID: PMC10778662 DOI: 10.3390/ijms25010541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Osteomyelitis is a bone disease caused by bacteria that can damage bone. Raman handheld spectroscopy has emerged as a promising diagnostic tool for detecting bone infection and can be used intraoperatively during surgical procedures. This study involved 120 bone samples from 40 patients, with 80 samples infected with either Staphylococcus aureus or Staphylococcus epidermidis. Raman handheld spectroscopy demonstrated successful differentiation between healthy and infected bone samples and between the two types of bacterial pathogens. Raman handheld spectroscopy appears to be a promising diagnostic tool in bone infection and holds the potential to overcome many of the shortcomings of traditional diagnostic procedures. Further research, however, is required to confirm its diagnostic capabilities and consider other factors, such as the limit of pathogen detection and optimal calibration standards.
Collapse
Affiliation(s)
- Richard Andreas Lindtner
- Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (R.A.L.); (A.W.); (E.P.); (D.P.); (R.A.); (D.C.C.-H.)
| | - Alexander Wurm
- Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (R.A.L.); (A.W.); (E.P.); (D.P.); (R.A.); (D.C.C.-H.)
- Praxis Dr. Med. Univ. Alexander Wurm FA für Orthopädie und Traumatologie, Koflerweg 7, 6275 Stumm, Austria
| | - Elena Pirchner
- Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (R.A.L.); (A.W.); (E.P.); (D.P.); (R.A.); (D.C.C.-H.)
| | - David Putzer
- Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (R.A.L.); (A.W.); (E.P.); (D.P.); (R.A.); (D.C.C.-H.)
| | - Rohit Arora
- Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (R.A.L.); (A.W.); (E.P.); (D.P.); (R.A.); (D.C.C.-H.)
| | - Débora Cristina Coraça-Huber
- Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (R.A.L.); (A.W.); (E.P.); (D.P.); (R.A.); (D.C.C.-H.)
| | - Michael Schirmer
- Department of Internal Medicine, Clinic II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria;
| | - Jovan Badzoka
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (J.B.); (C.K.); (C.W.H.)
| | - Christoph Kappacher
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (J.B.); (C.K.); (C.W.H.)
| | - Christian Wolfgang Huck
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (J.B.); (C.K.); (C.W.H.)
| | - Johannes Dominikus Pallua
- Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (R.A.L.); (A.W.); (E.P.); (D.P.); (R.A.); (D.C.C.-H.)
| |
Collapse
|
2
|
Lindtner R, Wurm A, Kugel K, Kühn J, Putzer D, Arora R, Coraça-Huber DC, Zelger P, Schirmer M, Badzoka J, Kappacher C, Huck CW, Pallua JD. Comparison of Mid-Infrared Handheld and Benchtop Spectrometers to Detect Staphylococcus epidermidis in Bone Grafts. Bioengineering (Basel) 2023; 10:1018. [PMID: 37760120 PMCID: PMC10525239 DOI: 10.3390/bioengineering10091018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Bone analyses using mid-infrared spectroscopy are gaining popularity, especially with handheld spectrometers that enable on-site testing as long as the data quality meets standards. In order to diagnose Staphylococcus epidermidis in human bone grafts, this study was carried out to compare the effectiveness of the Agilent 4300 Handheld Fourier-transform infrared with the Perkin Elmer Spectrum 100 attenuated-total-reflectance infrared spectroscopy benchtop instrument. The study analyzed 40 non-infected and 10 infected human bone samples with Staphylococcus epidermidis, collecting reflectance data between 650 cm-1 and 4000 cm-1, with a spectral resolution of 2 cm-1 (Agilent 4300 Handheld) and 0.5 cm-1 (Perkin Elmer Spectrum 100). The acquired spectral information was used for spectral and unsupervised classification, such as a principal component analysis. Both methods yielded significant results when using the recommended settings and data analysis strategies, detecting a loss in bone quality due to the infection. MIR spectroscopy provides a valuable diagnostic tool when there is a tissue shortage and time is of the essence. However, it is essential to conduct further research with larger sample sizes to verify its pros and cons thoroughly.
Collapse
Affiliation(s)
- Richard Lindtner
- Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (R.L.); (K.K.); (J.K.); (D.P.); (R.A.); (D.C.C.-H.); (J.D.P.)
| | - Alexander Wurm
- Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (R.L.); (K.K.); (J.K.); (D.P.); (R.A.); (D.C.C.-H.); (J.D.P.)
- Praxis Dr. Med. Univ. Alexander Wurm FA für Orthopädie und Traumatologie, Koflerweg 7, 6275 Stumm, Austria
| | - Katrin Kugel
- Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (R.L.); (K.K.); (J.K.); (D.P.); (R.A.); (D.C.C.-H.); (J.D.P.)
| | - Julia Kühn
- Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (R.L.); (K.K.); (J.K.); (D.P.); (R.A.); (D.C.C.-H.); (J.D.P.)
| | - David Putzer
- Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (R.L.); (K.K.); (J.K.); (D.P.); (R.A.); (D.C.C.-H.); (J.D.P.)
| | - Rohit Arora
- Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (R.L.); (K.K.); (J.K.); (D.P.); (R.A.); (D.C.C.-H.); (J.D.P.)
| | - Débora Cristina Coraça-Huber
- Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (R.L.); (K.K.); (J.K.); (D.P.); (R.A.); (D.C.C.-H.); (J.D.P.)
| | - Philipp Zelger
- University Clinic for Hearing, Voice and Speech Disorders, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria;
| | - Michael Schirmer
- Department of Internal Medicine, Clinic II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria;
| | - Jovan Badzoka
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (J.B.); (C.K.); (C.W.H.)
| | - Christoph Kappacher
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (J.B.); (C.K.); (C.W.H.)
| | - Christian Wolfgang Huck
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (J.B.); (C.K.); (C.W.H.)
| | - Johannes Dominikus Pallua
- Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (R.L.); (K.K.); (J.K.); (D.P.); (R.A.); (D.C.C.-H.); (J.D.P.)
| |
Collapse
|
3
|
Wurm A, Kühn J, Kugel K, Putzer D, Arora R, Coraça-Huber DC, Zelger P, Badzoka J, Kappacher C, Huck CW, Pallua JD. Raman microscopic spectroscopy as a diagnostic tool to detect Staphylococcus epidermidis in bone grafts. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 280:121570. [PMID: 35779474 DOI: 10.1016/j.saa.2022.121570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/02/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Raman microscopic spectroscopyis a new approach for further characterization and detection of molecular features in many pathological processes. This technique has been successfully applied to scrutinize the spatial distribution of small molecules and proteins within biological systems by in situ analysis. This study uses Raman microscopic spectroscopyto identify any in-depth benefits and drawbacks in diagnosing Staphylococcus epidermidis in human bone grafts. MATERIAL AND METHODS 40 non-infected human bone samples and 10 human bone samples infected with Staphylococcus epidermidis were analyzed using Raman microscopic spectroscopy. Reflectance data were collected between 200 cm-1 and 3600 cm-1 with a spectral resolution of 4 cm-1 using a Senterra II microscope (Bruker, Ettlingen, Germany). The acquired spectral information was used for spectral and unsupervised classification, such as principal component analysis. RESULTS Raman measurements produced distinct diagnostic spectra that were used to distinguish between non-infected human bone samples and Staphylococcus epidermidis infected human bone samples by spectral and principal component analyses. A substantial loss in bone quality and protein conformation was detected by human bone samples co-cultured with Staphylococcus epidermidis. The mineral-to-matrix ratio using the phosphate/Amide I ratio (p = 0.030) and carbonate/phosphate ratio (p = 0.001) indicates that the loss of relative mineral content in bones upon bacterial infection is higher than in non-infected human bones. Also, an increase of alterations in the collagen network (p = 0.048) and a decrease in the structural organization and relative collagen in infected human bone could be detected. Subsequent principal component analyses identified Staphylococcus epidermidis in different spectral regions, respectively, originating mainly from CH2 deformation (wagging) of protein (at 1450 cm-1) and bending and stretching modes of C-H groups (∼2800-3000 cm-1). CONCLUSION Raman microscopic spectroscopyis presented as a promising diagnostic tool to detect Staphylococcus epidermidis in human bone grafts. Further studies in human tissues are warranted.
Collapse
Affiliation(s)
- A Wurm
- University Hospital for Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - J Kühn
- University Hospital for Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - K Kugel
- University Hospital for Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - D Putzer
- University Hospital for Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - R Arora
- University Hospital for Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - D C Coraça-Huber
- University Hospital for Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - P Zelger
- University Clinic for Hearing, Voice and Speech Disorders, Medical University of Innsbruck, Anichstrasse 35, Innsbruck, Austria
| | - J Badzoka
- Institute of Analytical Chemistry and Radiochemistry, Innsbruck, Austria
| | - C Kappacher
- Institute of Analytical Chemistry and Radiochemistry, Innsbruck, Austria
| | - C W Huck
- Institute of Analytical Chemistry and Radiochemistry, Innsbruck, Austria
| | - J D Pallua
- University Hospital for Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria.
| |
Collapse
|
4
|
Heredia Rivera U, Kadian S, Nejati S, White J, Sedaghat S, Mutlu Z, Rahimi R. Printed Low-Cost PEDOT:PSS/PVA Polymer Composite for Radiation Sterilization Monitoring. ACS Sens 2022; 7:960-971. [PMID: 35333058 DOI: 10.1021/acssensors.1c02105] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
During the γ-radiation sterilization process, the levels of radiation exposure to a medical device must be carefully monitored to achieve the required sterilization without causing deleterious effects on its intended physical and chemical properties. To address this issue, here we have demonstrated the development of an all-printed disposable low-cost sensor that exploits the change in electrical impedance of a semi-interpenetrating polymer network (SIPN) composed of poly(vinyl alcohol) (PVA) and poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) as a functional polymer composite for radiation sterilization monitoring applications. Specifically, the PEDOT:PSS acts as the electrically conductive medium, while the PVA provides the ductility and stability of the printed sensors. During irradiation exposure, chain scission and cross-linking events occur concurrently in the PEDOT:PSS and PVA polymer chains, respectively. The concurrent scissoring of the PEDOT polymer and cross-linking of the PVA polymer network leads to the formation of a stable SIPN with reduced electrical conductivity, which was verified through FTIR, Raman, and TGA analysis. Systematic studies of different ratios of PEDOT:PSS and PVA mixtures were tested to identify the optimal ratio that provided the highest radiation sensitivity and stability performance. The results showed that PEDOT:PSS/PVA composites with 10 wt % PVA produced sensors with relative impedance changes of 30% after 25 kGy and up to 370% after 53 kGy (which are two of the most commonly used radiation exposure levels for sterilization applications). This composition showed high electrical impedance stability with less than ±5% change over 18 days after irradiation exposure. These findings demonstrate the feasibility of utilizing a printing technology for scalable manufacturing of low-cost, flexible radiation sensors for more effective monitoring of radiation sterilization processes.
Collapse
Affiliation(s)
- Ulisses Heredia Rivera
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sachin Kadian
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sina Nejati
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Julia White
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sotoudeh Sedaghat
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zeynep Mutlu
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rahim Rahimi
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
5
|
Yang Harmony TC, Yusof N, Ramalingam S, Baharin R, Syahrom A, Mansor A. Deep-Freezing Temperatures During Irradiation Preserves the Compressive Strength of Human Cortical Bone Allografts: A Cadaver Study. Clin Orthop Relat Res 2022; 480:407-418. [PMID: 34491235 PMCID: PMC8747490 DOI: 10.1097/corr.0000000000001968] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 08/16/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Gamma irradiation, which minimizes the risk of infectious disease transmission when human bone allograft is used, has been found to negatively affect its biomechanical properties. However, in those studies, the deep-freezing temperature during irradiation was not necessarily maintained during transportation and sterilization, which may have affected the findings. Prior reports have also suggested that controlled deep freezing may mitigate the detrimental effects of irradiation on the mechanical properties of bone allograft. QUESTION/PURPOSE Does a controlled deep-freezing temperature during irradiation help preserve the compressive mechanical properties of human femoral cortical bone allografts? METHODS Cortical bone cube samples, each measuring 64 mm3, were cut from the mid-diaphyseal midshaft of five fresh-frozen cadaver femurs (four male donors, mean [range] age at procurement 42 years [42 to 43]) and were allocated via block randomization into one of three experimental groups (with equal numbers of samples from each donor allocated into each group). Each experimental group consisted of 20 bone cube samples. Samples irradiated in dry ice were subjected to irradiation doses ranging from 26.7 kGy to 27.1 kGy (mean 26.9 kGy) at a deep-freezing temperature below -40°C (the recommended long-term storage temperature for allografts). Samples irradiated in gel ice underwent irradiation doses ranging from 26.2 kGy and 26.4 kGy (mean 26.3 kGy) in a freezing temperature range between -40°C and 0°C. Acting as controls, samples in a third group were not subjected to gamma irradiation. The mechanical properties (0.2% offset yield stress, ultimate compression stress, toughness, and the Young modulus) of samples from each group were subsequently evaluated via axial compression loading to failure along the long axis of the bone. The investigators were blinded to sample group during compression testing. RESULTS The mean ultimate compression stress (84 ± 27 MPa versus 119 ± 31 MPa, mean difference 35 [95% CI 9 to 60]; p = 0.005) and toughness (3622 ± 1720 kJ/m3 versus 5854 ± 2900 kJ/m3, mean difference 2232 [95% CI 70 to 4394]; p = 0.009) of samples irradiated at a higher temperature range (-40°C to 0°C) were lower than in those irradiated at deep-freezing temperatures (below -40°C). The mean 0.2% offset yield stress (73 ± 28 MPa versus 109 ± 38 MPa, mean difference 36 [95% CI 11 to 60]; p = 0.002) and ultimate compression stress (84 ± 27 MPa versus 128 ± 40 MPa, mean difference 44 [95% CI 17 to 69]; p < 0.001) of samples irradiated at a higher temperature range (-40°C to 0°C) were lower than the nonirradiated control group samples. The mean 0.2% offset yield stress (73 ± 28 MPa versus 101 ± 28 MPa, mean difference 28 [95% CI 3 to 52]; p = 0.02; effect size = 1.0 [95% CI 0.8 to 1.2]) of samples irradiated at higher temperature range (-40°C to 0°C) were no different with the numbers available to those irradiated at deep-freezing temperature. The mean toughness (3622 ± 1720 kJ/m3 versus 6231 ± 3410 kJ/m3, mean difference 2609 [95% CI 447 to 4771]; p = 0.02; effect size = 1.0 [95% CI 0.8 to 1.2]) of samples irradiated at higher temperature range (-40°C to 0°C) were no different with the numbers available to the non-irradiated control group samples. The mean 0.2% offset yield stress, ultimate compression stress, and toughness of samples irradiated in deep-freezing temperatures (below -40°C) were not different with the numbers available to the non-irradiated control group samples. The Young modulus was not different with the numbers available among the three groups. CONCLUSION In this study, maintenance of a deep-freezing temperature below -40°C, using dry ice as a cooling agent, consistently mitigated the adverse effects of irradiation on the monotonic-compression mechanical properties of human cortical bone tissue. Preserving the mechanical properties of a cortical allograft, when irradiated in a deep-freezing temperature, may have resulted from attenuation of the deleterious, indirect effects of gamma radiation on its collagen architecture in a frozen state. Immobilization of water molecules in this state prevents radiolysis and the subsequent generation of free radicals. This hypothesis was supported by an apparent loss of the protective effect when a range of higher freezing temperatures was used during irradiation. CLINICAL RELEVANCE Deep-freezing temperatures below -40°C during gamma irradiation may be a promising approach to better retain the native mechanical properties of cortical bone allografts. A further study of the effect of deep-freezing during gamma radiation sterilization on sterility and other important biomechanical properties of cortical bone (such as, tensile strength, fracture toughness, and fatigue) is needed to confirm these findings.
Collapse
Affiliation(s)
- Tan Chern Yang Harmony
- Ministry of Health Malaysia, Federal Government Administrative Centre, Putrajaya, Malaysia
| | - Norimah Yusof
- Bone Bank, National Orthopaedic Centre of Excellence in Research and Learning, Kuala Lumpur, Malaysia
- Department of Orthopaedic Surgery, University of Malaya, Kuala Lumpur, Malaysia
- Jalan Universiti, Kuala Lumpur, Malaysia
| | - Saravana Ramalingam
- Bone Bank, National Orthopaedic Centre of Excellence in Research and Learning, Kuala Lumpur, Malaysia
- Department of Orthopaedic Surgery, University of Malaya, Kuala Lumpur, Malaysia
- Jalan Universiti, Kuala Lumpur, Malaysia
| | | | - Ardiyansyah Syahrom
- Medical Device Technology Center, Institute of Human Centered Engineering, Skudai Johor, Malaysia
- Faculty of Engineering, Universiti Teknologi Malaysia, Skudai Johor, Malaysia
| | - Azura Mansor
- Bone Bank, National Orthopaedic Centre of Excellence in Research and Learning, Kuala Lumpur, Malaysia
- Department of Orthopaedic Surgery, University of Malaya, Kuala Lumpur, Malaysia
- Jalan Universiti, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
The potential of radiation sterilized and banked tissue allografts for management of nuclear casualties. Cell Tissue Bank 2021; 23:325-334. [PMID: 34331627 DOI: 10.1007/s10561-021-09946-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/25/2021] [Indexed: 10/20/2022]
Abstract
Processed and radiation sterilized allograft tissues that can be banked for use on demand are a precious therapeutic resource for the repair or reconstruction of damaged or injured tissues. Skin dressings or skin substitutes like allograft skin, amniotic membrane and bioengineered skin can be used for the treatment of thermal burns and radiation induced skin injuries. Bone grafts can be employed for repairing fracture defects, filling in destroyed regions of bone, and treatment of spinal and joint injuries. A nuclear scenario would result in a large number of casualties due to the heat, blast and radiation effects of the weapon. Perspective of radiation sterilized biological tissues provided by the tissue banks for management of casualties in a nuclear disaster scenario is presented.
Collapse
|
7
|
El-Hansi NS, Sallam AM, Talaat MS, Said HH, Khalaf MA, Desouky OS. Biomechanical properties enhancement of gamma radiation-sterilized cortical bone using antioxidants. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:571-581. [PMID: 32444954 DOI: 10.1007/s00411-020-00848-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Gamma radiation sterilization is the method used by the majority of tissue banks to reduce disease transmission from infected donors to recipients through bone allografts. However, many studies have reported that gamma radiation impairs the structural and mechanical properties of bone via formation of free radicals, the effect of which could be reduced using free radical scavengers. The aim of this study is to examine the radioprotective role of hydroxytyrosol (HT) and alpha lipoic acid (ALA) on the mechanical properties of gamma-sterilized cortical bone of bovine femur, using three-point bending and microhardness tests. Specimens of bovine femurs were soaked in ALA and HT for 3 and 7 days, respectively, before being exposed to 35-kGy gamma radiation. In unirradiated samples, both HT and ALA pre-treatment improved the cortical bone bending plastic properties (maximum bending stress, maximum bending strain, and toughness) without affecting microhardness. Irradiation resulted in a drastic reduction of the plastic properties and an increased microhardness. ALA treatment before irradiation alleviated the aforementioned reductions in maximum bending stress, maximum bending strain, and toughness. In addition, under ALA treatment, the microhardness was not increased after irradiation. For HT treatment, similar effects were found. In conclusion, the results indicate that HT and ALA can be used before irradiation to enhance the mechanical properties of gamma-sterilized bone allografts.
Collapse
Affiliation(s)
- Naglaa S El-Hansi
- Biophysics Lab, Radiation Physics Department, (NCRRT), Atomic Energy Authority (AEA), Nasr City, Cairo, Egypt
| | - Abdelsattar M Sallam
- Biophysics Branch, Physics Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mona S Talaat
- Biophysics Branch, Physics Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hoda H Said
- Biophysics Lab, Radiation Physics Department, (NCRRT), Atomic Energy Authority (AEA), Nasr City, Cairo, Egypt.
| | - Mahmoud A Khalaf
- Microbiology Department (NCRRT), Atomic Energy Authority (AEA), Nasr City, Cairo, Egypt
| | - Omar S Desouky
- Biophysics Lab, Radiation Physics Department, (NCRRT), Atomic Energy Authority (AEA), Nasr City, Cairo, Egypt
| |
Collapse
|
8
|
Ramalingam S, Samsuddin SM, Yusof N, Mohd S, Hanafi NN, Min NW, Mansor A. Performance of cooling materials and their composites in maintaining freezing temperature during irradiation and transportation of bone allografts. J Orthop Surg (Hong Kong) 2019; 26:2309499018770906. [PMID: 29695196 DOI: 10.1177/2309499018770906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
PURPOSE Bone allografts supplied by University Malaya Medical Centre Bone Bank are sterilized by gamma radiation at 25 kGy in dry ice (DI) to minimize radiation effects. Use of cheaper and easily available cooling materials, gel ice (GI) and ice pack (IP), was explored. Composites of DI and GI were also studied for the use in routine transportations and radiation process. METHODS (a) Five dummy bones were packed with DI, GI, or IP in a polystyrene box. The bone temperatures were monitored while the boxes were placed at room temperature over 96 h. Durations for each cooling material maintaining freezing temperatures below -40°C, -20°C, and 0°C were obtained from the bone temperature over time profiles. (b) Composites of DI (20, 15, 10, 5, and 0 kg) and GI were used to pack five dummy bones in a polystyrene box. The durations maintaining varying levels of freezing temperature were compared. RESULTS DI (20 kg) maintained temperature below -40°C for 76.4 h as compared to 6.3 h in GI (20 bags) and 4.0 h in IP (15 packs). Composites of 15DI (15 kg DI and 9 GI bags) and 10DI (10 kg DI and 17 GI bags) maintained the temperature below -40°C for 61 and 35.5 h, respectively. CONCLUSION Composites of DI and GI can be used to maintain bones in deep frozen state during irradiation, thus avoiding radiation effects on biomechanical properties. Sterile frozen bone allograft with preserved functional properties is required in clinical applications.
Collapse
Affiliation(s)
- Saravana Ramalingam
- Bone Bank, National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sharifah Mazni Samsuddin
- Bone Bank, National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Norimah Yusof
- Bone Bank, National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Suhaili Mohd
- Bone Bank, National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nurhafizatul Nadia Hanafi
- Bone Bank, National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ng Wuey Min
- Bone Bank, National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Azura Mansor
- Bone Bank, National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Peña Fernández M, Dall'Ara E, Kao AP, Bodey AJ, Karali A, Blunn GW, Barber AH, Tozzi G. Preservation of Bone Tissue Integrity with Temperature Control for In Situ SR-MicroCT Experiments. MATERIALS 2018; 11:ma11112155. [PMID: 30388813 PMCID: PMC6266162 DOI: 10.3390/ma11112155] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/24/2018] [Accepted: 10/30/2018] [Indexed: 01/08/2023]
Abstract
Digital volume correlation (DVC), combined with in situ synchrotron microcomputed tomography (SR-microCT) mechanics, allows for 3D full-field strain measurement in bone at the tissue level. However, long exposures to SR radiation are known to induce bone damage, and reliable experimental protocols able to preserve tissue properties are still lacking. This study aims to propose a proof-of-concept methodology to retain bone tissue integrity, based on residual strain determination using DVC, by decreasing the environmental temperature during in situ SR-microCT testing. Compact and trabecular bone specimens underwent five consecutive full tomographic data collections either at room temperature or 0 °C. Lowering the temperature seemed to reduce microdamage in trabecular bone but had minimal effect on compact bone. A consistent temperature gradient was measured at each exposure period, and its prolonged effect over time may induce localised collagen denaturation and subsequent damage. DVC provided useful information on irradiation-induced microcrack initiation and propagation. Future work is necessary to apply these findings to in situ SR-microCT mechanical tests, and to establish protocols aiming to minimise the SR irradiation-induced damage of bone.
Collapse
Affiliation(s)
- Marta Peña Fernández
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, PO1 3DJ, Portsmouth, UK.
| | - Enrico Dall'Ara
- Department of Oncology and Metabolism and INSIGNEO Institute for in Silico Medicine, University of Sheffield, S1 3DJ, Sheffield, UK.
| | - Alexander P Kao
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, PO1 3DJ, Portsmouth, UK.
| | | | - Aikaterina Karali
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, PO1 3DJ, Portsmouth, UK.
| | - Gordon W Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, PO1 2DT, Portsmouth, UK.
| | - Asa H Barber
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, PO1 3DJ, Portsmouth, UK.
- School of Engineering, London South Bank University, SE1 0AA, London, UK.
| | - Gianluca Tozzi
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, PO1 3DJ, Portsmouth, UK.
| |
Collapse
|
10
|
Zhao S, Arnold M, Ma S, Abel RL, Cobb JP, Hansen U, Boughton O. Standardizing compression testing for measuring the stiffness of human bone. Bone Joint Res 2018; 7:524-538. [PMID: 30258572 PMCID: PMC6138811 DOI: 10.1302/2046-3758.78.bjr-2018-0025.r1] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Objectives The ability to determine human bone stiffness is of clinical relevance in many fields, including bone quality assessment and orthopaedic prosthesis design. Stiffness can be measured using compression testing, an experimental technique commonly used to test bone specimens in vitro. This systematic review aims to determine how best to perform compression testing of human bone. Methods A keyword search of all English language articles up until December 2017 of compression testing of bone was undertaken in Medline, Embase, PubMed, and Scopus databases. Studies using bulk tissue, animal tissue, whole bone, or testing techniques other than compression testing were excluded. Results A total of 4712 abstracts were retrieved, with 177 papers included in the analysis; 20 studies directly analyzed the compression testing technique to improve the accuracy of testing. Several influencing factors should be considered when testing bone samples in compression. These include the method of data analysis, specimen storage, specimen preparation, testing configuration, and loading protocol. Conclusion Compression testing is a widely used technique for measuring the stiffness of bone but there is a great deal of inter-study variation in experimental techniques across the literature. Based on best evidence from the literature, suggestions for bone compression testing are made in this review, although further studies are needed to establish standardized bone testing techniques in order to increase the comparability and reliability of bone stiffness studies. Cite this article: S. Zhao, M. Arnold, S. Ma, R. L. Abel, J. P. Cobb, U. Hansen, O. Boughton. Standardizing compression testing for measuring the stiffness of human bone. Bone Joint Res 2018;7:524–538. DOI: 10.1302/2046-3758.78.BJR-2018-0025.R1.
Collapse
Affiliation(s)
- S Zhao
- The MSk Lab, Imperial College London, Charing Cross Hospital, London, UK
| | - M Arnold
- The MSk Lab, Imperial College London, Charing Cross Hospital, London, UK
| | - S Ma
- The MSk Lab, Imperial College London, Charing Cross Hospital, London, UK and Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London, UK
| | - R L Abel
- The MSk Lab, Imperial College London, Charing Cross Hospital, London, UK
| | - J P Cobb
- The MSk Lab, Imperial College London, Charing Cross Hospital, London, UK
| | - U Hansen
- Department of Mechanical Engineering, Imperial College London, London, UK
| | - O Boughton
- The MSk Lab, Imperial College London, Charing Cross Hospital, London, UK and Department of Mechanical Engineering, Imperial College London, London, UK
| |
Collapse
|
11
|
Harrell CR, Djonov V, Fellabaum C, Volarevic V. Risks of Using Sterilization by Gamma Radiation: The Other Side of the Coin. Int J Med Sci 2018; 15:274-279. [PMID: 29483819 PMCID: PMC5820857 DOI: 10.7150/ijms.22644] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/21/2017] [Indexed: 12/30/2022] Open
Abstract
The standard sterilization method for most medical devices over the past 40 years involves gamma irradiation. During sterilization, gamma rays efficiently eliminate microorganisms from the medical devices and tissue allografts, but also significantly change molecular structure of irradiated products, particularly fragile biologics such as cytokines, chemokines and growth factors. Accordingly, gamma radiation significantly alters biomechanical properties of bone, tendon, tracheal, skin, amnion tissue grafts and micronized amniotic membrane injectable products. Similarly, when polymer medical devices are sterilized by gamma radiation, their physico-chemical characteristics undergo modification significantly affecting their clinical use. Several animal studies demonstrated that consummation of irradiated food provoked genome instability raising serious concerns regarding oncogenic potential of irradiated consumables. These findings strongly suggest that new, long-term, prospective clinical studies should be conducted in near future to investigate whether irradiated food is safe for human consumption. In this review, we summarized current knowledge regarding molecular mechanisms responsible for deleterious effects of gamma radiation with focusing on its significance for food safety and biomechanical characteristics of medical devices, and tissue allografts, especially injectable biologics.
Collapse
Affiliation(s)
- C Randall Harrell
- Regenerative Processing Plant, LLC, Palm Harbor, Florida, United States of America
| | | | - Crissy Fellabaum
- Regenerative Processing Plant, LLC, Palm Harbor, Florida, United States of America
| | - Vladislav Volarevic
- Department of Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
12
|
Putzer D, Ammann CG, Coraça-Huber D, Lechner R, Schmölz W, Nogler M. The Influence of Liquids on the Mechanical Properties of Allografts in Bone Impaction Grafting. Biopreserv Biobank 2017; 15:410-416. [PMID: 28686464 DOI: 10.1089/bio.2017.0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Allografts are used to compensate for bone defects resulting from revision surgery, tumor surgery, and reconstructive bone surgery. Although it is well known that the reduction of fat content of allografts increases mechanical properties, the content of liquids with a known grain size distribution has not been assessed so far. The aim of the study was to compare the mechanical properties of dried allografts (DA) with allografts mixed with a saline solution (ASS) and with allografts mixed with blood (AB) having a similar grain size distribution. Fresh-frozen morselized bone chips were cleaned chemically, sieved, and reassembled in specific portions with a known grain size distribution. A uniaxial compression was used to assess the yield limit, initial density, density at yield limit, and flowability of the three groups before and after compaction with a fall hammer apparatus. No statistically significant difference could be found for the yield limit between DA and ASS (p = 0.339) and between ASS and AB (p = 0.554). DA showed a statistically significant higher yield limit than AB (p = 0.022). Excluding the effect of the grain size distribution on the mechanical properties, it was shown that allografts have a lower yield limit when lipids are present. The liquid content of allografts seems to play an inferior role as no statistically significant difference could be found between DA and ASS. It is suggested, in accordance with other studies, to chemically clean allografts before implantation to reduce the contamination risk and the fat content.
Collapse
Affiliation(s)
- David Putzer
- 1 Department of Orthopedic Surgery, Experimental Orthopedics, Medical University of Innsbruck , Innsbruck, Austria
| | - Christoph Gert Ammann
- 1 Department of Orthopedic Surgery, Experimental Orthopedics, Medical University of Innsbruck , Innsbruck, Austria
| | - Débora Coraça-Huber
- 1 Department of Orthopedic Surgery, Experimental Orthopedics, Medical University of Innsbruck , Innsbruck, Austria
| | - Ricarda Lechner
- 2 Department of Orthopedic Surgery, Medical University of Innsbruck , Innsbruck, Austria
| | - Werner Schmölz
- 3 Department of Trauma Surgery, Medical University of Innsbruck , Innsbruck, Austria
| | - Michael Nogler
- 1 Department of Orthopedic Surgery, Experimental Orthopedics, Medical University of Innsbruck , Innsbruck, Austria
| |
Collapse
|
13
|
David SC, Lau J, Singleton EV, Babb R, Davies J, Hirst TR, McColl SR, Paton JC, Alsharifi M. The effect of gamma-irradiation conditions on the immunogenicity of whole-inactivated Influenza A virus vaccine. Vaccine 2017; 35:1071-1079. [PMID: 28109709 DOI: 10.1016/j.vaccine.2016.12.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/25/2016] [Accepted: 12/16/2016] [Indexed: 11/27/2022]
Abstract
Gamma-irradiation, particularly an irradiation dose of 50kGy, has been utilised widely to sterilise highly pathogenic agents such as Ebola, Marburg Virus, and Avian Influenza H5N1. We have reported previously that intranasal vaccination with a gamma-irradiated Influenza A virus vaccine (γ-Flu) results in cross-protective immunity. Considering the possible inclusion of highly pathogenic Influenza strains in future clinical development of γ-Flu, an irradiation dose of 50kGy may be used to enhance vaccine safety beyond the internationally accepted Sterility Assurance Level (SAL). Thus, we investigated the effect of irradiation conditions, including high irradiation doses, on the immunogenicity of γ-Flu. Our data confirm that irradiation at low temperatures (using dry-ice) is associated with reduced damage to viral structure compared with irradiation at room temperature. In addition, a single intranasal vaccination with γ-Flu irradiated on dry-ice with either 25 or 50kGy induced seroconversion and provided complete protection against lethal Influenza A challenge. Considering that low temperature is expected to reduce the protein damage associated with exposure to high irradiation doses, we titrated the vaccine dose to verify the efficacy of 50kGy γ-Flu. Our data demonstrate that exposure to 50kGy on dry-ice is associated with limited effect on vaccine immunogenicity, apparent only when using very low vaccine doses. Overall, our data highlight the immunogenicity of influenza virus irradiated at 50kGy for induction of high titre antibody and cytotoxic T-cell responses. This suggests these conditions are suitable for development of γ-Flu vaccines based on highly pathogenic Influenza A viruses.
Collapse
Affiliation(s)
- Shannon C David
- Research Centre for Infectious Diseases, and Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Josyane Lau
- Research Centre for Infectious Diseases, and Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Eve V Singleton
- Research Centre for Infectious Diseases, and Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Rachelle Babb
- Research Centre for Infectious Diseases, and Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Justin Davies
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
| | - Timothy R Hirst
- Research Centre for Infectious Diseases, and Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia; Gamma Vaccines Pty Ltd, Mountbatten Park, Yarralumla, ACT 2600, Australia
| | - Shaun R McColl
- Research Centre for Infectious Diseases, and Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, and Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Mohammed Alsharifi
- Research Centre for Infectious Diseases, and Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia; Gamma Vaccines Pty Ltd, Mountbatten Park, Yarralumla, ACT 2600, Australia.
| |
Collapse
|
14
|
Mohr J, Germain M, Winters M, Fraser S, Duong A, Garibaldi A, Simunovic N, Alsop D, Dao D, Bessemer R, Ayeni OR. Disinfection of human musculoskeletal allografts in tissue banking: a systematic review. Cell Tissue Bank 2016; 17:573-584. [PMID: 27665294 PMCID: PMC5116033 DOI: 10.1007/s10561-016-9584-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/09/2016] [Indexed: 01/12/2023]
Abstract
Musculoskeletal allografts are typically disinfected using antibiotics, irradiation or chemical methods but protocols vary significantly between tissue banks. It is likely that different disinfection protocols will not have the same level of microorganism kill; they may also have varying effects on the structural integrity of the tissue, which could lead to significant differences in terms of clinical outcome in recipients. Ideally, a disinfection protocol should achieve the greatest bioburden reduction with the lowest possible impact on tissue integrity. A systematic review of three databases found 68 laboratory and clinical studies that analyzed the microbial bioburden or contamination rates of musculoskeletal allografts. The use of peracetic acid–ethanol or ionizing radiation was found to be most effective for disinfection of tissues. The use of irradiation is the most frequently published method for the terminal sterilization of musculoskeletal allografts; it is widely used and its efficacy is well documented in the literature. However, effective disinfection results were still observed using the BioCleanse™ Tissue Sterilization process, pulsatile lavage with antibiotics, ethylene oxide, and chlorhexidine. The variety of effective methods to reduce contamination rate or bioburden, in conjunction with limited high quality evidence provides little support for the recommendation of a single bioburden reduction method.
Collapse
Affiliation(s)
- J Mohr
- Canadian Blood Services, 270 John Savage Ave., Dartmouth, NS, B3B 0H7, Canada
| | - M Germain
- Héma-Québec, 1070 Sciences-de-la-Vie Avenue, Quebec, QC, G1V 5C3, Canada
| | - M Winters
- Nelson Laboratories, 6280 South Redwood Road, Salt Lake City, UT, 84123-6600, USA
| | - S Fraser
- Canadian Blood Services, 270 John Savage Ave., Dartmouth, NS, B3B 0H7, Canada
| | - A Duong
- Department of Surgery, McMaster University, 293 Wellington St. N, Suite 110, Hamilton, ON, L8L 8E7, Canada
| | - A Garibaldi
- Department of Surgery, McMaster University, 293 Wellington St. N, Suite 110, Hamilton, ON, L8L 8E7, Canada
| | - N Simunovic
- Department of Surgery, McMaster University, 293 Wellington St. N, Suite 110, Hamilton, ON, L8L 8E7, Canada
| | - D Alsop
- Department of Surgery, McMaster University, 293 Wellington St. N, Suite 110, Hamilton, ON, L8L 8E7, Canada
| | - D Dao
- Department of Surgery, McMaster University, 293 Wellington St. N, Suite 110, Hamilton, ON, L8L 8E7, Canada
| | - R Bessemer
- Department of Surgery, McMaster University, 293 Wellington St. N, Suite 110, Hamilton, ON, L8L 8E7, Canada
| | - O R Ayeni
- Department of Surgery, McMaster University, 293 Wellington St. N, Suite 110, Hamilton, ON, L8L 8E7, Canada. .,McMaster University Medical Centre, 1200 Main St W, Room 4E15, Hamilton, ON, L8N 3Z5, Canada.
| | | |
Collapse
|
15
|
Effectiveness of hydrogen peroxide and electron-beam irradiation treatment for removal and inactivation of viruses in equine-derived xenografts. J Virol Methods 2016; 232:39-46. [DOI: 10.1016/j.jviromet.2016.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 03/04/2016] [Accepted: 03/04/2016] [Indexed: 12/26/2022]
|
16
|
Singh R, Singh D, Singh A. Radiation sterilization of tissue allografts: A review. World J Radiol 2016; 8:355-369. [PMID: 27158422 PMCID: PMC4840193 DOI: 10.4329/wjr.v8.i4.355] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/05/2015] [Accepted: 01/19/2016] [Indexed: 02/06/2023] Open
Abstract
Tissue substitutes are required in a number of clinical conditions for treatment of injured and diseased tissues. Tissues like bone, skin, amniotic membrane and soft tissues obtained from human donor can be used for repair or reconstruction of the injured part of the body. Allograft tissues from human donor provide an excellent alternative to autografts. However, major concern with the use of allografts is the risk of infectious disease transmission. Therefore, tissue allografts should be sterilized to make them safe for clinical use. Gamma radiation has several advantages and is the most suitable method for sterilization of biological tissues. This review summarizes the use of gamma irradiation technology as an effective method for sterilization of biological tissues and ensuring safety of tissue allografts.
Collapse
|
17
|
Wurm A, Steiger R, Ammann CG, Putzer D, Liebensteiner MC, Nogler M, Coraça-Huber DC. Changes in the Chemical Quality of Bone Grafts During Clinical Preparation Detected by Raman Spectroscopy. Biopreserv Biobank 2016; 14:319-23. [PMID: 27028037 DOI: 10.1089/bio.2015.0097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
METHODOLOGY We determined the content of amide I, amide III, PO4, CO3, and CH2 in samples of fresh bone, bone frozen at -80°C thawed once, bone after two freeze-thaw cycles, and chemically cleaned bone chips. A total of 750 Raman spectra were collected per sample group and the derived quantitative values compared statistically by one-way ANOVA. RESULTS We found statistically significant differences between the investigated sample groups differing in their treatment already after one freeze-thaw cycle and as well after multiple freeze-thaw cycles, and/or chemical cleaning. Chemical cleaning decreased the content of all measured components compared to the fresh sample as detected by Raman spectroscopy. We further used the derived data to calculate the mineral to matrix ratios for each sample group. DISCUSSION Our data indicate that significant changes of the chemical quality and mineral to matrix ratio occur during freeze-thawing and chemical cleaning. At the same time, this study highlights the importance of sampling and testing at multiple locations for reliable predictions of the chemical composition. We think that it is very desirable to test the quality of bone graft material before transfer to a recipient; this might ultimately help define parameters to choose the best graft for the patient. It is also important to highlight that this is a preliminary study, which shows the importance of detecting changes in the chemical quality of bone grafts before transfer to the patient.
Collapse
Affiliation(s)
- Alexander Wurm
- 1 Experimental Orthopedics, Medical University of Innsbruck , Innsbruck, Austria .,2 University Hospital for Orthopedics, Medical University of Innsbruck , Innsbruck, Austria
| | - Ruth Steiger
- 3 Department of Neuroradiology, Medical University of Innsbruck , Innsbruck, Austria
| | - Christoph G Ammann
- 1 Experimental Orthopedics, Medical University of Innsbruck , Innsbruck, Austria
| | - David Putzer
- 1 Experimental Orthopedics, Medical University of Innsbruck , Innsbruck, Austria
| | | | - Michael Nogler
- 1 Experimental Orthopedics, Medical University of Innsbruck , Innsbruck, Austria .,2 University Hospital for Orthopedics, Medical University of Innsbruck , Innsbruck, Austria
| | | |
Collapse
|
18
|
Song MA, Park JS, Kim KD, Jeun YC. Effect of X-irradiation on Citrus Canker Pathogen Xanthomonas citri subsp. citri of Satsuma Mandarin Fruits. THE PLANT PATHOLOGY JOURNAL 2015; 31:343-9. [PMID: 26672670 PMCID: PMC4677743 DOI: 10.5423/ppj.oa.06.2015.0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/30/2015] [Accepted: 08/06/2015] [Indexed: 06/05/2023]
Abstract
Citrus canker caused by Xanthomonas citri subsp. citri (Xcc) is one of the most important bacterial diseases of citrus. Because citrus canker is not found in many countries including European Union and Australia, Xcc is strictly regulated in order to prevent its spread. In this study, the effects of X-irradiation on Xcc growth either in the suspension or on the surface of citrus fruits were investigated. The suspension containing 1×10(7) cfu/ml of Xcc was irradiated with different absorbed doses of X-irradiation ranging from 50 to 400 Gy. The results showed that Xcc was fully dead at 400 Gy of X-irradiation. To determine the effect of X-irradiation on quarantine, the Xcc-inoculated citrus fruits were irradiated with different X-ray doses at which Xcc was completely inhibited by an irradiation dose of 250 Gy. The D10 value for Xcc on citrus fruits was found to be 97 Gy, indicating the possibility of direct application on citrus quarantine without any side sterilizer. Beside, presence of Xcc on the surface of asymptomatic citrus fruits obtained from citrus canker-infected orchards was noted. It indicated that the exporting citrus fruits need any treatment so that Xcc on the citrus fruits should be completely eliminated. Based on these results, ionizing radiation can be considered as an alternative method of eradicating Xcc for export of citrus fruits.
Collapse
Affiliation(s)
- Min-A Song
- Faculty of Bioscience and Industry, College of Applied Life Sciences, Jeju National University, Jeju-do 690-756,
Korea
| | - Jae Sin Park
- Faculty of Bioscience and Industry, College of Applied Life Sciences, Jeju National University, Jeju-do 690-756,
Korea
| | - Ki Deok Kim
- Division of Biotechnology, Korea University, Seoul 136-713,
Korea
| | - Yong Chull Jeun
- Faculty of Bioscience and Industry, College of Applied Life Sciences, Jeju National University, Jeju-do 690-756,
Korea
| |
Collapse
|
19
|
Putzer D, Fuchs J, Coraça-Huber D, Christoph A, Liebensteiner M, Nogler M. BAG-S53P4 as an additive to bone allografts: A laboratory study using an uniaxial compression test. J Orthop Res 2015; 33:1875-9. [PMID: 26016590 DOI: 10.1002/jor.22953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/21/2015] [Indexed: 02/04/2023]
Abstract
We want to address the clinical issue of too sparse supply of allograft in total hip replacement and ambitions of controlling the grain size distribution. Bioglass BAG-S53P4 was evaluated as a bone graft additive to chemically treated allografts with controlled grain size distribution. Allografts were chemically cleaned (CG) and mixed with BAG-S53P4 additive (BG) for comparison. All samples were compacted with a dropped weight apparatus and then underwent a uniaxial compression test. The yield limit was determined by a uniaxial compression test and density was recorded while flowability was calculated. There was no difference between the yield stress limit of BG and CG after compaction (p=0.432). Adding BAG-S53P4 reduced flowability and could indicate better interlocking mechanism between particles. Adding BAG-S53P4 seems to have no impact on the yield stress limit. The extended allografts withstand the compaction equally good which makes it a valid bone substitute in total hip replacement. An in vivo loaded study is needed before clinical use can be recommended.
Collapse
Affiliation(s)
- David Putzer
- Department of Orthopaedics - Experimental Orthopaedics, Medical University of Innsbruck, Innrain 36, 6020, Innsbruck, Austria
| | - Johannes Fuchs
- Department of Orthopaedics - Experimental Orthopaedics, Medical University of Innsbruck, Innrain 36, 6020, Innsbruck, Austria
| | - Débora Coraça-Huber
- Department of Orthopaedics - Experimental Orthopaedics, Medical University of Innsbruck, Innrain 36, 6020, Innsbruck, Austria
| | - Ammann Christoph
- Department of Orthopaedics - Experimental Orthopaedics, Medical University of Innsbruck, Innrain 36, 6020, Innsbruck, Austria
| | - Michael Liebensteiner
- Department of Orthopaedics, Medical University of Innsbruck, Innrain 36, 6020, Innsbruck, Austria
| | - Michael Nogler
- Department of Orthopaedics - Experimental Orthopaedics, Medical University of Innsbruck, Innrain 36, 6020, Innsbruck, Austria
| |
Collapse
|
20
|
|
21
|
Smeltzer CC, Lukinova NI, Towcimak ND, Yan X, Mann DM, Drohan WN, Griko YV. Effect of gamma irradiation on the structural stability and functional activity of plasma-derived IgG. Biologicals 2015; 43:242-9. [DOI: 10.1016/j.biologicals.2015.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 03/13/2015] [Accepted: 04/14/2015] [Indexed: 11/16/2022] Open
|
22
|
A retrospective study on annual evaluation of radiation processing for frozen bone allografts complying to quality system requirements. Cell Tissue Bank 2015; 16:545-52. [PMID: 25687771 DOI: 10.1007/s10561-015-9501-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 02/11/2015] [Indexed: 10/24/2022]
Abstract
Bone allografts have been used widely to fill up essential void in orthopaedic surgeries. The benefit of using allografts to replace and reconstruct musculoskeletal injuries, fractures or disease has obtained overwhelming acceptance from orthopaedic surgeons worldwide. However, bacterial infection and disease transmission through bone allograft transplantation have always been a significant issue. Sterilization by radiation is an effective method to eliminate unwanted microorganisms thus assist in preventing life threatening allograft associated infections. Femoral heads procured from living donors and long bones (femur and tibia) procured from cadaveric donors were sterilized at 25 kGy in compliance with international standard ISO 11137. According to quality requirements, all records of bone banking were evaluated annually. This retrospective study was carried out on annual evaluation of radiation records from 1998 until 2012. The minimum doses absorbed by the bones were ranging from 25.3 to 38.2 kGy while the absorbed maximum doses were from 25.4 to 42.3 kGy. All the bones supplied by our UMMC Bone Bank were sterile at the required minimum dose of 25 kGy. Our analysis on dose variation showed that the dose uniformity ratios in 37 irradiated boxes of 31 radiation batches were in the range of 1.003-1.251, which indicated the doses were well distributed.
Collapse
|
23
|
Park SSH, Dwyer T, Congiusta F, Whelan DB, Theodoropoulos J. Analysis of irradiation on the clinical effectiveness of allogenic tissue when used for primary anterior cruciate ligament reconstruction. Am J Sports Med 2015; 43:226-35. [PMID: 24477819 DOI: 10.1177/0363546513518004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND It is unclear whether the use of low-dose irradiation or other tissue-processing methods, such as preservation by fresh-frozen (FF), freeze-drying (FD), or cryopreservation (CP) methods, affects the clinical outcomes of primary anterior cruciate ligament reconstruction (ACLR) using allograft. HYPOTHESIS Low-dose gamma irradiation (<2.5 Mrad) and method of allograft preservation do not affect subjective and objective clinical outcomes after primary ACLR in studies reviewed between November 2010 and September 2012. STUDY DESIGN Systematic review; Level of evidence, 3. METHODS A computerized search of multiple electronic databases was conducted from November 2010 to September 2012 for prospective and retrospective studies involving primary allograft ACLR. Inclusion criteria were English-language publications with a minimum average of 2 years' follow-up. Studies were excluded if they involved revision surgery, open surgery, multiple ligament procedures, autograft, xenograft, meniscal allograft, skeletally immature patients, or grafts treated with ethylene oxide, Tutoplast, or irradiation>2.5 Mrad or if the tissue-processing methods were not specified. Clinical outcomes were evaluated using the Lysholm score, Tegner score, International Knee Documentation Committee (IKDC) score, KT-1000/2000 arthrometer score, Lachman test, and pivot-shift test, as well as by assessing complications related to graft rupture, revision surgery, and infections. RESULTS A total of 21 publications met the criteria, involving a total of 1453 patients, with 415 irradiated and 1038 nonirradiated allografts. Mean follow-up was 49.8 months (range, 12-170 months). Mean age of the patients was 32.2 years. Knees with nonirradiated allografts had higher mean Lysholm scores (89.8 vs 84.4; P<.05), and a higher proportion of <5-mm difference on KT-1000/2000 arthrometer (0.97 vs 0.84; P<.0001), grade 0 and 1 pivot-shift (0.99 vs 0.94; P<.0001), and grade 0 and 1 Lachman (0.94 vs 0.89; P<.01) than those with irradiated grafts. Knees with irradiated allografts had a higher proportion of grade A and B IKDC outcomes (0.91 vs 0.86; P<.05) and revision surgery (0.0250 vs 0.0022; P<.001) compared with those with nonirradiated allografts. The lack of data for FD and CP allografts meant no statistical analysis could be made comparing FF versus FD versus CP allografts. The effect of irradiation was similar within FF allografts. The effect of graft type and surgical technique could not be determined because of insufficient data. CONCLUSION These results suggest that primary ACLRs using nonirradiated allografts may provide superior clinical outcomes than those using low-dose (<2.5 Mrad) irradiated grafts.
Collapse
Affiliation(s)
- Sam Si-Hyeong Park
- University of Toronto Orthopaedic Sports Medicine Program, Toronto, Ontario, Canada
| | - Tim Dwyer
- University of Toronto Orthopaedic Sports Medicine Program, Toronto, Ontario, Canada Women's College Hospital, Toronto, Ontario, Canada
| | - Francesco Congiusta
- University of Toronto Orthopaedic Sports Medicine Program, Toronto, Ontario, Canada
| | - Daniel B Whelan
- University of Toronto Orthopaedic Sports Medicine Program, Toronto, Ontario, Canada St Michael's Hospital, Toronto, Ontario, Canada
| | - John Theodoropoulos
- University of Toronto Orthopaedic Sports Medicine Program, Toronto, Ontario, Canada Mount Sinai Hospital, Toronto, Ontario, Canada
| |
Collapse
|
24
|
The mechanical stability of allografts after a cleaning process: comparison of two preparation modes. J Arthroplasty 2014; 29:1642-6. [PMID: 24793889 DOI: 10.1016/j.arth.2014.03.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 02/12/2014] [Accepted: 03/24/2014] [Indexed: 02/01/2023] Open
Abstract
In revision hip arthroplasty, bone loss can be compensated by impacting allograft material. Cleaning processes reduce the risk of bacterial and viral contamination. Cleaned allograft material was compared to native untreated allografts by using a uniaxial compression test. 30 measurements were performed for each group before and after compaction. Grain size distribution and weight loss were determined. A reduction in the amount of large bone fragments and a higher compaction rate were observed in the cleaned bone grafts. The cleaned bone chips presented with a better mechanical resistance to a compression force and a reduced flowability. The benefit of a cleaner and a mechanical stable graft material comes with the drawback that higher initial amounts of graft material are needed.
Collapse
|
25
|
Delgado LM, Pandit A, Zeugolis DI. Influence of sterilisation methods on collagen-based devices stability and properties. Expert Rev Med Devices 2014; 11:305-14. [PMID: 24654928 DOI: 10.1586/17434440.2014.900436] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sterilisation is essential for any implantable medical device in order to prevent infection in patients. The selection of the most appropriate sterilisation method depends on the nature and the physical state of the material to be sterilised; the influence of the sterilisation method on the properties of the device; and the type of the potential contaminant. In this context, herein we review the influence of ethylene oxide, γ-irradiation, e-beam irradiation, gas plasma, peracetic acid and ethanol on structural, biomechanical, biochemical and biological properties of collagen-based devices. Data to-date demonstrate that chemical approaches are associated with cytotoxicity, whilst physical methods are associated with degradation, subject to the device physical characteristics. Thus, the sterilisation method of choice is device dependent.
Collapse
Affiliation(s)
- Luis M Delgado
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland Galway (NUI Galway), Galway, Ireland
| | | | | |
Collapse
|
26
|
Comparative biomechanical and microstructural analysis of native versus peracetic acid-ethanol treated cancellous bone graft. BIOMED RESEARCH INTERNATIONAL 2014; 2014:784702. [PMID: 24678514 PMCID: PMC3942278 DOI: 10.1155/2014/784702] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/10/2013] [Accepted: 12/23/2013] [Indexed: 01/29/2023]
Abstract
Bone transplantation is frequently used for the treatment of large osseous defects. The availability of autologous bone grafts as the current biological gold standard is limited and there is a risk of donor site morbidity. Allogenic bone grafts are an appealing alternative, but disinfection should be considered to reduce transmission of infection disorders. Peracetic acid-ethanol (PE) treatment has been proven reliable and effective for disinfection of human bone allografts. The purpose of this study was to evaluate the effects of PE treatment on the biomechanical properties and microstructure of cancellous bone grafts (CBG). Forty-eight human CBG cylinders were either treated by PE or frozen at −20°C and subjected to compression testing and histological and scanning electron microscopy (SEM) analysis. The levels of compressive strength, stiffness (Young's modulus), and fracture energy were significantly decreased upon PE treatment by 54%, 59%, and 36%, respectively. Furthermore, PE-treated CBG demonstrated a 42% increase in ultimate strain. SEM revealed a modified microstructure of CBG with an exposed collagen fiber network after PE treatment. We conclude that the observed reduced compressive strength and reduced stiffness may be beneficial during tissue remodeling thereby explaining the excellent clinical performance of PE-treated CBG.
Collapse
|
27
|
Russell N, Oliver RA, Walsh WR. The effect of sterilization methods on the osteoconductivity of allograft bone in a critical-sized bilateral tibial defect model in rabbits. Biomaterials 2013; 34:8185-94. [PMID: 23891084 DOI: 10.1016/j.biomaterials.2013.07.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/06/2013] [Indexed: 11/29/2022]
Abstract
Clinically, allogeneic bone graft is used extensively because it avoids the donor site morbidity associated with autograft. However, there are concerns over the optimal sterilization method to eliminate immunological risks whilst maintaining the biological efficacy of the graft. This study compared the effect of Supercritical fluid (SCF) treatment and gamma irradiation at 25 kGy on the osteoconductivity of allograft bone in a bilateral critical sized defect rabbit model. Osteoconductivity was evaluated at 2 and 4 weeks using X-ray, CT, histology (qualitative and quantitative) and immunohistochemistry (Alkaline Phosphatase and Cathepsin-K). Both grafts were well tolerated and osteoconductive. At 2 weeks, there was decreased bone volume and density in the gamma irradiated graft compared to the SCF treated graft, corresponding with a greater inflammatory response histologically and increased Cathepsin-K expression. Catabolic activity predominated at 4 weeks, with both grafts undergoing significant resorption and remodeling inside the defect. Alkaline Phosphatase expression was greater in the SCF group at both time points indicative of a more anabolic response. Allograft bone sterilized with either gamma irradiation or SCF treatment was osteoconductive and capable of healing a critical sized tibial defect in a rabbit. Gamma irradiated allografts elicited an acute inflammatory reaction when implanted which may increase the amount of graft resorption compared to the SCF treated bone.
Collapse
Affiliation(s)
- Nicholas Russell
- Surgical and Orthopaedic Research Laboratories, Prince of Wales Clinical School, University of New South Wales, Sydney, Australia.
| | | | | |
Collapse
|
28
|
Schoondermark-van de Ven E, Van Ranst M, de Bruin W, van den Hurk P, Zeller M, Matthijnssens J, Heylen E. Rabbit colony infected with a bovine-like G6P[11] rotavirus strain. Vet Microbiol 2013; 166:154-64. [PMID: 23830050 DOI: 10.1016/j.vetmic.2013.05.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/14/2013] [Accepted: 05/22/2013] [Indexed: 02/07/2023]
Abstract
Group A rotaviruses (RVAs) are the main etiological agent of infantile diarrhea in both humans and animals worldwide. A limited number of studies have investigated the molecular characteristics of RVA strains in stool specimens of rabbits, with only a few lapine RVA strains isolated and (partially) characterized to date. The most common G/P-genotype combinations found in rabbits are G3P[14] and G3P[22]. In this study a RVA strain was isolated from the small intestine of a 9-week-old rabbit from an infected laboratory rabbit colony. The RVA strain RVA/Rabbit-tc/NLD/K1130027/2011/G6P[11] was shown to possess the typical bovine G6 and P[11] genotypes. The complete genome of this unusual lapine strain was sequenced and characterized. Phylogenetic analyses of all 11 gene segments revealed the following genotype constellation: G6-P[11]-I2-R2-C2-M2-A13-N2-T6-E2-H3. The VP1, VP2, VP3, VP6, NSP2 and NSP4 genes all belonged to DS-1-like genotype 2, but clustered more closely to bovine RVA strains than to lapine RVA strains. The NSP1 genotype A13 is typically associated with bovine RVAs, while the NSP3 genotype T6 and the NSP5 genotype H3 have been found in a wide variety of species. However, the isolated strain clustered within bovine(-like) T6 and H3 subclusters. Overall, the data indicate that the RVA strain is most closely related to bovine-like RVA strains and most likely represents a direct interspecies transmission from a cow to a rabbit. Altogether, these findings indicate that a RVA strain with an entirely bovine genome constellation was able to infect and spread in a laboratory rabbit colony.
Collapse
|
29
|
Russell N, Rives A, Bertollo N, Pelletier MH, Walsh WR. The effect of sterilization on the dynamic mechanical properties of paired rabbit cortical bone. J Biomech 2013; 46:1670-5. [DOI: 10.1016/j.jbiomech.2013.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 04/02/2013] [Accepted: 04/08/2013] [Indexed: 12/19/2022]
|
30
|
Pang L, Hao W, Jiang M, Huang J, Yan Y, Hu Y. Bony defect repair in rabbit using hybrid rapid prototyping polylactic-co-glycolic acid/β-tricalciumphosphate collagen I/apatite scaffold and bone marrow mesenchymal stem cells. Indian J Orthop 2013; 47:388-94. [PMID: 23960284 PMCID: PMC3745694 DOI: 10.4103/0019-5413.114927] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND In bone tissue engineering, extracellular matrix exerts critical influence on cellular interaction with porous biomaterial and the apatite playing an important role in the bonding process of biomaterial to bone tissue. The aim of this study was to observe the therapeutic effects of hybrid rapid prototyping (RP) scaffolds comprising polylactic-co-glycolic acid (PLGA), β-tricalciumphosphate (β-TCP), collagen I and apatite (PLGA/β-TCP-collagen I/apatite) on segmental bone defects in conjunction with combination with bone marrow mesenchymal stem cells (BMSCs). MATERIALS AND METHODS BMSCs were seeded into the hybrid RP scaffolds to repair 15 mm defect in the radius of rabbits. Radiograph, microcomputed tomography and histology were used to evaluate new bone formation. RESULTS Radiographic analysis done from 12 to 36 weeks postoperative period demonstrated that new bone formed at the radial defect site and continues to increase until the medullary cavity is recanalized and remodelling is complete. The bone defect remained unconnected in the original RP scaffolds (PLGA/β-TCP) during the whole study. Histological observations conformed to the radiographic images. In hybrid RP scaffold group, woven bone united the radial defect at 12 weeks and consecutively remodeled into lamellar bone 24 weeks postoperation and finally matured into cortical bone with normal marrow cavity after another 12 weeks. No bone formation but connective tissue has been detected in RP scaffold at the same time. CONCLUSION Collagen I/apatite sponge composite coating could improve new bone formation in vivo. The hybrid RP scaffold of PLGA/β-TCP skeleton with collagen I/apatite sponge composite coating is a promising candidate for bone tissue engineering.
Collapse
Affiliation(s)
- Long Pang
- The Third Department of Orthopaedics, Affiliated Hospital of Ningxia Medical University, Yin Chuan, Ningxia, P. R. China
| | - Wei Hao
- Department of Orthopaedics and Traumatology, Yan’tai Yu Huang Ding Hospital, Affiliated to Qingdao University Medical College, Qingdao, P. R. China
| | - Ming Jiang
- Department of Stomatology, 107 Hospital of Ji’nan Military Area, Yan’tai, Shandong Province, Beijing, P. R. China
| | - Jianguo Huang
- The Third Department of Orthopaedics, Affiliated Hospital of Ningxia Medical University, Yin Chuan, Ningxia, P. R. China
| | - Yongnian Yan
- Department of Mechanical Engineering, Tsinghua University, Beijing, P. R. China
| | - Yunyu Hu
- Institute of Orthopaedics and Traumatology, Xijing Hospital, The Fourth Military Medical University, Xi’an, P. R. China
| |
Collapse
|
31
|
Russell NA, Pelletier MH, Bruce WJ, Walsh WR. The effect of gamma irradiation on the anisotropy of bovine cortical bone. Med Eng Phys 2012; 34:1117-22. [DOI: 10.1016/j.medengphy.2011.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 11/22/2011] [Accepted: 11/29/2011] [Indexed: 02/02/2023]
|
32
|
Hernandez CJ, Ramsey DS, Dux SJ, Chu EH, Rimnac CM. Irradiation does not modify mechanical properties of cancellous bone under compression. Clin Orthop Relat Res 2012; 470:2488-95. [PMID: 22033873 PMCID: PMC3830084 DOI: 10.1007/s11999-011-2148-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Gamma radiation sterilization can make cortical bone allograft more brittle, but whether it influences mechanical properties and propensity to form microscopic cracks in structurally intact cancellous bone allograft is unknown. QUESTIONS/PURPOSES We therefore determined the effects of gamma radiation sterilization on structurally intact cancellous bone mechanical properties and damage formation in both low- and high-density femoral cancellous bone (volume fraction 9%-44%). METHODS We studied 26 cancellous bone cores from the proximal and distal femurs of 10 human female cadavers (49-82 years of age) submitted to a single compressive load beyond yield. Mechanical properties and the formation of microscopic cracks and other tissue damage (identified through fluorochrome staining) were compared between irradiated and control specimens. RESULTS We observed no alterations in mechanical properties with gamma radiation sterilization after taking into account variation in specimen porosity. No differences in microscopic tissue damage were observed between the groups. CONCLUSIONS Although gamma radiation sterilization influences the mechanical properties and failure processes in cortical bone, it does not appear to influence the performance of cancellous bone under uniaxial loading.
Collapse
Affiliation(s)
- Christopher J. Hernandez
- />Sibley School of Mechanical and Aerospace Engineering and Department of Biomedical Engineering, Cornell University, 219 Upson Hall, Ithaca, NY 14853 USA
| | - Daniel S. Ramsey
- />Musculoskeletal Mechanics and Materials Laboratory, Departments of Mechanical and Aerospace Engineering and Orthopaedics, Case Western Reserve University, Cleveland, OH USA
| | - Stephanie J. Dux
- />Musculoskeletal Mechanics and Materials Laboratory, Departments of Mechanical and Aerospace Engineering and Orthopaedics, Case Western Reserve University, Cleveland, OH USA
| | - Eileen H. Chu
- />Musculoskeletal Mechanics and Materials Laboratory, Departments of Mechanical and Aerospace Engineering and Orthopaedics, Case Western Reserve University, Cleveland, OH USA
| | - Clare M. Rimnac
- />Musculoskeletal Mechanics and Materials Laboratory, Departments of Mechanical and Aerospace Engineering and Orthopaedics, Case Western Reserve University, Cleveland, OH USA
| |
Collapse
|
33
|
Russell NA, Rives A, Pelletier MH, Bruce WJ, Walsh WR. The effect of sterilization on the mechanical properties of intact rabbit humeri in three-point bending, four-point bending and torsion. Cell Tissue Bank 2012; 14:231-42. [DOI: 10.1007/s10561-012-9318-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/11/2012] [Indexed: 01/09/2023]
|
34
|
Effect of two cleaning processes for bone allografts on gentamicin impregnation and in vitro antibiotic release. Cell Tissue Bank 2012; 14:221-9. [DOI: 10.1007/s10561-012-9314-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 04/18/2012] [Indexed: 01/05/2023]
|
35
|
|
36
|
Inactivation of enveloped and non-enveloped viruses on seeded human tissues by gamma irradiation. Cell Tissue Bank 2011; 13:401-7. [PMID: 21809182 PMCID: PMC3432196 DOI: 10.1007/s10561-011-9266-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 06/25/2011] [Indexed: 12/11/2022]
Abstract
Human tissue allografts are widely used in a variety of clinical applications with over 1.5 million implants annually in the US alone. Since the 1990s, most clinically available allografts have been disinfected to minimize risk of disease transmission. Additional safety assurance can be provided by terminal sterilization using low dose gamma irradiation. The impact of such irradiation processing at low temperatures on viruses was the subject of this study. In particular, both human tendon and cortical bone samples were seeded with a designed array of viruses and the ability of gamma irradiation to inactivate those viruses was tested. The irradiation exposures for the samples packed in dry ice were 11.6–12.9 kGy for tendon and 11.6–12.3 kGy for bone, respectively. The viruses, virus types, and log reductions on seeded tendon and bone tissue, respectively, were as follows: Human Immunodeficiency Virus (RNA, enveloped), >2.90 and >3.20; Porcine Parvovirus (DNA, non-enveloped), 1.90 and 1.58; Pseudorabies Virus (DNA, enveloped), 3.80 and 3.79; Bovine Viral Diarrhea Virus (RNA, enveloped), 2.57 and 4.56; and Hepatitis A Virus (RNA, non-enveloped), 2.54 and 2.49, respectively. While proper donor screening, aseptic technique, and current disinfection practices all help reduce the risk of viral transmission from human allograft tissues, data presented here indicate that terminal sterilization using a low temperature, low dose gamma irradiation process inactivates both enveloped and non-enveloped viruses containing either DNA or RNA, thus providing additional assurance of safety from viral transmission.
Collapse
|
37
|
Cornu O, Boquet J, Nonclercq O, Docquier PL, Van Tomme J, Delloye C, Banse X. Synergetic effect of freeze-drying and gamma irradiation on the mechanical properties of human cancellous bone. Cell Tissue Bank 2010; 12:281-8. [PMID: 20703816 DOI: 10.1007/s10561-010-9209-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 07/21/2010] [Indexed: 01/12/2023]
Abstract
Freeze-drying and irradiation are common process used by tissue banks to preserve and sterilize bone allografts. Freeze dried irradiated bone is known to be more brittle. Whether bone brittleness is due to irradiation alone, temperature during irradiation or to a synergetic effect of the freeze-drying-irradiation process was not yet assessed. Using a left-right femoral head symmetry model, 822 compression tests were performed to assess the influence of sequences of a 25 kGy irradiation with and without freeze-drying compared to the unprocessed counterpart. Irradiation of frozen bone did not cause any significant reduction in ultimate strength, stiffness and work to failure. The addition of the freeze-drying process before or after irradiation resulted in a mean drop of 35 and 31% in ultimate strength, 14 and 37% in stiffness and 46 and 37% in work to failure. Unlike irradiation at room temperature, irradiation under dry ice of solvent-detergent treated bone seemed to have no detrimental effect on mechanical properties of cancellous bone. Freeze-drying bone without irradiation had no influence on mechanical parameters, but the addition of irradiation to the freeze-drying step or the reverse sequence showed a detrimental effect and supports the idea of a negative synergetic effect of both procedures. These findings may have important implications for bone banking.
Collapse
Affiliation(s)
- Olivier Cornu
- Orthopaedic Research Laboratory, Orthopaedic Department, Université Catholique de Louvain, Cliniques Universitaires St-Luc-2/P5, Av. Hippocrate 10, Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
38
|
Nan K, Sun S, Li Y, Chen H, Wu T, Lu F. Ectopic osteogenic ability of calcium phosphate scaffolds cultured with osteoblasts. J Biomed Mater Res A 2010; 93:464-8. [PMID: 19582839 DOI: 10.1002/jbm.a.32526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bone substitute materials can induce bone formation when combined with mesenchymal stem cells (MSC). The aim of the current study was to examine in vivo ectopic bone formation with MSC on tricalcium phosphate (TCP) ceramics. Osteoblasts isolated from bone marrow stromal cells (BMSCs) of New Zealand rabbits were cultured with TCP ceramics for 10 days, followed by implantation of the cultured TCP ceramics into the rabbit dorsum muscle. The cultured TCP and in vivo new bone formation with TCP biodegradation were evaluated histologically. Scanning electron microscopy showed that the surface of the cultured TCP ceramics was filled by osteoblasts with a cell-free zone in the central area. New bone was formed on the cultured TCP ceramics with signs of gradual degradation of TCP ceramics at 8 weeks of implantation, indicating that TCP could be a potential scaffold for seeding cells used for development of bioengineering tissues.
Collapse
Affiliation(s)
- Kaihui Nan
- Eye Hospital, Whenzhou Medical College, Whenzhou 325027, China
| | | | | | | | | | | |
Collapse
|
39
|
Kayurapan A, Makadelok S, Waikakul S. Effect of gamma sterilisation and deep-freezing on length and strength of fascia latae. J Orthop Surg (Hong Kong) 2010; 18:68-70. [PMID: 20427838 DOI: 10.1177/230949901001800115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PURPOSE To compare the length and strength of fascia latae after gamma sterilisation and different durations of deep-freezing. METHODS 50 pieces of fresh porcine fascia latae were randomly divided into 5 groups. Group 1 acted as controls, which were not gamma irradiated and deep-frozen. In groups 2 to 4, fascia latae were incubated in phosphate buffer solution for 4 hours, and then gamma irradiated at 25 kGy. They were preserved at -70 degrees Celcius for one to 3 months, respectively. In group 5, fascia latae were preserved for 3 months, and during the whole process they were fixed on a wooden board to maintain their original length. The maximum tensile strength of each fascia lata was tested at a displacement rate of 1 cm per minute until failure. RESULTS The maximum tensile strength was not significantly different among groups 1 to 4, but was significantly higher in group 5. CONCLUSION Gamma sterilisation and deep-freezing had no effect on the strength of fascia latae, but fixation on a board could increase strength.
Collapse
Affiliation(s)
- Agawit Kayurapan
- Bangkok Biomaterial Center, Department of Orthopaedic Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | | |
Collapse
|
40
|
Effects of (60)Co gamma radiation dose on initial structural biomechanical properties of ovine bone--patellar tendon--bone allografts. Cell Tissue Bank 2010; 12:89-98. [PMID: 20119643 DOI: 10.1007/s10561-010-9170-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 12/23/2009] [Indexed: 01/12/2023]
Abstract
Gamma radiation is established as a procedure for inactivating bacteria, fungal spores and viruses. Sterilization of soft tissue allografts with high dose (60)Co gamma radiation has been shown to have adverse effects on allograft biomechanical properties. In the current study, bone-patellar tendon-bone (BPTB) allografts from 32 mature sheep were divided into two treatment groups: low-dose radiation at 15 kGy (n = 16) and high-dose radiation at 25 kGy (n = 16) with the contralateral limb serving as a 0 kGy (n = 32) non-irradiated control. Half of the tendons from all treatment groups were biomechanically tested to determine bulk BPTB mechanical properties, cancellous bone compressive properties, and interference screw pull-out strength. The remaining tissues were prepared, implanted, and mechanically tested in an acute in vitro anterior crucial ligament (ACL) reconstruction. Low-dose radiation did not adversely affect mechanical properties of the tendon allograft, bone, or ACL reconstruction compared to internal non-irradiated control. However, high-dose radiation compromised bulk tendon load at failure and ultimate strength by 26.9 and 28.9%, respectively (P < 0.05), but demonstrated no negative effect on the cancellous bone compressive properties or interference screw pull-out strength. Our findings suggest that low dose radiation (15 kGy) does not compromise the mechanical integrity of the allograft tissue, yet high dose radiation (25 kGy) significantly alters the biomechanical integrity of the soft tissue constituent.
Collapse
|
41
|
Costain DJ, Crawford RW. Fresh-frozen vs. irradiated allograft bone in orthopaedic reconstructive surgery. Injury 2009; 40:1260-4. [PMID: 19486972 DOI: 10.1016/j.injury.2009.01.116] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2008] [Revised: 12/22/2008] [Accepted: 01/19/2009] [Indexed: 02/02/2023]
Abstract
The use of allograft bone is increasingly common in orthopaedic reconstruction procedures. The optimal method of preparation of allograft bone is subject of great debate. Proponents of fresh-frozen graft cite improved biological and biomechanical characteristics relative to irradiated material, whereas fear of bacterial or viral transmission warrants some to favour irradiated graft. Careful review of the literature is necessary to appreciate the influence of processing techniques on bone quality. Whereas limited clinical trials are available to govern the selection of appropriate bone graft, this review presents the argument favouring the use of fresh-frozen bone allograft as compared to irradiated bone.
Collapse
Affiliation(s)
- D J Costain
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | | |
Collapse
|
42
|
Improved tendon radioprotection by combined cross-linking and free radical scavenging. Clin Orthop Relat Res 2009; 467:2994-3001. [PMID: 19543778 PMCID: PMC2758987 DOI: 10.1007/s11999-009-0934-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 06/01/2009] [Indexed: 01/31/2023]
Abstract
Allograft safety is a great concern owing to the risk of disease transmission from nonsterile tissues. Radiation sterilization is not used routinely because of deleterious effects on the mechanical integrity and stability of allograft collagen. We previously reported several individual cross-linking or free radical scavenging treatments provided some radioprotective effects for tendons. We therefore asked whether a combination of treatments would provide an improved protective effect after radiation exposure regarding mechanical properties and enzyme resistance. To address this question we treated 90 rabbit Achilles tendons with a combination of cross-linking (1-ethyl-3-[3-dimethyl aminopropyl] carbodiimide [EDC]) and one of three scavenging regimens (mannitol, ascorbate, or riboflavin). Tendons then were exposed to one of three radiation conditions (gamma or electron beam irradiation at 50 kGy or unsterilized). Combination-treated tendons (10 per group) had increases in mechanical properties and higher resistance to collagenase digestion compared with EDC-only and untreated tendons. Irradiated tendons treated with EDC-mannitol, -ascorbate, and -riboflavin combinations had comparable strength to native tendon and had averages of 26%, 39%, and 37% greater, respectively, than those treated with EDC-only. Optimization of a cross-linking protocol and free radical scavenging cocktail is ongoing with the goal of ensuring sterile allografts through irradiation while maintaining their structure and mechanical properties.
Collapse
|
43
|
Haimi S, Moimas L, Pirhonen E, Lindroos B, Huhtala H, Räty S, Kuokkanen H, Sándor GK, Miettinen S, Suuronen R. Calcium phosphate surface treatment of bioactive glass causes a delay in early osteogenic differentiation of adipose stem cells. J Biomed Mater Res A 2009; 91:540-7. [DOI: 10.1002/jbm.a.32233] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
44
|
Postoperative culture positive surgical site infections after the use of irradiated allograft, nonirradiated allograft, or autograft for spinal fusion. Spine (Phila Pa 1976) 2009; 34:2466-8. [PMID: 19829261 DOI: 10.1097/brs.0b013e3181b1fef5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Retrospective chart review. OBJECTIVE We report the rate of postoperative infection at our institution following the use of irradiated allograft, nonirradiated allograft, or autograft for spinal fusion procedures. SUMMARY OF BACKGROUND DATA Infection after a spinal fusion procedure is a devastating complication. It has not been defined whether spine bone graft preparation has any correlation with postoperative infection in spinal fusion procedures. METHODS We retrospectively identified 1435 patients who underwent spine fusion procedures with a minimum 1-year follow-up. Irradiated allograft was used in 144 patients, nonirradiated allograft was used in 441 patients, and autograft was used in 850 patients. Postoperative spinal infection was based on documented positive spine cultures at the time of re-exploration for presumed infection. Infection rates were estimated using the method of Kaplan and Meier; estimates were calculated out to 1-year postsurgery, and rates were compared using log-rank tests. RESULTS No significant difference in the rate of surgical site infection at 1 year was observed after the use of irradiated allograft (1.7%), nonirradiated allograft (3.2%), or autograft (4.3%), P = 0.51. CONCLUSION There is no significant difference in the rate of infection following spine fusion using irradiated allograft, nonirradiated allograft, or autograft. The selection of bone graft to aid in spinal fusion should be based on the requirements of surgical technique and availability of the desired tissue and not on a perceived association with postoperative infection.
Collapse
|
45
|
Vastel L, Masse C, Mesnil P, Crozier E, Padilla F, Laugier P, Mitton D, Courpied JP. Comparative ultrasound evaluation of human trabecular bone graft properties after treatment with different sterilization procedures. J Biomed Mater Res B Appl Biomater 2009; 90:430-7. [PMID: 19130613 DOI: 10.1002/jbm.b.31302] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
New sterilization methods for human bone are likely to affect the mechanical properties of human cancellous grafts. These mechanical properties dictate the short- and mid-term results of the orthopedic procedure. The aim of this study was to compare the effects on bone mechanical properties, as assessed by ultrasound velocity, of different sterilization methods used under similar conditions: bleach and sublimation, humid heat, successive baths of physiological saline with osmotic detersion, and CO(2) in the supercritical phase. Alterations in mechanical properties were small with CO(2) (velocity change: -2%) and humid heat (-2.5%). Osmotic detersion had a significant but moderate effect (-4.7%). The -9% change with the protocol involving bleach suggested a greater than 30% decrease in load to failure, based on earlier studies. Gamma irradiation of defatted trabecular allografts, in a dose of 10 or 25 KGy, produced no significant changes in ultrasound velocity. Powerful protein denaturants used in sterilization protocols substantially alter the mechanical resistance of the grafts, which may jeopardize the orthopedic procedure.
Collapse
Affiliation(s)
- L Vastel
- Bone Tissue Banking, Cochin AP-HP, service de chirurgie orthopédique A, Hôpital Cochin AP-HP, Paris 75014, France.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Burgess HW, Mackrell J, Toms D, Karunanidhi A, Vaidya S, Hollinger JO, Grieb TA, Bertenshaw GP. Response of Bone Subjected to Optimized High Dose Irradiation. J Biomater Appl 2008; 24:387-400. [DOI: 10.1177/0885328208097088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Allograft tissues are used in over one million musculoskeletal procedures per year. Consequently, it is crucial tissue banks use procedures to militate against allograft associated bacterial and viral infections. Recent studies have identified an important pathogen inactivation technology for musculoskeletal allografts that utilizes high-dose gamma irradiation (50 kGy) under controlled conditions. A total dose of 50 kGy assures that the current standard for medical devices for a microbial sterility assurance level of 10— 6 is met. Furthermore, the pathogen inactivation technology results in a greater than four log inactivation of enveloped and nonenveloped viruses. Efficacious clinical outcome from musculoskeletal allografts exposed to this innovative sterilization procedure will require that there is no performance decrement in the allograft’s biological properties. Therefore, to validate this objective, we executed a study focusing on remodeling and osteoconduction of bone allografts treated with a high dose of gamma irradiation (50 kGy), radioprotectants and well-defined operating parameters of temperature and water content. A rabbit calvarial model was used to test the hypothesis that remodeling and osteoconduction of allogeneic bone treated with the new pathogen inactivation technology would be equivalent to nontreated allogeneic bone. Results indicated treated bone allografts were comparable to nontreated allografts. We conclude, therefore, that based on this outcome and other reports, that high doses of gamma irradiation under optimized conditions designed to reduce free radical damage to tissue will provide safer allografts.
Collapse
Affiliation(s)
- H. Wilson Burgess
- Statseal Inc. 5150 Village Park Drive SE Suite 110 Bellevue, WA 98006, USA
| | - James Mackrell
- Bone Tissue Engineering Center, Carnegie Mellon University 5000 Forbes Avenue, Pittsburgh, PA 15044, USA
| | - Derek Toms
- Bone Tissue Engineering Center, Carnegie Mellon University 5000 Forbes Avenue, Pittsburgh, PA 15044, USA
| | - Anuradha Karunanidhi
- Bone Tissue Engineering Center, Carnegie Mellon University 5000 Forbes Avenue, Pittsburgh, PA 15044, USA
| | - Swaroopa Vaidya
- Bone Tissue Engineering Center, Carnegie Mellon University 5000 Forbes Avenue, Pittsburgh, PA 15044, USA
| | - Jeffrey O. Hollinger
- Bone Tissue Engineering Center, Carnegie Mellon University 5000 Forbes Avenue, Pittsburgh, PA 15044, USA,
| | - Teri A. Grieb
- MedImmune Inc. One MedImmune Way Gaithersburg, MD 20878, USA
| | | |
Collapse
|
48
|
Katz J, Mukherjee N, Cobb RR, Bursac P, York-Ely A. Incorporation and immunogenicity of cleaned bovine bone in a sheep model. J Biomater Appl 2008; 24:159-74. [PMID: 18987022 DOI: 10.1177/0885328208095174] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study was conducted to determine if a novel cleaning process could extract antigenic material from bovine bone thereby improving incorporation. Cleaned bovine xenograft, untreated bovine xenograft and sheep allograft were implanted into the tibia of mature sheep for 12 and 24 weeks. Inflammation, bone integration and immunological reactions were evaluated via standardized assays. Cleaned bovine bone dowels induced significantly lower inflammatory responses (p < 50.05) when compared to traditionally processed xenograft. Bone integration, measured by in situ biomechanics, was not different between cleaned bovine bone and allograft controls (p = 0.96). A transient antibody response was observed for non-treated xenografts although this response abated by 3 months.
Collapse
Affiliation(s)
- Jordan Katz
- Biotechnology Development Group, RTI Biologics, Alachua, FL, USA
| | | | | | | | | |
Collapse
|
49
|
Alanay A, Wang JC, Shamie AN, Napoli A, Chen C, Tsou P. A novel application of high-dose (50kGy) gamma irradiation for demineralized bone matrix: effects on fusion rate in a rat spinal fusion model. Spine J 2008; 8:789-95. [PMID: 17996496 DOI: 10.1016/j.spinee.2007.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 06/10/2007] [Accepted: 06/20/2007] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT The safety of allograft material has come under scrutiny because of recent reports of allograft-associated bacterial and viral infections in tissue recipients. Gamma irradiation, although being one of the most effective ways of terminal sterilization, has been shown to affect the biomechanical properties of allograft bone. It may also have detrimental effects on the osteoinductivity of allograft material such as demineralized bone matrix (DBM) by the denaturation of proteins because of heat generated by irradiation. Sterilization of DBM material is an important variable in processing graft materials. This is considered to be one of the factors leading to different fusion rates observed with different commercially available DBM products, as the sterilization procedure itself may affect the osteoinductivity of the material. Currently, there is no ideal sterilization technique that limits the detrimental effect on osteoinductivity and fusion rates. PURPOSE To evaluate the effects of a range of hydrogen peroxide exposures with or without the controlled high-dose gamma irradiation after processing with radioprotectant solutions (Clearant radiation sterilization procedure) on the fusion rates of human DBM. STUDY DESIGN A prospective in vivo animal study. METHODS Eighty mature athymic nude female rats were used for this study, which formed 10 equal groups. Human DBM exposed to hydrogen peroxide for different time periods (0, 1, 6, and 24 hours) was divided into two major subgroups. One group was further treated with controlled high-dose radiation using radioprotectants (radiation treated), whereas the other group was frozen immediately without specific treatment (non-radiation treated). Both radiation-treated and non-radiation-treated DBM material from each group of hydrogen peroxide exposure times were implanted between L4 and L5 transverse processes of the rats forming eight test groups including eight animals in each. The remaining 16 rats were divided into two additional groups to form negative (only decortication, n=8) and positive (bone morphogenetic protein [BMP]-2, n=8) control groups. The rats were evaluated for fusion by radiographs (2, 4, and 8 weeks), manual palpation (8 weeks), and histological analysis after sacrificing. Comparison of fusion rate among all groups was made using these three evaluation methods. RESULTS Increasing the time period of hydrogen peroxide (0, 1, 6, or 24 hours) exposure for preparation of DBM from bone allograft did not affect the fusion rates significantly (p<.05), although there was a trend toward decreasing fusion rates with longer exposure times. When the hydrogen peroxide washed DBM preparations were also radiation treated, the resulting fusion rates were again not significantly different (p<.05). Agreement among fusion detection methods was found to be high. CONCLUSIONS Hydrogen peroxide processing was not detrimental to fusion rates. The additional terminal sterilization technique with special gamma irradiation protocols (Clearant process) also did not decrease the fusion rates but could provide an additional margin of safety.
Collapse
Affiliation(s)
- Ahmet Alanay
- Department of Orthopaedics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | | | | | | | | | | |
Collapse
|
50
|
Zigang Ge, Lishan Wang, Boon Chin Heng, Tian XF, Kai Lu, Tai Weng Fan V, Jin Fei Yeo, Tong Cao, Tan E. Proliferation and differentiation of human osteoblasts within 3D printed poly-lactic-co-glycolic acid scaffolds. J Biomater Appl 2008; 23:533-47. [PMID: 18757495 DOI: 10.1177/0885328208094301] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bone repair and regeneration can be enhanced through implantation of biocompatible and biodegradable scaffolds, which serve primarily as osteoconductive moieties. In this study, the mechanical properties and microenviroment of 3D printed poly-lactic-co-glycolic acid (PLGA) scaffolds are examined. Additionally, the proliferation and differentiation of human fetal osteoblasts are evaluated after 3 weeks of in vitro culture on the scaffolds. The results showed that the PLGA scaffolds examined had mechanical properties similar to that of trabecular bone, but was still much weaker compared to cortical bone. In addition to general porosity, the PLGA scaffolds also had micropores within macropore walls. Cultured human osteoblasts could proliferate upon seeding on the PLGA scaffolds. Alkaline phosphatase activity and osteonectin expression of the osteoblasts cultured on the PLGA scaffolds remained stable over three weeks, whilst expression of collagen type I and osteopontin decreased. The alkaline phosphatase activity of osteoblasts cultured on PLGA scaffolds is comparable with that from two commercially-available scaffolds - OPLA and collagen scaffolds (Becton-Dickinson (BD) Inc., Franklin Lakes, NJ, USA). Hence, the results suggested that the PLGA scaffolds examined are conducive for promoting osteogenesis.
Collapse
Affiliation(s)
- Zigang Ge
- National University of Singapore, Oral and Maxillofacial Surgery, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|