1
|
Zhang M, Tansley GD, Dargusch MS, Fraser JF, Pauls JP. Surface Coatings for Rotary Ventricular Assist Devices: A Systematic Review. ASAIO J 2021; 68:623-632. [PMID: 34324447 DOI: 10.1097/mat.0000000000001534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Rotary ventricular assist devices (VADs) are frequently used to provide mechanical circulatory support to patients suffering from end-stage heart failure. Therefore, these devices and especially their pump impeller and housing components have stringent requirements on wear resistance and hemocompatibility. Various surface coatings have been investigated to improve the wear resistance or hemocompatibility of these devices. The aim of the present systematic review was to build a comprehensive understanding of these coatings and provide potential future research directions. A Boolean search for peer-reviewed studies was conducted in online databases (Web of Science, Scopus, PubMed, and ScienceDirect), and a preferred reporting items for systematic reviews and meta-analyses (PRISMA) process was followed for selecting relevant papers for analysis. A total of 45 of 527 publications were included for analysis. Eighteen coatings were reported to improve wear resistance or hemocompatibility of rotary VADs with the most common coatings being diamond-like carbon (DLC), 2-methacryloyloxyethyl phosphorylcholine (MPC), and heparin. Ninety-three percent of studies focused on hemocompatibility, whereas only 4% of studies focused on wear properties. Thirteen percent of studies investigated durability. This review provides readers with a systematic catalogue and critical review of surface coatings for rotary VADs. The review has identified that more comprehensive studies especially investigations on wear properties and durability are needed in future work.
Collapse
Affiliation(s)
- Meili Zhang
- From the Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia School of Mechanical and Mining Engineering, University of Queensland, Brisbane, Queensland, Australia School of Engineering and Built Environment, Griffith University, Brisbane, Queensland, Australia School of Medicine, University of Queensland, Brisbane, Queensland, Australia School of Medicine, Griffith University, Brisbane, Queensland, Australia
| | | | | | | | | |
Collapse
|
2
|
Bai L, Zhao Y, Chen P, Zhang X, Huang X, Du Z, Crawford R, Yao X, Tang B, Hang R, Xiao Y. Targeting Early Healing Phase with Titania Nanotube Arrays on Tunable Diameters to Accelerate Bone Regeneration and Osseointegration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006287. [PMID: 33377275 DOI: 10.1002/smll.202006287] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Blood coagulation and inflammation are the earliest biological responses to implant surfaces. Implant nano-surfaces can significantly impact the osseointegration through the influence on the early phase of bone regeneration. However, the interplay between blood clot property and inflammatory reaction on nanosurfaces is rarely understood. Herein, titania nanotube arrays (TNAs) with different diameters are fabricated on titanium. In vitro evaluation with the whole blood indicates that TNA with a diameter of 15 nm (TNA 15) enables noteworthy platelet activation resulting in distinct clot features compared with that of pure Ti and TNA with a diameter of 120 nm (TNA 120). Further co-culture with macrophages on the clot or in the clot-conditioned medium shows that the clot on TNA 15 downregulates the inflammation and manipulates a favorable osteoimmunomodulatory environment for osteogenesis. In vivo studies further demonstrate that TNA 15 could downregulate the inflammation-related genes while upregulating growth metabolism-related genes in an early healing hematoma. Additionally, TNA 15 promotes de novo bone formation with improved extending of osteocyte dendrites, demonstrating the desired osseointegration. These findings indicate that surface nano-dimensions can significantly influence clot formation and appropriate clot features can manipulate a favorable osteoimmunomodulatory environment for bone regeneration and osseointegration.
Collapse
Affiliation(s)
- Long Bai
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan, 10112, China
- Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, 4059, Australia
| | - Ya Zhao
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan, 10112, China
| | - Peiru Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, 102206, China
| | - Xiangyu Zhang
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan, 10112, China
| | - Xiaobo Huang
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan, 10112, China
| | - Zhibin Du
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, 4059, Australia
| | - Ross Crawford
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, 4059, Australia
| | - Xiaohong Yao
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan, 10112, China
| | - Bin Tang
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan, 10112, China
| | - Ruiqiang Hang
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan, 10112, China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, 4059, Australia
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China
| |
Collapse
|
3
|
Kaczmarek B, Mazur O, Miłek O, Michalska-Sionkowska M, Osyczka AM, Kleszczyński K. Development of tannic acid-enriched materials modified by poly(ethylene glycol) for potential applications as wound dressing. Prog Biomater 2020; 9:115-123. [PMID: 32951173 PMCID: PMC7544793 DOI: 10.1007/s40204-020-00136-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/08/2020] [Indexed: 01/17/2023] Open
Abstract
The interests in the biomedical impact of tannic acid (TA) targeting production of various types of biomaterials, such as digital microfluids, chemical sensors, wound dressings, or bioimplants constantly increase. Despite the significant disadvantage of materials obtained from natural-based compounds and their low stability and fragility, therefore, there is an imperative need to improve materials properties by addition of stabilizing formulas. In this study, we performed assessments of thin films over TA proposed as a cross-linker to be used in combination with polymeric matrix based on chitosan (CTS), i.e. CTS/TA at 80:20 or CTS/TA at 50:50 and poly(ethylene glycol) (PEG) at the concentration of 10% or 20%. We evaluated their mechanical parameters as well as the cytotoxicity assay for human bone marrow mesenchymal stem cells, human melanotic melanoma (MNT-1), and human osteosarcoma (Saos-2). The results revealed significant differences in dose-dependent of PEG regarding the maximum tensile strength (σmax) or impact on the metabolic activity of tissue culture plastic. We observed that PEG improved mechanical parameters prominently, decreased the hemolysis rate, and did not affect cell viability negatively. Enclosed data, confirmed also by our previous reports, will undoubtedly pave the path for the future application of tannic acid-based biomaterials to treat wound healing.
Collapse
Affiliation(s)
- Beata Kaczmarek
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Toruń, Poland
| | - Olha Mazur
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Toruń, Poland
| | - Oliwia Miłek
- Department of Biology and Cell Imaging, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Marta Michalska-Sionkowska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| | - Anna M Osyczka
- Department of Biology and Cell Imaging, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149, Münster, Germany.
| |
Collapse
|
4
|
Kang IG, Park CI, Seong YJ, Lee H, Kim HE, Han CM. Bioactive and mechanically stable hydroxyapatite patterning for rapid endothelialization of artificial vascular graft. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 106:110287. [PMID: 31753339 DOI: 10.1016/j.msec.2019.110287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 07/26/2019] [Accepted: 10/05/2019] [Indexed: 12/23/2022]
Abstract
Polymeric vascular grafts have been widely used in the vascular regeneration field because of their ease of application. However, synthetic polymer grafts have the severe problem of low biocompatibility, which may cause delayed endothelialization and hyperplasia. In this study, we fabricated a linear hydroxyapatite (HA) pattern on a silicon wafer and then transferred the pattern to a poly(L-lactic)-acid (PLLA) film for use as a tubular vascular graft. The HA pattern with its characteristic needle-like shape was successfully embedded into the PLLA. The HA-patterned PLLA film exhibited superior mechanical stability compared with that of a HA-coated PLLA film under bending, elongation, and in vitro circulation conditions, suggesting its suitability for use as a tubular vascular graft. In addition, the HA pattern guided rapid endothelialization by promoting proliferation of endothelial cells and their migration along the pattern. The hemocompatibility of the HA-patterned PLLA was also confirmed, with substantially fewer platelets adhered on its surface. Overall, in addition to good mechanical stability, the HA-patterned PLLA exhibited enhanced biocompatibility and hemocompatibility compared with pure PLLA.
Collapse
Affiliation(s)
- In-Gu Kang
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Cheon-Il Park
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yun-Jeong Seong
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyoun-Ee Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea; Advanced Institute of Convergence Technology, Seoul National University, Suwon-si, Gyeonggi-do, 16629, Republic of Korea
| | - Cheol-Min Han
- Department of Carbon and Nano Materials Engineering, Jeonju University, Jeonju-si, Jeollabuk-do, 55069, Republic of Korea.
| |
Collapse
|
5
|
Maitz MF, Martins MCL, Grabow N, Matschegewski C, Huang N, Chaikof EL, Barbosa MA, Werner C, Sperling C. The blood compatibility challenge. Part 4: Surface modification for hemocompatible materials: Passive and active approaches to guide blood-material interactions. Acta Biomater 2019; 94:33-43. [PMID: 31226481 DOI: 10.1016/j.actbio.2019.06.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/29/2019] [Accepted: 06/13/2019] [Indexed: 12/22/2022]
Abstract
Biomedical devices in the blood flow disturb the fine-tuned balance of pro- and anti-coagulant factors in blood and vessel wall. Numerous technologies have been suggested to reduce coagulant and inflammatory responses of the body towards the device material, ranging from camouflage effects to permanent activity and further to a responsive interaction with the host systems. However, not all types of modification are suitable for all types of medical products. This review has a focus on application-oriented considerations of hemocompatible surface fittings. Thus, passive versus bioactive modifications are discussed along with the control of protein adsorption, stability of the immobilization, and the type of bioactive substance, biological or synthetic. Further considerations are related to the target system, whether enzymes or cells should be addressed in arterial or venous system, or whether the blood vessel wall is addressed. Recent developments like feedback controlled or self-renewing systems for drug release or addressing cellular regulation pathways of blood platelets and endothelial cells are paradigms for a generation of blood contacting devices, which are hemocompatible by cooperation with the host system. STATEMENT OF SIGNIFICANCE: This paper is part 4 of a series of 4 reviews discussing the problem of biomaterial associated thrombogenicity. The objective was to highlight features of broad agreement and provide commentary on those aspects of the problem that were subject to dispute. We hope that future investigators will update these reviews as new scholarship resolves the uncertainties of today.
Collapse
Affiliation(s)
- Manfred F Maitz
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany; Key Laboratory of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - M Cristina L Martins
- i3S, Instituto de Investigação e Inovação em Saúde, Portugal; INEB, Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Niels Grabow
- Institut für Biomedizinische Technik, Universitätsmedizin Rostock, Friedrich-Barnewitz-Str. 4, 18119 Rostock, Germany
| | - Claudia Matschegewski
- Institut für Biomedizinische Technik, Universitätsmedizin Rostock, Friedrich-Barnewitz-Str. 4, 18119 Rostock, Germany; Institute for ImplantTechnology and Biomaterials (IIB) e.V., Friedrich-Barnewitz-Str. 4, 18119 Rostock, Germany
| | - Nan Huang
- Key Laboratory of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Elliot L Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02115, United States; Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan Circle, Boston, MA 02115, United States; Harvard-MIT Division of Health Sciences and Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Mário A Barbosa
- i3S, Instituto de Investigação e Inovação em Saúde, Portugal; INEB, Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Carsten Werner
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany
| | - Claudia Sperling
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany
| |
Collapse
|
6
|
|
7
|
Alfarsi MA, Hamlet SM, Ivanovski S. The Effect of Platelet Proteins Released in Response to Titanium Implant Surfaces on Macrophage Pro-Inflammatory Cytokine Gene Expression. Clin Implant Dent Relat Res 2014; 17:1036-47. [PMID: 24909201 DOI: 10.1111/cid.12231] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE Platelets are one of the earliest cell types to interact with surgically inserted titanium implants. This in vitro study investigated the effect of titanium surface-induced platelet releasate on macrophage cytokine gene expression. MATERIALS AND METHODS To mimic the in vivo temporal sequence of platelet arrival and protein production at the implant surface and the subsequent effect of these proteins on mediators of the immune response, the levels of platelet attachment and activation in response to culture on smooth polished, sandblasted and acid-etched (SLA), and hydrophilic-modified SLA (modSLA) titanium surfaces were first determined by microscopy and protein assay. The subsequent effect of the platelet-released proteins on human THP-1 macrophage cytokine gene expression was determined by polymerase chain reaction array after 1 and 3 days of macrophage culture on the titanium surfaces in platelet-releasate conditioned media. RESULTS Platelet attachment was surface dependent with decreased attachment observed on the hydrophilic (modSLA) surface. The platelet releasate, when considered independently of the surface effect, elicited an overall pro-inflammatory response in macrophage cytokine gene expression, that is, the expression of typical pro-inflammatory cytokine genes such as TNF, IL1a, IL1b, and CCL1 was significantly up-regulated whereas the expression of anti-inflammatory cytokine genes such as IL10, CxCL12, and CxCL13 was significantly down-regulated. However, following platelet exposure to different surface modifications, the platelet releasate significantly attenuated the macrophage pro-inflammatory response to microrough (SLA) titanium and hastened an anti-inflammatory response to hydrophilic (modSLA) titanium. CONCLUSIONS Theses results demonstrate that titanium surface topography and chemistry are able to influence the proteomic profile released by platelets, which can subsequently influence macrophage pro-inflammatory cytokine expression. This immunomodulation may be an important mechanism via which titanium surface modification influences osseointegration.
Collapse
Affiliation(s)
- Mohammed A Alfarsi
- Griffith Health Institute, Molecular basis of Disease Program and School of Dentistry and Oral Health, Griffith University, Gold Coast, Australia.,College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Stephen M Hamlet
- Griffith Health Institute, Molecular basis of Disease Program and School of Dentistry and Oral Health, Griffith University, Gold Coast, Australia
| | - Saso Ivanovski
- Griffith Health Institute, Molecular basis of Disease Program and School of Dentistry and Oral Health, Griffith University, Gold Coast, Australia
| |
Collapse
|
8
|
Jamiolkowski MA, Woolley JR, Kameneva MV, Antaki JF, Wagner WR. Real time visualization and characterization of platelet deposition under flow onto clinically relevant opaque surfaces. J Biomed Mater Res A 2014; 103:1303-11. [PMID: 24753320 DOI: 10.1002/jbm.a.35202] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/31/2014] [Accepted: 04/18/2014] [Indexed: 11/07/2022]
Abstract
Although the thrombogenic nature of the surfaces of cardiovascular devices is an important aspect of blood biocompatibility, few studies have examined platelet deposition onto opaque materials used for these devices in real time. This is particularly true for the metallic surfaces used in current ventricular assist devices (VADs). Using hemoglobin depleted red blood cells (RBC ghosts) and long working distance optics to visualize platelet deposition, we sought to perform such an evaluation. Fluorescently labeled platelets mixed with human RBC ghosts were perfused across six opaque materials (a titanium alloy (Ti6Al4V), silicon carbide (SiC), alumina (Al2O3, 2-methacryloyloxyethyl phosphorylcholine polymer coated Ti6Al4V (MPC-Ti6Al4V), yttria partially stabilized zirconia (YZTP), and zirconia toughened alumina (ZTA)) for 5 min at wall shear rates of 400 and 1000 s(-1). Ti6Al4V had significantly increased platelet deposition relative to MPC-Ti6Al4V, Al2 O3 , YZTP, and ZTA at both wall shear rates (p < 0.01). For all test surfaces, increasing the wall shear rate produced a trend of decreased platelet adhesion. The described system can be a utilized as a tool for comparative analysis of candidate blood-contacting materials with acute blood contact.
Collapse
Affiliation(s)
- Megan A Jamiolkowski
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | | | | |
Collapse
|
9
|
He F, Wang X, Maruyama O, Kosaka R, Sogo Y, Ito A, Ye J. Improvement in endothelial cell adhesion and retention under physiological shear stress using a laminin-apatite composite layer on titanium. J R Soc Interface 2013; 10:20130014. [PMID: 23407573 DOI: 10.1098/rsif.2013.0014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Apatite (Ap), laminin-apatite composite (L5Ap, L10Ap, L20Ap and L40Ap) and albumin-apatite (AlbAp) composite layers were prepared on titanium (Ti) using a supersaturated calcium phosphate solution supplemented with laminin (0, 5, 10, 20 and 40 μg ml(-1)) or albumin (800 μg ml(-1)). With an increase in the concentrations of laminin in the supersaturated calcium phosphate solutions, the amounts of laminin immobilized on the Ti increased. The number of human umbilical vein endothelial cells (HUVECs) adhered to the laminin-apatite composite layers were remarkably higher than those to the untreated Ti, Ap layer and AlbAp composite layer. The number of cells adhered to the L40Ap was 4.3 times the untreated Ti. Moreover, cells adhered to the laminin-apatite composite layers showed significantly higher cell retention under the physiological shear stress for 1 h and 2 h than those to the untreated Ti, Ap layer and AlbAp composite layer. The number of cells remaining on the L40Ap under the physiological shear stress for 2 h was 9.5 times that of the untreated Ti. The laminin-apatite composite layer is a promising interfacial layer for endothelialization of blood-contacting materials.
Collapse
Affiliation(s)
- Fupo He
- Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Chang X, Gorbet M. The effect of shear on in vitro platelet and leukocyte material-induced activation. J Biomater Appl 2012; 28:407-15. [DOI: 10.1177/0885328212454689] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The failure to understand the mechanisms of biomaterial-associated thrombosis prevents us from improving the blood compatibility of stents and mechanical heart valves. Blood-material interactions trigger a complex series of events and anticoagulant and anti-platelet therapies are needed to reduce the risks of thrombotic complications with most cardiovascular materials. While material interaction with platelets has been widely studied, little is currently known on material-induced leukocyte activation in the presence of shear. In vitro experiments were performed to assess the effect of flow on blood cell activation induced by medical grade metals, ST316L and TiAl6V4. Blood was circulated in flow chambers preloaded with or without metal wires at shear rates of 100, 500, and 1500 s−1. Platelet and leukocyte activation, leukocyte-platelet aggregation, and tissue factor expression on monocytes were measured by flow cytometry. Metal surfaces were characterized by scanning electron microscopy. Under physiological shear rates, no significant platelet microparticle formation was observed. However, significant CD11b up-regulation, leukocyte-platelet aggregates, and tissue factor expression were observed at 100 s−1. As shear rate increased to 1500 s−1, leukocyte activation reduced to control values. TiAl6V4-induced leukocyte activation was generally lower than that of ST316L. Adhesion significantly decreased with increasing shear rate to 1500 s−1. In blood, increase within physiological shear rates led to a significant reduction in in vitro material-induced leukocyte activation, suggesting that difference between material biocompatibility may be better identified at low shear rates or under pathological shear conditions.
Collapse
Affiliation(s)
- Xiaojian Chang
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Maud Gorbet
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
11
|
Calcium phosphate composite layers for surface-mediated gene transfer. Acta Biomater 2012; 8:2034-46. [PMID: 22343517 DOI: 10.1016/j.actbio.2012.02.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/27/2012] [Accepted: 02/01/2012] [Indexed: 01/17/2023]
Abstract
In this review, the surface-mediated gene transfer system using calcium phosphate composite layers is described. Calcium phosphate ceramics are osteoconductive bioceramics used typically in orthopedic and dental applications. Additionally, calcium phosphate particles precipitated by a liquid-phase process have long been used as a safe and biocompatible transfection reagent in molecular biology. Recently, calcium phosphate composite layers immobilizing DNA were fabricated on the surfaces of base materials through a biomimetic process using supersaturated solutions. These composite layers possess useful characteristics of both osteoconductive bioceramics and transfection reagents; they thus provide a biocompatible surface to support cell adhesion and growth, and can stimulate the cell effectively via surface-mediated gene transfer. By modifying the fabrication conditions, physicochemical and biological properties of the composite layers can be varied. With such an approach, these composite layers can be designed to have improved affinity for cells and to exhibit increased gene transfer efficiency over that of conventional lipid transfection reagents. The composite layers with the increased gene transfer efficiency induced specific cell differentiation and tissue regeneration in vivo. These composite layers, given their good biocompatibility and the potential to control cell behavior on their surfaces, have great potential in tissue engineering applications.
Collapse
|
12
|
Affiliation(s)
- Katherine M. Buettner
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Ann M. Valentine
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
13
|
Enhanced immobilization of acidic proteins in the apatite layer via electrostatic interactions in a supersaturated calcium phosphate solution. Acta Biomater 2011; 7:2969-76. [PMID: 21536155 DOI: 10.1016/j.actbio.2011.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 04/11/2011] [Accepted: 04/12/2011] [Indexed: 11/23/2022]
Abstract
Artificial materials coated with a protein-apatite composite layer have great potential in clinical applications as a third generation biomaterial. Such composite materials can be prepared by immersing a surface modified substrate into a supersaturated calcium phosphate solution (CP solution: 142 mM NaCl, 3.75 mM CaCl(2), 1.5mM K(2)HPO(4)·3H(2)O, buffered at pH 7.4 at 25 °C with tris(hydroxymethyl)aminomethane and HCl) supplemented with a protein. In the present study proteins of various molecular weights (MW) and isoelectric points (pI) were used to form a protein-apatite composite layer on a polymeric material to determine how the molecular properties of the protein affect the efficiency of protein immobilization (i.e. the amount of immobilized protein in the apatite layer as a percentage of the total amount of protein in solution). The results indicated that the efficiency of protein immobilization did not correlate with the MW of the protein. In contrast, the efficiency of protein immobilization was strongly related to the pI of the protein. As the pI decreased the efficiency of protein immobilization increased due to the high adsorption affinity of negatively charged acidic proteins for positively charged apatite crystals and/or apatite precursors in the CP solution. Thus, the use of acidic rather than basic proteins improves the immobilization efficiency in the present coating process.
Collapse
|
14
|
Hyde GK, Stewart SM, Scarel G, Parsons GN, Shih CC, Shih CM, Lin SJ, Su YY, Monteiro-Riviere NA, Narayan RJ. Atomic layer deposition of titanium dioxide on cellulose acetate for enhanced hemostasis. Biotechnol J 2011; 6:213-23. [PMID: 21298806 DOI: 10.1002/biot.201000342] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
TiO₂ films may be used to alter the wettability and hemocompatibility of cellulose materials. In this study, pure and stoichiometric TiO₂ films were grown using atomic layer deposition on both silicon and cellulose substrates. The films were grown with uniform thicknesses and with a growth rate in agreement with literature results. The TiO₂ films were shown to profoundly alter the water contact angle values of cellulose in a manner dependent upon processing characteristics. Higher amounts of protein adsorption indicated by blurry areas on images generated by scanning electron microscopy were noted on TiO₂ -coated cellulose acetate than on uncoated cellulose acetate. These results suggest that atomic layer deposition is an appropriate method for improving the biological properties of hemostatic agents and other blood-contacting biomaterials.
Collapse
Affiliation(s)
- G Kevin Hyde
- Department of Chemical and Bimolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wang X, Ito A, Li X, Sogo Y, Oyane A. Signal molecules-calcium phosphate coprecipitation and its biomedical application as a functional coating. Biofabrication 2011; 3:022001. [PMID: 21474887 DOI: 10.1088/1758-5082/3/2/022001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this review, the current knowledge of signal molecules-calcium phosphate coprecipitation and its biomedical application as a functional coating are described. Although signal molecules regulate a variety of cellular processes, it is difficult to sustain the regulation activity for a long term when the signal molecules are only injected in a free form. The signal molecules-calcium phosphate coprecipitation on a substrate surface is a very promising process to achieve sustained regulation activity of the signal molecules by controlled and localized delivery of the signal molecules to specific body sites (implantation sites). However, the significance of immobilizing signal molecules with calcium phosphate coatings and their biomedical application are not systematically illustrated. For this purpose, the presently existing coprecipitation methods and strategies on biomedical application are summarized and discussed.
Collapse
Affiliation(s)
- Xiupeng Wang
- Human Technology Research Institute, Higashi, Tsukuba, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|
16
|
Kendall M, Ding P, Kendall K. Particle and nanoparticle interactions with fibrinogen: the importance of aggregation in nanotoxicology. Nanotoxicology 2010; 5:55-65. [DOI: 10.3109/17435390.2010.489724] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Michaela Kendall
- European Centre for Environment and Human Health, Peninsula College of Medicine and Dentistry, The Knowledge Spa, Truro, Cornwall
| | - Ping Ding
- Department of Chemical Engineering, University of Birmingham, UK
| | - Kevin Kendall
- Department of Chemical Engineering, University of Birmingham, UK
| |
Collapse
|
17
|
Sogo Y, Ito A, Onoguchi M, Li X, Oyane A, Ichinose N. Formation of cytochrome C–apatite composite layer on NaOH- and heat-treated titanium. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2009. [DOI: 10.1016/j.msec.2008.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Recombinant human-like collagen modulated the growth of nano-hydroxyapatite on NiTi alloy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2009. [DOI: 10.1016/j.msec.2008.05.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
One-step biomimetic coprecipitation method to form calcium phosphate and hemoglobin composite nanoparticles for biosensing application. J Electroanal Chem (Lausanne) 2008. [DOI: 10.1016/j.jelechem.2008.07.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Oyane A, Ishikawa Y, Yamazaki A, Sogo Y, Furukawa K, Ushida T, Ito A. Reduction of surface roughness of a laminin-apatite composite coating via inhibitory effect of magnesium ions on apatite crystal growth. Acta Biomater 2008; 4:1342-8. [PMID: 18485843 DOI: 10.1016/j.actbio.2008.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 03/26/2008] [Accepted: 04/07/2008] [Indexed: 10/22/2022]
Abstract
An artificial material coated with a laminin-apatite composite layer on its surface would be useful as a percutaneous device with cell-adhesion properties and good biocompatibility. The present authors recently prepared such a composite by a liquid-phase coating process in which a surface-modified material was immersed in a laminin-containing calcium phosphate solution (LCP solution) supersaturated with respect to apatite. As a result of this coating process, however, the material increased in surface roughness, which may have an adverse effect on the prevention of bacterial infection. In the present study, a reduction of the surface roughness of the laminin-apatite composite layer was attempted by adding MgSO(4) to the LCP solution as an inhibitor of apatite crystal growth. The surface roughness, Ra, of the resulting laminin-apatite composite layer decreased from approximately 0.43 to 0.31mum upon increasing the MgSO(4) concentration in the LCP solution from 0 to 1.5mM, while retaining its cell adhesion characteristics. The thus-obtained material, having a laminin-apatite composite coating with reduced surface roughness, has potential as a material for percutaneous devices with improved resistance to bacterial infection through the interface between the device and the skin.
Collapse
|
21
|
|
22
|
Ito A, Sogo Y, Ebihara Y, Onoguchi M, Oyane A, Ichinose N. Formation of an ascorbate–apatite composite layer on titanium. Biomed Mater 2007; 2:S181-5. [DOI: 10.1088/1748-6041/2/3/s17] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|