1
|
Advances in Biomaterial-Mediated Gene Therapy for Articular Cartilage Repair. Bioengineering (Basel) 2022; 9:bioengineering9100502. [PMID: 36290470 PMCID: PMC9598732 DOI: 10.3390/bioengineering9100502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Articular cartilage defects caused by various reasons are relatively common in clinical practice, but the lack of efficient therapeutic methods remains a substantial challenge due to limitations in the chondrocytes’ repair abilities. In the search for scientific cartilage repair methods, gene therapy appears to be more effective and promising, especially with acellular biomaterial-assisted procedures. Biomaterial-mediated gene therapy has mainly been divided into non-viral vector and viral vector strategies, where the controlled delivery of gene vectors is contained using biocompatible materials. This review will introduce the common clinical methods of cartilage repair used, the strategies of gene therapy for cartilage injuries, and the latest progress.
Collapse
|
2
|
Liu X, Li Y, Hu X, Yi Y, Zhang Z. Gene delivery and gene expression in vertebrate using baculovirus Bombyx mori nucleopolyhedrovirus vector. Oncotarget 2017; 8:106017-106025. [PMID: 29285311 PMCID: PMC5739698 DOI: 10.18632/oncotarget.22522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/28/2017] [Indexed: 01/03/2023] Open
Abstract
The baculovirus Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) has been investigated as a possible tool for gene therapy, but its inhibition by complement proteins in human serum limits its applicability. Here, we used the baculovirus Bombyx mori nucleopolyhedrovirus (BmNPV) to construct a gene delivery vector in which a reporter gene is driven by a cytomegalovirus IE promoter. Enhanced green fluorescent protein (EGFP) and luciferase reporter genes were used to test the efficiency of gene delivery. In vitro complement inactivation data showed that the recombinant BmNPV vector was more stable in human serum than the recombinant AcMNPV vector. The recombinant BmNPV vector successfully delivered the reporter genes into different tissues and organs in mice and chicks. These results demonstrate that the BmNPV vector is more stability against complement inactivation in human serum than the AcMNPV vector, and indicate that it may be useful as an effective gene delivery vector for gene therapy in vertebrates.
Collapse
Affiliation(s)
- Xingjian Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yinü Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyuan Hu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongzhu Yi
- The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Zhifang Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Li KC, Hu YC. Cartilage tissue engineering: recent advances and perspectives from gene regulation/therapy. Adv Healthc Mater 2015; 4:948-68. [PMID: 25656682 DOI: 10.1002/adhm.201400773] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/10/2015] [Indexed: 12/16/2022]
Abstract
Diseases in articular cartilages affect millions of people. Despite the relatively simple biochemical and cellular composition of articular cartilages, the self-repair ability of cartilage is limited. Successful cartilage tissue engineering requires intricately coordinated interactions between matrerials, cells, biological factors, and phycial/mechanical factors, and still faces a multitude of challenges. This article presents an overview of the cartilage biology, current treatments, recent advances in the materials, biological factors, and cells used in cartilage tissue engineering/regeneration, with strong emphasis on the perspectives of gene regulation (e.g., microRNA) and gene therapy.
Collapse
Affiliation(s)
- Kuei-Chang Li
- Department of Chemical Engineering; National Tsing Hua University; Hsinchu Taiwan 300
| | - Yu-Chen Hu
- Department of Chemical Engineering; National Tsing Hua University; Hsinchu Taiwan 300
| |
Collapse
|
4
|
Makkonen KE, Airenne K, Ylä-Herttulala S. Baculovirus-mediated gene delivery and RNAi applications. Viruses 2015; 7:2099-125. [PMID: 25912715 PMCID: PMC4411692 DOI: 10.3390/v7042099] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/02/2015] [Accepted: 04/16/2015] [Indexed: 12/11/2022] Open
Abstract
Baculoviruses are widely encountered in nature and a great deal of data is available about their safety and biology. Recently, these versatile, insect-specific viruses have demonstrated their usefulness in various biotechnological applications including protein production and gene transfer. Multiple in vitro and in vivo studies exist and support their use as gene delivery vehicles in vertebrate cells. Recently, baculoviruses have also demonstrated high potential in RNAi applications in which several advantages of the virus make it a promising tool for RNA gene transfer with high safety and wide tropism.
Collapse
Affiliation(s)
- Kaisa-Emilia Makkonen
- Virtanen Institute, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio 70211 Finland.
| | - Kari Airenne
- Virtanen Institute, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio 70211 Finland.
| | - Seppo Ylä-Herttulala
- Virtanen Institute, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio 70211 Finland.
- Gene Therapy Unit, Kuopio University Hospital, Kuopio 70211, Finland.
- Science Service Center, Kuopio University Hospital, Kuopio 70211, Finland.
| |
Collapse
|
5
|
Bhardwaj N, Devi D, Mandal BB. Tissue-engineered cartilage: the crossroads of biomaterials, cells and stimulating factors. Macromol Biosci 2014; 15:153-82. [PMID: 25283763 DOI: 10.1002/mabi.201400335] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/25/2014] [Indexed: 02/06/2023]
Abstract
Damage to cartilage represents one of the most challenging tasks of musculoskeletal therapeutics due to its limited propensity for healing and regenerative capabilities. Lack of current treatments to restore cartilage tissue function has prompted research in this rapidly emerging field of tissue regeneration of functional cartilage tissue substitutes. The development of cartilaginous tissue largely depends on the combination of appropriate biomaterials, cell source, and stimulating factors. Over the years, various biomaterials have been utilized for cartilage repair, but outcomes are far from achieving native cartilage architecture and function. This highlights the need for exploration of suitable biomaterials and stimulating factors for cartilage regeneration. With these perspectives, we aim to present an overview of cartilage tissue engineering with recent progress, development, and major steps taken toward the generation of functional cartilage tissue. In this review, we have discussed the advances and problems in tissue engineering of cartilage with strong emphasis on the utilization of natural polymeric biomaterials, various cell sources, and stimulating factors such as biophysical stimuli, mechanical stimuli, dynamic culture, and growth factors used so far in cartilage regeneration. Finally, we have focused on clinical trials, recent innovations, and future prospects related to cartilage engineering.
Collapse
Affiliation(s)
- Nandana Bhardwaj
- Seri-Biotechnology Unit, Life Science Division, Institute of Advanced Study in Science and Technology, Guwahati, 781035, India
| | | | | |
Collapse
|
6
|
Lin SY, Chung YC, Hu YC. Update on baculovirus as an expression and/or delivery vehicle for vaccine antigens. Expert Rev Vaccines 2014; 13:1501-21. [DOI: 10.1586/14760584.2014.951637] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
7
|
Recent progresses in gene delivery-based bone tissue engineering. Biotechnol Adv 2013; 31:1695-706. [DOI: 10.1016/j.biotechadv.2013.08.015] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/24/2013] [Accepted: 08/19/2013] [Indexed: 12/18/2022]
|
8
|
Airenne KJ, Hu YC, Kost TA, Smith RH, Kotin RM, Ono C, Matsuura Y, Wang S, Ylä-Herttuala S. Baculovirus: an insect-derived vector for diverse gene transfer applications. Mol Ther 2013; 21:739-49. [PMID: 23439502 PMCID: PMC3616530 DOI: 10.1038/mt.2012.286] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 12/11/2012] [Indexed: 01/23/2023] Open
Abstract
Insect-derived baculoviruses have emerged as versatile and safe workhorses of biotechnology. Baculovirus expression vectors (BEVs) have been applied widely for crop and forest protection, as well as safe tools for recombinant protein production in insect cells. However, BEVs ability to efficiently transduce noninsect cells is still relatively poorly recognized despite the fact that efficient baculovirus-mediated in vitro and ex vivo gene delivery into dormant and dividing vertebrate cells of diverse origin has been described convincingly by many authors. Preliminary proof of therapeutic potential has also been established in preclinical studies. This review summarizes the advantages and current status of baculovirus-mediated gene delivery. Stem cell transduction, preclinical animal studies, tissue engineering, vaccination, cancer gene therapy, viral vector production, and drug discovery are covered.
Collapse
Affiliation(s)
- Kari J Airenne
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Thomas A Kost
- Biological Reagents and Assay Development, GlaxoSmithKline R&D, Research Triangle Park, North Carolina, USA
| | - Richard H Smith
- Molecular Virology and Gene Therapy Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert M Kotin
- Molecular Virology and Gene Therapy Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Chikako Ono
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Shu Wang
- Institute of Bioengineering and Nanotechnology, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Seppo Ylä-Herttuala
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Research Unit, Kuopio University Hospital, Kuopio, Finland
- Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
9
|
Augmented healing of critical-size calvarial defects by baculovirus-engineered MSCs that persistently express growth factors. Biomaterials 2012; 33:3682-92. [PMID: 22361095 DOI: 10.1016/j.biomaterials.2012.02.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 02/02/2012] [Indexed: 02/08/2023]
Abstract
Repair of large calvarial bony defects remains clinically challenging because successful spontaneous calvarial re-ossification rarely occurs. Although bone marrow-derived mesenchymal stem cells (BMSCs) genetically engineered with baculovirus (BV) for transient expression of osteogenic/angiogenic factors hold promise for bone engineering, we hypothesized that calvarial bone healing necessitates prolonged growth factor expression. Therefore, we employed a hybrid BV vector system whereby one BV expressed FLP while the other harbored the BMP2 (or VEGF) cassette flanked by Frt sequences. Transduction of rabbit BMSCs with the FLP/Frt-based BV vector led to FLP-mediated episome formation, which not only extended the BMP2/VEGF expression beyond 28 days but augmented the BMSCs osteogenesis. After allotransplantation into rabbits, X-ray, PET/CT, μCT and histological analyses demonstrated that the sustained BMP2/VEGF expression remarkably ameliorated the angiogenesis and regeneration of critical-size (8 mm) calvarial defects, when compared with the group implanted with BMSCs transiently expressing BMP2/VEGF. The prolonged expression by BMSCs accelerated the bone remodeling and regenerated the bone through the natural intramembranous pathway, filling ≈83% of the area and ≈63% of the volume in 12 weeks. These data implicated the potential of the hybrid BV vector to engineer BMSCs for sustained BMP2/VEGF expression and the repair of critical-size calvarial defects.
Collapse
|
10
|
Kaikkonen MU, Ylä-Herttuala S, Airenne KJ. How to avoid complement attack in baculovirus-mediated gene delivery. J Invertebr Pathol 2011; 107 Suppl:S71-9. [PMID: 21784233 DOI: 10.1016/j.jip.2011.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 01/03/2011] [Indexed: 11/30/2022]
Abstract
Serum inactivation of baculovirus vectors is a significant barrier to the development of these highly efficient vectors for therapeutic gene delivery. In this review we will describe the efforts taken to avoid complement attack by passive or active measures. Evidently good targets for baculovirus-mediated gene delivery include immunoprivileged tissues, such as eye, brain and testis. Similarly baculovirus vectors have also proven their efficacy in an ex vivo setting for tissue engineering. Active measures to inhibit complement include the use of pharmacological inhibitors of complement as well as surface engineering of the baculoviral vectors through the use of synthetic polymers, pseudotyping or display of complement inhibitors. Lessons learned from these studies will significantly increase the possibility of using baculovirus vectors for therapeutic applications.
Collapse
Affiliation(s)
- Minna U Kaikkonen
- AI Virtanen Institute, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland
| | | | | |
Collapse
|
11
|
Development of the hybrid Sleeping Beauty-baculovirus vector for sustained gene expression and cancer therapy. Gene Ther 2011; 19:844-51. [DOI: 10.1038/gt.2011.129] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
12
|
Chen CY, Lin CY, Chen GY, Hu YC. Baculovirus as a gene delivery vector: recent understandings of molecular alterations in transduced cells and latest applications. Biotechnol Adv 2011; 29:618-31. [PMID: 21550393 PMCID: PMC7126054 DOI: 10.1016/j.biotechadv.2011.04.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 04/15/2011] [Accepted: 04/15/2011] [Indexed: 12/13/2022]
Abstract
Baculovirus infects insects in nature and is non-pathogenic to humans, but can transduce a broad range of mammalian and avian cells. Thanks to the biosafety, large cloning capacity, low cytotoxicity and non-replication nature in the transduced cells as well as the ease of manipulation and production, baculovirus has gained explosive popularity as a gene delivery vector for a wide variety of applications. This article extensively reviews the recent understandings of the molecular mechanisms pertinent to baculovirus entry and cellular responses, and covers the latest advances in the vector improvements and applications, with special emphasis on antiviral therapy, cancer therapy, regenerative medicine and vaccine.
Collapse
Affiliation(s)
- Chi-Yuan Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | | | | | |
Collapse
|
13
|
Wang ZH, Yang ZQ, He XJ, Kamal BE, Xing Z. Lentivirus-mediated knockdown of aggrecanase-1 and -2 promotes chondrocyte-engineered cartilage formation in vitro. Biotechnol Bioeng 2011; 107:730-6. [PMID: 20632367 DOI: 10.1002/bit.22862] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chondrocyte-based tissue engineering has emerged as a promising approach for repair of injured cartilage tissues that have a poor self-healing capacity. However, this technique faces a major limitation: dedifferentiation of chondrocytes occurs following several passages in culture. Aggrecan, a major component of cartilage extracellular matrix, plays an essential role in chondrocyte differentiation. The aim of this study is to determine whether inhibition of chondrocyte aggrecanases, key degradative enzymes for aggrecan in cartilage, could benefit chondrocyte differentiation and the preservation of chondrocyte phenotype within a long-term period. Lentivirus-mediated RNA interference (RNAi) was employed to target both aggrecanase-1 and -2 in primary rat chondrocytes, and the transduced cells were seeded into chitosan-gelatin three-dimensional scaffolds. Histological, morphological, and biochemical analyses were performed at 1-8 weeks post-implantation to study chondrocyte survival, differentiation, and function. We found that lentivirus-mediated RNAi notably decreased the abundance of aggrecanase transcripts in chondrocytes but did not affect cell viability. Most importantly, compared to the control constructs seeded with untransduced chondrocytes, the aggrecanase inhibition increased chondrocyte proliferation and reinforced the production of glycosaminoglycans and total collagen, indicative of chondrocyte differentiation. The mRNA expression of chondrocyte marker genes (collagen II and aggrecan) was enhanced by aggrecanase silencing relative to the control. Together our data demonstrate that inhibition of endogenous aggrecanases facilitates chondrocyte differentiation and chondrocyte-engineered cartilage formation in vitro. The combination of lentiviral delivery system and genetic manipulation techniques provides a useful tool for modulation of chondrocyte phenotype in cartilage engineering.
Collapse
Affiliation(s)
- Zheng-Hui Wang
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital, Xi'an Jiao Tong University, Xi'an, China.
| | | | | | | | | |
Collapse
|
14
|
Miot S, Gianni-Barrera R, Pelttari K, Acharya C, Mainil-Varlet P, Juelke H, Jaquiery C, Candrian C, Barbero A, Martin I. In vitro and in vivo validation of human and goat chondrocyte labeling by green fluorescent protein lentivirus transduction. Tissue Eng Part C Methods 2010; 16:11-21. [PMID: 19327004 DOI: 10.1089/ten.tec.2008.0698] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We investigated whether human articular chondrocytes can be labeled efficiently and for long-term with a green fluorescent protein (GFP) lentivirus and whether the viral transduction would influence cell proliferation and tissue-forming capacity. The method was then applied to track goat articular chondrocytes after autologous implantation in cartilage defects. Expression of GFP in transduced chondrocytes was detected cytofluorimetrically and immunohistochemically. Chondrogenic capacity of chondrocytes was assessed by Safranin-O staining, immunostaining for type II collagen, and glycosaminoglycan content. Human articular chondrocytes were efficiently transduced with GFP lentivirus (73.4 +/- 0.5% at passage 1) and maintained the expression of GFP up to 22 weeks of in vitro culture after transduction. Upon implantation in nude mice, 12 weeks after transduction, the percentage of labeled cells (73.6 +/- 3.3%) was similar to the initial one. Importantly, viral transduction of chondrocytes did not affect the cell proliferation rate, chondrogenic differentiation, or tissue-forming capacity, either in vitro or in vivo. Goat articular chondrocytes were also efficiently transduced with GFP lentivirus (78.3 +/- 3.2%) and maintained the expression of GFP in the reparative tissue after orthotopic implantation. This study demonstrates the feasibility of efficient and relatively long-term labeling of human chondrocytes for co-culture on integration studies, and indicates the potential of this stable labeling technique for tracking animal chondrocytes for in cartilage repair studies.
Collapse
Affiliation(s)
- Sylvie Miot
- Department of Surgery and of Biomedicine, University Hospital Basel , Basel, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Sung LY, Chiu HY, Chen HC, Chen YL, Chuang CK, Hu YC. Baculovirus-mediated growth factor expression in dedifferentiated chondrocytes accelerates redifferentiation: effects of combinational transduction. Tissue Eng Part A 2009; 15:1353-62. [PMID: 18847362 DOI: 10.1089/ten.tea.2008.0310] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transduction of partially dedifferentiated rabbit chondrocytes with a baculovirus (Bac-CB) expressing bone morphogenetic protein-2 (BMP-2) reverses dedifferentiation and enhances matrix production. Hereby we examined whether transduction with Bac-CB in combination with another baculovirus expressing transforming growth factor-beta1 (TGF-beta1) or insulin-like growth factor-1 (IGF-1) synergistically augmented chondrogenic differentiation. Passage 3 rabbit articular chondrocytes were transduced by different baculovirus combinations: single transduction with Bac-CB, cotransduction with Bac-CB and Bac-CT (expressing TGF-beta1), cotransduction with Bac-CB and Bac-CI (expressing IGF-1), and transduction with Bac-CB followed by repeated transduction with Bac-CT, Bac-CI, or Bac-CB 5 days later. Transduced cells were encapsulated into alginate beads for culture. Among these strategies, only cotransduction with Bac-CB and Bac-CT led to improved redifferentiation when compared with Bac-CB single transduction, as evidenced by the enhanced expression of aggrecan and collagen IIB (Col IIB), suppressed expression of Col I and Col X, emergence of chondrocyte-specific lacunae, and elevated deposition of matrix molecules. The cotransduction also accelerated the expression of Sox9, Col IIB, and aggrecan. In summary, baculovirus-mediated coexpression of TGF-beta1 and BMP-2 synergistically accelerates the chondrocyte redifferentiation process and improves the maintenance of chondrocyte phenotype and accumulation of cartilage-specific matrix molecules.
Collapse
Affiliation(s)
- Li-Yu Sung
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan, Province of China
| | | | | | | | | | | |
Collapse
|
16
|
Lee HP, Matsuura Y, Chen HC, Chen YL, Chuang CK, Abe T, Hwang SM, Shiah HC, Hu YC. Baculovirus transduction of chondrocytes elicits interferon-alpha/beta and suppresses transgene expression. J Gene Med 2009; 11:302-12. [PMID: 19194979 DOI: 10.1002/jgm.1299] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Baculovirus is an effective vector for gene delivery into primary chondrocytes and repeated baculovirus transduction (i.e. supertransduction) appears to be promising for prolonging transgene expression, but how supertransduction may influence baculovirus-mediated gene delivery is unknown. METHODS We first investigated whether prior baculovirus transduction suppressed the ensuing transgene expression mediated by the supertransduced baculovirus, and then examined whether baculovirus triggered the expression of various cytokines. Whether interferon-alpha and -beta (IFN-alpha/beta) suppressed the transgene expression as well as the pivotal step responsible for the attenuated transgene expression were examined. RESULTS Baculovirus transduction of chondrocytes elicited an immediate yet transient expression of IFN-alpha/beta, which repressed the transgene expression in a dose-dependent manner. The attenuation was observed for transgene expression driven by different promoters and resulted neither from internalization or nuclear import of baculovirus. Moreover, the attenuation was alleviated if supertransduction was performed when IFN-alpha/beta responses diminished. Baculovirus transduction also triggered the expression of tumor necrosis factor-alpha and interleukin (IL)-6, but not IL-1beta. Despite the induction of these responses, supertransduction of chondrocytes with a baculovirus expressing bone morphogenetic protein-2 successfully enhanced the chondrogenic differentiation and matrix synthesis. CONCLUSIONS Baculovirus transduction of primary chondrocytes elicits antiviral effects that suppress transgene expression. Nonetheless, baculovirus supertransduction comprises a feasible approach to extend transgene expression for cartilage engineering.
Collapse
Affiliation(s)
- Hsiao-Ping Lee
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Chen HC, Chang YH, Chuang CK, Lin CY, Sung LY, Wang YH, Hu YC. The repair of osteochondral defects using baculovirus-mediated gene transfer with de-differentiated chondrocytes in bioreactor culture. Biomaterials 2008; 30:674-81. [PMID: 19012961 DOI: 10.1016/j.biomaterials.2008.10.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 10/20/2008] [Indexed: 10/21/2022]
Abstract
Baculovirus has emerged as a promising gene delivery vector. Hereby de-differentiated rabbit chondrocytes were transduced ex vivo with a recombinant baculovirus expressing BMP-2 (Bac-CB), seeded to scaffolds and cultured statically for 1 day (Bac-w0 group) or in a rotating-shaft bioreactor (RSB) for 1 week (Bac-w1 group) or 3 weeks (Bac-w3 group). Mock-transduced constructs were cultured statically for 1 day to serve as the control (Mock-w0 group). We unraveled that Bac-CB transduction and increasing culture time in the RSB yielded more mature cartilaginous constructs in vitro. Eight weeks after implanting into the rabbit osteochondral defects, Mock-w0 constructs failed to repair the lesion while Bac-w0 constructs resulted in augmented, yet incomplete, repair. Bac-w1 constructs yielded neocartilage layers rich in glycosaminoglycans and collagen II, but the integration between the graft and host cartilages was not complete. In contrast, Bac-w3 constructs led to the regeneration of hyaline cartilages as characterized by cartilage-like appearance, improved integration, chondrocytes clustered in lacunae, smooth and homogeneous matrix rich in collagen II and glycosaminoglycans but deficient in collagen I. In conclusion, combining baculovirus-modified de-differentiated chondrocytes and RSB culture creates constructs that repair osteochondral defects, and in vitro culture time dictates the construct maturation and subsequent in vivo repair.
Collapse
Affiliation(s)
- Huang-Chi Chen
- Department of Chemical Engineering, National Tsing Hua University, 101, Sec. 2 Kuang Fu Road, Hsinchu 300, Taiwan
| | | | | | | | | | | | | |
Collapse
|
18
|
Chen YL, Chen HC, Chan HY, Chuang CK, Chang YH, Hu YC. Co-conjugating chondroitin-6-sulfate/dermatan sulfate to chitosan scaffold alters chondrocyte gene expression and signaling profiles. Biotechnol Bioeng 2008; 101:821-30. [DOI: 10.1002/bit.21953] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
19
|
Combination of baculovirus-expressed BMP-2 and rotating-shaft bioreactor culture synergistically enhances cartilage formation. Gene Ther 2007; 15:309-17. [DOI: 10.1038/sj.gt.3303087] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
20
|
Madry H, Weimer A, Kohn D, Cucchiarini M. Tissue-Engineering zur Knorpelreparatur verbessert durch Gentransfer. DER ORTHOPADE 2007; 36:236-47. [PMID: 17340098 DOI: 10.1007/s00132-007-1059-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Cartilage tissue engineering is the creation of functional substitutes of native articular cartilage in bioreactors by attaching chondrogenic cells to polymer scaffolds. One limitation of tissue engineering is the delivery of regulatory signals to cells according to specific temporal and spatial patterns. Using gene transfer techniques, polypeptide growth factor genes such as the human insulin-like growth factor I (IGF-I) gene can be transferred into chondrocytes. When these modified cells are used for cartilage tissue engineering, the resulting cartilaginous constructs have improved structural and functional characteristics compared to constructs based on nonmodified cells. The combination of cartilage tissue engineering with overexpression of potential therapeutic genes using gene transfer technologies provides a basis for the development of novel molecular therapies for the repair of cartilage defects.
Collapse
Affiliation(s)
- H Madry
- Labor für Experimentelle Orthopädie,Klinik für Orthopädie und Orthopädische Chirurgie, Universitätsklinikum des Saarlandes, 66421, Homburg.
| | | | | | | |
Collapse
|
21
|
Chen HC, Hu YC. Bioreactors for tissue engineering. Biotechnol Lett 2006; 28:1415-23. [PMID: 16955350 DOI: 10.1007/s10529-006-9111-x] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2006] [Accepted: 05/15/2006] [Indexed: 11/24/2022]
Abstract
Bioreactors are essential in tissue engineering, not only because they provide an in vitro environment mimicking in vivo conditions for the growth of tissue substitutes, but also because they enable systematic studies of the responses of living tissues to various mechanical and biochemical cues. The basic principles of bioreactor design are reviewed, the bioreactors commonly used for the tissue engineering of cartilage, bone and cardiovascular systems are assessed in terms of their performance and usefulness. Several novel bioreactor types are also reviewed.
Collapse
Affiliation(s)
- Huang-Chi Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | | |
Collapse
|