1
|
Jacobs T, Patil D, Ziccardi VB. Both Type I Bovine Collagen Conduits and Porcine Small Intestine Submucosa Conduits Result in Functional Sensory Recovery Following Peripheral Nerve Microsurgery: A Systematic Review and Meta-Analysis. J Oral Maxillofac Surg 2024; 82:1559-1568. [PMID: 39216509 DOI: 10.1016/j.joms.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/11/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE The study purpose was to measure and compare the time to functional sensory recovery (FSR) and incidence of FSR by 6 and 12 months between type I bovine collagen conduits versus porcine small intestine submucosa (SIS) conduits with primary neurorrhaphy for peripheral nerve injury repair. METHODS A systematic review and meta-analysis following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were conducted. The predictor variable was the type of conduit-either bovine collagen or porcine SIS. The primary outcome variable was the number of months between surgery and the patient achieving FSR. The secondary outcome variable was the proportion of patients who achieved FSR that did so by 6 and 12 months. A log-rank test was performed to evaluate the statistical significance of the differences observed in the overall time-to-FSR data and by 6 and 12 months. RESULTS We screened 67 publications of which 8 were included. The sample sizes were 137 and 96 patients for the bovine collagen and porcine SIS groups, respectively. The median time to FSR for the bovine collagen conduit group was 9 months (interquartile range: 6); the median time to FSR for the porcine SIS conduit group 6 months (interquartile range: 3 months) (P = .50). Of the patients who achieved FSR, 42% of patients with bovine collagen conduits and 64% of patients with porcine SIS conduits did so within 6 months (P < .01). Of the patients who achieved FSR, 94% of patients with bovine collagen conduits and 82% of patients with porcine SIS conduits did so within 12 months (P < .01). CONCLUSION Although a significant difference was found in the incidence of FSR at 6 and 12 months, no significant difference was found in overall time to FSR, supporting the use of either conduit for peripheral nerve repair.
Collapse
Affiliation(s)
- Tyler Jacobs
- Resident, Department of Oral and Maxillofacial Surgery, Rutgers School of Dental Medicine, Newark, NJ.
| | - Disha Patil
- M.D. Candidate, Rutgers New Jersey Medical School, Newark, NJ
| | - Vincent B Ziccardi
- Professor, Chair, and Associate Dean for Hospital Affairs, Department of Oral and Maxillofacial Surgery, Rutgers School of Dental Medicine, Newark, NJ
| |
Collapse
|
2
|
Wang S, Wen X, Fan Z, Ding X, Wang Q, Liu Z, Yu W. Research advancements on nerve guide conduits for nerve injury repair. Rev Neurosci 2024; 35:627-637. [PMID: 38517315 DOI: 10.1515/revneuro-2023-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/19/2023] [Indexed: 03/23/2024]
Abstract
Peripheral nerve injury (PNI) is one of the most serious causes of disability and loss of work capacity of younger individuals. Although PNS has a certain degree of regeneration, there are still challenges like disordered growth, neuroma formation, and incomplete regeneration. Regarding the management of PNI, conventional methods such as surgery, pharmacotherapy, and rehabilitative therapy. Treatment strategies vary depending on the severity of the injury. While for the long nerve defect, autologous nerve grafting is commonly recognized as the preferred surgical approach. Nevertheless, due to lack of donor sources, neurological deficits and the low regeneration efficiency of grafted nerves, nerve guide conduits (NGCs) are recognized as a future promising technology in recent years. This review provides a comprehensive overview of current treatments for PNI, and discusses NGCs from different perspectives, such as material, design, fabrication process, and composite function.
Collapse
Affiliation(s)
- Shoushuai Wang
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun City 130033, Jilin Province, China
| | - Xinggui Wen
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun City 130033, Jilin Province, China
| | - Zheyuan Fan
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun City 130033, Jilin Province, China
| | - Xiangdong Ding
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun City 130033, Jilin Province, China
| | - Qianqian Wang
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun City 130033, Jilin Province, China
| | - Zhongling Liu
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun City 130033, Jilin Province, China
| | - Wei Yu
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun City 130033, Jilin Province, China
| |
Collapse
|
3
|
Soltani Khaboushan A, Azimzadeh A, Behboodi Tanourlouee S, Mamdoohi M, Kajbafzadeh AM, Slavin KV, Rahimi-Movaghar V, Hassannejad Z. Electrical stimulation enhances sciatic nerve regeneration using a silk-based conductive scaffold beyond traditional nerve guide conduits. Sci Rep 2024; 14:15196. [PMID: 38956215 PMCID: PMC11219763 DOI: 10.1038/s41598-024-65286-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024] Open
Abstract
Despite recent advancements in peripheral nerve regeneration, the creation of nerve conduits with chemical and physical cues to enhance glial cell function and support axonal growth remains challenging. This study aimed to assess the impact of electrical stimulation (ES) using a conductive nerve conduit on sciatic nerve regeneration in a rat model with transection injury. The study involved the fabrication of conductive nerve conduits using silk fibroin and Au nanoparticles (AuNPs). Collagen hydrogel loaded with green fluorescent protein (GFP)-positive adipose-derived mesenchymal stem cells (ADSCs) served as the filling for the conduit. Both conductive and non-conductive conduits were applied with and without ES in rat models. Locomotor recovery was assessed using walking track analysis. Histological evaluations were performed using H&E, luxol fast blue staining and immunohistochemistry. Moreover, TEM analysis was conducted to distinguish various ultrastructural aspects of sciatic tissue. In the ES + conductive conduit group, higher S100 (p < 0.0001) and neurofilament (p < 0.001) expression was seen after 6 weeks. Ultrastructural evaluations showed that conductive scaffolds with ES minimized Wallerian degeneration. Furthermore, the conductive conduit with ES group demonstrated significantly increased myelin sheet thickness and decreased G. ratio compared to the autograft. Immunofluorescent images confirmed the presence of GFP-positive ADSCs by the 6th week. Locomotor recovery assessments revealed improved function in the conductive conduit with ES group compared to the control group and groups without ES. These results show that a Silk/AuNPs conduit filled with ADSC-seeded collagen hydrogel can function as a nerve conduit, aiding in the restoration of substantial gaps in the sciatic nerve with ES. Histological and locomotor evaluations indicated that ES had a greater impact on functional recovery compared to using a conductive conduit alone, although the use of conductive conduits did enhance the effects of ES.
Collapse
Affiliation(s)
- Alireza Soltani Khaboushan
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419733151, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashkan Azimzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419733151, Iran
| | - Saman Behboodi Tanourlouee
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419733151, Iran
| | - Melina Mamdoohi
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419733151, Iran
| | - Konstantin V Slavin
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Sina Hospital, Tehran University of Medical Sciences, Hassan-Abad Square, Imam Khomeini Ave., Tehran, 11365-3876, Iran.
| | - Zahra Hassannejad
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419733151, Iran.
| |
Collapse
|
4
|
Huang H, Lin Q, Rui X, Huang Y, Wu X, Yang W, Yu Z, He W. Research status of facial nerve repair. Regen Ther 2023; 24:507-514. [PMID: 37841661 PMCID: PMC10570629 DOI: 10.1016/j.reth.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023] Open
Abstract
The facial nerve, also known as the seventh cranial nerve, is critical in controlling the movement of the facial muscles. It is responsible for all facial expressions, such as smiling, frowning, and moving the eyebrows. However, damage to this nerve can occur for a variety of reasons, including maxillofacial surgery, trauma, tumors, and infections. Facial nerve injuries can cause severe functional impairment and can lead to different degrees of facial paralysis, significantly affecting the quality of life of patients. Over the past ten years, significant progress has been made in the field of facial nerve repair. Different approaches, including direct suture, autologous nerve grafts, and tissue engineering, have been utilized for the repair of facial nerve injury. This article mainly summarizes the clinical methods and basic research progress of facial nerve repair in the past ten years.
Collapse
Affiliation(s)
- Haoyuan Huang
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Qiang Lin
- Hospital of stomatology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Xi Rui
- Hospital of stomatology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Yiman Huang
- Hospital of stomatology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Xuanhao Wu
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Wenhao Yang
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Zhu Yu
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Wenpeng He
- Hospital of stomatology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- School of Stomatology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
5
|
Wan T, Wang YL, Zhang FS, Zhang XM, Zhang YC, Jiang HR, Zhang M, Zhang PX. The Porous Structure of Peripheral Nerve Guidance Conduits: Features, Fabrication, and Implications for Peripheral Nerve Regeneration. Int J Mol Sci 2023; 24:14132. [PMID: 37762437 PMCID: PMC10531895 DOI: 10.3390/ijms241814132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Porous structure is an important three-dimensional morphological feature of the peripheral nerve guidance conduit (NGC), which permits the infiltration of cells, nutrients, and molecular signals and the discharge of metabolic waste. Porous structures with precisely customized pore sizes, porosities, and connectivities are being used to construct fully permeable, semi-permeable, and asymmetric peripheral NGCs for the replacement of traditional nerve autografts in the treatment of long-segment peripheral nerve injury. In this review, the features of porous structures and the classification of NGCs based on these characteristics are discussed. Common methods for constructing 3D porous NGCs in current research are described, as well as the pore characteristics and the parameters used to tune the pores. The effects of the porous structure on the physical properties of NGCs, including biodegradation, mechanical performance, and permeability, were analyzed. Pore structure affects the biological behavior of Schwann cells, macrophages, fibroblasts, and vascular endothelial cells during peripheral nerve regeneration. The construction of ideal porous structures is a significant advancement in the regeneration of peripheral nerve tissue engineering materials. The purpose of this review is to generalize, summarize, and analyze methods for the preparation of porous NGCs and their biological functions in promoting peripheral nerve regeneration to guide the development of medical nerve repair materials.
Collapse
Affiliation(s)
- Teng Wan
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Yi-Lin Wang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Feng-Shi Zhang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Xiao-Meng Zhang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Yi-Chong Zhang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Hao-Ran Jiang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Meng Zhang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Pei-Xun Zhang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| |
Collapse
|
6
|
Manousiouthakis E, Park J, Hardy JG, Lee JY, Schmidt CE. Towards the translation of electroconductive organic materials for regeneration of neural tissues. Acta Biomater 2022; 139:22-42. [PMID: 34339871 DOI: 10.1016/j.actbio.2021.07.065] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Carbon-based conductive and electroactive materials (e.g., derivatives of graphene, fullerenes, polypyrrole, polythiophene, polyaniline) have been studied since the 1970s for use in a broad range of applications. These materials have electrical properties comparable to those of commonly used metals, while providing other benefits such as flexibility in processing and modification with biologics (e.g., cells, biomolecules), to yield electroactive materials with biomimetic mechanical and chemical properties. In this review, we focus on the uses of these electroconductive materials in the context of the central and peripheral nervous system, specifically recent studies in the peripheral nerve, spinal cord, brain, eye, and ear. We also highlight in vivo studies and clinical trials, as well as a snapshot of emerging classes of electroconductive materials (e.g., biodegradable materials). We believe such specialized electrically conductive biomaterials will clinically impact the field of tissue regeneration in the foreseeable future. STATEMENT OF SIGNIFICANCE: This review addresses the use of conductive and electroactive materials for neural tissue regeneration, which is of significant interest to a broad readership, and of particular relevance to the growing community of scientists, engineers and clinicians in academia and industry who develop novel medical devices for tissue engineering and regenerative medicine. The review covers the materials that may be employed (primarily focusing on derivatives of fullerenes, graphene and conjugated polymers) and techniques used to analyze materials composed thereof, followed by sections on the application of these materials to nervous tissues (i.e., peripheral nerve, spinal cord, brain, optical, and auditory tissues) throughout the body.
Collapse
Affiliation(s)
- Eleana Manousiouthakis
- Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville 32611, FL, United States
| | - Junggeon Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - John G Hardy
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom; Materials Science Institute, Lancaster University, Lancaster LA1 4YB, United Kingdom.
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| | - Christine E Schmidt
- Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville 32611, FL, United States.
| |
Collapse
|
7
|
Alarcón Apablaza J, Lezcano MF, Godoy Sánchez K, Oporto GH, Dias FJ. Optimal Morphometric Characteristics of a Tubular Polymeric Scaffold to Promote Peripheral Nerve Regeneration: A Scoping Review. Polymers (Basel) 2022; 14:397. [PMID: 35160387 PMCID: PMC8838152 DOI: 10.3390/polym14030397] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/05/2022] [Accepted: 01/13/2022] [Indexed: 12/27/2022] Open
Abstract
Cellular behavior in nerve regeneration is affected by the architecture of the polymeric nerve guide conduits (NGCs); therefore, design features of polymeric NGCs are critical for neural tissue engineering. Hence, the purpose of this scoping review is to summarize the adequate quantitative/morphometric parameters of the characteristics of NGC that provide a supportive environment for nerve regeneration, enhancing the understanding of a previous study. 394 studies were found, of which 29 studies were selected. The selected studies revealed four morphometric characteristics for promoting nerve regeneration: wall thickness, fiber size, pore size, and porosity. An NGC with a wall thickness between 250-400 μm and porosity of 60-80%, with a small pore on the inner surface and a large pore on the outer surface, significantly favored nerve regeneration; resulting in an increase in nutrient permeability, retention of neurotrophic factors, and optimal mechanical properties. On the other hand, the superiority of electrospun fibers is described; however, the size of the fiber is controversial in the literature, obtaining optimal results in the range of 300 nm to 30 µm. The incorporation of these optimal morphometric characteristics will encourage nerve regeneration and help reduce the number of experimental studies as it will provide the initial morphometric parameters for the preparation of an NGC.
Collapse
Affiliation(s)
- Josefa Alarcón Apablaza
- Research Centre in Dental Sciences (CICO-UFRO), Dental School—Facultad de Odontología, Universidad de La Frontera, Temuco 4780000, Chile; (J.A.A.); (M.F.L.); (G.H.O.)
- Program of Master in Dental Science, Dental School, Universidad de La Frontera, Temuco 4780000, Chile
| | - María Florencia Lezcano
- Research Centre in Dental Sciences (CICO-UFRO), Dental School—Facultad de Odontología, Universidad de La Frontera, Temuco 4780000, Chile; (J.A.A.); (M.F.L.); (G.H.O.)
- Department of Integral Adults Dentistry, Dental School—Facultad de Odontología, Universidad de La Frontera, Temuco 4780000, Chile
- Laboratorio de Cibernética, Departamento de Bioingeniería, Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde 3100, Argentina
| | - Karina Godoy Sánchez
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4780000, Chile;
| | - Gonzalo H. Oporto
- Research Centre in Dental Sciences (CICO-UFRO), Dental School—Facultad de Odontología, Universidad de La Frontera, Temuco 4780000, Chile; (J.A.A.); (M.F.L.); (G.H.O.)
- Department of Integral Adults Dentistry, Dental School—Facultad de Odontología, Universidad de La Frontera, Temuco 4780000, Chile
| | - Fernando José Dias
- Research Centre in Dental Sciences (CICO-UFRO), Dental School—Facultad de Odontología, Universidad de La Frontera, Temuco 4780000, Chile; (J.A.A.); (M.F.L.); (G.H.O.)
- Department of Integral Adults Dentistry, Dental School—Facultad de Odontología, Universidad de La Frontera, Temuco 4780000, Chile
| |
Collapse
|
8
|
Miao Y, Cui H, Dong Z, Ouyang Y, Li Y, Huang Q, Wang Z. Structural Evolution of Polyglycolide and Poly(glycolide -co-lactide) Fibers during In Vitro Degradation with Different Heat-Setting Temperatures. ACS OMEGA 2021; 6:29254-29266. [PMID: 34746613 PMCID: PMC8567347 DOI: 10.1021/acsomega.1c04974] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
The structural evolution of polyglycolide (PGA) and poly(glycolide-co-lactide) (P(GA-co-LA)) with 8% LA content fibers with different heat-setting temperatures was investigated during in vitro degradation using WAXD, SAXS, and mechanical property tests. It was found that the PGA fiber was more susceptible to the degradation process than the P(GA-co-LA) fiber and a higher heat-setting temperature reduced the degradation rate of the two samples. The weight and mechanical properties of the samples showed a gradual decrease during degradation. We proposed that the degradation of PGA and P(GA-co-LA) fibers proceeded in four stages. A continuous increase in crystallinity during the early stage of degradation and a gradual decline during the later period indicated that preferential hydrolytic degradation occurred in the amorphous regions, followed by a further degradation in the crystalline regions. The cleavage-induced crystallization occurred during the later stage of degradation, contributing to an appreciable decrease in the long period and lamellar thickness of both PGA and P(GA-co-LA) samples. The introduction of LA units into the PGA skeleton reduced the difference in the degradation rate between the crystalline and amorphous regions, and they were simultaneously degraded in the early stage of degradation, leading to a degradation mechanism different from that of the PGA fiber.
Collapse
Affiliation(s)
- Yushuang Miao
- Ningbo
Key Laboratory of Specialty Polymers, School of Materials Science
and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | | | - Zhimin Dong
- Ningbo
Key Laboratory of Specialty Polymers, School of Materials Science
and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Yi Ouyang
- Department
of Radiation Oncology & State Key Laboratory of Oncology in South
China, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Yiguo Li
- Ningbo
Key Laboratory of Specialty Polymers, School of Materials Science
and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Qing Huang
- China
Textile Academy, Beijing 100025, China
| | - Zongbao Wang
- Ningbo
Key Laboratory of Specialty Polymers, School of Materials Science
and Chemical Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
9
|
Parker BJ, Rhodes DI, O'Brien CM, Rodda AE, Cameron NR. Nerve guidance conduit development for primary treatment of peripheral nerve transection injuries: A commercial perspective. Acta Biomater 2021; 135:64-86. [PMID: 34492374 DOI: 10.1016/j.actbio.2021.08.052] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
Commercial nerve guidance conduits (NGCs) for repair of peripheral nerve discontinuities are of little use in gaps larger than 30 mm, and for smaller gaps they often fail to compete with the autografts that they are designed to replace. While recent research to develop new technologies for use in NGCs has produced many advanced designs with seemingly positive functional outcomes in animal models, these advances have not been translated into viable clinical products. While there have been many detailed reviews of the technologies available for creating NGCs, none of these have focussed on the requirements of the commercialisation process which are vital to ensure the translation of a technology from bench to clinic. Consideration of the factors essential for commercial viability, including regulatory clearance, reimbursement processes, manufacturability and scale up, and quality management early in the design process is vital in giving new technologies the best chance at achieving real-world impact. Here we have attempted to summarise the major components to consider during the development of emerging NGC technologies as a guide for those looking to develop new technology in this domain. We also examine a selection of the latest academic developments from the viewpoint of clinical translation, and discuss areas where we believe further work would be most likely to bring new NGC technologies to the clinic. STATEMENT OF SIGNIFICANCE: NGCs for peripheral nerve repairs represent an adaptable foundation with potential to incorporate modifications to improve nerve regeneration outcomes. In this review we outline the regulatory processes that functionally distinct NGCs may need to address and explore new modifications and the complications that may need to be addressed during the translation process from bench to clinic.
Collapse
Affiliation(s)
- Bradyn J Parker
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| | - David I Rhodes
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia; ReNerve Pty. Ltd., Brunswick East 3057, Australia
| | - Carmel M O'Brien
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Research Way, Clayton, Victoria 3168, Australia; Australian Regenerative Medicine Institute, Science, Technology, Research and innovation Precinct (STRIP), Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Andrew E Rodda
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia
| | - Neil R Cameron
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia; School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom.
| |
Collapse
|
10
|
Zhang S, Wang J, Zheng Z, Yan J, Zhang L, Li Y, Zhang J, Li G, Wang X, Kaplan D. Porous nerve guidance conduits reinforced with braided composite structures of silk/magnesium filaments for peripheral nerve repair. Acta Biomater 2021; 134:116-130. [PMID: 34289421 DOI: 10.1016/j.actbio.2021.07.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/05/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023]
Abstract
Peripheral nerve repair is a common but challenging surgical treatment. Many artificial nerve grafts have been developed, including nerve guidance conduits (NGCs) with biocompatibility, suitable mechanical properties and topography to guide axon growth. However, there remains a need to promote nerve regeneration and accelerate functional recovery using NGCs for nerve reconstruction. Here, silk fibroin (SF) and magnesium (S/Mg) filaments were braided into an inner layer of NGC and freeze-dried with a solution of SF and chitosan (CS). The mechanical stress of these S/Mg-SF/CS conduits reached 2.8 ± 0.2 N and possessed high compression strength. The conduits were evaluated with subcutaneous implantation. Sustainable mechanical function was demonstrated when used to repair 10 mm sciatic nerve gaps in rats. The hollow NGCs improved neurochemotaxis from the damaged nerves. The wet weight ratio of the gastrocnemius muscle, a target muscle for the sciatic nerve related to motor and sensory functions in the NGC group, reached 83.5% of that in the autologous group in 8 weeks; the nerve ports at both ends of the NGC grew well. When the distal end of the regenerated nerve was observed by Transmission Electron Microscopy (TEM), there was no significance difference in the diameter and thickness of the myelin sheath of the distal nerve between the autograft and S/Mg-SF/CS group, indicating that S/Mg-SF/CS NGC in this study promoted the growth of damaged nerves and provided appropriate physio mechanical guidance, thus suggesting potential utility for this approach in artificial nerve transplantation. STATEMENT OF SIGNIFICANCE: 1. Porous nerve guidance conduits (NGCs) is reinforced by a braided composite structure consisting of silk/magnesium filaments, which provides the NGC with appropriate physio-mechanical guidance as well as sufficient stability to support the biological micro-environment during early-stages of nerve regeneration and functional recovery. 2. Sufficient mechanical properties, biocompatibility with Schwan cells and good performance after sciatic nerve transplantation demonstrates that the S/Mg-SF/CS NGC in this study promotes the growth of damaged nerves and provides a suitable physio-mechanical guide for potential in artificial nerve transplantation. 3. A facile scalable manufacturing process is achieved by utilizing multidisciplinary engineering, such as textile technologies, biomaterial engineering and medical science.
Collapse
Affiliation(s)
- Shujun Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Jing Wang
- Laboratory animal center of Soochow University, Suzhou 215123, China
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Jia Yan
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Li Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yi Li
- School of Materials, The University of Manchester, Manchester M13 9PL, UK
| | - Jiaheng Zhang
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, PR China
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - David Kaplan
- Department of Biomedical Engineering, 4 Colby Street, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
11
|
Apablaza JA, Lezcano MF, Lopez Marquez A, Godoy Sánchez K, Oporto GH, Dias FJ. Main Morphological Characteristics of Tubular Polymeric Scaffolds to Promote Peripheral Nerve Regeneration-A Scoping Review. Polymers (Basel) 2021; 13:2563. [PMID: 34372166 PMCID: PMC8347244 DOI: 10.3390/polym13152563] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
The "nerve guide conduits" (NGC) used in nerve regeneration must mimic the natural environment for proper cell behavior. OBJECTIVE To describe the main morphological characteristics of polymeric NGC to promote nerve regeneration. METHODS A scoping review was performed following the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) criteria in the PubMed, Web of Science, Science Direct, and Scientific Electronic Library Online (SciELO) databases. Primary studies that considered/evaluated morphological characteristics of NGC to promote nerve regeneration were included. RESULT A total of 704 studies were found, of which 52 were selected. The NGC main morphological characteristics found in the literature were: (I) NGC diameter affects the mechanical properties of the scaffold. (II) Wall thickness of NGC determines the exchange of nutrients, molecules, and neurotrophins between the internal and external environment; and influences the mechanical properties and biodegradation, similarly to NGC (III) porosity, (IV) pore size, and (V) pore distribution. The (VI) alignment of the NGC fibers influences the phenotype of cells involved in nerve regeneration. In addition, the (VII) thickness of the polymeric fiber influences neurite extension and orientation. CONCLUSIONS An NGC should have its diameter adjusted to the nerve with wall thickness, porosity, pore size, and distribution of pores, to favor vascularization, permeability, and exchange of nutrients, and retention of neurotrophic factors, also favoring its mechanical properties and biodegradability.
Collapse
Affiliation(s)
- Josefa Alarcón Apablaza
- Research Centre in Dental Sciences (CICO-UFRO), Dental School—Facultad de Odontología, Universidad de La Frontera, Temuco 4780000, Chile; (J.A.A.); (M.F.L.); (G.H.O.)
- Program of Master in Dental Science, Dental School, Universidad de La Frontera, Temuco 4780000, Chile
| | - María Florencia Lezcano
- Research Centre in Dental Sciences (CICO-UFRO), Dental School—Facultad de Odontología, Universidad de La Frontera, Temuco 4780000, Chile; (J.A.A.); (M.F.L.); (G.H.O.)
- Department of Integral Adults Dentistry, Dental School—Facultad de Odontología, Universidad de La Frontera, Temuco 4780000, Chile
- Laboratorio de Cibernética, Departamento de Bioingeniería, Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde 3100, Argentina
| | - Alex Lopez Marquez
- HAWK—Hochschule für Angewandte Wissenschaften und Kunst, 37085 Göttingen, Germany;
| | - Karina Godoy Sánchez
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4780000, Chile;
- Center of Molecular Biology and Phamacogenetics, Universidad de La Frontera, Temuco 4780000, Chile
| | - Gonzalo H. Oporto
- Research Centre in Dental Sciences (CICO-UFRO), Dental School—Facultad de Odontología, Universidad de La Frontera, Temuco 4780000, Chile; (J.A.A.); (M.F.L.); (G.H.O.)
- Department of Integral Adults Dentistry, Dental School—Facultad de Odontología, Universidad de La Frontera, Temuco 4780000, Chile
| | - Fernando José Dias
- Research Centre in Dental Sciences (CICO-UFRO), Dental School—Facultad de Odontología, Universidad de La Frontera, Temuco 4780000, Chile; (J.A.A.); (M.F.L.); (G.H.O.)
- Department of Integral Adults Dentistry, Dental School—Facultad de Odontología, Universidad de La Frontera, Temuco 4780000, Chile
| |
Collapse
|
12
|
Sasaki R, Watanabe Y, Yamato M, Okamoto T. Tissue-engineered nerve guides with mesenchymal stem cells in the facial nerve regeneration. Neurochem Int 2021; 148:105062. [PMID: 34004239 DOI: 10.1016/j.neuint.2021.105062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 12/31/2022]
Abstract
Nerve guides with mesenchymal stem cells have been investigated in the rat facial nerve defect model to promote peripheral nerve regeneration and shorten recovery time to improve patients' quality of life. A 7-mm facial nerve gap experimental rat model is frequently employed in facial nerve regeneration studies. Facial nerve regeneration with nerve guides is evaluated by (1) assessing myelinated fiber counts using toluidine blue staining, (2) immunohistological analysis, (3) determining the g-ratio (axon diameter/total outer diameter) of regenerated nerve on transmission electron microscopic images, (4) retrograde nerve tracing in the facial nucleus, (5) electrophysiological evaluations using compound muscle action potential, and (6) functional evaluations using rat facial palsy scores. Dental pulp and adipose-derived stem cells, easily harvested using a minimally invasive procedure, possess characteristics of mesenchymal tissue lineages and can differentiate into Schwann-like cells. Cultured dental pulp-derived cells can produce neurotrophic factors, including nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor. These neurotrophic factors promote peripheral nerve regeneration and afford protection against facial motor neuron death. Moreover, artificial nerve guides can maneuver axonal regrowth, and dental pulp-derived cells and adipose-derived Schwann cells may supply neurotrophic factors, promoting axonal regeneration. In the present review, the authors discuss facial nerve regeneration using nerve guides with mesenchymal stem cells.
Collapse
Affiliation(s)
- Ryo Sasaki
- Department of Oral and Maxillofacial Surgery, Tokyo Women's Medical University, School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Yorikatsu Watanabe
- Department of Plastic and Reconstructive Surgery, Tokyo Metropolitan Police Hospital, 4-22-1 Nakano, Nakano-ku, Tokyo, 164-0001, Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Toshihiro Okamoto
- Department of Oral and Maxillofacial Surgery, Tokyo Women's Medical University, School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| |
Collapse
|
13
|
Yoo MC, Chon J, Jung J, Kim SS, Bae S, Kim SH, Yeo SG. Potential Therapeutic Strategies and Substances for Facial Nerve Regeneration Based on Preclinical Studies. Int J Mol Sci 2021; 22:ijms22094926. [PMID: 34066483 PMCID: PMC8124575 DOI: 10.3390/ijms22094926] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
Despite advances in microsurgical technology and an improved understanding of nerve regeneration, obtaining satisfactory results after facial nerve injury remains a difficult clinical problem. Among existing peripheral nerve regeneration studies, relatively few have focused on the facial nerve, particularly how experimental studies of the facial nerve using animal models play an essential role in understanding functional outcomes and how such studies can lead to improved axon regeneration after nerve injury. The purpose of this article is to review current perspectives on strategies for applying potential therapeutic methods for facial nerve regeneration. To this end, we searched Embase, PubMed, and the Cochrane library using keywords, and after applying exclusion criteria, obtained a total of 31 qualifying experimental studies. We then summarize the fundamental experimental studies on facial nerve regeneration, highlighting recent bioengineering studies employing various strategies for supporting facial nerve regeneration, including nerve conduits with stem cells, neurotrophic factors, and/or other therapeutics. Our summary of the methods and results of these previous reports reveal a common feature among studies, showing that various neurotrophic factors arising from injured nerves contribute to a microenvironment that plays an important role in functional recovery. In most cases, histological examinations showed that this microenvironmental influence increased axonal diameter as well as myelination thickness. Such an analysis of available research on facial nerve injury and regeneration represents the first step toward future therapeutic strategies.
Collapse
Affiliation(s)
- Myung Chul Yoo
- Department of Physical Medicine & Rehabilitation, College of Medicine, Kyung Hee University, Seoul 02447, Korea; (M.C.Y.); (J.C.)
| | - Jinmann Chon
- Department of Physical Medicine & Rehabilitation, College of Medicine, Kyung Hee University, Seoul 02447, Korea; (M.C.Y.); (J.C.)
| | - Junyang Jung
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Sung Su Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Seonhwan Bae
- Department of Otorhinolaryngology, Head & Neck Surgery, College of Medicine, Kyung Hee University, Seoul 02447, Korea; (S.B.); (S.H.K.)
| | - Sang Hoon Kim
- Department of Otorhinolaryngology, Head & Neck Surgery, College of Medicine, Kyung Hee University, Seoul 02447, Korea; (S.B.); (S.H.K.)
| | - Seung Geun Yeo
- Department of Otorhinolaryngology, Head & Neck Surgery, College of Medicine, Kyung Hee University, Seoul 02447, Korea; (S.B.); (S.H.K.)
- Correspondence: ; Tel.: +82-2-958-8980; Fax: +82-2-958-8470
| |
Collapse
|
14
|
Bahremandi Tolou N, Salimijazi H, Kharaziha M, Faggio G, Chierchia R, Lisi N. A three-dimensional nerve guide conduit based on graphene foam/polycaprolactone. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112110. [PMID: 34082932 DOI: 10.1016/j.msec.2021.112110] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/31/2021] [Accepted: 04/12/2021] [Indexed: 01/17/2023]
Abstract
In this study, a novel nerve guide conduit was developed, based on a three-dimensional (3D) graphene conductive core grown, by chemical vapor deposition (CVD) coupled with a polycaprolactone (PCL) polymer coating. Firstly, the monolithic 3D-graphene foam (3D-GF) was synthesized on Ni foam templates via inductive heating CVD, subsequently, Ni/Graphene samples were dipped successively in PCL and cyclododecane (CDD) solutions prior to the removal of Ni from the 3D-GF/PCL scaffold in FeCl3. Our results showed that the electrical conductivity of the polymer composites reached to 25 S.m-1 after incorporation of 3D-GF. Moreover, the mechanical properties of 3D-GF/PCL composite scaffold were enhanced with respect to the same geometry of PCL scaffolds. The wettability, surface porosity, and morphology did not show any significant changes, while the PC12 cell proliferation and extension were increased for the developed 3D-GF/PCL nanocomposite. It can be concluded that 3D-GF/PCL nanocomposites could be good candidates to utilize as a versatile system for the engineering of peripheral nerve tissue.
Collapse
Affiliation(s)
- Neda Bahremandi Tolou
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran; ENEA Casaccia, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy.
| | - Hamidreza Salimijazi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Giuliana Faggio
- Department of Information Engineering, Infrastructure and Sustainable Energy (DIIES), Mediterranea University of Reggio Calabria, Reggio Calabria, Italy.
| | - Rosa Chierchia
- ENEA Casaccia, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy.
| | - Nicola Lisi
- ENEA Casaccia, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy.
| |
Collapse
|
15
|
Wendels S, Avérous L. Biobased polyurethanes for biomedical applications. Bioact Mater 2021; 6:1083-1106. [PMID: 33102948 PMCID: PMC7569269 DOI: 10.1016/j.bioactmat.2020.10.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 12/15/2022] Open
Abstract
Polyurethanes (PUs) are a major family of polymers displaying a wide spectrum of physico-chemical, mechanical and structural properties for a large range of fields. They have shown suitable for biomedical applications and are used in this domain since decades. The current variety of biomass available has extended the diversity of starting materials for the elaboration of new biobased macromolecular architectures, allowing the development of biobased PUs with advanced properties such as controlled biotic and abiotic degradation. In this frame, new tunable biomedical devices have been successfully designed. PU structures with precise tissue biomimicking can be obtained and are adequate for adhesion, proliferation and differentiation of many cell's types. Moreover, new smart shape-memory PUs with adjustable shape-recovery properties have demonstrated promising results for biomedical applications such as wound healing. The fossil-based starting materials substitution for biomedical implants is slowly improving, nonetheless better renewable contents need to be achieved for most PUs to obtain biobased certifications. After a presentation of some PU generalities and an understanding of a biomaterial structure-biocompatibility relationship, recent developments of biobased PUs for non-implantable devices as well as short- and long-term implants are described in detail in this review and compared to more conventional PU structures.
Collapse
Affiliation(s)
- Sophie Wendels
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 Rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 Rue Becquerel, 67087, Strasbourg Cedex 2, France
| |
Collapse
|
16
|
Ando M, Ikeguchi R, Aoyama T, Tanaka M, Noguchi T, Miyazaki Y, Akieda S, Nakayama K, Matsuda S. Long-Term Outcome of Sciatic Nerve Regeneration Using Bio3D Conduit Fabricated from Human Fibroblasts in a Rat Sciatic Nerve Model. Cell Transplant 2021; 30:9636897211021357. [PMID: 34105391 PMCID: PMC8193652 DOI: 10.1177/09636897211021357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/17/2022] Open
Abstract
Previously, we developed a Bio3D conduit fabricated from human fibroblasts and reported a significantly better outcome compared with artificial nerve conduit in the treatment of rat sciatic nerve defect. The purpose of this study is to investigate the long-term safety and nerve regeneration of Bio3D conduit compared with treatments using artificial nerve conduit and autologous nerve transplantation.We used 15 immunodeficient rats and randomly divided them into three groups treated with Bio3D (n = 5) conduit, silicon tube (n = 5), and autologous nerve transplantation (n = 5). We developed Bio3D conduits composed of human fibroblasts and bridged the 5 mm nerve gap created in the rat sciatic nerve. The same procedures were performed to bridge the 5 mm gap with a silicon tube. In the autologous nerve group, we removed the 5 mm sciatic nerve segment and transplanted it. We evaluated the nerve regeneration 24 weeks after surgery.Toe dragging was significantly better in the Bio3D group (0.20 ± 0.28) than in the silicon group (0.6 ± 0.24). The wet muscle weight ratios of the tibial anterior muscle of the Bio3D group (79.85% ± 5.47%) and the autologous nerve group (81.74% ± 2.83%) were significantly higher than that of the silicon group (66.99% ± 3.51%). The number of myelinated axons and mean myelinated axon diameter was significantly higher in the Bio3D group (14708 ± 302 and 5.52 ± 0.44 μm) and the autologous nerve group (14927 ± 5089 and 6.04 ± 0.85 μm) than the silicon group (7429 ± 1465 and 4.36 ± 0.21 μm). No tumors were observed in any of the rats in the Bio3D group at 24 weeks after surgery.The Bio3D group showed significantly better nerve regeneration and there was no significant difference between the Bio3D group and the nerve autograft group in all endpoints.
Collapse
Affiliation(s)
| | - Ryosuke Ikeguchi
- Ryosuke Ikeguchi, Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Muangsanit P, Day A, Dimiou S, Ataç AF, Kayal C, Park H, Nazhat SN, Phillips JB. Rapidly formed stable and aligned dense collagen gels seeded with Schwann cells support peripheral nerve regeneration. J Neural Eng 2020; 17:046036. [DOI: 10.1088/1741-2552/abaa9c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Lee TH, Yen CT, Hsu SH. Preparation of Polyurethane-Graphene Nanocomposite and Evaluation of Neurovascular Regeneration. ACS Biomater Sci Eng 2019; 6:597-609. [DOI: 10.1021/acsbiomaterials.9b01473] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tsung-Han Lee
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Chen-Tung Yen
- Department of Life Science, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Shan-hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
- Research and Development Center for Medical Devices, National Taiwan University, Taipei, Taiwan, Republic of China
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan, Republic of China
| |
Collapse
|
19
|
Hou Y, Wang X, Zhang Z, Luo J, Cai Z, Wang Y, Li Y. Repairing Transected Peripheral Nerve Using a Biomimetic Nerve Guidance Conduit Containing Intraluminal Sponge Fillers. Adv Healthc Mater 2019; 8:e1900913. [PMID: 31583854 DOI: 10.1002/adhm.201900913] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/11/2019] [Indexed: 12/29/2022]
Abstract
Nerve guide conduits (NGCs) with geometric design have shown significant advantages in guidance of nerve reinnervation across the defect of injured peripheral nerves. It is realized that intraluminal fillers with distinctive structure can effectively provide an inner guidance for sprouting of axons and improve the permeability of NGC. In this work, a poly(lactic-co-glycolic acid) (PLGA) NGC is prepared containing intraluminal sponge fillers (labeled as ISF-NGC) and used for reconstruction of a rat sciatic nerve with a 10 mm gap. For comparison, the same procedure is applied to a single hollow PLGA NGC (labeled as H-NGC) and an autologous nerve. As evidenced by significantly improved nerve morphology and function, the ISF-NGC achieves a superior nerve repair effect over H-NGC, which is comparable to autologous nerve grafting. It is likely that the H-NGC only provides a protected tunnel for nerve fiber regrowth and axonal extension, while ISF-NGC offers an extracellular matrix-mimetic architecture as autograft to provide contact guidance for nerve reinnervation. This newly developed ISF-NGC is a promising candidate to aid nerve reinnervation across longer gaps commonly encountered in clinical cases.
Collapse
Affiliation(s)
- Yuanjing Hou
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of Technology Wuhan 430070 China
- Biomedical Materials and Engineering Research Center of Hubei ProvinceWuhan University of Technology Wuhan 430070 China
| | - Xinyu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of Technology Wuhan 430070 China
- Biomedical Materials and Engineering Research Center of Hubei ProvinceWuhan University of Technology Wuhan 430070 China
| | - Zongrui Zhang
- College of Biochemical EngineeringAnhui Polytechnic University Wuhu 241000 China
| | - Jing Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of Technology Wuhan 430070 China
- Biomedical Materials and Engineering Research Center of Hubei ProvinceWuhan University of Technology Wuhan 430070 China
| | - Zhengwei Cai
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of Technology Wuhan 430070 China
- Biomedical Materials and Engineering Research Center of Hubei ProvinceWuhan University of Technology Wuhan 430070 China
| | - Yiyu Wang
- School of Life Science TechnologyHubei Engineering University Xiaogan 432000 China
| | - Yi Li
- Institute of Textiles and ClothingThe Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong 999077 China
| |
Collapse
|
20
|
Luzhansky ID, Sudlow LC, Brogan DM, Wood MD, Berezin MY. Imaging in the repair of peripheral nerve injury. Nanomedicine (Lond) 2019; 14:2659-2677. [PMID: 31612779 PMCID: PMC6886568 DOI: 10.2217/nnm-2019-0115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/20/2019] [Indexed: 12/25/2022] Open
Abstract
Surgical intervention followed by physical therapy remains the major way to repair damaged nerves and restore function. Imaging constitutes promising, yet underutilized, approaches to improve surgical and postoperative techniques. Dedicated methods for imaging nerve regeneration will potentially provide surgical guidance, enable recovery monitoring and postrepair intervention, elucidate failure mechanisms and optimize preclinical procedures. Herein, we present an outline of promising innovations in imaging-based tracking of in vivo peripheral nerve regeneration. We emphasize optical imaging because of its cost, versatility, relatively low toxicity and sensitivity. We discuss the use of targeted probes and contrast agents (small molecules and nanoparticles) to facilitate nerve regeneration imaging and the engineering of grafts that could be used to track nerve repair. We also discuss how new imaging methods might overcome the most significant challenges in nerve injury treatment.
Collapse
Affiliation(s)
- Igor D Luzhansky
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
- The Institute of Materials Science & Engineering, Washington University, St Louis, MO 63130, USA
| | - Leland C Sudlow
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - David M Brogan
- Department of Orthopedic Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Matthew D Wood
- Department of Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Mikhail Y Berezin
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
- The Institute of Materials Science & Engineering, Washington University, St Louis, MO 63130, USA
| |
Collapse
|
21
|
Houshyar S, Bhattacharyya A, Shanks R. Peripheral Nerve Conduit: Materials and Structures. ACS Chem Neurosci 2019; 10:3349-3365. [PMID: 31273975 DOI: 10.1021/acschemneuro.9b00203] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Peripheral nerve injuries (PNIs) are the most common injury types to affect the nervous system. Restoration of nerve function after PNI is a challenging medical issue. Extended gaps in transected peripheral nerves are only repaired using autologous nerve grafting. This technique, however, in which nerve tissue is harvested from a donor site and grafted onto a recipient site in the same body, has many limitations and disadvantages. Recent studies have revealed artificial nerve conduits as a promising alternative technique to substitute autologous nerves. This Review summarizes different types of artificial nerve grafts used to repair peripheral nerve injuries. These include synthetic and natural polymers with biological factors. Then, desirable properties of nerve guides are discussed based on their functionality and effectiveness. In the final part of this Review, fabrication methods and commercially available nerve guides are described.
Collapse
Affiliation(s)
- Shadi Houshyar
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Amitava Bhattacharyya
- Nanoscience and Technology, Department of Electronics and Communication, PSG College of Technology, Coimbatore − 641004, India
| | - Robert Shanks
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
22
|
Gold nanorods reinforced silk fibroin nanocomposite for peripheral nerve tissue engineering applications. Int J Biol Macromol 2019; 129:1034-1039. [PMID: 30742919 DOI: 10.1016/j.ijbiomac.2019.02.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/24/2019] [Accepted: 02/06/2019] [Indexed: 01/02/2023]
Abstract
Nowadays, regenerating peripheral nerves injuries (PNIs) remain a major clinical challenge, which has gained a great attention between scientists. Here, we represent a nanocomposite based on silk fibroin reinforced gold nanorods (SF/GNRs) to evaluate the proliferation and attachment of PC12 cells. The morphological characterization of nanocomposites with transmission electron microscopy (TEM) and Scanning electron microscopy (SEM) showed that the fabricated scaffolds have porous structure with interconnected pores that is suitable for cell adhesion and growth. GNRs significantly improved the poor electrical conductivity of bulk silk fibroin scaffold. Evaluating the morphology of PC12 cells on the scaffold also confirmed the normal morphology of cells with good rate of adhesion. SF/GNRs nanocomposites showed better cellular attachment, growth and proliferation without any toxicity compared with bulk SF scaffold. Moreover, immunostaining studies represented the overexpression of neural specific proteins like nestin and neuron specific enolase (NSE) in the cells cultured on SF/GNRs nanocomposites in comparison to neat SF scaffolds.
Collapse
|
23
|
Shang L, Huang Z, Pu X, Yin G, Chen X. Preparation of Graphene Oxide-Doped Polypyrrole Composite Films with Stable Conductivity and Their Effect on the Elongation and Alignment of Neurite. ACS Biomater Sci Eng 2019; 5:1268-1278. [DOI: 10.1021/acsbiomaterials.8b01326] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Lei Shang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zhongbing Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Ximing Pu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Guangfu Yin
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xianchun Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
24
|
Yin K, Divakar P, Wegst UGK. Freeze-casting porous chitosan ureteral stents for improved drainage. Acta Biomater 2019; 84:231-241. [PMID: 30414484 PMCID: PMC6864386 DOI: 10.1016/j.actbio.2018.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 02/05/2023]
Abstract
As a new strategy for improved urinary drainage, in parallel to the potential for additional functions such as drug release and self-removal, highly porous chitosan stents are manufactured by radial, bi-directional freeze-casting. Inserting the porous stent in to a silicone tube to emulate its placement in the ureter shows that it is shape conforming and remains safely positioned in place, also during flow tests, including those performed in a peristaltic pump. Cyclic compression tests on fully-hydrated porous stents reveal high stent resilience and close to full elastic recovery upon unloading. The drainage performance of the chitosan stent is evaluated, using effective viscosity in addition to volumetric flow and flux; the porous stent's performance is compared to that of the straight portion of a commercial 8 Fr double-J stent which possesses, in its otherwise solid tube wall, regularly spaced holes along its length. Both the porous and the 8 Fr stent show higher effective viscosities, when tested in the silicone tube. The performance of the porous stent improves considerably more (47.5%) than that of the 8 Fr stent (30.6%) upon removal from the tube, illustrating the effectiveness of the radially aligned porosity for drainage. We conclude that the newly-developed porous chitosan ureteral stent merits further in vitro and in vivo assessment of its promise as an alternative and complement to currently available medical devices. STATEMENT OF SIGNIFICANCE: No papers, to date, report on porous ureteral stents, which we propose as a new strategy for improved urinary drainage. The highly porous chitosan stents of our study are manufactured by radial, bi-directional freeze casting. Cyclic compression tests on fully-hydrated porous stents revealed high stent resilience and close to full recovery upon unloading. The drainage performance of the chitosan is evaluated, using effective viscosity in addition to volumetric flow and flux, and compared to that of the straight portion of a commercial 8 Fr double-J stent. The performance of the porous stent improves considerably more (47.5%) than that of the 8 Fr stent (30.6%) upon removal from the tube, illustrating the effectiveness of the radially aligned porosity for drainage. While further studies are required to explore other potential benefits of the porous stent design such as antimicrobial behavior, drug release, and biodegradability, we conclude that the newly-developed porous chitosan ureteral stent has considerable potential as a medical device.
Collapse
Affiliation(s)
- Kaiyang Yin
- Thayer School of Engineering, Dartmouth College, 14 Engineering Dr, Hanover, NH 03755, USA
| | - Prajan Divakar
- Thayer School of Engineering, Dartmouth College, 14 Engineering Dr, Hanover, NH 03755, USA
| | - Ulrike G K Wegst
- Thayer School of Engineering, Dartmouth College, 14 Engineering Dr, Hanover, NH 03755, USA.
| |
Collapse
|
25
|
Sarker M, Naghieh S, McInnes AD, Schreyer DJ, Chen X. Regeneration of peripheral nerves by nerve guidance conduits: Influence of design, biopolymers, cells, growth factors, and physical stimuli. Prog Neurobiol 2018; 171:125-150. [DOI: 10.1016/j.pneurobio.2018.07.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 01/10/2023]
|
26
|
Yi S, Xu L, Gu X. Scaffolds for peripheral nerve repair and reconstruction. Exp Neurol 2018; 319:112761. [PMID: 29772248 DOI: 10.1016/j.expneurol.2018.05.016] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/05/2018] [Accepted: 05/13/2018] [Indexed: 12/22/2022]
Abstract
Trauma-associated peripheral nerve defect is a widespread clinical problem. Autologous nerve grafting, the current gold standard technique for the treatment of peripheral nerve injury, has many internal disadvantages. Emerging studies showed that tissue engineered nerve graft is an effective substitute to autologous nerves. Tissue engineered nerve graft is generally composed of neural scaffolds and incorporating cells and molecules. A variety of biomaterials have been used to construct neural scaffolds, the main component of tissue engineered nerve graft. Synthetic polymers (e.g. silicone, polyglycolic acid, and poly(lactic-co-glycolic acid)) and natural materials (e.g. chitosan, silk fibroin, and extracellular matrix components) are commonly used along or together to build neural scaffolds. Many other materials, including the extracellular matrix, glass fabrics, ceramics, and metallic materials, have also been used to construct neural scaffolds. These biomaterials are fabricated to create specific structures and surface features. Seeding supporting cells and/or incorporating neurotrophic factors to neural scaffolds further improve restoration effects. Preliminary studies demonstrate that clinical applications of these neural scaffolds achieve satisfactory functional recovery. Therefore, tissue engineered nerve graft provides a good alternative to autologous nerve graft and represents a promising frontier in neural tissue engineering.
Collapse
Affiliation(s)
- Sheng Yi
- Key laboratory of neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Lai Xu
- Key laboratory of neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xiaosong Gu
- Key laboratory of neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
27
|
Sarker M, Naghieh S, McInnes AD, Schreyer DJ, Chen X. Strategic Design and Fabrication of Nerve Guidance Conduits for Peripheral Nerve Regeneration. Biotechnol J 2018; 13:e1700635. [PMID: 29396994 DOI: 10.1002/biot.201700635] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/25/2018] [Indexed: 12/23/2022]
Abstract
Nerve guidance conduits (NGCs) have been drawing considerable attention as an aid to promote regeneration of injured axons across damaged peripheral nerves. Ideally, NGCs should include physical and topographic axon guidance cues embedded as part of their composition. Over the past decades, much progress has been made in the development of NGCs that promote directional axonal regrowth so as to repair severed nerves. This paper briefly reviews the recent designs and fabrication techniques of NGCs for peripheral nerve regeneration. Studies associated with versatile design and preparation of NGCs fabricated with either conventional or rapid prototyping (RP) techniques have been examined and reviewed. The effect of topographic features of the filler material as well as porous structure of NGCs on axonal regeneration has also been examined from the previous studies. While such strategies as macroscale channels, lumen size, groove geometry, use of hydrogel/matrix, and unidirectional freeze-dried surface are seen to promote nerve regeneration, shortcomings such as axonal dispersion and wrong target reinnervation still remain unsolved. On this basis, future research directions are identified and discussed.
Collapse
Affiliation(s)
- Md Sarker
- Division of Biomedical Engineering College of Engineering University of Saskatchewan, 57 campus drive, SK S7N 5A9, Saskatoon, SK, Canada
| | - Saman Naghieh
- Division of Biomedical Engineering College of Engineering University of Saskatchewan, 57 campus drive, SK S7N 5A9, Saskatoon, SK, Canada
| | - Adam D McInnes
- Division of Biomedical Engineering College of Engineering University of Saskatchewan, 57 campus drive, SK S7N 5A9, Saskatoon, SK, Canada
| | - David J Schreyer
- Department of Anatomy and Cell Biology College of Medicine University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering College of Engineering University of Saskatchewan, 57 campus drive, SK S7N 5A9, Saskatoon, SK, Canada.,Department of Mechanical Engineering College of Engineering University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
28
|
Su CF, Chang LH, Kao CY, Lee DC, Cho KH, Kuo LW, Chang H, Wang YH, Chiu IM. Application of amniotic fluid stem cells in repairing sciatic nerve injury in minipigs. Brain Res 2018; 1678:397-406. [DOI: 10.1016/j.brainres.2017.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 10/23/2017] [Accepted: 11/12/2017] [Indexed: 01/10/2023]
|
29
|
Sensharma P, Madhumathi G, Jayant RD, Jaiswal AK. Biomaterials and cells for neural tissue engineering: Current choices. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:1302-1315. [PMID: 28532008 DOI: 10.1016/j.msec.2017.03.264] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/28/2017] [Indexed: 02/06/2023]
Abstract
The treatment of nerve injuries has taken a new dimension with the development of tissue engineering techniques. Prior to tissue engineering, suturing and surgery were the only options for effective treatment. With the advent of tissue engineering, it is now possible to design a scaffold that matches the exact biological and mechanical properties of the tissue. This has led to substantial reduction in the complications posed by surgeries and suturing to the patients. New synthetic and natural polymers are being applied to test their efficiency in generating an ideal scaffold. Along with these, cells and growth factors are also being incorporated to increase the efficiency of a scaffold. Efforts are being made to devise a scaffold that is biodegradable, biocompatible, conducting and immunologically inert. The ultimate goal is to exactly mimic the extracellular matrix in our body, and to elicit a combination of biochemical, topographical and electrical cues via various polymers, cells and growth factors, using which nerve regeneration can efficiently occur.
Collapse
Affiliation(s)
- Prerana Sensharma
- School of Biosciences and Technology, VIT University, Vellore 632014, Tamilnadu, India
| | - G Madhumathi
- School of Biosciences and Technology, VIT University, Vellore 632014, Tamilnadu, India
| | - Rahul D Jayant
- Center for Personalized Nanomedicine, Institute of Neuro-Immune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University (FIU), Miami, FL 33199, USA
| | - Amit K Jaiswal
- Centre for Biomaterials, Cellular and Molecular Theranostics, VIT University, Vellore 632014, Tamilnadu, India.
| |
Collapse
|
30
|
Hsu SH, Chang WC, Yen CT. Novel flexible nerve conduits made of water-based biodegradable polyurethane
for peripheral nerve regeneration. J Biomed Mater Res A 2017; 105:1383-1392. [DOI: 10.1002/jbm.a.36022] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/20/2017] [Accepted: 01/26/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Shan-hui Hsu
- Institute of Polymer Science and Engineering; National Taiwan University; Taipei Taiwan
| | - Wen-Chi Chang
- Institute of Polymer Science and Engineering; National Taiwan University; Taipei Taiwan
| | - Chen-Tung Yen
- Department of Life Science and Institute of Zoology; National Taiwan University; Taipei Taiwan
| |
Collapse
|
31
|
Lackington WA, Ryan AJ, O'Brien FJ. Advances in Nerve Guidance Conduit-Based Therapeutics for Peripheral Nerve Repair. ACS Biomater Sci Eng 2017; 3:1221-1235. [PMID: 33440511 DOI: 10.1021/acsbiomaterials.6b00500] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peripheral nerve injuries have high incidence rates, limited treatment options and poor clinical outcomes, rendering a significant socioeconomic burden. For effective peripheral nerve repair, the gap or site of injury must be structurally bridged to promote correct reinnervation and functional regeneration. However, effective repair becomes progressively more difficult with larger gaps. Autologous nerve grafting remains the best clinical option for the repair of large gaps (20-80 mm) despite being associated with numerous limitations including permanent donor site morbidity, a lack of available tissue and the formation of neuromas. To meet the clinical demand of large gap repair and overcome these limitations, tissue engineering has led to the development of nerve guidance conduit-based therapeutics. This review focuses on the advances of nerve guidance conduit-based therapeutics in terms of their structural properties including biomimetic composition, permeability, architecture, and surface modifications. Associated biochemical properties, pertaining to the incorporation of cells and neurotrophic factors, are also reviewed. After reviewing the progress in the field, we conclude by presenting an outlook on their clinical translatability and the next generation of therapeutics.
Collapse
Affiliation(s)
- William A Lackington
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland, Dublin 2, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin and Royal College of Surgeons in Ireland, Dublin 2, Ireland.,Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Ireland
| | - Alan J Ryan
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland, Dublin 2, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin and Royal College of Surgeons in Ireland, Dublin 2, Ireland.,Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland, Dublin 2, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin and Royal College of Surgeons in Ireland, Dublin 2, Ireland.,Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
32
|
Pinho AC, Fonseca AC, Serra AC, Santos JD, Coelho JFJ. Peripheral Nerve Regeneration: Current Status and New Strategies Using Polymeric Materials. Adv Healthc Mater 2016; 5:2732-2744. [PMID: 27600578 DOI: 10.1002/adhm.201600236] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Indexed: 12/16/2022]
Abstract
Experiments concerning peripheral nerve regeneration have been reported since the end of the 19th century. The need to implement an effective surgical procedure in terms of functional recovery has resulted in the appearance of several approaches to solve this problem. Nerve autograft was the first approach studied and is still considered the gold standard. Since autografts require donor harvesting, other strategies involving the use of natural materials have also been studied. Nevertheless, the results were not very encouraging and attention has moved towards the use of nerve conduits made from polymers, whose properties can be easily tailored and which allow the nerve conduit to be easily processed into a variety of shapes and forms. Some of these materials are already approved by the US Food and Drug Administration (FDA), as is presented here. Furthermore, polymers with conductive properties have very recently been subject to intensive study in this field, since it is believed that such properties have a positive influence in the regeneration of the new axons. This manuscript intends to give a global view of the mechanisms involved in peripheral nerve regeneration and the main strategies used to recover motor and sensorial function of injured nerves.
Collapse
Affiliation(s)
- Ana C. Pinho
- CEMUC Department of Chemical Engineering; University of Coimbra; Rua Sílvio Lima-Pólo II 3030-790 Coimbra Portugal
| | - Ana C. Fonseca
- CEMUC Department of Chemical Engineering; University of Coimbra; Rua Sílvio Lima-Pólo II 3030-790 Coimbra Portugal
| | - Arménio C. Serra
- CEMUC Department of Chemical Engineering; University of Coimbra; Rua Sílvio Lima-Pólo II 3030-790 Coimbra Portugal
| | - José D. Santos
- CEMUC Department of Metallurgical and Materials Engineering; University of Porto; Rua Dr Roberto Frias 4200-465 Porto Portugal
| | - Jorge F. J. Coelho
- CEMUC Department of Chemical Engineering; University of Coimbra; Rua Sílvio Lima-Pólo II 3030-790 Coimbra Portugal
| |
Collapse
|
33
|
Hsieh SC, Chang CJ, Cheng WT, Tseng TC, Hsu SH. Effect of an Epineurial-Like Biohybrid Nerve Conduit on Nerve Regeneration. Cell Transplant 2015; 25:559-74. [PMID: 26300431 DOI: 10.3727/096368915x688920] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A novel approach of making a biomimetic nerve conduit was established by seeding adipose-derived adult stem cells (ADSCs) on the external wall of porous poly(d,l-lactic acid) (PLA) nerve conduits. The PLA conduits were fabricated using gas foaming salt and solvent-nonsolvent phase conversion. We examined the effect of two different porous structures (GS and GL) on ADSC growth and proliferation. The GS conduits had better structural stability, permeability, and porosity, as well as better cell viability at 4, 7, and 10 days. The epineurial-like tissue was grown from ADSC-seeded conduits cultured for 7 days in vitro and then implanted into 10-mm rat sciatic nerve defects for evaluation. The regeneration capacity and functional recovery were evaluated by histological staining, electrophysiology, walking track, and functional gait analysis after 6 weeks of implantation. Experimental data indicated that the autograft and ADSC-seeded GS conduits had better functional recovery than the blank conduits and ADSC-seeded GL conduits. The area of regenerated nerve and number of myelinated axons quantified based on the histology also indicated that the autograft and AGS groups performed better than the other two groups. We suggested that ADSCs may interact with endogenous Schwann cells and release neurotrophic factors to promote peripheral nerve regeneration. The design of the conduit may be critical for producing a biohybrid nerve conduit and to provide an epineurial-like support.
Collapse
Affiliation(s)
- Shu-Chih Hsieh
- Department of Chemical Engineering, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
34
|
Hung WC, Lin LH, Tsen WC, Shie HS, Chiu HL, Yang TC, Chen CC. Permeation of biological compounds through porous poly(l-lactic acid) (PLLA) microtube array membranes (MTAMs). Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.03.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Chang W, DeVince J, Green G, Shah MB, Johns MS, Meng Y, Yu X. The development of a normalization method for comparing nerve regeneration effectiveness among different graft types. J Peripher Nerv Syst 2014; 18:297-305. [PMID: 24118184 DOI: 10.1111/jns5.12043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/05/2013] [Accepted: 09/30/2013] [Indexed: 01/02/2023]
Abstract
The inability to compare directly different nerve grafts has been a significant factor hindering the advance of nerve graft development. Due to the abundance of variables that exist in nerve graft construction and multiple assessment types, there has been limited success in comparing nerve graft effectiveness among experiments. Using mathematical techniques on nerve conduction velocity (NCV) autograft data, a normalization function was empirically derived that normalizes differences in gap lengths. Further analysis allowed for the development of the relative regeneration ratio (RRR). The RRR function allows researchers to directly compare nerve graft results based on the NCV data from their respective studies as long as the data was collected at the same post-operation time. This function also allows for comparisons between grafts tested at different gap lengths. Initial testing of this RRR function provided confidence that the function is accurate for a continuum of gap lengths and different nerve graft types.
Collapse
Affiliation(s)
- Wei Chang
- Department of Chemistry, Chemical Biology and Biomedical Engineering
| | | | | | | | | | | | | |
Collapse
|
36
|
Tseng TC, Yen CT, Hsu SH. Visualization of peripheral nerve regeneration. Neural Regen Res 2014; 9:997-9. [PMID: 25206750 PMCID: PMC4146305 DOI: 10.4103/1673-5374.133157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2014] [Indexed: 11/20/2022] Open
Affiliation(s)
- Ting-Chen Tseng
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, China
| | - Chen-Tung Yen
- Department of Life Science, National Taiwan University, Taipei, Taiwan, China
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, China ; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan, China
| |
Collapse
|
37
|
Fukuda Y, Wang W, Ichinose S, Katakura H, Mukai T, Takakuda K. Laser perforated accordion nerve conduit of poly(lactide-co-glycolide-co-ɛ-caprolactone). J Biomed Mater Res B Appl Biomater 2014; 102:674-80. [DOI: 10.1002/jbm.b.33046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 08/19/2013] [Accepted: 09/10/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Yutaka Fukuda
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University; Tokyo Japan
| | - Wei Wang
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University; Tokyo Japan
| | - Shizuko Ichinose
- Department of Instrumental Analysis Research Center; Tokyo Medical and Dental University; Tokyo Japan
| | - Hiroshi Katakura
- Department of Research and Development 2; Graduate School of Bionics, Computer and Media Sciences, Tokyo University of Technology; Tokyo Japan
| | | | - Kazuo Takakuda
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University; Tokyo Japan
| |
Collapse
|
38
|
Mottaghitalab F, Farokhi M, Zaminy A, Kokabi M, Soleimani M, Mirahmadi F, Shokrgozar MA, Sadeghizadeh M. A biosynthetic nerve guide conduit based on silk/SWNT/fibronectin nanocomposite for peripheral nerve regeneration. PLoS One 2013; 8:e74417. [PMID: 24098649 PMCID: PMC3787046 DOI: 10.1371/journal.pone.0074417] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 07/31/2013] [Indexed: 01/12/2023] Open
Abstract
As a contribution to the functionality of nerve guide conduits (NGCs) in nerve tissue engineering, here we report a conduit processing technique through introduction and evaluation of topographical, physical and chemical cues. Porous structure of NGCs based on freeze-dried silk/single walled carbon nanotubes (SF/SWNTs) has shown a uniform chemical and physical structure with suitable electrical conductivity. Moreover, fibronectin (FN) containing nanofibers within the structure of SF/SWNT conduits produced through electrospinning process have shown aligned fashion with appropriate porosity and diameter. Moreover, fibronectin remained its bioactivity and influenced the adhesion and growth of U373 cell lines. The conduits were then implanted to 10 mm left sciatic nerve defects in rats. The histological assessment has shown that nerve regeneration has taken places in proximal region of implanted nerve after 5 weeks following surgery. Furthermore, nerve conduction velocities (NCV) and more myelinated axons were observed in SF/SWNT and SF/SWNT/FN groups after 5 weeks post implantation, indicating a functional recovery for the injured nerves. With immunohistochemistry, the higher S-100 expression of Schwann cells in SF/SWNT/FN conduits in comparison to other groups was confirmed. In conclusion, an oriented conduit of biocompatible SF/SWNT/FN has been fabricated with acceptable structure that is particularly applicable in nerve grafts.
Collapse
Affiliation(s)
- Fatemeh Mottaghitalab
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Farokhi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Zaminy
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Mehrdad Kokabi
- Department of Polymer Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- * E-mail: (MS); (MAS)
| |
Collapse
|
39
|
Long-Term Regeneration and Functional Recovery of a 15 mm Critical Nerve Gap Bridged by Tremella fuciformis Polysaccharide-Immobilized Polylactide Conduits. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:959261. [PMID: 24027599 PMCID: PMC3763589 DOI: 10.1155/2013/959261] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 06/17/2013] [Accepted: 06/27/2013] [Indexed: 12/13/2022]
Abstract
Novel peripheral nerve conduits containing the negatively charged Tremella fuciformis polysaccharide (TF) were prepared, and their efficacy in bridging a critical nerve gap was evaluated. The conduits were made of poly(D,L-lactide) (PLA) with asymmetric microporous structure. TF was immobilized on the lumen surface of the nerve conduits after open air plasma activation. The TF-modified surface was characterized by the attenuated total reflection Fourier-transformed infrared spectroscopy and the scanning electron microscopy. TF modification was found to enhance the neurotrophic gene expression of C6 glioma cells in vitro. TF-modified PLA nerve conduits were tested for their ability to bridge a 15 mm gap of rat sciatic nerve. Nerve regeneration was monitored by the magnetic resonance imaging. Results showed that TF immobilization promoted the nerve connection in 6 weeks. The functional recovery in animals receiving TF-immobilized conduits was greater than in those receiving the bare conduits during an 8-month period. The degree of functional recovery reached ~90% after 8 months in the group of TF-immobilized conduits.
Collapse
|
40
|
Oh SH, Kim JR, Kwon GB, Namgung U, Song KS, Lee JH. Effect of surface pore structure of nerve guide conduit on peripheral nerve regeneration. Tissue Eng Part C Methods 2013; 19:233-43. [PMID: 22871377 PMCID: PMC3557444 DOI: 10.1089/ten.tec.2012.0221] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 08/03/2012] [Indexed: 11/13/2022] Open
Abstract
Polycaprolactone (PCL)/Pluronic F127 nerve guide conduits (NGCs) with different surface pore structures (nano-porous inner surface vs. micro-porous inner surface) but similar physical and chemical properties were fabricated by rolling the opposite side of asymmetrically porous PCL/F127 membranes. The effect of the pore structure on peripheral nerve regeneration through the NGCs was investigated using a sciatic nerve defect model of rats. The nerve fibers and tissues were shown to have regenerated along the longitudinal direction through the NGC with a nano-porous inner surface (Nanopore NGC), while they grew toward the porous wall of the NGC with a micro-porous inner surface (Micropore NGC) and, thus, their growth was restricted when compared with the Nanopore NGC, as investigated by immunohistochemical evaluations (by fluorescence microscopy with anti-neurofilament staining and Hoechst staining for growth pattern of nerve fibers), histological evaluations (by light microscopy with Meyer's modified trichrome staining and Toluidine blue staining and transmission electron microscopy for the regeneration of axon and myelin sheath), and FluoroGold retrograde tracing (for reconnection between proximal and distal stumps). The effect of nerve growth factor (NGF) immobilized on the pore surfaces of the NGCs on nerve regeneration was not so significant when compared with NGCs not containing immobilized NGF. The NGC system with different surface pore structures but the same chemical/physical properties seems to be a good tool that is used for elucidating the surface pore effect of NGCs on nerve regeneration.
Collapse
Affiliation(s)
- Se Heang Oh
- Department of Advanced Materials, Hannam University, Daejeon, South Korea
| | - Jin Rae Kim
- Department of Advanced Materials, Hannam University, Daejeon, South Korea
| | - Gu Birm Kwon
- Department of Oriental Medicine, Daejeon University, Daejeon, South Korea
| | - Uk Namgung
- Department of Oriental Medicine, Daejeon University, Daejeon, South Korea
| | - Kyu Sang Song
- Department of Pathology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Jin Ho Lee
- Department of Advanced Materials, Hannam University, Daejeon, South Korea
| |
Collapse
|
41
|
Morelli S, Piscioneri A, Messina A, Salerno S, Al-Fageeh MB, Drioli E, Bartolo LD. Neuronal growth and differentiation on biodegradable membranes. J Tissue Eng Regen Med 2012; 9:106-17. [DOI: 10.1002/term.1618] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 07/11/2012] [Accepted: 08/25/2012] [Indexed: 12/13/2022]
Affiliation(s)
- Sabrina Morelli
- Institute of Membrane Technology, National Research Council of Italy, ITM-CNR; c/o University of Calabria; Rende CS Italy
| | - Antonella Piscioneri
- Institute of Membrane Technology, National Research Council of Italy, ITM-CNR; c/o University of Calabria; Rende CS Italy
| | - Antonietta Messina
- Institute of Membrane Technology, National Research Council of Italy, ITM-CNR; c/o University of Calabria; Rende CS Italy
- Department of Chemical Engineering and Materials; University of Calabria; Rende CS Italy
| | - Simona Salerno
- Institute of Membrane Technology, National Research Council of Italy, ITM-CNR; c/o University of Calabria; Rende CS Italy
| | - Mohamed B. Al-Fageeh
- National Centre for Biotechnology; King Abdulaziz City for Science and Technology; Riyadh Saudi Arabia
| | - Enrico Drioli
- Institute of Membrane Technology, National Research Council of Italy, ITM-CNR; c/o University of Calabria; Rende CS Italy
- Department of Chemical Engineering and Materials; University of Calabria; Rende CS Italy
- Hanyang University; WCU Energy Engineering Department; Seoul South Korea
| | - Loredana De Bartolo
- Institute of Membrane Technology, National Research Council of Italy, ITM-CNR; c/o University of Calabria; Rende CS Italy
| |
Collapse
|
42
|
Daly W, Yao L, Zeugolis D, Windebank A, Pandit A. A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery. J R Soc Interface 2011; 9:202-21. [PMID: 22090283 DOI: 10.1098/rsif.2011.0438] [Citation(s) in RCA: 395] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Microsurgical techniques for the treatment of large peripheral nerve injuries (such as the gold standard autograft) and its main clinically approved alternative--hollow nerve guidance conduits (NGCs)--have a number of limitations that need to be addressed. NGCs, in particular, are limited to treating a relatively short nerve gap (4 cm in length) and are often associated with poor functional recovery. Recent advances in biomaterials and tissue engineering approaches are seeking to overcome the limitations associated with these treatment methods. This review critically discusses the advances in biomaterial-based NGCs, their limitations and where future improvements may be required. Recent developments include the incorporation of topographical guidance features and/or intraluminal structures, which attempt to guide Schwann cell (SC) migration and axonal regrowth towards their distal targets. The use of such strategies requires consideration of the size and distribution of these topographical features, as well as a suitable surface for cell-material interactions. Likewise, cellular and molecular-based therapies are being considered for the creation of a more conductive nerve microenvironment. For example, hurdles associated with the short half-lives and low stability of molecular therapies are being surmounted through the use of controlled delivery systems. Similarly, cells (SCs, stem cells and genetically modified cells) are being delivered with biomaterial matrices in attempts to control their dispersion and to facilitate their incorporation within the host regeneration process. Despite recent advances in peripheral nerve repair, there are a number of key factors that need to be considered in order for these new technologies to reach the clinic.
Collapse
Affiliation(s)
- W Daly
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Newcastle Road, Dangan, Galway, Republic of Ireland
| | | | | | | | | |
Collapse
|
43
|
Hsieh SC, Tang CM, Huang WT, Hsieh LL, Lu CM, Chang CJ, Hsu SH. Comparison between two different methods of immobilizing NGF in poly(DL-lactic acid-co-glycolic acid) conduit for peripheral nerve regeneration by EDC/NHS/MES and genipin. J Biomed Mater Res A 2011; 99:576-85. [PMID: 21953828 DOI: 10.1002/jbm.a.33157] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 02/28/2011] [Accepted: 04/29/2011] [Indexed: 11/08/2022]
Abstract
For surface modification and nerve regeneration, chitosan, followed by nerve growth factor (NGF), was immobilized onto the interior surface of poly (lactic acit-co-glycolic) conduits, using EDC/NHS/MES system (EDCs) and genipin (GP). Four new conduits were, therefore, obtained and named by immobilizing order-EDCs/EDCs, GP/EDCs, EDCs/GP, and GP/GP groups. The immobilized methods used were evaluated and compared, respectively. The researchers found that the EDCs- and GP-cross-linked chitosan displayed higher hydrophilic than pure poly (DL-lactic acid-co-glycolic acid) (PLGA) in water contact angle experiment, which meant the cell compatibility was improved by the modification. Scanning electron microscopic observations revealed that the GP-cross-linking of chitosan greatly improved cell compatibility while cultured rat PC12 cells were flatter and more spindle-shaped than EDCs-cross-linked chitosan. The results concerning the GP-cross-linked chitosan revealed significant proliferation of the seeded cells relative to pure PLGA films, as determined by counting cells and MTT assay. The NGF was released from the modified conduits in two separate periods--an initial burst in 5 days and then slow release from day 10 to day 40. The GP/EDCs group had the highest NGF value among all groups after the 5th day. Finally, the controlled-release conduits were used to bridge a 10 mm rat sciatic nerve defect. Six weeks following implantation, morphological analysis revealed the highest numbers of myelinated axons in the midconduit and distal regenerated nerve in GP/EDCs group. Therefore, the results confirm that GP/EDCs groups with good cell compatibility and effective release of NGF can considerably improve peripheral nerve regeneration.
Collapse
Affiliation(s)
- Shu-Chih Hsieh
- Department of Chemical Engineering, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
44
|
Peripheral nerve regeneration using a microporous polylactic acid asymmetric conduit in a rabbit long-gap sciatic nerve transection model. Biomaterials 2011; 32:3764-75. [DOI: 10.1016/j.biomaterials.2011.01.065] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 01/26/2011] [Indexed: 11/23/2022]
|
45
|
Siemionow M, Bozkurt M, Zor F. Regeneration and repair of peripheral nerves with different biomaterials: review. Microsurgery 2011; 30:574-88. [PMID: 20878689 DOI: 10.1002/micr.20799] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peripheral nerve injury may cause gaps between the nerve stumps. Axonal proliferation in nerve conduits is limited to 10-15 mm. Most of the supportive research has been done on rat or mouse models which are different from humans. Herein we review autografts and biomaterials which are commonly used for nerve gap repair and their respective outcomes. Nerve autografting has been the first choice for repairing peripheral nerve gaps. However, it has been demonstrated experimentally that tissue engineered tubes can also permit lead to effective nerve repair over gaps longer than 4 cm repair that was previously thought to be restorable by means of nerve graft only. All of the discoveries in the nerve armamentarium are making their way into the clinic, where they are, showing great potential for improving both the extent and rate of functional recovery compared with alternative nerve guides.
Collapse
Affiliation(s)
- Maria Siemionow
- Department of Plastic Surgery, The Cleveland Clinic, Cleveland, OH 44195, USA.
| | | | | |
Collapse
|
46
|
Fu KY, Dai LG, Chiu IM, Chen JR, Hsu SH. Sciatic nerve regeneration by microporous nerve conduits seeded with glial cell line-derived neurotrophic factor or brain-derived neurotrophic factor gene transfected neural stem cells. Artif Organs 2011; 35:363-72. [PMID: 21314831 DOI: 10.1111/j.1525-1594.2010.01105.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neurotrophic factors such as the glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) promote nerve cell survival and regeneration, but their efficacy in repairing a longer gap defect of rat sciatic nerve (15 mm) has not been established. In this study, two recombinant mammalian vectors containing either rat GDNF gene or BDNF gene were constructed and each was transfected into neural stem cells (NSCs). It was found that the transfection of GDNF or BDNF gene into NSCs led to significantly enhanced expression of GDNF or BDNF mRNA. The amount of GDNF or BDNF protein secreted from the transfected NSCs showed a 3.3-fold or 2.5-fold increase than that from nontransfected NSCs, respectively. The regeneration capacity of rat sciatic nerve in a poly(D,L-lactide) conduit seeded with GDNF or BDNF-transfected NSCs was evaluated by the histology, functional gait, and electrophysiology after 8 weeks of implantation. It was observed that the degree of myelination and the size of regenerated tissue in the conduits seeded with GDNF- and BDNF-transfected NSCs were higher than those seeded with the nontransfected NSCs. Conduits seeded with GDNF-transfected NSCs had the greatest number of blood vessels. The functional recovery assessed by the functional gait and electrophysiology was significantly improved for conduits seeded with GDNF or BDNF-transfected NSCs. It was concluded that the genetically modified NSCs may have potential applications in promoting nerve regeneration and functional recovery.
Collapse
Affiliation(s)
- Keng-Yen Fu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei
| | | | | | | | | |
Collapse
|
47
|
Sasaki R, Aoki S, Yamato M, Uchiyama H, Wada K, Ogiuchi H, Okano T, Ando T. PLGA artificial nerve conduits with dental pulp cells promote facial nerve regeneration. J Tissue Eng Regen Med 2011; 5:823-30. [PMID: 22002926 DOI: 10.1002/term.387] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 10/21/2010] [Indexed: 12/13/2022]
Abstract
A number of recent studies have shown the effectiveness of tubulation, using neural progenitor cells or Schwann cells, for promoting nerve regeneration. However, the use of neural cells from other neural donor tissues has potentially serious clinical complications. Therefore, we focused on dental pulp as a new cell source for use in such artificial conditions. Previously, we showed that silicone tubes filled with dental pulp cells (DPCs) promoted facial nerve regeneration in rats. However, the use of silicone tubes requires a secondary removal operation because they may give rise to chronic inflammation and pain. Therefore, to avoid this procedure, a new artificial device was prepared from a degradable poly-DL-lactide-co-glycolide (PLGA) tube containing DPCs, and its effectiveness for repairing gaps in the facial nerves of rats was investigated. A PLGA tube containing rat DPCs embedded in a collagen gel was transplanted into a gap in a rat facial nerve. Five days after transplantation, the facial nerves connected by the PLGA tubes containing DPCs were repaired more quickly than the control nerves. The PLGA tubes were resorbed in vivo and nerve regeneration was observed 2 months after the transplantation. Immunostaining showed that Tuj1-positive axons were present in the regenerated nerves 2 months after transplantation, and osmium-toluidine blue staining showed no mineralization of the regenerated nerves in those tubes containing myelinated fibres after 9 weeks. PLGA tubes filled with DPCs promoted nerve regeneration and were readily resorbed in vivo.
Collapse
Affiliation(s)
- Ryo Sasaki
- Department of Oral and Maxillofacial Surgery, Tokyo Women's Medical University, School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Shen H, Shen ZL, Zhang PH, Chen NL, Wang YC, Zhang ZF, Jin YQ. Ciliary neurotrophic factor-coated polylactic-polyglycolic acid chitosan nerve conduit promotes peripheral nerve regeneration in canine tibial nerve defect repair. J Biomed Mater Res B Appl Biomater 2011; 95:161-70. [PMID: 20737557 DOI: 10.1002/jbm.b.31696] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A variety of nerve conduits incorporated with chemical and biological factors have been developed to further stimulate nerve regeneration. Although most of the nerve guides in studies are basically limited to bridge a short gap of nerve defect in rat models, it is vital to evaluate effects of conduits on nerve regeneration over distance greater than 20 mm, or more clinically relevant nerve gap lengths in higher mammals. In this study, a poly(lactide-co-glycolide) (PLGA) nerve conduit, treated with pulsed plasma and coated with ciliary neurotrophic factor (CNTF) as well as chitosan, was used to repair 25-mm-long canine tibial nerve defects in eighteen cross-bred dogs. The canines were randomly divided into three groups (n = 6), a 25-mm segment of the tibial nerve was removed and replaced by a PLGA/chitosan-CNTF nerve conduit, PLGA/chitosan conduit and autologous nerve grafts were performed as the control. The results were evaluated by general observation, electromyogram testing, S-100 histological immunostaining, and image analysis at 3 months after operation. The histological results demonstrated that the PLGA/chitosan-CNTF conduits and PLGA/chitosan conduits were capable of leading the damaged axons through the lesioned area. Through the comparison of the three groups, the results in PLGA/chitosan-CNTF conduits group were better than that of PLGA/chitosan conduits group, while they were similar to autologous nerve grafts group. Therefore, CNTF-coated PLGA/chitosan nerve conduits could be an alternative artificial nerve conduit for nerve regeneration.
Collapse
Affiliation(s)
- Hua Shen
- Department of Plastic Surgery, the First People's Hospital of Shanghai Medical College, Jiaotong University, Shanghai 200080, China
| | | | | | | | | | | | | |
Collapse
|
49
|
You H, Wei L, Liu Y, Oudega M, Jiao SS, Feng SN, Chen Y, Chen JM, Li BC. Olfactory ensheathing cells enhance Schwann cell-mediated anatomical and functional repair after sciatic nerve injury in adult rats. Exp Neurol 2010; 229:158-67. [PMID: 20832404 DOI: 10.1016/j.expneurol.2010.08.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 08/05/2010] [Accepted: 08/30/2010] [Indexed: 10/19/2022]
Abstract
Sciatic nerve injury results in axon damage, muscle degeneration, and loss of function. We compared the potential of Schwann cell (SC), olfactory ensheathing cell (OEC), or mixed SC/OEC transplants for anatomical and functional restoration after adult rat sciatic nerve transection. The cells were seeded into a 20mm long macroporous poly(dl-lactide-co-glycolide) acid conduit and grafted between the sciatic nerve stumps. Some rats received a conduit without cells (controls) or an autologous nerve graft, the clinical standard of care. Compared with SC transplants, axon regeneration was 25% less with OEC transplants but 28% more with SC/OEC transplants. Gastrocnemius muscle restoration was similar with a SC or OEC transplant and 35% better with a SC/OEC transplant. With SC transplants, motor and sensory function recovery and electrophysiological outcomes were similar as with OEC transplants and 33% better with SC/OEC transplants. Compared with the mixed SC/OEC transplants, axon regeneration was 21% better and gastrocnemius muscle restoration was 18% better with autologous peripheral nerve transplants, but these improvements did not translate into increased function and electrophysiological outcomes. Our results revealed that OEC synergistically improve SC mediated sciatic nerve repair. The data emphasized the promise of SC/OEC transplants as artificial nerves for peripheral nerve repair. This article is part of a Special Issue entitled: Understanding olfactory ensheathing glia and their prospect for nervous system repair.
Collapse
Affiliation(s)
- Hua You
- Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ni HC, Lin ZY, Hsu SH, Chiu IM. The use of air plasma in surface modification of peripheral nerve conduits. Acta Biomater 2010; 6:2066-76. [PMID: 20040388 DOI: 10.1016/j.actbio.2009.12.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 12/16/2009] [Accepted: 12/21/2009] [Indexed: 12/27/2022]
Abstract
Surface modification is a conventional approach in biomaterials development, but most of the modification processes are intricate and time inefficient. In this study, a convenient open air plasma treatment was employed to modify the surface of poly(d,l-lactide) (PLA). Chitosan and fibroblast growth factor 1 (FGF1) were sequentially grafted with the assistance of open air plasma treatment onto the PLA nerve conduits with designed micropores and surface microgrooves. Grafting of these components was verified by electron spectroscopy for chemical analysis. The modified nerve conduits showed enhanced ability in the repair of 10-mm sciatic nerve transection defects in rats. The sequential air plasma treatment can be a convenient way to introduce biocompatible (e.g., chitosan) and bioactive components (e.g., growth factors) onto the surface of biomaterials.
Collapse
|