1
|
Asadian M, Tomasina C, Onyshchenko Y, Chan KV, Norouzi M, Zonderland J, Camarero-Espinosa S, Morent R, De Geyter N, Moroni L. The role of plasma-induced surface chemistry on polycaprolactone nanofibers to direct chondrogenic differentiation of human mesenchymal stem cells. J Biomed Mater Res A 2024; 112:210-230. [PMID: 37706337 DOI: 10.1002/jbm.a.37607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/12/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023]
Abstract
Bone marrow-derived mesenchymal stromal cells (BMSCs) are extensively being utilized for cartilage regeneration owing to their excellent differentiation potential and availability. However, controlled differentiation of BMSCs towards cartilaginous phenotypes to heal full-thickness cartilage defects remains challenging. This study investigates how different surface properties induced by either coating deposition or biomolecules immobilization onto nanofibers (NFs) could affect BMSCs chondro-inductive behavior. Accordingly, electrospun poly(ε-caprolactone) (PCL) NFs were exposed to two surface modification strategies based on medium-pressure plasma technology. The first strategy is plasma polymerization, in which cyclopropylamine (CPA) or acrylic acid (AcAc) monomers were plasma polymerized to obtain amine- or carboxylic acid-rich NFs, respectively. The second strategy uses a combination of CPA plasma polymerization and a post-chemical technique to immobilize chondroitin sulfate (CS) onto the NFs. These modifications could affect surface roughness, hydrophilicity, and chemical composition while preserving the NFs' nano-morphology. The results of long-term BMSCs culture in both basic and chondrogenic media proved that the surface modifications modulated BMSCs chondrogenic differentiation. Indeed, the incorporation of polar groups by different modification strategies had a positive impact on the cell proliferation rate, production of the glycosaminoglycan matrix, and expression of extracellular matrix proteins (collagen I and collagen II). The chondro-inductive behavior of the samples was highly dependent on the nature of the introduced polar functional groups. Among all samples, carboxylic acid-rich NFs promoted chondrogenesis by higher expression of aggrecan, Sox9, and collagen II with downregulation of hypertrophic markers. Hence, this approach showed an intrinsic potential to have a non-hypertrophic chondrogenic cell phenotype.
Collapse
Affiliation(s)
- Mahtab Asadian
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Ghent, Belgium
- Prometheus Division of Skeletal Tissue Engineering, Department of Materials Science, KU Leuven University, Leuven, Belgium
| | - Clarissa Tomasina
- MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, Maastricht, The Netherlands
| | - Yuliia Onyshchenko
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Ghent, Belgium
| | - Ke Vin Chan
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Ghent, Belgium
| | - Mohammad Norouzi
- Department of Pharmacology, University of Montreal, Montreal, Québec, Canada
| | - Jip Zonderland
- MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, Maastricht, The Netherlands
| | - Sandra Camarero-Espinosa
- MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, Maastricht, The Netherlands
- POLYMAT University of the Basque Country UPV/EHU Avenida Tolosa 72, Donostia/San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Euskadi Pl. 5, Bilbao, Spain
| | - Rino Morent
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Ghent, Belgium
| | - Nathalie De Geyter
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Ghent, Belgium
| | - Lorenzo Moroni
- MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
2
|
León-Moreno LC, Reza-Zaldívar EE, Hernández-Sapiéns MA, Villafaña-Estarrón E, García-Martin M, Ojeda-Hernández DD, Matias-Guiu JA, Gomez-Pinedo U, Matias-Guiu J, Canales-Aguirre AA. Mesenchymal Stem Cell-Based Therapies in the Post-Acute Neurological COVID Syndrome: Current Landscape and Opportunities. Biomolecules 2023; 14:8. [PMID: 38275749 PMCID: PMC10813738 DOI: 10.3390/biom14010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
One of the main concerns related to SARS-CoV-2 infection is the symptoms that could be developed by survivors, known as long COVID, a syndrome characterized by persistent symptoms beyond the acute phase of the infection. This syndrome has emerged as a complex and debilitating condition with a diverse range of manifestations affecting multiple organ systems. It is increasingly recognized for affecting the Central Nervous System, in which one of the most prevalent manifestations is cognitive impairment. The search for effective therapeutic interventions has led to growing interest in Mesenchymal Stem Cell (MSC)-based therapies due to their immunomodulatory, anti-inflammatory, and tissue regenerative properties. This review provides a comprehensive analysis of the current understanding and potential applications of MSC-based interventions in the context of post-acute neurological COVID-19 syndrome, exploring the underlying mechanisms by which MSCs exert their effects on neuroinflammation, neuroprotection, and neural tissue repair. Moreover, we discuss the challenges and considerations specific to employing MSC-based therapies, including optimal delivery methods, and functional treatment enhancements.
Collapse
Affiliation(s)
- Lilia Carolina León-Moreno
- Unidad de Evaluación Preclínica, Biotecnología Médica Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico; (L.C.L.-M.); (M.A.H.-S.); (E.V.-E.)
| | | | - Mercedes Azucena Hernández-Sapiéns
- Unidad de Evaluación Preclínica, Biotecnología Médica Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico; (L.C.L.-M.); (M.A.H.-S.); (E.V.-E.)
| | - Erika Villafaña-Estarrón
- Unidad de Evaluación Preclínica, Biotecnología Médica Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico; (L.C.L.-M.); (M.A.H.-S.); (E.V.-E.)
| | - Marina García-Martin
- Laboratorio de Neurobiología, Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.G.-M.); (D.D.O.-H.); (J.A.M.-G.); (U.G.-P.)
| | - Doddy Denise Ojeda-Hernández
- Laboratorio de Neurobiología, Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.G.-M.); (D.D.O.-H.); (J.A.M.-G.); (U.G.-P.)
| | - Jordi A. Matias-Guiu
- Laboratorio de Neurobiología, Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.G.-M.); (D.D.O.-H.); (J.A.M.-G.); (U.G.-P.)
| | - Ulises Gomez-Pinedo
- Laboratorio de Neurobiología, Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.G.-M.); (D.D.O.-H.); (J.A.M.-G.); (U.G.-P.)
| | - Jorge Matias-Guiu
- Departamento de Neurología, Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Alejandro Arturo Canales-Aguirre
- Unidad de Evaluación Preclínica, Biotecnología Médica Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico; (L.C.L.-M.); (M.A.H.-S.); (E.V.-E.)
| |
Collapse
|
3
|
Taylor CS, Barnes J, Prasad Koduri M, Haq S, Gregory DA, Roy I, D'Sa RA, Curran J, Haycock JW. Aminosilane Functionalized Aligned Fiber PCL Scaffolds for Peripheral Nerve Repair. Macromol Biosci 2023; 23:e2300226. [PMID: 37364159 DOI: 10.1002/mabi.202300226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/13/2023] [Indexed: 06/28/2023]
Abstract
Silane modification is a simple and cost-effective tool to modify existing biomaterials for tissue engineering applications. Aminosilane layer deposition has previously been shown to control NG108-15 neuronal cell and primary Schwann cell adhesion and differentiation by controlling deposition of ─NH2 groups at the submicron scale across the entirety of a surface by varying silane chain length. This is the first study toreport depositing 11-aminoundecyltriethoxysilane (CL11) onto aligned Polycaprolactone (PCL) scaffolds for peripheral nerve regeneration. Fibers are manufactured via electrospinning and characterized using water contact angle measurements, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). Confirmed modified fibers are investigated using in vitro cell culture of NG108-15 neuronal cells and primary Schwann cells to determine cell viability, cell differentiation, and phenotype. CL11-modified fibers significantly support NG108-15 neuronal cell and Schwann cell viability. NG108-15 neuronal cell differentiation maintains Schwann cell phenotype compared to unmodified PCL fiber scaffolds. 3D ex vivo culture of Dorsal root ganglion explants (DRGs) confirms further Schwann cell migration and longer neurite outgrowth from DRG explants cultured on CL11 fiber scaffolds compared to unmodified scaffolds. Thus, a reproducible and cost-effective tool is reported to modify biomaterials with functional amine groups that can significantly improve nerve guidance devices and enhance nerve regeneration.
Collapse
Affiliation(s)
- Caroline S Taylor
- Department of Materials Science & Engineering, Kroto Research Institute, Broad Lane, Sheffield, S3 7HQ, UK
| | - Joseph Barnes
- Department of Mechanical, Materials and Aerospace, School of Engineering, University of Liverpool, Harrison Hughes Building, Liverpool, L69 3GH, UK
| | - Manohar Prasad Koduri
- Department of Mechanical, Materials and Aerospace, School of Engineering, University of Liverpool, Harrison Hughes Building, Liverpool, L69 3GH, UK
| | - Shamsal Haq
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | - David A Gregory
- Department of Materials Science & Engineering, Kroto Research Institute, Broad Lane, Sheffield, S3 7HQ, UK
| | - Ipsita Roy
- Department of Materials Science & Engineering, Kroto Research Institute, Broad Lane, Sheffield, S3 7HQ, UK
| | - Raechelle A D'Sa
- Department of Mechanical, Materials and Aerospace, School of Engineering, University of Liverpool, Harrison Hughes Building, Liverpool, L69 3GH, UK
| | - Judith Curran
- Department of Mechanical, Materials and Aerospace, School of Engineering, University of Liverpool, Harrison Hughes Building, Liverpool, L69 3GH, UK
| | - John W Haycock
- Department of Materials Science & Engineering, Kroto Research Institute, Broad Lane, Sheffield, S3 7HQ, UK
| |
Collapse
|
4
|
Nitti P, Narayanan A, Pellegrino R, Villani S, Madaghiele M, Demitri C. Cell-Tissue Interaction: The Biomimetic Approach to Design Tissue Engineered Biomaterials. Bioengineering (Basel) 2023; 10:1122. [PMID: 37892852 PMCID: PMC10604880 DOI: 10.3390/bioengineering10101122] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The advancement achieved in Tissue Engineering is based on a careful and in-depth study of cell-tissue interactions. The choice of a specific biomaterial in Tissue Engineering is fundamental, as it represents an interface for adherent cells in the creation of a microenvironment suitable for cell growth and differentiation. The knowledge of the biochemical and biophysical properties of the extracellular matrix is a useful tool for the optimization of polymeric scaffolds. This review aims to analyse the chemical, physical, and biological parameters on which are possible to act in Tissue Engineering for the optimization of polymeric scaffolds and the most recent progress presented in this field, including the novelty in the modification of the scaffolds' bulk and surface from a chemical and physical point of view to improve cell-biomaterial interaction. Moreover, we underline how understanding the impact of scaffolds on cell fate is of paramount importance for the successful advancement of Tissue Engineering. Finally, we conclude by reporting the future perspectives in this field in continuous development.
Collapse
Affiliation(s)
- Paola Nitti
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (A.N.); (R.P.); (S.V.); (M.M.); (C.D.)
| | | | | | | | | | | |
Collapse
|
5
|
Raptopoulos M, Fischer NG, Aparicio C. Implant surface physicochemistry affects keratinocyte hemidesmosome formation. J Biomed Mater Res A 2023; 111:1021-1030. [PMID: 36621832 DOI: 10.1002/jbm.a.37486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/04/2022] [Accepted: 12/05/2022] [Indexed: 01/10/2023]
Abstract
Previous studies have shown hydrophilic/hydrophobic implant surfaces stimulate/hinder osseointegration. An analogous concept was applied here using common biological functional groups on a model surface to promote oral keratinocytes (OKs) proliferation and hemidesmosomes (HD) to extend implant lifespans through increased soft tissue attachment. However, it is unclear what physicochemistry stimulates HDs. Thus, common biological functional groups (NH2 , OH, and CH3 ) were functionalized on glass using silanization. Non-functionalized plasma-cleaned glass and H silanization were controls. Surface modifications were confirmed with X-ray photoelectron spectroscopy and water contact angle. The amount of bovine serum albumin (BSA) and fibrinogen, and BSA thickness, were assessed to understand how adsorbed protein properties were influenced by physicochemistry and may influence HDs. OKs proliferation was measured, and HDs were quantified with immunofluorescence for collagen XVII and integrin β4. Plasma-cleaned surfaces were the most hydrophilic group overall, while CH3 was the most hydrophobic and OH was the most hydrophilic among functionalized groups. Modification with the OH chemical group showed the highest OKs proliferation and HD expression. The OKs response on OH surfaces appeared to not correlate to the amount or thickness of adsorbed model proteins. These results reveal relevant surface physicochemical features to favor HDs and improve implant soft tissue attachment.
Collapse
Affiliation(s)
- Michail Raptopoulos
- Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, Minnesota, USA
- Division of Periodontology, Department of Developmental and Surgical Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nicholas G Fischer
- Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Conrado Aparicio
- Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, Minnesota, USA
- Basic and Translational Research Division, Department of Odontology, UIC Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain
- IBEC - Institute for BIoengineering of Catalonia, BIST-Barcelona Institute of Science and Technology, Barcelona, Spain
| |
Collapse
|
6
|
Cell surface markers for mesenchymal stem cells related to the skeletal system: A scoping review. Heliyon 2023; 9:e13464. [PMID: 36865479 PMCID: PMC9970931 DOI: 10.1016/j.heliyon.2023.e13464] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/12/2023] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) have been described as bone marrow stromal cells, which can form cartilage, bone or hematopoietic supportive stroma. In 2006, the International Society for Cell Therapy (ISCT) established a set of minimal characteristics to define MSCs. According to their criteria, these cells must express CD73, CD90 and CD105 surface markers; however, it is now known they do not represent true stemness epitopes. The objective of the present work was to determine the surface markers for human MSCs associated with skeletal tissue reported in the literature (1994-2021). To this end, we performed a scoping review for hMSCs in axial and appendicular skeleton. Our findings determined the most widely used markers were CD105 (82.9%), CD90 (75.0%) and CD73 (52.0%) for studies performed in vitro as proposed by the ISCT, followed by CD44 (42.1%), CD166 (30.9%), CD29 (27.6%), STRO-1 (17.7%), CD146 (15.1%) and CD271 (7.9%) in bone marrow and cartilage. On the other hand, only 4% of the articles evaluated in situ cell surface markers. Even though most studies use the ISCT criteria, most publications in adult tissues don't evaluate the characteristics that establish a stem cell (self-renewal and differentiation), which will be necessary to distinguish between a stem cell and progenitor populations. Collectively, MSCs require further understanding of their characteristics if they are intended for clinical use.
Collapse
|
7
|
Zhang S, Jiang J, Zou X, Liu N, Wang H, Yang L, Zhou H, Liang C. Progress of laser surface treatment on magnesium alloy. Front Chem 2022; 10:999630. [PMID: 36212058 PMCID: PMC9538561 DOI: 10.3389/fchem.2022.999630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Magnesium (Mg) metals have been widely used in various fields as one of the most promising lightweight structural materials. However, the low corrosion resistance and poor mechanical properties restrict its applications. Surface treatments are common approach to enhance the mechanical strength and corrosion resistance of Mg metals. Among them, laser surface treatment generates novel tissues and structures in situ on the sample surface, thereby improving properties of mechanical strength and corrosion resistance. We briefly describe the changes in surface organization that arise after laser treatment of Mg surfaces, as well as the creation of structures such as streaks, particles, holes, craters, etc., and provide an overview of the reasons for the alterations. The effect of laser processing on wettability, hardness, friction wear, degradation, biocompatibility and mechanical properties were reviewed. At last, the limitations and development trend of laser treatment on Mg metals research were further pointed out.
Collapse
Affiliation(s)
- Shiliang Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin, China
| | - Jing Jiang
- Center for Health Sciences and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
| | - Xianrui Zou
- School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin, China
| | - Ning Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin, China
| | - Hongshui Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin, China
| | - Lei Yang
- Center for Health Sciences and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
| | - Huan Zhou
- Center for Health Sciences and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
| | - Chunyong Liang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin, China
- Changzhou Blon Minimally Invasive Medical Devices Technology Co., Ltd., Jiangsu, China
| |
Collapse
|
8
|
Zhou J, Nie Y, Jin C, Zhang JXJ. Engineering Biomimetic Extracellular Matrix with Silica Nanofibers: From 1D Material to 3D Network. ACS Biomater Sci Eng 2022; 8:2258-2280. [PMID: 35377596 DOI: 10.1021/acsbiomaterials.1c01525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biomaterials at nanoscale is a fast-expanding research field with which extensive studies have been conducted on understanding the interactions between cells and their surrounding microenvironments as well as intracellular communications. Among many kinds of nanoscale biomaterials, mesoporous fibrous structures are especially attractive as a promising approach to mimic the natural extracellular matrix (ECM) for cell and tissue research. Silica is a well-studied biocompatible, natural inorganic material that can be synthesized as morpho-genetically active scaffolds by various methods. This review compares silica nanofibers (SNFs) to other ECM materials such as hydrogel, polymers, and decellularized natural ECM, summarizes fabrication techniques for SNFs, and discusses different strategies of constructing ECM using SNFs. In addition, the latest progress on SNFs synthesis and biomimetic ECM substrates fabrication is summarized and highlighted. Lastly, we look at the wide use of SNF-based ECM scaffolds in biological applications, including stem cell regulation, tissue engineering, drug release, and environmental applications.
Collapse
Affiliation(s)
- Junhu Zhou
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Yuan Nie
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Congran Jin
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - John X J Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
9
|
Nabizadeh Z, Nasrollahzadeh M, Daemi H, Baghaban Eslaminejad M, Shabani AA, Dadashpour M, Mirmohammadkhani M, Nasrabadi D. Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:363-389. [PMID: 35529803 PMCID: PMC9039523 DOI: 10.3762/bjnano.13.31] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/24/2022] [Indexed: 05/12/2023]
Abstract
Osteoarthritis, which typically arises from aging, traumatic injury, or obesity, is the most common form of arthritis, which usually leads to malfunction of the joints and requires medical interventions due to the poor self-healing capacity of articular cartilage. However, currently used medical treatment modalities have reported, at least in part, disappointing and frustrating results for patients with osteoarthritis. Recent progress in the design and fabrication of tissue-engineered microscale/nanoscale platforms, which arises from the convergence of stem cell research and nanotechnology methods, has shown promising results in the administration of new and efficient options for treating osteochondral lesions. This paper presents an overview of the recent advances in osteochondral tissue engineering resulting from the application of micro- and nanotechnology approaches in the structure of biomaterials, including biological and microscale/nanoscale topographical cues, microspheres, nanoparticles, nanofibers, and nanotubes.
Collapse
Affiliation(s)
- Zahra Nabizadeh
- Department of Medical Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Hamed Daemi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ali Akbar Shabani
- Department of Medical Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Mehdi Dadashpour
- Department of Medical Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Mirmohammadkhani
- Department of Epidemiology and Biostatistics, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Davood Nasrabadi
- Department of Medical Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
10
|
Zhang C, Lü D, Zhang F, Wu Y, Zheng L, Zhang X, Li Z, Sun S, Long M. Gravity-Vector Induces Mechanical Remodeling of rMSCs via Combined Substrate Stiffness and Orientation. Front Bioeng Biotechnol 2022; 9:724101. [PMID: 35198547 PMCID: PMC8859489 DOI: 10.3389/fbioe.2021.724101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 12/30/2021] [Indexed: 11/23/2022] Open
Abstract
Distinct physical factors originating from the cellular microenvironment are crucial to the biological homeostasis of stem cells. While substrate stiffness and orientation are known to regulate the mechanical remodeling and fate decision of mesenchymal stem cells (MSCs) separately, it remains unclear how the two factors are combined to manipulate their mechanical stability under gravity vector. Here we quantified these combined effects by placing rat MSCs onto stiffness-varied poly-dimethylsiloxane (PDMS) substrates in upward (180°), downward (0°), or edge-on (90°) orientation. Compared with those values onto glass coverslip, the nuclear longitudinal translocation, due to the density difference between the nucleus and the cytosol, was found to be lower at 0° for 24 h and higher at 90° for 24 and 72 h onto 2.5 MPa PDMS substrate. At 0°, the cell was mechanically supported by remarkably reduced actin and dramatically enhanced vimentin expression. At 90°, both enhanced actin and vimentin expression worked cooperatively to maintain cell stability. Specifically, perinuclear actin stress fibers with a large number, low anisotropy, and visible perinuclear vimentin cords were formed onto 2.5 MPa PDMS at 90° for 72 h, supporting the orientation difference in nuclear translocation and global cytoskeleton expression. This orientation dependence tended to disappear onto softer PDMS, presenting distinctive features in nuclear translocation and cytoskeletal structures. Moreover, cellular morphology and focal adhesion were mainly affected by substrate stiffness, yielding a time course of increased spreading area at 24 h but decreased area at 72 h with a decrease of stiffness. Mechanistically, the cell tended to be stabilized onto these PDMS substrates via β1 integrin–focal adhesion complexes–actin mechanosensitive axis. These results provided an insight in understanding the combination of substrate stiffness and orientation in defining the mechanical stability of rMSCs.
Collapse
Affiliation(s)
- Chen Zhang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Dongyuan Lü
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Fan Zhang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Wu
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lu Zheng
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyu Zhang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zhan Li
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Shujin Sun
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Mian Long
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Mian Long,
| |
Collapse
|
11
|
Szustak M, Gendaszewska-Darmach E. Nanocellulose-Based Scaffolds for Chondrogenic Differentiation and Expansion. Front Bioeng Biotechnol 2021; 9:736213. [PMID: 34485266 PMCID: PMC8415884 DOI: 10.3389/fbioe.2021.736213] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
Nanocellulose deserves special attention among the large group of biocompatible biomaterials. It exhibits good mechanical properties, which qualifies it for potential use as a scaffold imitating cartilage. However, the reconstruction of cartilage is a big challenge due to this tissue's limited regenerative capacity resulting from its lack of vascularization, innervations, and sparsely distributed chondrocytes. This feature restricts the infiltration of progenitor cells into damaged sites. Unfortunately, differentiated chondrocytes are challenging to obtain, and mesenchymal stem cells have become an alternative approach to promote chondrogenesis. Importantly, nanocellulose scaffolds induce the differentiation of stem cells into chondrocyte phenotypes. In this review, we present the recent progress of nanocellulose-based scaffolds promoting the development of cartilage tissue, especially within the emphasis on chondrogenic differentiation and expansion.
Collapse
Affiliation(s)
| | - Edyta Gendaszewska-Darmach
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
12
|
Joseph G, Orme RP, Kyriacou T, Fricker RA, Roach P. Effects of Surface Chemistry Interaction on Primary Neural Stem Cell Neurosphere Responses. ACS OMEGA 2021; 6:19901-19910. [PMID: 34368577 PMCID: PMC8340405 DOI: 10.1021/acsomega.1c02796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
The characteristics of a material's surface are extremely important when considering their interactions with biological species. Despite surface chemistry playing a critical role in mediating the responses of cells, there remains no single rule which dictates absolute performance; this is particularly challenging when considering the response of differing cell types to a range of materials. Here, we highlight the functional behavior of neural stem cells presented as neurospheres, with respect to a range of alkane-based self-assembled monolayers presenting different functional groups: OH, CO2H, NH2, phenyl, CH3, SH, and laminin. The influence of chemical cues was examined in terms of neurosphere spreading on each of these defined surfaces (cell adhesion and migration capacity) and neuronal versus glial marker expression. Measurements were made over a time series of 3, 5, and 7 days, showing a dynamic nature to the initial responses observed after seeding. While OH surfaces presented an excellent platform for glial migration, larger proportions of cells expressing neuronal β3-tubulin were found on SH- and laminin-coated surfaces. Axonal elongation was found to be initially similar on all surfaces with neurite lengths having a wider spread predominantly on NH2- and laminin-presenting surfaces. A generalized trend could not be found to correlate cellular responses with surface wettability, lipophilicity (log P), or charge/ionizability (pK a). These results highlight the potential for chemical cues to direct primary neural stem cell responses in contact with the defined materials. New biomaterials which control specific cell culture characteristics in vitro will streamline the up-scale manufacture of cellular therapies, with the enrichment of the required populations resulting from a defined material interaction.
Collapse
Affiliation(s)
- Georghios Joseph
- Institute
for Science and Technology in Medicine, and School of Medicine, Keele University, Keele, Staffs ST5 5BG, U.K.
| | - Rowan P. Orme
- Institute
for Science and Technology in Medicine, and School of Medicine, Keele University, Keele, Staffs ST5 5BG, U.K.
| | - Theocharis Kyriacou
- School
of Computing and Mathematics, Keele University, Keele, Staffs ST5 5BG, U.K.
| | - Rosemary A. Fricker
- Institute
for Science and Technology in Medicine, and School of Medicine, Keele University, Keele, Staffs ST5 5BG, U.K.
| | - Paul Roach
- Department
of Chemistry, School of Science, Loughborough
University, Loughborough, Leicestershire LE11 3TU, U.K.
| |
Collapse
|
13
|
Wang KY, Jin XY, Ma YH, Cai WJ, Xiao WY, Li ZW, Qi X, Ding J. Injectable stress relaxation gelatin-based hydrogels with positive surface charge for adsorption of aggrecan and facile cartilage tissue regeneration. J Nanobiotechnology 2021; 19:214. [PMID: 34275471 PMCID: PMC8287687 DOI: 10.1186/s12951-021-00950-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/30/2021] [Indexed: 01/02/2023] Open
Abstract
Background Cartilage injury and pathological degeneration are reported in millions of patients globally. Cartilages such as articular hyaline cartilage are characterized by poor self-regeneration ability due to lack of vascular tissue. Current treatment methods adopt foreign cartilage analogue implants or microfracture surgery to accelerate tissue repair and regeneration. These methods are invasive and are associated with the formation of fibrocartilage, which warrants further exploration of new cartilage repair materials. The present study aims to develop an injectable modified gelatin hydrogel. Method The hydrogel effectively adsorbed proteoglycans secreted by chondrocytes adjacent to the cartilage tissue in situ, and rapidly formed suitable chondrocyte survival microenvironment modified by ε-poly-L-lysine (EPL). Besides, dynamic covalent bonds were introduced between glucose and phenylboronic acids (PBA). These bonds formed reversible covalent interactions between the cis−diol groups on polyols and the ionic boronate state of PBA. PBA-modified hydrogel induced significant stress relaxation, which improved chondrocyte viability and cartilage differentiation of stem cells. Further, we explored the ability of these hydrogels to promote chondrocyte viability and cartilage differentiation of stem cells through chemical and mechanical modifications. Results In vivo and in vitro results demonstrated that the hydrogels exhibited efficient biocompatibility. EPL and PBA modified GelMA hydrogel (Gel-EPL/B) showed stronger activity on chondrocytes compared to the GelMA control group. The Gel-EPL/B group induced the secretion of more extracellular matrix and improved the chondrogenic differentiation potential of stem cells. Finally, thus hydrogel promoted the tissue repair of cartilage defects. Conclusion Modified hydrogel is effective in cartilage tissue repair. ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00950-0.
Collapse
Affiliation(s)
- Kai-Yang Wang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, NO. 600, Yishan Rd, Shanghai, 200233, People's Republic of China
| | - Xiang-Yun Jin
- Department of Orthopedic Trauma, Department of Orthopedics, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Yu-Hui Ma
- Department of Rehabilitation Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, NO. 600, Yishan Rd, Shanghai, 200233, People's Republic of China
| | - Wei-Jie Cai
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, NO. 600, Yishan Rd, Shanghai, 200233, People's Republic of China
| | - Wei-Yuan Xiao
- Department of Orthopedic Trauma, Department of Orthopedics, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Zhi-Wei Li
- Department of Orthopedic Trauma, Department of Orthopedics, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| | - Xin Qi
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No.2800 Gongwei Road, Huinan Town, Pudong, Shanghai, China.
| | - Jian Ding
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, NO. 600, Yishan Rd, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
14
|
Enhancing osteogenesis of adipose-derived mesenchymal stem cells using gold nanostructure/peptide-nanopatterned graphene oxide. Colloids Surf B Biointerfaces 2021; 204:111807. [PMID: 33964530 DOI: 10.1016/j.colsurfb.2021.111807] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/09/2021] [Accepted: 04/26/2021] [Indexed: 01/16/2023]
Abstract
Graphene derivatives are highly promising materials for use in stem-cell-based regenerative therapies, particularly for bone regeneration. Herein, we report a graphene oxide (GO)-based hybrid platform (GOHP) that is highly effective for guiding the osteogenesis of human adipose-derived mesenchymal stem cells (hAMSCs). A GO-coated indium tin oxide (ITO) substrate was electrochemically modified with Au nanostructures (GNSs), following which a cysteine-modified quadruple-branched arginine-glycine-aspartic acid was self-assembled on the ITO-GO-GNS hybrid via Au-S bonds. The synthesized GOHP, with the highest density of GNSs (deposition time of 120 s), exhibited the highest osteogenic differentiation efficiency based on the osteogenic marker expression level, osteocalcin expression, and osteoblastic mineralisation. Remarkably, although GO is known to be less efficient than the high-quality pure graphene synthesised via chemical vapour deposition (CVD), the fabricated GOHP exhibited an efficiency similar to that of CVD-grown graphene in guiding the osteogenesis of hAMSCs. The total RNA sequencing results revealed that CVD graphene and GOHP induced the osteogenesis of hAMSCs by upregulating the transcription factors related to direct osteogenesis, Wnt activation, and extracellular matrix deposition. Considering that GO is easy to produce, cost-effective, and biocompatible, the developed GOHP is highly promising for treating various diseases/disorders, including osteoporosis, rickets, and osteogenesis imperfecta.
Collapse
|
15
|
Taylor CS, Chen R, D' Sa R, Hunt JA, Curran JM, Haycock JW. Cost effective optimised synthetic surface modification strategies for enhanced control of neuronal cell differentiation and supporting neuronal and Schwann cell viability. J Biomed Mater Res B Appl Biomater 2021; 109:1713-1723. [PMID: 33749114 DOI: 10.1002/jbm.b.34829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 02/06/2021] [Accepted: 02/23/2021] [Indexed: 11/11/2022]
Abstract
Enriching a biomaterial surface with specific chemical groups has previously been considered for producing surfaces that influence cell response. Silane layer deposition has previously been shown to control mesenchymal stem cell adhesion and differentiation. However, it has not been used to investigate neuronal or Schwann cell responses in vitro to date. We report on the deposition of aminosilane groups for peripheral neurons and Schwann cells studying two chain lengths: (a) 3-aminopropyl triethoxysilane (short chain-SC) and (b) 11-aminoundecyltriethoxysilane (long chain-LC) by coating glass substrates. Surfaces were characterised by water contact angle, AFM and XPS. LC-NH2 was produced reproducibly as a homogenous surface with controlled nanotopography. Primary neuron and NG108-15 neuronal cell differentiation and primary Schwann cell responses were investigated in vitro by S100β, p75, and GFAP antigen expression. Both amine silane surface supported neuronal and Schwann cell growth; however, neuronal differentiation was greater on LC aminosilanes versus SC. Thus, we report that silane surfaces with an optimal chain length may have potential in peripheral nerve repair for the modification and improvement of nerve guidance devices.
Collapse
Affiliation(s)
- Caroline S Taylor
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK
| | - Rui Chen
- Department of Mechanical, Materials and Aerospace, University of Liverpool, Liverpool, UK
| | - Raechelle D' Sa
- Department of Mechanical, Materials and Aerospace, University of Liverpool, Liverpool, UK
| | - John A Hunt
- Medical Technologies and Advanced Materials, Nottingham Trent University, Nottingham, UK
| | - Judith M Curran
- Department of Mechanical, Materials and Aerospace, University of Liverpool, Liverpool, UK
| | - John W Haycock
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK
| |
Collapse
|
16
|
Di Y, Wang C, Zhu H, Yu S, Ren Y, Li X. [Experimental study on repairing rabbit skull defect with bone morphogenetic protein 2 peptide/functionalized carbon nanotube composite]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:286-294. [PMID: 33719235 DOI: 10.7507/1002-1892.202009014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To observe and compare the effects of peptides on the repair of rabbit skull defects through two different binding modes of non-covalent and covalent, and the combination of carboxyl (-COOH) and amino (-NH 2) groups with materials. Methods Twenty-one 3-month-old male ordinary New Zealand white rabbits were numbered 1 to 42 on the left and right parietal bones. They were divided into 5 groups using a random number table, the control group (group A, 6 sides) and the material group 1, 2, 3, 4 (respectively group B, C, D, E, 9 sides in each group). All animals were prepared with 12-mm-diameter skull defect models, and bone morphogenetic protein 2 (BMP-2) non-covalently bound multiwalled carbon nanotubes (MWCNT)-COOH+poly ( L-lactide) (PLLA), BMP-2 non-covalently bound MWCNT-NH 2+PLLA, BMP-2 covalently bound MWCNT-COOH+PLLA, and BMP-2 covalently bound MWCNT-NH 2+PLLA were implanted into the defects of groups B, C, D, and E, respectively. At 4, 8, and 12 weeks after operation, the samples were taken for CT scanning and three-dimensional reconstruction, the ratio of bone tissue regeneration volume to total volume and bone mineral density were measured, and the histological observation of HE staining and Masson trichrome staining were performed to quantitatively analyze the volume ratio of new bone tissue. Results CT scanning and three-dimensional reconstruction showed that with the extension of time, the defects in groups A-E were filled gradually, and the defect in group E was completely filled at 12 weeks after operation. HE staining and Masson trichrome staining showed that the volume of new bone tissue in each group gradually increased with time, and regenerated mature bone tissue appeared in groups D and E at 12 weeks after operation. Quantitative analysis showed that at 4, 8, and 12 weeks after operation, the ratio of bone tissue regeneration volume to total volume, bone mineral density, and the volume ratio of new bone tissue increased gradually over time; and at each time point, the above indexes increased gradually from group A to group E, and the differences between groups were significant ( P<0.05). Conclusion Through covalent binding and using -NH 2 to bound peptides with materials, the best bone repair effect can be achieved.
Collapse
Affiliation(s)
- Yuntao Di
- Department of Neurosurgery, the Fourth Central Hospital of Baoding City, Baoding Hebei, 072350, P.R.China
| | | | - Huixue Zhu
- Department of Neurosurgery, the Fourth Central Hospital of Baoding City, Baoding Hebei, 072350, P.R.China
| | - Suxiang Yu
- Department of Pathology, the Fourth Central Hospital of Baoding City, Baoding Hebei, 072350, P.R.China
| | - Yixing Ren
- Department of Orthopedics, the Fourth Central Hospital of Baoding City, Baoding Hebei, 072350, P.R.China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, P.R.China
| |
Collapse
|
17
|
Stuart C. Surface Modification of Glass Slides with Aminosilanes for Microarray Use. Methods Mol Biol 2021; 2237:191-198. [PMID: 33237418 DOI: 10.1007/978-1-0716-1064-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Glass serves as the solid support for a variety of array types; however, the chemical nature of glass makes it unsuitable for high-affinity binding to most biomolecules. In this chapter, we describe the activation and surface coating of glass with silane, a wide-ranging group of molecules that can covalently attach to the surface of glass and modify it with a variety of functional groups.
Collapse
|
18
|
Burger D, Beaumont M, Rosenau T, Tamada Y. Porous Silk Fibroin/Cellulose Hydrogels for Bone Tissue Engineering via a Novel Combined Process Based on Sequential Regeneration and Porogen Leaching. Molecules 2020; 25:E5097. [PMID: 33153040 PMCID: PMC7663655 DOI: 10.3390/molecules25215097] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/17/2020] [Accepted: 10/26/2020] [Indexed: 12/19/2022] Open
Abstract
Scaffolds used for bone tissue engineering need to have a variety of features to accommodate bone cells. The scaffold should mimic natural bone, it should have appropriate mechanical strength, support cell differentiation to the osteogenic lineage, and offer adequate porosity to allow vascularization and bone in-growth. In this work, we aim at developing a new process to fabricate such materials by creating a porous composite material made of silk fibroin and cellulose as a suitable scaffold of bone tissue engineering. Silk fibroin and cellulose are both dissolved together in N,N-dimethylacetamide/LiCl and molded to a porous structure using NaCl powder. The hydrogels are prepared by a sequential regeneration process: cellulose is solidified by water vapor treatment, while the remaining silk fibroin in the hydrogel is insolubilized by methanol, which leads to a cellulose framework structure embedded in a silk fibroin matrix. Finally, the hydrogels are soaked in water to dissolve the NaCl for making a porous structure. The cellulose composition results in improving the mechanical properties for the hydrogels in comparison to the silk fibroin control material. The pore size and porosity are estimated at around 350 µm and 70%, respectively. The hydrogels support the differentiation of MC3T3 cells to osteoblasts and are expected to be a good scaffold for bone tissue engineering.
Collapse
Affiliation(s)
- Dennis Burger
- Faculty of Textile Science and Technology, Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan;
| | - Marco Beaumont
- Institute of Chemistry of Renewable Resources, Department for Chemistry, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 24, 3430 Tulln, Austria
| | - Thomas Rosenau
- Institute of Chemistry of Renewable Resources, Department for Chemistry, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 24, 3430 Tulln, Austria
| | - Yasushi Tamada
- Faculty of Textile Science and Technology, Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan;
| |
Collapse
|
19
|
Dash SK, Sharma V, Verma RS, Das SK. Low intermittent flow promotes rat mesenchymal stem cell differentiation in logarithmic fluid shear device. BIOMICROFLUIDICS 2020; 14:054107. [PMID: 33163135 PMCID: PMC7595746 DOI: 10.1063/5.0024437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/13/2020] [Indexed: 06/01/2023]
Abstract
Bone marrow mesenchymal stem cells are an ideal candidate for bone tissue engineering due to their osteogenic potential. Along with chemical, mechanical signals such as fluid shear stress have been found to influence their differentiation characteristics. But the range of fluid shear experienced in vivo is too wide and difficult to generate in a single device. We have designed a microfluidic device that could generate four orders of shear stresses on adherent cells. This was achieved using a unique hydraulic resistance combination and linear optimization to the lesser total length of the circuit, making the device compact and yet generating four logarithmically increasing shear stresses. Numerical simulation depicts that, at an inlet velocity of 160 μl/min, our device generated shear stresses from 1.03 Pa to 1.09 mPa. In this condition, we successfully cultured primary rat bone marrow mesenchymal stem cells (rBMSCs) in the device for a prolonged period of time in the incubator environment (four days). Higher cell proliferation rate was observed in the intermittent flow at 1.09 mPa. At 10 mPa, both upregulation of osteogenic genes and higher alkaline phosphatase activity were observed. These results suggest that the intermittent shear of the order of 10 mPa can competently enhance osteogenic differentiation of rBMSCs compared to static culture.
Collapse
Affiliation(s)
- Sanat Kumar Dash
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Vineeta Sharma
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Rama Shankar Verma
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Sarit K. Das
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600 036, India
| |
Collapse
|
20
|
Cao H, Huang D, Guo L, Gao Y, Zheng L, Xiao J, Zhang S, Yu X. Effects of different chemical groups on behaviors of bladder cancer cells. J Biomed Mater Res A 2020; 108:2484-2490. [PMID: 32418363 DOI: 10.1002/jbm.a.36999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 04/06/2020] [Accepted: 04/19/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Hui Cao
- Department of Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College Central South University Haikou China
| | - Denggao Huang
- Department of Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College Central South University Haikou China
| | - Lifang Guo
- State Key Lab of Marine Resource Utilization in South China Sea, College of Materials Chemical Engineering Hainan University Haikou China
| | - Yuanhui Gao
- Department of Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College Central South University Haikou China
| | - Linlin Zheng
- Department of Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College Central South University Haikou China
| | - Jingchuan Xiao
- Department of Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College Central South University Haikou China
| | - Shufang Zhang
- Department of Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College Central South University Haikou China
| | - Xiaolong Yu
- State Key Lab of Marine Resource Utilization in South China Sea, College of Materials Chemical Engineering Hainan University Haikou China
| |
Collapse
|
21
|
Yang J, Xiao Y, Tang Z, Luo Z, Li D, Wang Q, Zhang X. The negatively charged microenvironment of collagen hydrogels regulates the chondrogenic differentiation of bone marrow mesenchymal stem cells in vitro and in vivo. J Mater Chem B 2020; 8:4680-4693. [PMID: 32391834 DOI: 10.1039/d0tb00172d] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The differentiation of bone marrow mesenchymal stem cells (BMSCs) into functional chondrocytes is crucial for successful cartilage tissue engineering. Since the extracellular matrix (ECM) microenvironment can regulate the behaviours of BMSCs and guide their differentiation, it is important to simulate the natural cartilage ECM to induce the chondrogenesis of BMSCs. As the most abundant protein in the ECM, collagen hydrogels were found to provide a structural and chemical microenvironment for natural cartilage, and regulate the chondrogenic differentiation of BMSCs. However, as the negatively charged ECM microenvironment is crucial for chondrogenesis and homeostasis within cells in cartilage tissue, the electrical properties of collagen hydrogels need to be further optimized. In this study, three collagen hydrogels with different electrical properties were fabricated using methacrylic anhydride (MA) and succinic anhydride (SA) modification. The collagen hydrogels had a similar composition, storage modulus and integral triple helix structure of collagen, but their different negatively charged microenvironments significantly impacted the hydrophilicity, protein diffusion and binding, and consequently influenced BMSC adhesion and spreading on the surface of the hydrogels. Moreover, the BMSCs encapsulated in the collagen hydrogels also demonstrated improved sGAG secretion and chondrogenic and integrin gene expression with the increased negative charge in vitro. Similar results were also observed in subcutaneous implantation in vivo, where higher secretions of sGAG, SOX9 and collagen type II proteins were found in the collagen hydrogels with higher negative charge. Together, our results demonstrated that more negative charges introduced into the collagen hydrogel microenvironment would enhance the chondrogenic differentiation of BMSCs in vitro and in vivo. This revealed that the electrical properties are an important consideration in designing future collagen hydrogels for cartilage regeneration.
Collapse
Affiliation(s)
- Jirong Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 61004, Sichuan, China.
| | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Patil S, Dhyani V, Kaur T, Singh N. Spatiotemporal Control over Cell Proliferation and Differentiation for Tissue Engineering and Regenerative Medicine Applications Using Silk Fibroin Scaffolds. ACS APPLIED BIO MATERIALS 2020; 3:3476-3493. [DOI: 10.1021/acsabm.0c00305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Smita Patil
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Vartika Dhyani
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Tejinder Kaur
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Biomedical Engineering Unit, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
24
|
Begum R, Perriman AW, Su B, Scarpa F, Kafienah W. Chondroinduction of Mesenchymal Stem Cells on Cellulose-Silk Composite Nanofibrous Substrates: The Role of Substrate Elasticity. Front Bioeng Biotechnol 2020; 8:197. [PMID: 32266231 PMCID: PMC7096586 DOI: 10.3389/fbioe.2020.00197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/28/2020] [Indexed: 01/09/2023] Open
Abstract
Smart biomaterials with an inherent capacity to elicit specific behaviors in lieu of biological prompts would be advantageous for regenerative medicine applications. In this work, we employ an electrospinning technique to model the in vivo nanofibrous extracellular matrix (ECM) of cartilage using a chondroinductive cellulose and silk polymer blend (75:25 ratio). This natural polymer composite is directly electrospun for the first time, into nanofibers without post-spun treatment, using a trifluoroacetic acid and acetic acid cosolvent system. Biocompatibility of the composite nanofibres with human mesenchymal stem cells (hMSCs) is demonstrated and its inherent capacity to direct chondrogenic stem cell differentiation, in the absence of stimulating growth factors, is confirmed. This chondrogenic stimulation could be countered biochemically using fibroblast growth factor-2, a growth factor used to enhance the proliferation of hMSCs. Furthermore, the potential mechanisms driving this chondroinduction at the cell-biomaterial interface is investigated. Composite substrates are fabricated as two-dimensional film surfaces and cultured with hMSCs in the presence of chemicals that interfere with their biochemical and mechanical signaling pathways. Preventing substrate surface elasticity transmission resulted in a significant downregulation of chondrogenic gene expression. Interference with the classical chondrogenic Smad2/3 phosphorylation pathway did not impact chondrogenesis. The results highlight the importance of substrate mechanical elasticity on hMSCs chondroinduction and its independence to known chondrogenic biochemical pathways. The newly fabricated scaffolds provide the foundation for designing a robust, self-inductive, and cost-effective biomimetic biomaterial for cartilage tissue engineering.
Collapse
Affiliation(s)
- Runa Begum
- Faculty of Biomedical Sciences, School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Adam W Perriman
- Faculty of Biomedical Sciences, School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Bo Su
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Fabrizio Scarpa
- Bristol Composites Institute (ACCIS), University of Bristol, Bristol, United Kingdom
| | - Wael Kafienah
- Faculty of Biomedical Sciences, School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
25
|
The Nanofication and Functionalization of Bacterial Cellulose and Its Applications. NANOMATERIALS 2020; 10:nano10030406. [PMID: 32106515 PMCID: PMC7152840 DOI: 10.3390/nano10030406] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/17/2020] [Accepted: 02/21/2020] [Indexed: 01/24/2023]
Abstract
Since economic and environmental issues have become critical in the last several years, the amount of sustainable bio-based production has increased. In this article, microbial polysaccharides, including bacterial cellulose (BC), are analyzed as promising resources with the potential for applications in biofields and non-biofields. Many scientists have established various methods of BC production, nanofication, and functionalization. In particular, this review will address the essential advances in recent years focusing on nanofication methods and nanoficated BC applications as well as functionalization methods and functionalized BC applications.
Collapse
|
26
|
Castilla-Casadiego DA, Reyes-Ramos AM, Domenech M, Almodovar J. Effects of Physical, Chemical, and Biological Stimulus on h-MSC Expansion and Their Functional Characteristics. Ann Biomed Eng 2020; 48:519-535. [PMID: 31705365 PMCID: PMC6952531 DOI: 10.1007/s10439-019-02400-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/30/2019] [Indexed: 01/10/2023]
Abstract
Human adult mesenchymal stem or stromal cells (h-MSC) therapy has gained considerable attention due to the potential to treat or cure diseases given their immunosuppressive properties and tissue regeneration capabilities. Researchers have explored diverse strategies to promote high h-MSC production without losing functional characteristics or properties. Physical stimulus including stiffness, geometry, and topography, chemical stimulus, like varying the surface chemistry, and biochemical stimuli such as cytokines, hormones, small molecules, and herbal extracts have been studied but have yet to be translated to industrial manufacturing practice. In this review, we describe the role of those stimuli on h-MSC manufacturing, and how these stimuli positively promote h-MSC properties, impacting the cell manufacturing field for cell-based therapies. In addition, we discuss other process considerations such as bioreactor design, good manufacturing practice, and the importance of the cell donor and ethics factors for manufacturing potent h-MSC.
Collapse
Affiliation(s)
- David A Castilla-Casadiego
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR, 72701, USA
| | - Ana M Reyes-Ramos
- Department of Chemical Engineering, University of Puerto Rico Mayagüez, Call Box 9000, Mayagüez, PR, 00681-9000, USA
| | - Maribella Domenech
- Department of Chemical Engineering, University of Puerto Rico Mayagüez, Call Box 9000, Mayagüez, PR, 00681-9000, USA
| | - Jorge Almodovar
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR, 72701, USA.
| |
Collapse
|
27
|
Lerman MJ, Smith BT, Gerald AG, Santoro M, Fookes JA, Mikos AG, Fisher JP. Aminated 3D Printed Polystyrene Maintains Stem Cell Proliferation and Osteogenic Differentiation. Tissue Eng Part C Methods 2020; 26:118-131. [PMID: 31971874 PMCID: PMC7041340 DOI: 10.1089/ten.tec.2019.0217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022] Open
Abstract
As 3D printing becomes more common and the technique is used to build culture platforms, it is imperative to develop surface treatments for specific responses. The advantages of aminating and oxidizing polystyrene (PS) for human mesenchymal stem cell (hMSC) proliferation and osteogenic differentiation are investigated. We find that ammonia (NH3) plasma incorporates amines while oxygen plasma adds carbonyl and carboxylate groups. Across 2D, 3D, and 3D dynamic culture, we find that the NH3- treated surfaces encouraged cell proliferation. Our results show that the NH3-treated scaffold was the only treatment allowing dynamic proliferation of hMSCs with little evidence of osteogenic differentiation. With osteogenic media, particularly in 3D culture, we find the NH3 treatment encouraged greater and earlier expression of RUNX2 and ALP. The NH3-treated PS scaffolds support hMSC proliferation without spontaneous osteogenic differentiation in static and dynamic culture. This work provides an opportunity for further investigations into shear profiling and coculture within the developed culture system toward developing a bone marrow niche model.
Collapse
Affiliation(s)
- Max J. Lerman
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
| | - Brandon T. Smith
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
- Department of Bioengineering, MS-142 BioScience Research Collaborative, Rice University, Houston, Texas
| | - Anushka G. Gerald
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Marco Santoro
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - James A. Fookes
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Antonios G. Mikos
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
- Department of Bioengineering, MS-142 BioScience Research Collaborative, Rice University, Houston, Texas
| | - John P. Fisher
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| |
Collapse
|
28
|
Wang C, Cao G, Zhao T, Wang X, Niu X, Fan Y, Li X. Terminal Group Modification of Carbon Nanotubes Determines Covalently Bound Osteogenic Peptide Performance. ACS Biomater Sci Eng 2020; 6:865-878. [PMID: 33464866 DOI: 10.1021/acsbiomaterials.9b01501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Osteogenic peptides are often introduced to improve biological activities and the osteogenic ability of artificial bone materials as an effective approach. Covalent bindings between the peptide and the host material can increase the molecular interactions and make the functionalized surface more stable. However, covalent bindings through different functional groups can bring different effects on the overall bioactivities. In this study, carboxyl and amino groups were respectively introduced onto carbon nanotubes, a nanoreinforcement for synthetic scaffold materials, which were subsequently covalently attached to the RGD/BMP-2 osteogenic peptide. MC3T3-E1 cells were cultured on scaffolds containing peptide-modified carbon nanotubes. The results showed that the peptide through the amino group binding could promote cell functions more effectively than those through carboxyl groups. The mechanism may be that the amino group could bring more positive charges to carbon nanotube surfaces, which further led to differences in the peptide conformation, protein adsorption, and targeting osteogenic effects. Our results provided an effective way of improving the bioactivities of artificial bone materials by chemically binding osteogenic peptides.
Collapse
Affiliation(s)
- Cunyang Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Guangxiu Cao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Tianxiao Zhao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084, China
| | - Xufeng Niu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
29
|
Hansel CS, Holme MN, Gopal S, Stevens MM. Advances in high-resolution microscopy for the study of intracellular interactions with biomaterials. Biomaterials 2020; 226:119406. [DOI: 10.1016/j.biomaterials.2019.119406] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/16/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022]
|
30
|
Kargozar S, Kermani F, Mollazadeh Beidokhti S, Hamzehlou S, Verné E, Ferraris S, Baino F. Functionalization and Surface Modifications of Bioactive Glasses (BGs): Tailoring of the Biological Response Working on the Outermost Surface Layer. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3696. [PMID: 31717516 PMCID: PMC6888252 DOI: 10.3390/ma12223696] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/28/2019] [Accepted: 11/05/2019] [Indexed: 12/31/2022]
Abstract
Bioactive glasses (BGs) are routinely being used as potent materials for hard and soft tissue engineering applications; however, improving their biological activities through surface functionalization and modification has been underestimated so far. The surface characteristics of BGs are key factors in determining the success of any implanted BG-based material in vivo since they regulate the affinity and binding of different biological macromolecules and thereby the interactions between cells and the implant. Therefore, a number of strategies using chemical agents (e.g., glutaraldehyde, silanes) and physical methods (e.g., laser treatment) have been evaluated and applied to design properly, tailor, and improve the surface properties of BGs. All these approaches aim at enhancing the biological activities of BGs, including the induction of cell proliferation and subsequent osteogenesis, as well as the inhibition of bacterial growth and adhesion, thereby reducing infection. In this study, we present an overview of the currently used approaches of surface functionalization and modifications of BGs, along with discussing the biological outputs induced by these changes.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
| | - Farzad Kermani
- Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad (FUM), Azadi Sq., Mashhad 917794-8564, Iran; (F.K.); (S.M.B.)
| | - Sahar Mollazadeh Beidokhti
- Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad (FUM), Azadi Sq., Mashhad 917794-8564, Iran; (F.K.); (S.M.B.)
| | - Sepideh Hamzehlou
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran 14155-6447, Iran
| | - Enrica Verné
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (E.V.); (S.F.)
| | - Sara Ferraris
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (E.V.); (S.F.)
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (E.V.); (S.F.)
| |
Collapse
|
31
|
Jeon H, Yun S, Choi E, Kang D, Park KH, Kim D, Jin S, Shim JH, Yun WS, Park J. Proliferation and osteogenic differentiation of human mesenchymal stem cells in PCL/silanated silica composite scaffolds for bone tissue regeneration. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.04.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Patel KD, Buitrago JO, Parthiban SP, Lee JH, Singh RK, Knowles JC, Kim HW. Combined Effects of Nanoroughness and Ions Produced by Electrodeposition of Mesoporous Bioglass Nanoparticle for Bone Regeneration. ACS APPLIED BIO MATERIALS 2019; 2:5190-5203. [DOI: 10.1021/acsabm.9b00859] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kapil D. Patel
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, South Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, South Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, South Korea
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, 256 Gray’s Inn Road, London WC1X 8LD, United Kingdom
| | - Jennifer O. Buitrago
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, South Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, South Korea
| | - S. Prakash Parthiban
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, South Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, South Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, South Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, South Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, South Korea
| | - Rajendra K. Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, South Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, South Korea
| | - Jonathan C. Knowles
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, South Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, South Korea
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, 256 Gray’s Inn Road, London WC1X 8LD, United Kingdom
- The Discoveries Centre for Regenerative and Precision Medicine, UCL Campus, London, U.K
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, South Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, South Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, South Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, South Korea
| |
Collapse
|
33
|
Onesto V, Barrell WB, Okesola M, Amato F, Gentile F, Liu KJ, Chiappini C. A quantitative approach for determining the role of geometrical constraints when shaping mesenchymal condensations. Biomed Microdevices 2019; 21:44. [PMID: 30963305 PMCID: PMC6453869 DOI: 10.1007/s10544-019-0390-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In embryogenesis, mesenchymal condensation is a critical event during the formation of many organ systems, including cartilage and bone. During organ formation, mesenchymal cells aggregate and undergo compaction while activating developmental programmes. The final three-dimensional form of the organ, as well as cell fates, can be influenced by the size and shape of the forming condensation. This process is hypothesized to result from multiscale cell interactions within mesenchymal microenvironments; however, these are complex to investigate in vivo. Three-dimensional in vitro models that recapitulate key phenotypes can contribute to our understanding of the microenvironment interactions regulating this fundamental developmental process. Here we devise such models by using image analysis to guide the design of polydimethylsiloxane 3D microstructures as cell culture substrates. These microstructures establish geometrically constrained micromass cultures of mouse embryonic skeletal progenitor cells which influence the development of condensations. We first identify key phenotypes differentiating face and limb bud micromass cultures by linear discriminant analysis of the shape descriptors for condensation morphology, which are used to guide the rational design of a micropatterned polydimethylsiloxane substrate. High-content imaging analysis highlights that the geometry of the microenvironment affects the establishment and growth of condensations. Further, cells commit to establish condensations within the first 5 h; condensations reach their full size within 17 h; following which they increase cell density while maintaining size for at least 7 days. These findings elucidate the value of our model in dissecting key aspects of mesenchymal condensation development.
Collapse
Affiliation(s)
- Valentina Onesto
- Department of Experimental and Clinical Medicine, University of Magna Graecia, 88100, Catanzaro, Italy
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Basanti e Matteucci 53, 80125, Naples, Italy
| | - William B Barrell
- Centre for Craniofacial and Regenerative Biology, Dental Institute, King's College London, London, SE1 9RT, UK
| | - Mary Okesola
- Centre for Craniofacial and Regenerative Biology, Dental Institute, King's College London, London, SE1 9RT, UK
| | - Francesco Amato
- Department of Experimental and Clinical Medicine, University of Magna Graecia, 88100, Catanzaro, Italy
| | - Francesco Gentile
- Department of Electrical Engineering and Information Technology, University Federico II, Naples, Italy
| | - Karen J Liu
- Centre for Craniofacial and Regenerative Biology, Dental Institute, King's College London, London, SE1 9RT, UK
| | - Ciro Chiappini
- Centre for Craniofacial and Regenerative Biology, Dental Institute, King's College London, London, SE1 9RT, UK.
| |
Collapse
|
34
|
Hellmund KS, Koksch B. Self-Assembling Peptides as Extracellular Matrix Mimics to Influence Stem Cell's Fate. Front Chem 2019; 7:172. [PMID: 31001512 PMCID: PMC6455064 DOI: 10.3389/fchem.2019.00172] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/05/2019] [Indexed: 12/13/2022] Open
Abstract
Interest in biologically active materials that can be used as cell culture substrates for medicinal applications has increased dramatically over the last decade. The design and development of biomaterials mimicking the natural environment of different cell types, the so-called extracellular matrix (ECM), is the focus of research in this field. The ECM exists as an ensemble of several adhesion proteins with different functionalities that can be presented to the embedded cells. These functionalities regulate numerous cellular processes. Therefore, different approaches and strategies using peptide- and protein-based biopolymers have been investigated to support the proliferation, differentiation, and self-renewal of stem cells, in the context of regenerative medicine. This minireview summarizes recent developments in this area, with a focus on peptide-based biomaterials used as stem cell culture substrates.
Collapse
Affiliation(s)
| | - Beate Koksch
- Department of Biology, Chemistry, and Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
35
|
Lowe B, Ottensmeyer MP, Xu C, He Y, Ye Q, Troulis MJ. The Regenerative Applicability of Bioactive Glass and Beta-Tricalcium Phosphate in Bone Tissue Engineering: A Transformation Perspective. J Funct Biomater 2019; 10:E16. [PMID: 30909518 PMCID: PMC6463135 DOI: 10.3390/jfb10010016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 12/12/2022] Open
Abstract
The conventional applicability of biomaterials in the field of bone tissue engineering takes into consideration several key parameters to achieve desired results for prospective translational use. Hence, several engineering strategies have been developed to model in the regenerative parameters of different forms of biomaterials, including bioactive glass and β-tricalcium phosphate. This review examines the different ways these two materials are transformed and assembled with other regenerative factors to improve their application for bone tissue engineering. We discuss the role of the engineering strategy used and the regenerative responses and mechanisms associated with them.
Collapse
Affiliation(s)
- Baboucarr Lowe
- School of Dentistry, The University of Queensland, Brisbane, Herston 4006, Queensland, Australia.
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital and Harvard School of Dental Medicine, Boston, MA 02114, USA.
| | - Mark P Ottensmeyer
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Chun Xu
- School of Dentistry, The University of Queensland, Brisbane, Herston 4006, Queensland, Australia.
| | - Yan He
- School of Dentistry, The University of Queensland, Brisbane, Herston 4006, Queensland, Australia.
| | - Qingsong Ye
- School of Dentistry, The University of Queensland, Brisbane, Herston 4006, Queensland, Australia.
| | - Maria J Troulis
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital and Harvard School of Dental Medicine, Boston, MA 02114, USA.
| |
Collapse
|
36
|
Lerman MJ, Muramoto S, Arumugasaamy N, Van Order M, Lembong J, Gerald AG, Gillen G, Fisher JP. Development of surface functionalization strategies for 3D-printed polystyrene constructs. J Biomed Mater Res B Appl Biomater 2019; 107:2566-2578. [PMID: 30821930 DOI: 10.1002/jbm.b.34347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/18/2019] [Accepted: 02/10/2019] [Indexed: 01/17/2023]
Abstract
There is a growing interest in 3D printing to fabricate culture substrates; however, the surface properties of the scaffold remain pertinent to elicit targeted and expected cell responses. Traditional 2D polystyrene (PS) culture systems typically require surface functionalization (oxidation) to facilitate and encourage cell adhesion. Determining the surface properties which enhance protein adhesion from media and cellular extracellular matrix (ECM) production remains the first step to translating 2D PS systems to a 3D culture surface. Here we show that the presence of carbonyl groups to PS surfaces correlated well with successful adhesion of ECM proteins and sustaining ECM production of deposited human mesenchymal stem cells, if the surface has a water contact angle between 50° and 55°. Translation of these findings to custom-fabricated 3D PS scaffolds reveals carbonyl groups continued to enhance spreading and growth in 3D culture. Cumulatively, these data present a method for 3D printing PS and the design considerations required for understanding cell-material interactions. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B:2566-2578, 2019.
Collapse
Affiliation(s)
- Max J Lerman
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland.,Surface and Trace Chemical Analysis Group, Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland.,Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
| | - Shin Muramoto
- Surface and Trace Chemical Analysis Group, Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland
| | - Navein Arumugasaamy
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland.,Fischell Department of Bioengineerin, University of Maryland, College Park, Maryland.,Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, District of Columbia
| | - Michael Van Order
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland
| | - Josephine Lembong
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland.,Fischell Department of Bioengineerin, University of Maryland, College Park, Maryland
| | - Anushka G Gerald
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland.,Fischell Department of Bioengineerin, University of Maryland, College Park, Maryland
| | - Greg Gillen
- Surface and Trace Chemical Analysis Group, Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland
| | - John P Fisher
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland.,Fischell Department of Bioengineerin, University of Maryland, College Park, Maryland
| |
Collapse
|
37
|
Trimethoxysilyl end-capped hyperbranched polyglycidol/polycaprolactone copolymers for cell delivery and tissue repair: synthesis, characterisation and aqueous solution properties. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.10.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Ding I, Walz JA, Mace CR, Peterson AM. Early hMSC morphology and proliferation on model polyelectrolyte multilayers. Colloids Surf B Biointerfaces 2019; 178:276-284. [PMID: 30878802 DOI: 10.1016/j.colsurfb.2019.02.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 01/01/2023]
Abstract
Polyelectrolyte multilayers (PEMs) are a category of materials commonly used as coatings on surfaces that interact with cells. The properties of PEMs have been established to be controlled by not only polyelectrolyte choice, but by the identity of the initially applied (bottom) layer. In this work, 5-bilayer PEMs consisting of poly(diallyldimethylammonium chloride) (PDADMAC) and poly(sodium 4-styrenesulfonate) (PSS) were coated on gold-sputtered quartz substrates with different first layer materials. A final poly-l-lysine (PLL) layer was added to all PEMs to provide identical top layers conducive to cell growth. As in previous work, initial layer selection affected PEM roughness. All coated surfaces, including the PLL-only control, showed increased dispersive surface energy but decreased polar surface energy, as compared to uncoated surfaces. When human mesenchymal stem cells (hMSCs) were cultured on these surfaces, analysis through lateral cell imaging for the first 90 min and fluorescent staining after 1 day showed improved attachment on surfaces with a PDADMAC bottom layer. However, after 4 days, a higher cell density was observed on the PLL-only and uncoated control surfaces, indicating that the PEMs negatively affected hMSC proliferation. Both the long and short time period results did not correlate to any of the roughness and surface energy trends, indicating more complex interactions between the cells and the surface relating to charge distribution and functional group density.
Collapse
Affiliation(s)
- Ivan Ding
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Ave, Lowell, MA, 01854, United States
| | - Jenna A Walz
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, MA, 02155, United States
| | - Charles R Mace
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, MA, 02155, United States
| | - Amy M Peterson
- Department of Plastics Engineering, University of Massachusetts Lowell, One University Ave, Lowell, MA, 01854, United States.
| |
Collapse
|
39
|
Arabiyat AS, Diaz-Rodriguez P, Erndt-Marino JD, Totsingan F, Mekala S, Gross RA, Hahn MS. Effect of Poly(sophorolipid) Functionalization on Human Mesenchymal Stem Cell Osteogenesis and Immunomodulation. ACS APPLIED BIO MATERIALS 2018; 2:118-126. [DOI: 10.1021/acsabm.8b00434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
40
|
Böke F, Labude N, Lauria I, Ernst S, Müller-Newen G, Neuss S, Fischer H. Biological Activation of Bioinert Medical High-Performance Oxide Ceramics by Hydrolytically Stable Immobilization of c(RGDyK) and BMP-2. ACS APPLIED MATERIALS & INTERFACES 2018; 10:38669-38680. [PMID: 30280884 DOI: 10.1021/acsami.8b08900] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
High-performance oxide ceramics (HPOC), such as alumina, zirconia, and dispersion ceramics thereof are successfully used as articulating components in joint arthroplasty. HPOC exhibit excellent wear resistance, high strength, and cytocompatible behavior; however, they lack sufficient tissue bonding capability. Thus, they are primarily deployed as low-wear-bearing articulating components in arthroplasty without direct tissue contact, although proper cellular stimulation would hold significant advantages. Here, we describe a surface modification approach for HPOC, enabling hydrolytically stable interfacial binding of c(RGDyK) peptides and BMP-2 proteins to significantly improve the adhesion and osteogenic differentiation of human mesenchymal stem cells (hMSCs) without altering the mechanical properties of the underlying ceramic substrates. Analyses of cellular attachment of murine fibroblasts (L929), human alveolar basal epithelial cells (A549), hMSCs on c(RGDyK), and osteogenic differentiation of hMSCs on BMP-2-coated interfaces demonstrate significant improvements of cell adhesion and an enhanced osteogenic differentiation potential in vitro. The presented approach provides a strategy for the development of a novel class of bioactive HPOC with osseointegration potential that could lead to novel therapeutic solutions for biomedical applications. Furthermore, the developed surface modification is designed in a way to be readily translated to other medically employed bioinert materials in the future.
Collapse
|
41
|
Rodríguez-Arco L, Poma A, Ruiz-Pérez L, Scarpa E, Ngamkham K, Battaglia G. Molecular bionics - engineering biomaterials at the molecular level using biological principles. Biomaterials 2018; 192:26-50. [PMID: 30419394 DOI: 10.1016/j.biomaterials.2018.10.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/06/2018] [Accepted: 10/28/2018] [Indexed: 12/18/2022]
Abstract
Life and biological units are the result of the supramolecular arrangement of many different types of molecules, all of them combined with exquisite precision to achieve specific functions. Taking inspiration from the design principles of nature allows engineering more efficient and compatible biomaterials. Indeed, bionic (from bion-, unit of life and -ic, like) materials have gained increasing attention in the last decades due to their ability to mimic some of the characteristics of nature systems, such as dynamism, selectivity, or signalling. However, there are still many challenges when it comes to their interaction with the human body, which hinder their further clinical development. Here we review some of the recent progress in the field of molecular bionics with the final aim of providing with design rules to ensure their stability in biological media as well as to engineer novel functionalities which enable navigating the human body.
Collapse
Affiliation(s)
- Laura Rodríguez-Arco
- Department of Chemistry, University College London (UCL) 20 Gordon St, Kings Cross, London, WC1H 0AJ, UK; Institute for Physics of Living Systems, University College London, London, UK.
| | - Alessandro Poma
- Department of Chemistry, University College London (UCL) 20 Gordon St, Kings Cross, London, WC1H 0AJ, UK; Institute for Physics of Living Systems, University College London, London, UK
| | - Lorena Ruiz-Pérez
- Department of Chemistry, University College London (UCL) 20 Gordon St, Kings Cross, London, WC1H 0AJ, UK; Institute for Physics of Living Systems, University College London, London, UK; The EPRSC/Jeol Centre of Liquid Electron Microscopy, University College London, London, WC1H 0AJ, UK
| | - Edoardo Scarpa
- Department of Chemistry, University College London (UCL) 20 Gordon St, Kings Cross, London, WC1H 0AJ, UK; Institute for Physics of Living Systems, University College London, London, UK
| | - Kamolchanok Ngamkham
- Faculty of Engineering, King Mongkut's University of Technology Thonbury, 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok, 10140, Thailand
| | - Giuseppe Battaglia
- Department of Chemistry, University College London (UCL) 20 Gordon St, Kings Cross, London, WC1H 0AJ, UK; Institute for Physics of Living Systems, University College London, London, UK; The EPRSC/Jeol Centre of Liquid Electron Microscopy, University College London, London, WC1H 0AJ, UK.
| |
Collapse
|
42
|
Wang L, Xiao L, Zhang RZ, Qiu LZ, Zhang R, Shi HX. Effects of acrylate/acrylamide polymers on the adhesion, growth and differentiation of Muse cells. ACTA ACUST UNITED AC 2018; 14:015003. [PMID: 30277887 DOI: 10.1088/1748-605x/aae5cb] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Acrylate/acrylamide copolymers have excellent optical properties and biocompatibility and are ideal biomaterials that have been widely used in tissue engineering. Multilineage-differentiating stress-enduring cells (Muse cells) are a specific subset of mesenchymal stem cells that have an excellent potential for the regenerative medicine. OBJECTIVE This study was designed to investigate the effects of acrylate/acrylamide copolymers on the adhesion, proliferation and pluripotent-like properties of Muse cells, which were derived from normal human dermal fibroblasts by long-term trypsin incubation. METHODS In an initial experiment, Muse cells were seeded on primary microarrays containing micro-spots of 275 different mixtures of acrylate/acrylamide. Each mixture was composed of two of 11 different monomers in various proportions, and was replicated in four micro-spots each. According to the adhesion and growth characteristics of Muse cells on those substrates, specific polymer candidates for Muse cells were selected and secondary microarrays were prepared. We then observed the effects of those specific polymer candidates on the adherence, proliferation and differentiation of Muse cells and suitable candidates for their optimal culture were identified. RESULTS According to the adhesion and growth patterns of Muse cells on the primary microarrays, ten suitable mixtures of acrylate/acrylamide copolymers were identified. Muse cells grew well on six of those combinations and around the four other combinations of those polymer mixtures. Muse cells cultured on three of those combinations proliferated and differentiated into long spindle-shaped cells that looked like fibroblasts, while Muse cells cultured on one combination formed clusters that were ring-shaped. Muse cells cultured on some of those combinations of acrylate/acrylamide proliferated and formed clusters that appeared to be very healthy, whereas Muse cells cultured on other combinations formed clusters that expanded outwards. CONCLUSIONS These results identified a polymer combination that was optimum for the adhesion, proliferation and maintenance of Muse cells in an undifferentiated state.
Collapse
Affiliation(s)
- Li Wang
- Department of Dermatology and Venereology, the Third Affiliated Hospital of Soochow University, Changzhou 213000, People's Republic of China. Department of Dermatology and Venereology, First Affiliated Hospital of Bengbu Medical College, Anhui 233000, People's Republic of China
| | | | | | | | | | | |
Collapse
|
43
|
Carlomagno C, Motta A, Sorarù G, Aswath P, Migliaresi C, Maniglio D. Breath Figures decorated silicon oxinitride ceramic surfaces with controlled Si ions release for enhanced osteoinduction. J Biomed Mater Res B Appl Biomater 2018; 107:1284-1294. [DOI: 10.1002/jbm.b.34221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/02/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Cristiano Carlomagno
- Department of Industrial EngineeringUniversity of Trento via Sommarive 9, Trento Italy
- BIOTech Research CenterUniversity of Trento via delle Regole, 101 Trento Italy
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine Trento Italy
| | - Antonella Motta
- Department of Industrial EngineeringUniversity of Trento via Sommarive 9, Trento Italy
- BIOTech Research CenterUniversity of Trento via delle Regole, 101 Trento Italy
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine Trento Italy
| | - Giandomenico Sorarù
- Department of Industrial EngineeringUniversity of Trento via Sommarive 9, Trento Italy
| | - Pranesh Aswath
- Department of Materials Science and EngineeringUniversity of Texas at Arlington 501 West First Street, Arlington Texas 76019
| | - Claudio Migliaresi
- Department of Industrial EngineeringUniversity of Trento via Sommarive 9, Trento Italy
- BIOTech Research CenterUniversity of Trento via delle Regole, 101 Trento Italy
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine Trento Italy
| | - Devid Maniglio
- Department of Industrial EngineeringUniversity of Trento via Sommarive 9, Trento Italy
- BIOTech Research CenterUniversity of Trento via delle Regole, 101 Trento Italy
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine Trento Italy
| |
Collapse
|
44
|
Tavassoli H, Alhosseini SN, Tay A, Chan PP, Weng Oh SK, Warkiani ME. Large-scale production of stem cells utilizing microcarriers: A biomaterials engineering perspective from academic research to commercialized products. Biomaterials 2018; 181:333-346. [DOI: 10.1016/j.biomaterials.2018.07.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/07/2018] [Accepted: 07/10/2018] [Indexed: 12/22/2022]
|
45
|
Lerman MJ, Lembong J, Muramoto S, Gillen G, Fisher JP. The Evolution of Polystyrene as a Cell Culture Material. TISSUE ENGINEERING. PART B, REVIEWS 2018; 24:359-372. [PMID: 29631491 PMCID: PMC6199621 DOI: 10.1089/ten.teb.2018.0056] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/21/2018] [Indexed: 01/19/2023]
Abstract
Polystyrene (PS) has brought in vitro cell culture from its humble beginnings to the modern era, propelling dozens of research fields along the way. This review discusses the development of the material, fabrication, and treatment approaches to create the culture material. However, native PS surfaces poorly facilitate cell adhesion and growth in vitro. To overcome this, liquid surface deposition, energetic plasma activation, and emerging functionalization methods transform the surface chemistry. This review seeks to highlight the many potential applications of the first widely accepted polymer growth surface. Although the majority of in vitro research occurs on two-dimensional surfaces, the importance of three-dimensional (3D) culture models cannot be overlooked. The methods to transition PS to specialized 3D culture surfaces are also reviewed. Specifically, casting, electrospinning, 3D printing, and microcarrier approaches to shift PS to a 3D culture surface are highlighted. The breadth of applications of the material makes it impossible to highlight every use, but the aim remains to demonstrate the versatility and potential as both a general and custom cell culture surface. The review concludes with emerging scaffolding approaches and, based on the findings, presents our insights on the future steps for PS as a tissue culture platform.
Collapse
Affiliation(s)
- Max J. Lerman
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland
- Surface and Trace Chemical Analysis Group, Materials Measurement Lab, National Institute of Standards and Technology, Gaithersburg, Maryland
- NIH/NIBIB Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
| | - Josephine Lembong
- NIH/NIBIB Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Shin Muramoto
- Surface and Trace Chemical Analysis Group, Materials Measurement Lab, National Institute of Standards and Technology, Gaithersburg, Maryland
| | - Greg Gillen
- Surface and Trace Chemical Analysis Group, Materials Measurement Lab, National Institute of Standards and Technology, Gaithersburg, Maryland
| | - John P. Fisher
- NIH/NIBIB Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| |
Collapse
|
46
|
Liu CG, Zeng YT, Kankala RK, Zhang SS, Chen AZ, Wang SB. Characterization and Preliminary Biological Evaluation of 3D-Printed Porous Scaffolds for Engineering Bone Tissues. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1832. [PMID: 30261642 PMCID: PMC6213437 DOI: 10.3390/ma11101832] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 09/22/2018] [Accepted: 09/24/2018] [Indexed: 11/30/2022]
Abstract
Some basic requirements of bone tissue engineering include cells derived from bone tissues, three-dimensional (3D) scaffold materials, and osteogenic factors. In this framework, the critical architecture of the scaffolds plays a crucial role to support and assist the adhesion of the cells, and the subsequent tissue repairs. However, numerous traditional methods suffer from certain drawbacks, such as multi-step preparation, poor reproducibility, high complexity, difficulty in controlling the porous architectures, the shape of the scaffolds, and the existence of solvent residue, which limits their applicability. In this work, we fabricated innovative poly(lactic-co-glycolic acid) (PLGA) porous scaffolds, using 3D-printing technology, to overcome the shortcomings of traditional approaches. In addition, the printing parameters were critically optimized for obtaining scaffolds with normal morphology, appropriate porous architectures, and sufficient mechanical properties, for the accommodation of the bone cells. Various evaluation studies, including the exploration of mechanical properties (compressive strength and yield stress) for different thicknesses, and change of structure (printing angle) and porosity, were performed. Particularly, the degradation rate of the 3D scaffolds, printed in the optimized conditions, in the presence of hydrolytic, as well as enzymatic conditions were investigated. Their assessments were evaluated using the thermal gravimetric analyzer (TGA), differential scanning calorimetry (DSC), and gel permeation chromatography (GPC). These porous scaffolds, with their biocompatibility, biodegradation ability, and mechanical properties, have enabled the embryonic osteoblast precursor cells (MC3T3-E1), to adhere and proliferate in the porous architectures, with increasing time. The generation of highly porous 3D scaffolds, based on 3D printing technology, and their critical evaluation, through various investigations, may undoubtedly provide a reference for further investigations and guide critical optimization of scaffold fabrication, for tissue regeneration.
Collapse
Affiliation(s)
- Chen-Guang Liu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China.
| | - Yu-Ting Zeng
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China.
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China.
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, China.
| | - Shan-Shan Zhang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China.
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China.
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, China.
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China.
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, China.
| |
Collapse
|
47
|
Bergholt NL, Foss M, Saeed A, Gadegaard N, Lysdahl H, Lind M, Foldager CB. Surface chemistry, substrate, and topography guide the behavior of human articular chondrocytes cultured in vitro. J Biomed Mater Res A 2018; 106:2805-2816. [PMID: 29907992 DOI: 10.1002/jbm.a.36467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/22/2018] [Accepted: 05/22/2018] [Indexed: 01/18/2023]
Abstract
Understanding the behavior of chondrocytes in contact with artificial culture surfaces is becoming increasingly important in attaining appropriate ex vivo culture conditions of chondrocytes in cartilage regeneration. Chondrocyte transplantation-based cartilage repair requires efficiently expanded chondrocytes, and the culture surface plays an important role in guiding the behavior of the cell. Micro- and nano-engineered surfaces make it possible to modulate cell behavior. We hypothesized that the combined influence of topography, substrate, and surface chemistry may affect the chondrocyte culturing in terms of proliferation and phenotypic means. Human chondrocytes were cultured on polystyrene fabricated microstructures, flat polydimethylsiloxane (PDMS), or polystyrene treated with fibronectin or oxygen plasma and cultured for 1, 4, 7, and 10 days. The behavior of chondrocytes was evaluated by proliferation, viability, chondrogenic gene expression, and cell morphology. Contrary to our hypothesis, microstructures in polystyrene did not significantly influence the behavior of chondrocytes neither under normoxic- nor hypoxic conditions. However, changes in the substrate stiffness and surface chemistry were found to influence cell viability, gene expression, and morphology of human chondrocytes. Oxygen plasma treatment was the most important parameter followed by the softer substrate type PDMS. The findings indicate the culture of human chondrocytes on softer substratum and surface activation by oxygen plasma may prevent dedifferentiation and may improve chondrocyte transplantation-based cartilage repair. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2805-2816, 2018.
Collapse
Affiliation(s)
| | - Morten Foss
- Interdisciplinary Nanoscience Center, iNANO, University Aarhus, Aarhus, Denmark
| | - Anwer Saeed
- Division of Biomedical Engineering, University of Glasgow, Glasgow, G12 8LT, United Kingdom
| | - Nikolaj Gadegaard
- Division of Biomedical Engineering, University of Glasgow, Glasgow, G12 8LT, United Kingdom
| | - Helle Lysdahl
- Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Martin Lind
- Sports Trauma Clinic, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
48
|
Duru İ, Ege D. Self-Assembly of L-Arginine on Electrophoretically Deposited Hydroxyapatite Coatings. ChemistrySelect 2018. [DOI: 10.1002/slct.201801913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- İlayda Duru
- Institute of Biomedical Engineering; Boğaziçi University; Rasathane St., Kandilli 34684, Istanbul Turkey
| | - Duygu Ege
- Institute of Biomedical Engineering; Boğaziçi University; Rasathane St., Kandilli 34684, Istanbul Turkey
| |
Collapse
|
49
|
Silica nanocomposites based on silver nanoparticles-functionalization and pH effect. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0837-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
50
|
Kapat K, Rameshbabu AP, Maity PP, Mandal A, Bankoti K, Dutta J, Das DK, Dey G, Mandal M, Dhara S. Osteochondral Defects Healing Using Extracellular Matrix Mimetic Phosphate/Sulfate Decorated GAGs-Agarose Gel and Quantitative Micro-CT Evaluation. ACS Biomater Sci Eng 2018; 5:149-164. [DOI: 10.1021/acsbiomaterials.8b00253] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | | | - Priti Prasanna Maity
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur 711103, India
| | | | | | | | | | | | | | | |
Collapse
|