1
|
Ojha M, Rao DPC, Gowda V. Clinical and Radiographic Evaluation of Calcium Phosphate-Poly(lactide-co-glycolide) Graft in Regeneration of Intrabony Defects: Randomized Control Trial. J Contemp Dent Pract 2023; 24:921-927. [PMID: 38317387 DOI: 10.5005/jp-journals-10024-3605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
AIM This study aims to evaluate the efficacy of calcium phosphate-poly(lactide-co-glycolide) composite graft in the regeneration of intrabony defects in chronic periodontitis patients over a period of 12 months. MATERIALS AND METHODS A total of 11 systemically healthy chronic periodontitis patients with 22 graftable sites were treated with calcium phosphate cement (CPC) bone graft (control group) and CPC-poly(lactic-co-glycolic acid)(PLGA) composite (test group) after flap reflection and debridement. Clinical parameters such as probing pocket depth (PPD) and clinical attachment level (CAL) were recorded at baseline and 3, 6, 9, and 12 months. Bone probing depth (BPD) and radiographic parameters such as defect depth (DD), changes in alveolar crest level (ALR), defect depth reduction (DDR), and percentage in defect depth reduction (PDDR) were calculated at baseline, and 6 and 12 months. The data were recorded and statistically analyzed. RESULTS On intragroup comparison, there was a significant improvement in all the parameters over a period of 1 year (clinically and radiographically). However, there was no statistically significant difference between the two groups in any of the parameters though there was a slightly higher bone fill noted in the test group. CONCLUSION Even though the CPC-PLGA composite bone graft showed a slight improvement in clinical and radiographic parameters as compared to the CPC graft, it was not statistically significant. CLINICAL SIGNIFICANCE A major drawback of Calcium Phosphate cements as bone grafts is their poor degradability. The PLGA microspheres degrade to expose macropores and interconnected pores in the graft substrate which in turn would promote the ingrowth of osteoblasts. Also, this composite graft is mouldable, and resorbable and has been shown to snugly fit into the defects making them a suitable scaffold material. How to cite this article: Ojha M, Pawar Chandrashekara Rao D, Gowda V. Clinical and Radiographic Evaluation of Calcium Phosphate-Poly(lactide-co-glycolide) Graft in Regeneration of Intrabony Defects: Randomized Control Trial. J Contemp Dent Pract 2023;24(12):921-927.
Collapse
Affiliation(s)
- Moitri Ojha
- Department of Periodontology, JSS Dental College & Hospital, Mysuru, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Deepika Pawar Chandrashekara Rao
- Department of Periodontology, JSS Dental College & Hospital, Mysuru, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India, Phone: +91 9902066073, e-mail:
| | - Vishakante Gowda
- Department of Pharmaceutics, JSS College of Pharmacy, Mysuru, Karnataka, India
| |
Collapse
|
2
|
Mishchenko O, Yanovska A, Kosinov O, Maksymov D, Moskalenko R, Ramanavicius A, Pogorielov M. Synthetic Calcium-Phosphate Materials for Bone Grafting. Polymers (Basel) 2023; 15:3822. [PMID: 37765676 PMCID: PMC10536599 DOI: 10.3390/polym15183822] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Synthetic bone grafting materials play a significant role in various medical applications involving bone regeneration and repair. Their ability to mimic the properties of natural bone and promote the healing process has contributed to their growing relevance. While calcium-phosphates and their composites with various polymers and biopolymers are widely used in clinical and experimental research, the diverse range of available polymer-based materials poses challenges in selecting the most suitable grafts for successful bone repair. This review aims to address the fundamental issues of bone biology and regeneration while providing a clear perspective on the principles guiding the development of synthetic materials. In this study, we delve into the basic principles underlying the creation of synthetic bone composites and explore the mechanisms of formation for biologically important complexes and structures associated with the various constituent parts of these materials. Additionally, we offer comprehensive information on the application of biologically active substances to enhance the properties and bioactivity of synthetic bone grafting materials. By presenting these insights, our review enables a deeper understanding of the regeneration processes facilitated by the application of synthetic bone composites.
Collapse
Affiliation(s)
- Oleg Mishchenko
- Department of Surgical and Propaedeutic Dentistry, Zaporizhzhia State Medical and Pharmaceutical University, 26, Prosp. Mayakovskogo, 69035 Zaporizhzhia, Ukraine; (O.M.); (O.K.); (D.M.)
| | - Anna Yanovska
- Theoretical and Applied Chemistry Department, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine
| | - Oleksii Kosinov
- Department of Surgical and Propaedeutic Dentistry, Zaporizhzhia State Medical and Pharmaceutical University, 26, Prosp. Mayakovskogo, 69035 Zaporizhzhia, Ukraine; (O.M.); (O.K.); (D.M.)
| | - Denys Maksymov
- Department of Surgical and Propaedeutic Dentistry, Zaporizhzhia State Medical and Pharmaceutical University, 26, Prosp. Mayakovskogo, 69035 Zaporizhzhia, Ukraine; (O.M.); (O.K.); (D.M.)
| | - Roman Moskalenko
- Department of Pathology, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine;
| | - Arunas Ramanavicius
- NanoTechnas-Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Maksym Pogorielov
- Biomedical Research Centre, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine;
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas Iela 3, LV-1004 Riga, Latvia
| |
Collapse
|
3
|
Kaou MH, Furkó M, Balázsi K, Balázsi C. Advanced Bioactive Glasses: The Newest Achievements and Breakthroughs in the Area. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2287. [PMID: 37630871 PMCID: PMC10459405 DOI: 10.3390/nano13162287] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Bioactive glasses (BGs) are especially useful materials in soft and bone tissue engineering and even in dentistry. They can be the solution to many medical problems, and they have a huge role in the healing processes of bone fractures. Interestingly, they can also promote skin regeneration and wound healing. Bioactive glasses are able to attach to the bone tissues and form an apatite layer which further initiates the biomineralization process. The formed intermediate apatite layer makes a connection between the hard tissue and the bioactive glass material which results in faster healing without any complications or side effects. This review paper summarizes the most recent advancement in the preparation of diverse types of BGs, such as silicate-, borate- and phosphate-based bioactive glasses. We discuss their physical, chemical, and mechanical properties detailing how they affect their biological performances. In order to get a deeper insight into the state-of-the-art in this area, we also consider their medical applications, such as bone regeneration, wound care, and dental/bone implant coatings.
Collapse
Affiliation(s)
- Maroua H. Kaou
- Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege M. Str. 29-33, 1121 Budapest, Hungary; (M.H.K.); (M.F.); (K.B.)
- Doctoral School of Materials Science and Technologies, Óbuda University, Bécsi Str. 96/B, 1030 Budapest, Hungary
| | - Mónika Furkó
- Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege M. Str. 29-33, 1121 Budapest, Hungary; (M.H.K.); (M.F.); (K.B.)
| | - Katalin Balázsi
- Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege M. Str. 29-33, 1121 Budapest, Hungary; (M.H.K.); (M.F.); (K.B.)
| | - Csaba Balázsi
- Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege M. Str. 29-33, 1121 Budapest, Hungary; (M.H.K.); (M.F.); (K.B.)
| |
Collapse
|
4
|
Banche-Niclot F, Corvaglia I, Cavalera C, Boggio E, Gigliotti CL, Dianzani U, Tzagiollari A, Dunne N, Manca A, Fiorilli S, Vitale-Brovarone C. Optimization of an Injectable, Resorbable, Bioactive Cement Able to Release the Anti-Osteoclastogenic Biomolecule ICOS-Fc for the Treatment of Osteoporotic Vertebral Compression Fractures. Biomolecules 2023; 13:biom13010094. [PMID: 36671479 PMCID: PMC9855932 DOI: 10.3390/biom13010094] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023] Open
Abstract
Vertebral compression fractures are typical of osteoporosis and their treatment can require the injection of a cement through a minimally invasive procedure to restore vertebral body height. This study reports the development of an injectable calcium sulphate-based composite cement able to stimulate bone regeneration while inhibiting osteoclast bone resorption. To this aim, different types of strontium-containing mesoporous glass particles (Sr-MBG) were added to calcium sulphate powder to impart a pro-osteogenic effect, and the influence of their size and textural features on the cement properties was investigated. Anti-osteoclastogenic properties were conferred by incorporating into poly(lactic-co-glycolic)acid (PLGA) nanoparticles, a recombinant protein able to inhibit osteoclast activity (i.e., ICOS-Fc). Radiopaque zirconia nanoparticles (ZrO2) were also added to the formulation to visualize the cement injection under fluoroscopy. The measured cement setting times were suitable for the clinical practice, and static mechanical testing determined a compressive strength of ca. 8 MPa, comparable to that of human vertebral bodies. In vitro release experiments indicated a sustained release of ICOS-Fc and Sr2+ ions up to 28 days. Overall, the developed cement is promising for the treatment of vertebral compression fractures and has the potential to stimulate bone regeneration while releasing a biomolecule able to limit bone resorption.
Collapse
Affiliation(s)
- Federica Banche-Niclot
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| | - Ilaria Corvaglia
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| | - Caterina Cavalera
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| | - Elena Boggio
- NOVAICOS s.r.l.s., Via Amico Canobio 4/6, 28100 Novara, Italy
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Casimiro Luca Gigliotti
- NOVAICOS s.r.l.s., Via Amico Canobio 4/6, 28100 Novara, Italy
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Umberto Dianzani
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Antzela Tzagiollari
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland
- Biodesign Europe, Dublin City University, D09 NA55 Dublin, Ireland
| | - Nicholas Dunne
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland
- Biodesign Europe, Dublin City University, D09 NA55 Dublin, Ireland
| | - Antonio Manca
- Department of Radiology, Candiolo Cancer Institute, FPO-IRCCS, 10060 Torino, Italy
| | - Sonia Fiorilli
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
- National Interuniversity Consortium of Materials Science and Technology, RU Politecnico di Torino, 50121 Firenze, Italy
| | - Chiara Vitale-Brovarone
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
- National Interuniversity Consortium of Materials Science and Technology, RU Politecnico di Torino, 50121 Firenze, Italy
- Correspondence:
| |
Collapse
|
5
|
Demir-Oğuz Ö, Boccaccini AR, Loca D. Injectable bone cements: What benefits the combination of calcium phosphates and bioactive glasses could bring? Bioact Mater 2023; 19:217-236. [PMID: 35510175 PMCID: PMC9048153 DOI: 10.1016/j.bioactmat.2022.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/21/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022] Open
Abstract
Out of the wide range of calcium phosphate (CaP) biomaterials, calcium phosphate bone cements (CPCs) have attracted increased attention since their discovery in the 1980s due to their valuable properties such as bioactivity, osteoconductivity, injectability, hardening ability through a low-temperature setting reaction and moldability. Thereafter numerous researches have been performed to enhance the properties of CPCs. Nonetheless, low mechanical performance of CPCs limits their clinical application in load bearing regions of bone. Also, the in vivo resorption and replacement of CPC with new bone tissue is still controversial, thus further improvements of high clinical importance are required. Bioactive glasses (BGs) are biocompatible and able to bond to bone, stimulating new bone growth while dissolving over time. In the last decades extensive research has been performed analyzing the role of BGs in combination with different CaPs. Thus, the focal point of this review paper is to summarize the available research data on how injectable CPC properties could be improved or affected by the addition of BG as a secondary powder phase. It was found that despite the variances of setting time and compressive strength results, desirable injectable properties of bone cements can be achieved by the inclusion of BGs into CPCs. The published data also revealed that the degradation rate of CPCs is significantly improved by BG addition. Moreover, the presence of BG in CPCs improves the in vitro osteogenic differentiation and cell response as well as the tissue-material interaction in vivo. Properties of injectable calcium phosphate bone cements and bioactive glasses are discussed. Benefits that BG addition to CPC could bring are highlighted. Desirable injectable properties of bone cements can be achieved by the inclusion of BGs into CPCs. The presence of BG in CPC advances in vitro and in vivo response of the composites. Future research direction of BG containing injectable CPC composites are provided.
Collapse
|
6
|
In Vitro and In Vivo Evaluation of Injectable Strontium-Modified Calcium Phosphate Cement for Bone Defect Repair in Rats. Int J Mol Sci 2022; 24:ijms24010568. [PMID: 36614010 PMCID: PMC9820753 DOI: 10.3390/ijms24010568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
Calcium phosphate cement (CPC) has been widely studied, but its lack of osteoinductivity and inadequate mechanical properties limit its application, while strontium is able to promote bone formation and inhibit bone resorption. In this study, different proportions of tristrontium silicate were introduced to create a novel strontium-modified calcium phosphate cement (SMPC). The physicochemical properties of SMPC and CPC were compared, and the microstructures of the bone cements were characterized with scanning electron microscopy assays. Then, the effect of SMPC on cell proliferation and differentiation was examined. Furthermore, local inflammatory response and osteogenesis after SMPC implantation were also confirmed in the study. Finally, a rat model of isolated vertebral defects was used to test the biomechanical properties of the cements. The results showed that SMPC has better injectability and a shorter setting time than CPC. Meanwhile, the addition of tristrontium silicate promoted the mechanical strength of calcium phosphate cement, and the compressive strength of 5% SMPC increased to 6.00 ± 0.74 MPa. However, this promotion effect gradually diminished with an increase in tristrontium silicate, which was also found in the rat model of isolated vertebral defects. Furthermore, SMPC showed a more preferential role in promoting cell proliferation and differentiation compared to CPC. Neither SMPC nor CPC showed significant inflammatory responses in vivo. Histological staining suggested that SMPCs were significantly better than CPC in promoting new bone regeneration. Importantly, this osteogenesis effect of SMPC was positively correlated with the ratio of tristrontium silicate. In conclusion, 5% SMPC is a promising substitute material for bone repair with excellent physicochemical properties and biological activity.
Collapse
|
7
|
Belaid H, Barou C, Collart-Dutilleul PY, Desoutter A, Kajdan M, Bernex F, Tétreau R, Cuisinier F, Barés J, Huon V, Teyssier C, Cornu D, Cavaillès V, Bechelany M. Fabrication of Radio-Opaque and Macroporous Injectable Calcium Phosphate Cement. ACS APPLIED BIO MATERIALS 2022; 5:3075-3085. [PMID: 35584545 DOI: 10.1021/acsabm.2c00345] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aim of this work was the development of injectable radio-opaque and macroporous calcium phosphate cement (CPC) to be used as a bone substitute for the treatment of pathologic vertebral fractures. A CPC was first rendered radio-opaque by the incorporation of zirconium dioxide (ZrO2). In order to create macroporosity, poly lactic-co-glycolic acid (PLGA) microspheres around 100 μm were homogeneously incorporated into the CPC as observed by scanning electron microscopy. Physicochemical analyses by X-ray diffraction and Fourier transform infrared spectroscopy confirmed the brushite phase of the cement. The mechanical properties of the CPC/PLGA cement containing 30% PLGA (wt/wt) were characterized by a compressive strength of 2 MPa and a Young's modulus of 1 GPa. The CPC/PLGA exhibited initial and final setting times of 7 and 12 min, respectively. Although the incorporation of PLGA microspheres increased the force necessary to inject the cement and decreased the percentage of injected mass as a function of time, the CPC/PLGA appeared fully injectable at 4 min. Moreover, in comparison with CPC, CPC/PLGA showed a full degradation in 6 weeks (with 100% mass loss), and this was associated with an acidification of the medium containing the CPC/PLGA sample (pH of 3.5 after 6 weeks). A cell viability test validated CPC/PLGA biocompatibility, and in vivo analyses using a bone defect assay in the caudal vertebrae of Wistar rats showed the good opacity of the CPC through the tail and a significant increased degradation of the CPC/PLGA cement a month after implantation. In conclusion, this injectable CPC scaffold appears to be an interesting material for bone substitution.
Collapse
Affiliation(s)
- Habib Belaid
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM, 34095 Montpellier, France.,IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, F-34298 Montpellier, France
| | - Carole Barou
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM, 34095 Montpellier, France.,IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, F-34298 Montpellier, France.,Biologics 4 Life, 84120 Pertuis, France
| | | | - Alban Desoutter
- Laboratoire de Bioingénierie et Nanosciences, EA4203, Université de Montpellier, 34193 Montpellier, France
| | - Marilyn Kajdan
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, F-34298 Montpellier, France
| | - Florence Bernex
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, F-34298 Montpellier, France.,BioCampus, RHEM, Université de Montpellier, CNRS UAR3426, INSERM, F-34298 Montpellier, France
| | - Raphaël Tétreau
- Service d'Imagerie, Institut Régional du Cancer Montpellier, Montpellier F-34298, France
| | - Frédéric Cuisinier
- Laboratoire de Bioingénierie et Nanosciences, EA4203, Université de Montpellier, 34193 Montpellier, France
| | - Jonathan Barés
- Laboratoire de Mécanique et Génie Civil, Univ Montpellier, CNRS, Montpellier 34090, France
| | - Vincent Huon
- Laboratoire de Mécanique et Génie Civil, Univ Montpellier, CNRS, Montpellier 34090, France
| | - Catherine Teyssier
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, F-34298 Montpellier, France
| | - David Cornu
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Vincent Cavaillès
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, F-34298 Montpellier, France
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| |
Collapse
|
8
|
Lu T, He F, Ye J. Physicochemical Properties, In Vitro Degradation, and Biocompatibility of Calcium Phosphate Cement Incorporating Poly(lactic- co-glycolic acid) Particles with Different Morphologies: A Comparative Study. ACS OMEGA 2021; 6:8322-8331. [PMID: 33817492 PMCID: PMC8015133 DOI: 10.1021/acsomega.1c00031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/01/2021] [Indexed: 05/13/2023]
Abstract
Calcium phosphate cement (CPC) is one of the most promising synthetic biomaterials for bone defect repair, but its low degradation rate and the lack of macropores restrict its repair effect. Poly(lactic-co-glycolic acid) (PLGA) is commonly used as an in situ pore forming agent in CPC, and the morphology of PLGA would affect the properties of CPC. In this study, three kinds of PLGA particles with different morphologies, including dense PLGA microspheres, dense milled PLGA particles with an irregular shape, and porous PLGA microspheres, were respectively incorporated into CPC matrix. The influences of the morphology of PLGA particles on the setting time, porosity, mechanical properties, in vitro degradation, and cytocompatibility of CPC were comparatively investigated. The results showed that the CPC composites containing dense spherical and irregularly shaped PLGA particles showed proper setting time and better compressive strength, but the CPC composite incorporating porous PLGA microspheres significantly prolonged the final setting time and dramatically decreased the compressive strength of CPC. The CPC composite containing irregularly shaped PLGA particles has shown a slightly faster in vitro degradation rate than that containing dense PLGA microspheres. In addition, the CPC composites containing dense PLGA particles were beneficial for cell proliferation. Taken together, the dense PLGA particles are suitable for use as in situ pore forming agents in the CPC matrix, and meanwhile, the dense irregularly shaped PLGA particles are more easily prepared with low cost.
Collapse
Affiliation(s)
- Teliang Lu
- School
of Materials Science and Engineering and Key Laboratory of Biomedical
Materials of Ministry of Education, South
China University of Technology, Guangzhou 510641, China
- National
Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- Key
Laboratory of Biomedical Engineering of Guangdong Province and Innovation
Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510641, China
| | - Fupo He
- School
of Electromechanical Engineering, Guangdong
University of Technology, Guangzhou 510006, China
| | - Jiandong Ye
- School
of Materials Science and Engineering and Key Laboratory of Biomedical
Materials of Ministry of Education, South
China University of Technology, Guangzhou 510641, China
- National
Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- Key
Laboratory of Biomedical Engineering of Guangdong Province and Innovation
Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
9
|
Qayoom I, Teotia AK, Meena M, Singh P, Mishra A, Singh S, Kumar A. Enhanced bone mineralization using hydroxyapatite-based ceramic bone substitute incorporating Withania somnifera extracts. Biomed Mater 2020; 15:055015. [DOI: 10.1088/1748-605x/ab8835] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Grosfeld EC, Smith BT, Santoro M, Lodoso-Torrecilla I, Jansen JA, Ulrich DJ, Melchiorri AJ, Scott DW, Mikos AG, van den Beucken JJJP. Fast dissolving glucose porogens for early calcium phosphate cement degradation and bone regeneration. ACTA ACUST UNITED AC 2020; 15:025002. [PMID: 31810074 DOI: 10.1088/1748-605x/ab5f9c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Here, we demonstrate the in vivo efficacy of glucose microparticles (GMPs) to serve as porogens within calcium phosphate cements (CPCs) to obtain a fast-degrading bone substitute material. Composites were fabricated incorporating 20 wt% GMPs at two different GMP size ranges (100-150 μm (GMP-S) and 150-300 μm (GMP-L)), while CPC containing 20 wt% poly(lactic-co-glycolic acid) microparticles (PLGA) and plain CPC served as controls. After 2 and 8 weeks implantation in a rat femoral condyle defect model, specimens were retrieved and analyzed for material degradation and bone formation. Histologically, no adverse tissue response to any of the CPC-formulations was observed. All CPC-porogen formulations showed faster degradation compared to plain CPC control, but only GMP-containing formulations showed higher amounts of new bone formation compared to plain CPC controls. After 8 weeks, only CPC-porogen formulations with GMP-S or PLGA porogens showed higher degradation compared to plain CPC controls. Overall, the inclusion of GMPs into CPCs resulted in a macroporous structure that initially accelerated the generation of new bone. These findings highlight the efficacy of a novel approach that leverages simple porogen properties to generate porous CPCs with distinct degradation and bone regeneration profiles.
Collapse
Affiliation(s)
- Eline-Claire Grosfeld
- Radboudumc, Dentistry-Biomaterials, Philips van Leijdenlaan 25, 6525EX Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lu T, Feng S, He F, Ye J. Enhanced osteogenesis of honeycomb β-tricalcium phosphate scaffold by construction of interconnected pore structure: An in vivo study. J Biomed Mater Res A 2019; 108:645-653. [PMID: 31747100 DOI: 10.1002/jbm.a.36844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 11/11/2022]
Abstract
Pore structure plays an important role in the in vivo osteogenesis for bone repair materials. In this study, honeycomb β-tricalcium phosphate (β-TCP) scaffolds were prepared by extrusion method, and gelatin microspheres were used as porogens to modify the pore structure of the scaffolds. The honeycomb β-TCP scaffolds were characterized by channel-like square macropores and unidirectional interconnection. To improve the pore interconnectivity of the scaffold, the spherical pores were formed in the channel walls by burning off the gelatin microspheres. Compared with unidirectional honeycomb β-TCP scaffold, the honeycomb β-TCP scaffold with interconnected pore structure had significantly higher porosity and faster degradation rate, at the expense of the mechanical strength. The in vivo assessment results demonstrated excellent osteogenesis of the honeycomb scaffolds. Moreover, the honeycomb β-TCP scaffold with interconnected pore structure markedly promoted new bone formation in comparison with the unidirectional honeycomb β-TCP scaffold. This work provides a new approach to prepare scaffolds with interconnected pore structure, and the honeycomb β-TCP scaffold with interconnected pore structure is expected to serve as an efficient bone repair material.
Collapse
Affiliation(s)
- Teliang Lu
- School of Materials Science and Engineering and Key Laboratory of Biomedical Materials of Ministry of Education, South China University of Technology, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, China
| | - Shenglei Feng
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, China.,College of Civil Engineering, Jiangxi University of Technology, Nanchang, China
| | - Fupo He
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, China
| | - Jiandong Ye
- School of Materials Science and Engineering and Key Laboratory of Biomedical Materials of Ministry of Education, South China University of Technology, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, China.,Key Laboratory of Biomedical Engineering of Guangdong Province and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| |
Collapse
|
12
|
|
13
|
Smith BT, Lu A, Watson E, Santoro M, Melchiorri AJ, Grosfeld EC, van den Beucken JJJP, Jansen JA, Scott DW, Fisher JP, Mikos AG. Incorporation of fast dissolving glucose porogens and poly(lactic-co-glycolic acid) microparticles within calcium phosphate cements for bone tissue regeneration. Acta Biomater 2018; 78:341-350. [PMID: 30075321 PMCID: PMC6650161 DOI: 10.1016/j.actbio.2018.07.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/17/2018] [Accepted: 07/30/2018] [Indexed: 01/10/2023]
Abstract
This study investigated the effects of incorporating glucose microparticles (GMPs) and poly(lactic-co-glycolic acid) microparticles (PLGA MPs) within a calcium phosphate cement on the cement's handling, physicochemical properties, and the respective pore formation. Composites were fabricated with two different weight fractions of GMPs (10 and 20 wt%) and two different weight fractions of PLGA MPs (10 and 20 wt%). Samples were assayed for porosity, pore morphology, and compressive mechanical properties. An in vitro degradation study was also conducted. Samples were exposed to a physiological solution for 3 days, 4 wks, and 8 wks in order to understand how the inclusion of GMPs and PLGA MPs affects the composite's porosity and mass loss over time. GMPs and PLGA MPs were both successfully incorporated within the composites and all formulations showed an initial setting time that is appropriate for clinical applications. Through a main effects analysis, we observed that the incorporation of GMPs had a significant effect on the overall porosity, mean pore size, mode pore size, and in vitro degradation rate of PLGA MPs as early as after 3 days (p < 0.05). After 4 wks and 8 wks, these same properties were affected by the inclusion of both types of MPs (p < 0.05). Advanced polymer chromatography confirmed that the degradation of PLGA MPs coincided with an increase in composite porosity, mean pore size, and mode pore size. Finally, it was observed that the inclusion of GMPs slowed the degradation of PLGA MPs in vitro and reduced the solution acidity due to PLGA degradation products. Our results suggest that the dual inclusion of GMPs and PLGA MPs is a valuable approach for the generation of early macropores, while also mitigating the effect of acidic degradation products from PLGA MPs on their degradation kinetics. STATEMENT OF SIGNIFICANCE A multitude of strategies and techniques have been investigated for the introduction of macropores with calcium phosphate cements (CPC). However, many of these strategies take several weeks to months to generate a maximal porosity or the degradation products of the porogen can trigger a localized inflammatory response in vivo. As such, it was hypothesized that the fast dissolution of glucose microparticles (GMPs) in a CPC composite also incorporating poly(lactic-co-glycolic acid) (PLGA) microparticles (MPs) will create an initial macroporosity and increase the surface area within the CPC, thus enhancing the diffusion of PLGA degradation products and preventing a significant decrease in pH. Furthermore, as PLGA degradation occurs over several weeks to months, additional macroporosity will be generated at later time points within CPCs. The results offer a new method for generating macroporosity in a multimodal fashion that also mitigates the effects of acidic degradation products.
Collapse
Affiliation(s)
- Brandon T Smith
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA; Biomaterials Lab, Rice University, 6500 Main Street, Houston, TX 77030, USA; NIH / NIBIB Center for Engineering Complex Tissues, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Alexander Lu
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
| | - Emma Watson
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA; Biomaterials Lab, Rice University, 6500 Main Street, Houston, TX 77030, USA; NIH / NIBIB Center for Engineering Complex Tissues, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Marco Santoro
- NIH / NIBIB Center for Engineering Complex Tissues, USA; Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Dr, College Park, MD 20742, USA
| | - Anthony J Melchiorri
- Biomaterials Lab, Rice University, 6500 Main Street, Houston, TX 77030, USA; NIH / NIBIB Center for Engineering Complex Tissues, USA
| | - Eline C Grosfeld
- Department of Biomaterials, Radboudumc, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | - John A Jansen
- Department of Biomaterials, Radboudumc, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - David W Scott
- Department of Statistics, Rice University, 6500 Main Street, Houston, TX 77030, USA
| | - John P Fisher
- NIH / NIBIB Center for Engineering Complex Tissues, USA; Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Dr, College Park, MD 20742, USA
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA; Biomaterials Lab, Rice University, 6500 Main Street, Houston, TX 77030, USA; NIH / NIBIB Center for Engineering Complex Tissues, USA.
| |
Collapse
|
14
|
Self-Setting Calcium Orthophosphate (CaPO4) Formulations. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2018. [DOI: 10.1007/978-981-10-5975-9_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Babo PS, Cai X, Plachokova AS, Reis RL, Jansen J, Gomes ME, Walboomers XF. Evaluation of a platelet lysate bilayered system for periodontal regeneration in a rat intrabony three‐wall periodontal defect. J Tissue Eng Regen Med 2017; 12:e1277-e1288. [DOI: 10.1002/term.2535] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 07/06/2017] [Accepted: 08/11/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Pedro S. Babo
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineUniversity of Minho Guimarães Portugal
- ICVS/3B's—PT Government Associate Laboratory Guimarães Portugal
| | - Xinjie Cai
- Department of BiomaterialsRadboud University Medical Center Nijmegen The Netherlands
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of StomatologyWuhan University Wuhan China
| | - Adelina S. Plachokova
- Department of Implantology and PeriodontologyRadboud University Medical Center Nijmegen The Netherlands
| | - Rui L. Reis
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineUniversity of Minho Guimarães Portugal
- ICVS/3B's—PT Government Associate Laboratory Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision MedicineHeadquarters at University of Minho Guimarães Portugal
| | - John Jansen
- Department of BiomaterialsRadboud University Medical Center Nijmegen The Netherlands
| | - Manuela E. Gomes
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineUniversity of Minho Guimarães Portugal
- ICVS/3B's—PT Government Associate Laboratory Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision MedicineHeadquarters at University of Minho Guimarães Portugal
| | - X. Frank Walboomers
- Department of BiomaterialsRadboud University Medical Center Nijmegen The Netherlands
| |
Collapse
|
16
|
A straightforward approach to enhance the textural, mechanical and biological properties of injectable calcium phosphate apatitic cements (CPCs): CPC/blood composites, a comprehensive study. Acta Biomater 2017; 62:328-339. [PMID: 28864250 DOI: 10.1016/j.actbio.2017.08.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/21/2017] [Accepted: 08/28/2017] [Indexed: 01/24/2023]
Abstract
Two commercial formulations of apatitic calcium phosphate cements (CPCs), Graftys® Quickset (QS) and Graftys® HBS (HBS), similar in composition but with different initial setting time (7 and 15min, respectively), were combined to ovine whole blood. Surprisingly, although a very cohesive paste was obtained after a few minutes, the setting time of the HBS/blood composite dramatically delayed when compared to its QS analogue and the two blood-free references. Using solid state NMR, scanning electron microscopy and high frequency impedance measurements, it was shown that, in the particular case of the HBS/blood composite, formation of a reticulated and porous organic network occurred in the intergranular space, prior to the precipitation of apatite crystals driven by the cement setting process. The resulting microstructure conferred unique biological properties to this material upon implantation in bone defects, since its degradation rate after 4 and 12weeks was more than twice that for the three other CPCs, with a significant replacement by newly formed bone. STATEMENT OF SIGNIFICANCE A major challenge in the design of bone graft substitutes is the development of injectable, cohesive, resorbable and self-setting calcium phosphate cement (CPC) that enables rapid cell invasion with initial mechanical properties as close as bone ones. Thus, we describe specific conditions in CPC-blood composites where the formation of a 3D clot-like network can interact with the precipitated apatite crystals formed during the cement setting process. The resulting microstructure appears more ductile at short-term and more sensitive to biological degradation which finally promotes new bone formation. This important and original paper reports the design and in-depth chemical and physical characterization of this groundbreaking technology.
Collapse
|
17
|
Cimatti B, Santos MAD, Brassesco MS, Okano LT, Barboza WM, Nogueira-Barbosa MH, Engel EE. Safety, osseointegration, and bone ingrowth analysis of PMMA-based porous cement on animal metaphyseal bone defect model. J Biomed Mater Res B Appl Biomater 2017; 106:649-658. [PMID: 28276202 DOI: 10.1002/jbm.b.33870] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 01/17/2017] [Accepted: 02/13/2017] [Indexed: 12/28/2022]
Abstract
Bone defects created after curettage of benign bone tumors are customarily filled with solid poly(methyl methacrylate) (PMMA) or other bone substitutes. In this study, we depicted a porous PMMA-based cement (produced by mixing sodium bicarbonate and citric acid) and evaluated the prospect of its clinic application. Cement samples were characterized by high-performance liquid chromatography (HPLC) coupled to mass spectrometry and its cytotoxicity evaluated in fibroblast cultures. Implantation in rabbits allowed the histologic analysis of bone, kidneys, and liver for toxicity and coagulation tests, and MRI images for hemostasis evaluation. Osseointegration was analyzed through radiography, microtomography (micro-CT), SEM, and histology of sheep specimens. Rabbit specimens were analyzed 1, 4, and 7 days after implantation of porous or solid bone cement in 6.0 mm femoral defects. Sheep specimens were analyzed 3 and 6 months after implantation or not of porous or solid cement in 15.0 mm subchondral tibial defects. The production process did not release any detectable toxic substance but slightly reduced fibroblast proliferation in vitro. Until 7 days after surgery, no local or systemic alterations could be detected in histology, or hematoma formation in histology or MRI. Sheep implants showed 6 mm linear ingrowth from the bone-cement interface and 20% bone ingrowth considering the whole defect area. Radiography, micro-CT, SEM, and histology confirmed these findings. We conclude that our porous PMMA-based cement is an attractive alternative treatment for bone defect filling that combines osseointegration and early weight bearing. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 649-658, 2018.
Collapse
Affiliation(s)
- Bruno Cimatti
- Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Mariana Avelino Dos Santos
- Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Maria Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Laura Tiemi Okano
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Wendell Monteiro Barboza
- Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Edgard Eduard Engel
- Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
18
|
Effects of Indomethacin and Meloxicam, Nonsteroidal Anti-inflammatory Drugs, on Tibia Fracture Union in Rats. JOURNAL OF ORTHOPEDIC AND SPINE TRAUMA 2016. [DOI: 10.5812/jost.10701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
19
|
Grosfeld EC, Hoekstra JWM, Herber RP, Ulrich DJO, Jansen JA, van den Beucken JJJP. Long-term biological performance of injectable and degradable calcium phosphate cement. ACTA ACUST UNITED AC 2016; 12:015009. [PMID: 27934787 DOI: 10.1088/1748-605x/12/1/015009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Enhancing degradation of poorly degrading injectable calcium phosphate (CaP) cements (CPCs) can be achieved by adding poly(lactic-co-glycolic acid) (PLGA) microparticles, generating porosity after polymer degradation. CPC-PLGA has proven to be biodegradable, although its long-term biological performance is still unknown. Optimization of injectability could be achieved via addition of carboxymethyl cellulose (CMC). Here, we evaluated the long-term in vivo performance of CPC-PLGA with or without the lubricant CMC in comparison to the devitalized bovine bone mineral (DBBM) predicate device Bio-Oss®. Rabbit femoral bone defects were injected with a CPC-formulation or filled with Bio-Oss® granules. Samples were retrieved at 6 and 26 weeks. Material degradation for Bio-Oss® was marginal, starting with 57% material remnants at implantation, 49% at 6 weeks, and 35% at 26 weeks, respectively. In contrast, CPC-PLGA and CPC-PLGA-CMC showed significant material degradation, starting with 100% material remnants at implantation, 56 and 78% at 6 weeks, and 8 and 21% at 26 weeks. Bone formation showed to be rapid for Bio-Oss®, with 24% at 6 weeks, and a similar value (27%) at 26 weeks. Both CPC-PLGA and CPC-PLGA-CMC showed a continuous temporal increase in bone formation, with 13 and 6% at 6 weeks, and 44 and 32% at 26 weeks. This study showed that CPC-PLGA induces favorable bone responses with >90% degradation and >40% new bone formation after an implantation period of 26 weeks.
Collapse
|
20
|
Babo PS, Cai X, Plachokova AS, Reis RL, Jansen JA, Gomes ME, Walboomers XF. The Role of a Platelet Lysate-Based Compartmentalized System as a Carrier of Cells and Platelet-Origin Cytokines for Periodontal Tissue Regeneration. Tissue Eng Part A 2016; 22:1164-1175. [DOI: 10.1089/ten.tea.2016.0226] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Pedro S. Babo
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Taipas, Portugal
| | - Xinjie Cai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Adelina S. Plachokova
- Department of Implantology and Periodontology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rui L. Reis
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Taipas, Portugal
| | - John A. Jansen
- Department of Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Manuela E. Gomes
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Taipas, Portugal
| | - X. Frank Walboomers
- Department of Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
21
|
Babo PS, Carvalho PP, Santo VE, Faria S, Gomes ME, Reis RL. Assessment of bone healing ability of calcium phosphate cements loaded with platelet lysate in rat calvarial defects. J Biomater Appl 2016; 31:637-649. [DOI: 10.1177/0885328216669474] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Injectable calcium phosphate cements have been used as a valid alternative to autologous bone grafts for bone augmentation with the additional advantage of enabling minimally invasive implantation procedures and for perfectly fitting the tissue defect. Nevertheless, they have low biodegradability and lack adequate biochemical signaling to promote bone healing and remodeling. In previous in vitro studies, we observed that the incorporation of platelet lysate directly into the cement paste or loaded in hyaluronic acid microspheres allowed to modulate the cement degradation and the in vitro expression of osteogenic markers in seeded human adipose derived stem cells. The present study aimed at investigating the possible effect of this system in new bone formation when implanted in calvarial bilateral defects in rats. Different formulations were assessed, namely plain calcium phosphate cements, calcium phosphate cements loaded with human platelet lysate, hybrid injectable formulations composed of the calcium phosphate cement incorporating hyaluronin acid non-loaded microparticles (20% hyaluronin acid) or with particles loaded with platelet lysate. The degradability and new bone regrowth were evaluated in terms of mineral volume in the defect, measured by micro-computed tomography and histomorphometric analysis upon 4, 8 and 12 weeks of implantation. We observed that the incorporation of hyaluronin acid microspheres induced an overly rapid cement degradation, impairing the osteoconductive properties of the cement composites. Moreover, the incorporation of platelet lysate induced higher bone healing than the materials without platelet lysate, up to four weeks after surgery. Nevertheless, this effect was not found to be significant when compared to the one observed in the sham-treated group.
Collapse
Affiliation(s)
- Pedro S Babo
- 3B’s Research Group – Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Pedro P Carvalho
- 3B’s Research Group – Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Vítor E Santo
- 3B’s Research Group – Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Susana Faria
- CMAT – Centre of Mathematics, Department of Mathematics and Applications, University of Minho, Guimarães, Portugal
| | - Manuela E Gomes
- 3B’s Research Group – Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B’s Research Group – Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
22
|
Babo PS, Reis RL, Gomes ME. Production and characterization of hyaluronic acid microparticles for the controlled delivery of growth factors using a spray/dehydration method. J Biomater Appl 2016; 31:693-707. [DOI: 10.1177/0885328216669475] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Hyaluronic acid is the main polysaccharide present in the connective tissue. Besides its structural function as backbone of the extracellular matrix, hyaluronic acid plays staple roles in several biological processes including the modulation of inflammation and wound healing processes. The application of hyaluronic acid in regenerative medicine, either as cells and/or drug/growth factors delivery vehicles, relies on its ability to be cross-linked using a plethora of reactions, producing stable hydrogels. In this work, we propose a novel method for the production of hyaluronic acid microparticles that presents several advantages over others that have been used. Basically, droplets of hyaluronic acid solution produced with a nozzle are collected in an isopropanol dehydration bath, and stabilized after crosslinking with adipic acid dihydrazide, using a cabodiimide-based chemistry. The size and morphology of the hyaluronic acid microparticles produced by this method varied with the molecular weight and concentration of the hyaluronic acid solution, the nozzle chamber pressure, the distance between the nozzle and the crosslinking solution, and the number of crosslinking steps. The degree of crosslinking of the hyaluronic acid microparticles produced was tunable and allowed to control the rate of the degradation promoted by hyaluronidase. Moreover, the particles were loaded with platelet lysate, a hemoderivative rich in cytokines with interest for regenerative medicine applications. The hyaluronic acid microparticles showed potential to bind selectively to positively charged molecules, as the factors present in the platelet lysate. It is envisioned that these can be further released in a sustained manner by ion exchange or by the degradation of the hyaluronic acid microparticles matrix promoted by extracellular matrix remodeling.
Collapse
Affiliation(s)
- Pedro S Babo
- 3B's Research Group – Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group – Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuela E Gomes
- 3B's Research Group – Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
23
|
Babo PS, Santo VE, Gomes ME, Reis RL. Development of an Injectable Calcium Phosphate/Hyaluronic Acid Microparticles System for Platelet Lysate Sustained Delivery Aiming Bone Regeneration. Macromol Biosci 2016; 16:1662-1677. [DOI: 10.1002/mabi.201600141] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/24/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Pedro S. Babo
- 3B's Research Group; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark Zona Industrial da Gandra 4805-017 Barco GMR Portugal
| | - Vítor E. Santo
- 3B's Research Group; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark Zona Industrial da Gandra 4805-017 Barco GMR Portugal
| | - Manuela E. Gomes
- 3B's Research Group; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark Zona Industrial da Gandra 4805-017 Barco GMR Portugal
| | - Rui L. Reis
- 3B's Research Group; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark Zona Industrial da Gandra 4805-017 Barco GMR Portugal
| |
Collapse
|
24
|
Ostrowski N, Roy A, Kumta PN. Magnesium Phosphate Cement Systems for Hard Tissue Applications: A Review. ACS Biomater Sci Eng 2016; 2:1067-1083. [PMID: 33445235 DOI: 10.1021/acsbiomaterials.6b00056] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the search for more ideal bone graft materials for clinical application, the investigation into ceramic bone cements or bone void filler is ongoing. Calcium phosphate-based materials have been widely explored and implemented for medical use in bone defect repair. Such materials are an excellent choice because the implant mimics the natural chemistry of mineralized bone matrix and in injectable cement form, can be implemented with relative ease. However, of the available calcium phosphate cements, none fully meet the ideal standard, displaying low strengths and acidic setting reactions or slow setting times, and are often very slow to resorb in vivo. The study of magnesium phosphates for bone cements is a relatively new field compared to traditional calcium phosphate bone cements. Although reports are more limited, preliminary studies have shown that magnesium phosphate cements (MPC) may be a strong alternative to calcium phosphates for certain applications. The goal of the present publication is to review the history and achievements of magnesium phosphate-based cements or bone void fillers to date, assess how these cements compare with calcium phosphate competitors and to analyze the future directions and outlook for the research, development, and clinical implementation of these cements.
Collapse
Affiliation(s)
- Nicole Ostrowski
- Swanson School of Engineering, University of Pittsburgh, 815C Benedum Hall, 3700 O'Hara Street, Pittsburgh, Pennsylvania 15261, United States
| | - Abhijit Roy
- Swanson School of Engineering, University of Pittsburgh, 815C Benedum Hall, 3700 O'Hara Street, Pittsburgh, Pennsylvania 15261, United States
| | - Prashant N Kumta
- Swanson School of Engineering, University of Pittsburgh, 815C Benedum Hall, 3700 O'Hara Street, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
25
|
Liu X, Yang L, Li J, Zhang Y, Xu W, Ren Y, Liu B, Yang B, Li B. GS/DBM/PLA porous composite biomaterial for the treatment of infective femoral condyle defect in rats. Exp Ther Med 2016; 11:2107-2116. [PMID: 27284292 PMCID: PMC4887764 DOI: 10.3892/etm.2016.3219] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 11/25/2015] [Indexed: 11/06/2022] Open
Abstract
A bone defect resulting from open bone trauma may easily become infected; however, the administration of efficacious systemic antibiotics cannot be performed at safe levels. Previous studies have investigated anti-infective biomaterials that incorporate into bone and facilitate the direct application of high-concentration local antibiotics. In the present study, the effect of a novel porous composite with gentamicin sulfate (GS) in treating infected femoral condyle defects was investigated using a rat model. A novel porous composite biomaterial was prepared based on a supercritical carbon dioxide fluid technique that combined GS, demineralized bone matrix (DBM) and polylactic acid (PLA). A rat femoral condyle fracture model of infection was established. The GS/DBM/PLA composite biomaterial was implanted and its physicochemical characteristics, biocompatibility and ability to facilitate repair of infected bone defect were assessed. The GS/DBM/PLA composite biomaterial maintained the antibiotic activity of GS, with good anti-compression strength, porosity and biocompatibility. The results of the animal experiments indicated that the GS/DBM/PLA composite biomaterial exerted marked anti-infective effects and facilitated bone defect repair, while simultaneously controlling infection. Porous GS/DBM/PLA is therefore a promising composite biomaterial for use in bone tissue engineering.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; China Institute for Radiation Protection, Taiyuan, Shanxi 030006, P.R. China
| | - Lin Yang
- Department of Human Anatomy, Zunyi Medical College, Zhuhai, Guangdong 519041, P.R. China
| | - Jing Li
- China Institute for Radiation Protection, Taiyuan, Shanxi 030006, P.R. China
| | - Yuming Zhang
- China Institute for Radiation Protection, Taiyuan, Shanxi 030006, P.R. China
| | - Weijun Xu
- China Institute for Radiation Protection, Taiyuan, Shanxi 030006, P.R. China
| | - Yan Ren
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Biwang Liu
- Department of Traditional Chinese Medicine, Shanxi University, Taiyuan, Shanxi 030001, P.R. China
| | - Biao Yang
- China Institute for Radiation Protection, Taiyuan, Shanxi 030006, P.R. China
| | - Baoxing Li
- Department of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; China Institute for Radiation Protection, Taiyuan, Shanxi 030006, P.R. China
| |
Collapse
|
26
|
Zhang J, Liu W, Gauthier O, Sourice S, Pilet P, Rethore G, Khairoun K, Bouler JM, Tancret F, Weiss P. A simple and effective approach to prepare injectable macroporous calcium phosphate cement for bone repair: Syringe-foaming using a viscous hydrophilic polymeric solution. Acta Biomater 2016; 31:326-338. [PMID: 26631875 DOI: 10.1016/j.actbio.2015.11.055] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/28/2015] [Accepted: 11/25/2015] [Indexed: 11/18/2022]
Abstract
In this study, we propose a simple and effective strategy to prepare injectable macroporous calcium phosphate cements (CPCs) by syringe-foaming via hydrophilic viscous polymeric solution, such as using silanized-hydroxypropyl methylcellulose (Si-HPMC) as a foaming agent. The Si-HPMC foamed CPCs demonstrate excellent handling properties such as injectability and cohesion. After hardening the foamed CPCs possess hierarchical macropores and their mechanical properties (Young's modulus and compressive strength) are comparable to those of cancellous bone. Moreover, a preliminary in vivo study in the distal femoral sites of rabbits was conducted to evaluate the biofunctionality of this injectable macroporous CPC. The evidence of newly formed bone in the central zone of implantation site indicates the feasibility and effectiveness of this foaming strategy that will have to be optimized by further extensive animal experiments. STATEMENT OF SIGNIFICANCE A major challenge in the design of biomaterial-based injectable bone substitutes is the development of cohesive, macroporous and self-setting calcium phosphate cement (CPC) that enables rapid cell invasion with adequate initial mechanical properties without the use of complex processing and additives. Thus, we propose a simple and effective strategy to prepare injectable macroporous CPCs through syringe-foaming using a hydrophilic viscous polymeric solution (silanized-hydroxypropyl methylcellulose, Si-HPMC) as a foaming agent, that simultaneously meets all the aforementioned aims. Evidence from our in vivo studies shows the existence of newly formed bone within the implantation site, indicating the feasibility and effectiveness of this foaming strategy, which could be used in various CPC systems using other hydrophilic viscous polymeric solutions.
Collapse
Affiliation(s)
- Jingtao Zhang
- Université de Nantes, INSERM UMRS 791, Laboratoire d'Ingénierie Ostéo-Articulaire et Dentaire, 1 place Alexis Ricordeau, BP 84215, 44042 Nantes Cedex 1, France; Université de Nantes, Polytech Nantes, Institut des Matériaux Jean Rouxel, CNRS UMR 6502, Rue Christian Pauc, BP 50609, 44306 Nantes Cedex 3, France
| | - Weizhen Liu
- Université de Nantes, INSERM UMRS 791, Laboratoire d'Ingénierie Ostéo-Articulaire et Dentaire, 1 place Alexis Ricordeau, BP 84215, 44042 Nantes Cedex 1, France; Université de Nantes, Polytech Nantes, Institut des Matériaux Jean Rouxel, CNRS UMR 6502, Rue Christian Pauc, BP 50609, 44306 Nantes Cedex 3, France
| | - Olivier Gauthier
- ONIRIS - Ecole Nationale Veterinaire de Nantes, Atlanpole-La Chantrerie, BP 40706, 44307 Nantes cedex 3, France
| | - Sophie Sourice
- Université de Nantes, INSERM UMRS 791, Laboratoire d'Ingénierie Ostéo-Articulaire et Dentaire, 1 place Alexis Ricordeau, BP 84215, 44042 Nantes Cedex 1, France
| | - Paul Pilet
- Université de Nantes, INSERM UMRS 791, Laboratoire d'Ingénierie Ostéo-Articulaire et Dentaire, 1 place Alexis Ricordeau, BP 84215, 44042 Nantes Cedex 1, France; CHU de Nantes, Nantes University Hospital, PHU 4 OTONN, 1 Pl A. Ricordeau Nantes, France
| | - Gildas Rethore
- Université de Nantes, INSERM UMRS 791, Laboratoire d'Ingénierie Ostéo-Articulaire et Dentaire, 1 place Alexis Ricordeau, BP 84215, 44042 Nantes Cedex 1, France; CHU de Nantes, Nantes University Hospital, PHU 4 OTONN, 1 Pl A. Ricordeau Nantes, France
| | - Khalid Khairoun
- Université de Nantes, INSERM UMRS 791, Laboratoire d'Ingénierie Ostéo-Articulaire et Dentaire, 1 place Alexis Ricordeau, BP 84215, 44042 Nantes Cedex 1, France
| | - Jean-Michel Bouler
- Université de Nantes, CEISAM, CNRS UMR 6230, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Franck Tancret
- Université de Nantes, Polytech Nantes, Institut des Matériaux Jean Rouxel, CNRS UMR 6502, Rue Christian Pauc, BP 50609, 44306 Nantes Cedex 3, France
| | - Pierre Weiss
- Université de Nantes, INSERM UMRS 791, Laboratoire d'Ingénierie Ostéo-Articulaire et Dentaire, 1 place Alexis Ricordeau, BP 84215, 44042 Nantes Cedex 1, France; CHU de Nantes, Nantes University Hospital, PHU 4 OTONN, 1 Pl A. Ricordeau Nantes, France.
| |
Collapse
|
27
|
Roy A, Jhunjhunwala S, Bayer E, Fedorchak M, Little SR, Kumta PN. Porous calcium phosphate-poly (lactic-co-glycolic) acid composite bone cement: A viable tunable drug delivery system. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 59:92-101. [DOI: 10.1016/j.msec.2015.09.081] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/23/2015] [Indexed: 11/15/2022]
|
28
|
van Houdt CIA, Preethanath RS, van Oirschot BAJA, Zwarts PHW, Ulrich DJO, Anil S, Jansen JA, van den Beucken JJJP. Toward accelerated bone regeneration by altering poly(D,L-lactic-co-glycolic) acid porogen content in calcium phosphate cement. J Biomed Mater Res A 2015; 104:483-92. [PMID: 26454146 DOI: 10.1002/jbm.a.35584] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 09/26/2015] [Accepted: 10/08/2015] [Indexed: 01/18/2023]
Abstract
This work aimed to compare in vitro degradation of dense PLGA microspheres and milled PLGA particles as porogens within CPC, considering that the manufacturing of milled PLGA is more cost-effective when compared with PLGA microspheres. Additionally, we aimed to examine the effect of porogen amount within CPC/PLGA on degradation and bone formation. Our in vitro results showed no differences between both forms of PLGA particles (as porogens in CPC; spherical for microspheres, irregular for milled) regarding morphology, porosity, and degradation. Using milled PLGA as porogens within CPC/PLGA, we evaluated the effect of porogen amount on degradation and bone forming capacity in vivo. Titanium landmarks surrounded by CPC/PLGA with 30 and 50 wt % PLGA, were implanted in forty femoral bone defects of twenty male Wistar rats. Histomorphometrical results showed a significant temporal decrease in the amount of CPC, for both formulas, and confirmed that 50 wt % PLGA degrades faster than 30 wt%, and allows for a 1.5-fold higher amount of newly formed bone. Taken together, this study demonstrated that (i) milled PLGA particles perform equal to PLGA microspheres, and (ii) tuning of the PLGA content in CPC/PLGA is a feasible approach to leverage material degradation and bone formation.
Collapse
Affiliation(s)
- C I A van Houdt
- Department of Biomaterials, Radboudumc university medical center, Nijmegen, The Netherlands
| | - R S Preethanath
- Department of Biomaterials, Radboudumc university medical center, Nijmegen, The Netherlands.,Department of Periodontics and Community Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - B A J A van Oirschot
- Department of Biomaterials, Radboudumc university medical center, Nijmegen, The Netherlands
| | - P H W Zwarts
- Department of Biomaterials, Radboudumc university medical center, Nijmegen, The Netherlands
| | - D J O Ulrich
- Department of Plastic and Reconstructive Surgery, Radboudumc, Nijmegen, The Netherlands
| | - S Anil
- Department of Periodontics and Community Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - J A Jansen
- Department of Biomaterials, Radboudumc university medical center, Nijmegen, The Netherlands
| | | |
Collapse
|
29
|
Huang D, Niu L, Wei Y, Guo M, Zuo Y, Zou Q, Hu Y, Chen W, Li Y. Interfacial and biological properties of the gradient coating on polyamide substrate for bone substitute. J R Soc Interface 2015; 11:rsif.2014.0101. [PMID: 25121648 DOI: 10.1098/rsif.2014.0101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Fabrication of bioactive and mechanical matched bone substitutes is crucial for clinical application in bone defects repair. In this study, nano-hydroxyapatite/polyamide (nHA/PA) composite was coated on injection-moulded PA by a chemical corrosion and phase-inversion technique. The shear strength, gradient composition and pore structure of the bioactive coating were characterized. Osteoblast-like MG63 cells were cultured on pure PA and composite-coated PA samples. The cells' adhesion, spread and proliferation were determined using MTT assay and microscopy. The results confirm that the samples with the nHA/PA composite coating have better cytocompatibility and have no negative effects on cells. To investigate the in vivo biocompatibility, both pure PA and composite-coated PA cylinders were implanted in the trochlea of rabbit femurs and studied histologically, and the bonding ability with bone were determined using push-out tests. The results show that composite-coated implants exhibit better biocompatibility and the shear strength of the composite-coated implants with host bone at 12 weeks can reach 3.49±0.42 MPa, which is significantly higher than that of pure PA implants. These results indicate that composite-coated PA implants have excellent biocompatibility and bonding abilities with host bone and they have the potential to be applied in repair of bone defects.
Collapse
Affiliation(s)
- Di Huang
- Department of Biomedical Engineering, Shanxi Key Laboratory of Material Strength and Structural Impact, College of Mechanics, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Lulu Niu
- Department of Biomedical Engineering, Shanxi Key Laboratory of Material Strength and Structural Impact, College of Mechanics, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Yan Wei
- Department of Biomedical Engineering, Shanxi Key Laboratory of Material Strength and Structural Impact, College of Mechanics, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Meiqing Guo
- Department of Biomedical Engineering, Shanxi Key Laboratory of Material Strength and Structural Impact, College of Mechanics, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Yi Zuo
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Qin Zou
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Yinchun Hu
- Department of Biomedical Engineering, Shanxi Key Laboratory of Material Strength and Structural Impact, College of Mechanics, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Weiyi Chen
- Department of Biomedical Engineering, Shanxi Key Laboratory of Material Strength and Structural Impact, College of Mechanics, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Yubao Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| |
Collapse
|
30
|
Bayer EA, Gottardi R, Fedorchak MV, Little SR. The scope and sequence of growth factor delivery for vascularized bone tissue regeneration. J Control Release 2015; 219:129-140. [PMID: 26264834 DOI: 10.1016/j.jconrel.2015.08.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/01/2015] [Accepted: 08/03/2015] [Indexed: 12/21/2022]
Abstract
Bone regeneration is a complex process, that in vivo, requires the highly coordinated presentation of biochemical cues to promote the various stages of angiogenesis and osteogenesis. Taking inspiration from the natural healing process, a wide variety of growth factors are currently being released within next generation tissue engineered scaffolds (in a variety of ways) in order to heal non-union fractures and bone defects. This review will focus on the delivery of multiple growth factors to the bone regeneration niche, specifically 1) dual growth factor delivery signaling and crosstalk, 2) the importance of growth factor timing and temporal separation, and 3) the engineering of delivery systems that allow for temporal control over presentation of soluble growth factors. Alternative methods for growth factor presentation, including the use of gene therapy and platelet-rich plasma scaffolds, are also discussed.
Collapse
Affiliation(s)
- E A Bayer
- The University of Pittsburgh, Department of Bioengineering, USA; The University of Pittsburgh, The McGowan Institute for Regenerative Medicine, USA
| | - R Gottardi
- The University of Pittsburgh, Department of Chemical Engineering, USA; The University of Pittsburgh, Department of Orthopedic Surgery, USA; The University of Pittsburgh, The McGowan Institute for Regenerative Medicine, USA; RiMED Foundation, Palermo, Italy
| | - M V Fedorchak
- The University of Pittsburgh, Department of Bioengineering, USA; The University of Pittsburgh, Department of Chemical Engineering, USA; The University of Pittsburgh, Department of Ophthalmology, USA; The University of Pittsburgh, The McGowan Institute for Regenerative Medicine, USA
| | - S R Little
- The University of Pittsburgh, Department of Bioengineering, USA; The University of Pittsburgh, Department of Chemical Engineering, USA; The University of Pittsburgh, Department of Immunology, USA; The University of Pittsburgh, The McGowan Institute for Regenerative Medicine, USA.
| |
Collapse
|
31
|
Perez RA, Shin SH, Han CM, Kim HW. Bioactive injectables based on calcium phosphates for hard tissues: A recent update. Tissue Eng Regen Med 2015. [DOI: 10.1007/s13770-015-0096-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
32
|
Uskoković V. Nanostructured platforms for the sustained and local delivery of antibiotics in the treatment of osteomyelitis. Crit Rev Ther Drug Carrier Syst 2015; 32:1-59. [PMID: 25746204 PMCID: PMC4406243 DOI: 10.1615/critrevtherdrugcarriersyst.2014010920] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This article provides a critical view of the current state of the development of nanoparticulate and other solid-state carriers for the local delivery of antibiotics in the treatment of osteomyelitis. Mentioned are the downsides of traditional means for treating bone infection, which involve systemic administration of antibiotics and surgical debridement, along with the rather imperfect local delivery options currently available in the clinic. Envisaged are more sophisticated carriers for the local and sustained delivery of antimicrobials, including bioresorbable polymeric, collagenous, liquid crystalline, and bioglass- and nanotube-based carriers, as well as those composed of calcium phosphate, the mineral component of bone and teeth. A special emphasis is placed on composite multifunctional antibiotic carriers of a nanoparticulate nature and on their ability to induce osteogenesis of hard tissues demineralized due to disease. An ideal carrier of this type would prevent the long-term, repetitive, and systemic administration of antibiotics and either minimize or completely eliminate the need for surgical debridement of necrotic tissue. Potential problems faced by even hypothetically "perfect" antibiotic delivery vehicles are mentioned too, including (i) intracellular bacterial colonies involved in recurrent, chronic osteomyelitis; (ii) the need for mechanical and release properties to be adjusted to the area of surgical placement; (iii) different environments in which in vitro and in vivo testings are carried out; (iv) unpredictable synergies between drug delivery system components; and (v) experimental sensitivity issues entailing the increasing subtlety of the design of nanoplatforms for the controlled delivery of therapeutics.
Collapse
Affiliation(s)
- Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, Richard and Loan Hill Department of Bioengineering, College of Medicine, University of Illinois at Chicago, 851 South Morgan St, #205 Chicago, Illinois, 60607-7052
| |
Collapse
|
33
|
El-Fiqi A, Kim JH, Perez RA, Kim HW. Novel bioactive nanocomposite cement formulations with potential properties: incorporation of the nanoparticle form of mesoporous bioactive glass into calcium phosphate cements. J Mater Chem B 2015; 3:1321-1334. [DOI: 10.1039/c4tb01634c] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel calcium phosphate cements incorporated with bioactive glass nanoparticles demonstrate excellent properties for bone injectables.
Collapse
Affiliation(s)
- Ahmed El-Fiqi
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine
- Dankook University
- Republic of Korea
- Institute of Tissue Regeneration Engineering (ITREN)
- Dankook University
| | - Joong-Hyun Kim
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine
- Dankook University
- Republic of Korea
- Institute of Tissue Regeneration Engineering (ITREN)
- Dankook University
| | - Roman A. Perez
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine
- Dankook University
- Republic of Korea
- Institute of Tissue Regeneration Engineering (ITREN)
- Dankook University
| | - Hae-Won Kim
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine
- Dankook University
- Republic of Korea
- Institute of Tissue Regeneration Engineering (ITREN)
- Dankook University
| |
Collapse
|
34
|
Effects of adding resorbable phosphate glass fibres and PLA to calcium phosphate bone cements. J Appl Biomater Funct Mater 2014; 12:203-9. [PMID: 24744228 DOI: 10.5301/jabfm.5000167] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2013] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Calcium phosphate cements (CPCs), due to their biocompatibility and degradation properties, are being widely investigated as a replacement to more commonly used polymethylmethacrylate (PMMA) for vertebroplasty. CPCs have shown the potential to be replaced by host bone tissue during the healing/remodelling process. However, brittleness and comparatively low strength restrict the use of CPC in load-bearing applications. Although porous CPC can integrate with bone over time, slow degradation profiles and poor interconnectivity between pores restricts osseointegration to the top layer of CPC only. METHODS Polylactic acid (PLA) and phosphate glass fibres (PGFs) were incorporated in a CPC matrix to overcome the problem of inherent brittleness and limited osseointegration. RESULTS Incorporation of PLA and PGFs within CPC was successful in achieving a much less brittle CPC matrix without affecting the mechanical properties of CPC. The area under the stress-strain curve showed that the total energy to failure of the CPC hybrid was significantly greater than that of the CPC control. CONCLUSIONS The methodology adopted here to add PLA within the CPC matrix may also allow for incorporation of PLA cross-linked biochemicals. Micrographic studies revealed that it was possible to confer control over pore size, shape and interconnectivity without negatively affecting the mechanical properties of the cement. This tailorable porosity could potentially lead to better osseointegration within CPC.
Collapse
|
35
|
Chung MF, Chia WT, Liu HY, Hsiao CW, Hsiao HC, Yang CM, Sung HW. Inflammation-induced drug release by using a pH-responsive gas-generating hollow-microsphere system for the treatment of osteomyelitis. Adv Healthc Mater 2014; 3:1854-61. [PMID: 24789379 DOI: 10.1002/adhm.201400158] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/15/2014] [Indexed: 01/10/2023]
Abstract
In the conventional treatment of osteomyelitis, the penetration of antibiotics into the infected bone is commonly poor. To ensure that the local antibiotic concentration is adequate, this work develops an injectable calcium phosphate (CP) cement in which is embedded pH-responsive hollow microspheres (HMs) that can control the release of a drug according to the local pH. The HMs are fabricated using a microfluidic device, with a shell of poly(D,L-lactic-co-glycolic acid) (PLGA) and an aqueous core that contains vancomycin (Van) and NaHCO3. At neutral pH, the CP/HM cement elutes a negligible concentration of the drug. In an acidic environment, the NaHCO3 that is encapsulated in the HMs reacts with the acid rapidly to generate CO2 bubbles, disrupting the PLGA shells and thereby releasing Van locally in excess of a therapeutic threshold. The feasibility of using this CP/HM cement to treat osteomyelitis is studied using a rabbit model. Analytical results reveal that the CP/HM cement provides highly effective local antibacterial activity. Histological examination further verifies the efficacy of the treatment by the CP/HM cement. The above findings suggest that the CP/HM cement is a highly efficient system for the local delivery of antibiotics in the treatment of osteomyelitis.
Collapse
Affiliation(s)
- Ming-Fan Chung
- Department of Chemical Engineering and Institute of Biomedical Engineering; National Tsing Hua University; Hsinchu 30013 Taiwan ROC
| | - Wei-Tso Chia
- Department of Orthopedics; National Taiwan University, Hospital Hsinchu Branch; Hsinchu 30013 Taiwan ROC
| | - Hung-Yi Liu
- Department of Chemical Engineering and Institute of Biomedical Engineering; National Tsing Hua University; Hsinchu 30013 Taiwan ROC
| | - Chun-Wen Hsiao
- Department of Chemical Engineering and Institute of Biomedical Engineering; National Tsing Hua University; Hsinchu 30013 Taiwan ROC
| | - Hsu-Chan Hsiao
- Department of Chemical Engineering and Institute of Biomedical Engineering; National Tsing Hua University; Hsinchu 30013 Taiwan ROC
| | - Chih-Man Yang
- Department of Orthopedics; National Taiwan University, Hospital Hsinchu Branch; Hsinchu 30013 Taiwan ROC
| | - Hsing-Wen Sung
- Department of Chemical Engineering and Institute of Biomedical Engineering; National Tsing Hua University; Hsinchu 30013 Taiwan ROC
| |
Collapse
|
36
|
Prieto EM, Page JM, Harmata AJ, Guelcher SA. Injectable foams for regenerative medicine. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 6:136-54. [PMID: 24127230 PMCID: PMC3945605 DOI: 10.1002/wnan.1248] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/13/2013] [Accepted: 09/17/2013] [Indexed: 12/21/2022]
Abstract
The design of injectable biomaterials has attracted considerable attention in recent years. Many injectable biomaterials, such as hydrogels and calcium phosphate cements (CPCs), have nanoscale pores that limit the rate of cellular migration and proliferation. While introduction of macroporosity has been suggested to increase cellular infiltration and tissue healing, many conventional methods for generating macropores often require harsh processing conditions that preclude their use in injectable foams. In recent years, processes such as porogen leaching, gas foaming, and emulsion-templating have been adapted to generate macroporosity in injectable CPCs, hydrogels, and hydrophobic polymers. While some of the more mature injectable foam technologies have been evaluated in clinical trials, there are challenges remaining to be addressed, such as the biocompatibility and ultimate fate of the sacrificial phase used to generate pores within the foam after it sets in situ. Furthermore, while implantable scaffolds can be washed extensively to remove undesirable impurities, all of the components required to synthesize injectable foams must be injected into the defect. Thus, every compound in the foam must be biocompatible and noncytotoxic at the concentrations utilized. As future research addresses these critical challenges, injectable macroporous foams are anticipated to have an increasingly significant impact on improving patient outcomes for a number of clinical procedures.
Collapse
Affiliation(s)
- Edna M Prieto
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | | | | | | |
Collapse
|
37
|
Ishikawa K. Calcium Phosphate Cement. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2014. [DOI: 10.1007/978-3-642-53980-0_7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
38
|
Dorozhkin SV. Self-setting calcium orthophosphate formulations. J Funct Biomater 2013; 4:209-311. [PMID: 24956191 PMCID: PMC4030932 DOI: 10.3390/jfb4040209] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 01/08/2023] Open
Abstract
In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are bioactive and biodegradable grafting bioceramics in the form of a powder and a liquid. After mixing, both phases form pastes, which set and harden forming either a non-stoichiometric calcium deficient hydroxyapatite or brushite. Since both of them are remarkably biocompartible, bioresorbable and osteoconductive, self-setting calcium orthophosphate formulations appear to be promising bioceramics for bone grafting. Furthermore, such formulations possess excellent molding capabilities, easy manipulation and nearly perfect adaptation to the complex shapes of bone defects, followed by gradual bioresorption and new bone formation. In addition, reinforced formulations have been introduced, which might be described as calcium orthophosphate concretes. The discovery of self-setting properties opened up a new era in the medical application of calcium orthophosphates and many commercial trademarks have been introduced as a result. Currently such formulations are widely used as synthetic bone grafts, with several advantages, such as pourability and injectability. Moreover, their low-temperature setting reactions and intrinsic porosity allow loading by drugs, biomolecules and even cells for tissue engineering purposes. In this review, an insight into the self-setting calcium orthophosphate formulations, as excellent bioceramics suitable for both dental and bone grafting applications, has been provided.
Collapse
|
39
|
Matsumoto G, Sugita Y, Kubo K, Yoshida W, Ikada Y, Sobajima S, Neo M, Maeda H, Kinoshita Y. Gelatin powders accelerate the resorption of calcium phosphate cement and improve healing in the alveolar ridge. J Biomater Appl 2013; 28:1316-24. [PMID: 24105428 DOI: 10.1177/0885328213507299] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The aim of this study was to show the effectiveness of combining calcium phosphate cement and gelatin powders to promote bone regeneration in the canine mandible. We mixed gelatin powders with calcium phosphate cement to create a macroporous composite. In four beagle dogs, two saddle-type bone defects were created on each side of the mandible, and calcium phosphate cement alone or calcium phosphate cement containing composite gelatin powders was implanted in each of the defects. After a healing period of six months, mandibles were removed for µCT and histological analyses. The µCT and histological analyses showed that at experimental sites at which calcium phosphate cement alone had been placed new bone had formed only around the periphery of the residual calcium phosphate cement and that there had been little or no ingrowth into the calcium phosphate cement. On the other hand, at experimental sites at which calcium phosphate cement containing composite gelatin powders had been placed, we observed regenerated new bone in the interior of the residual calcium phosphate cement as well as around its periphery. The amount of resorption of calcium phosphate cement and bone regeneration depended on the mixing ratio of gelatin powders to calcium phosphate cement. New bone replacement was significantly better in the sites treated with calcium phosphate cement containing composite gelatin powders than in those treated with calcium phosphate cement alone.
Collapse
Affiliation(s)
- Goichi Matsumoto
- 1Division of Oral Surgery, Kanagawa Dental University, Yokohama Clinical Education Center, Yokohama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Recent developments of functional scaffolds for craniomaxillofacial bone tissue engineering applications. ScientificWorldJournal 2013; 2013:863157. [PMID: 24163634 PMCID: PMC3791836 DOI: 10.1155/2013/863157] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 07/14/2013] [Indexed: 12/15/2022] Open
Abstract
Autogenous bone grafting remains a gold standard for the reconstruction critical-sized bone defects in the craniomaxillofacial region. Nevertheless, this graft procedure has several disadvantages such as restricted availability, donor-site morbidity, and limitations in regard to fully restoring the complicated three-dimensional structures in the craniomaxillofacial bone. The ultimate goal of craniomaxillofacial bone reconstruction is the regeneration of the physiological bone that simultaneously fulfills both morphological and functional restorations. Developments of tissue engineering in the last two decades have brought such a goal closer to reality. In bone tissue engineering, the scaffolds are fundamental, elemental and mesenchymal stem cells/osteoprogenitor cells and bioactive factors. A variety of scaffolds have been developed and used as spacemakers, biodegradable bone substitutes for transplanting to the new bone, matrices of drug delivery system, or supporting structures enhancing adhesion, proliferation, and matrix production of seeded cells according to the circumstances of the bone defects. However, scaffolds to be clinically completely satisfied have not been developed yet. Development of more functional scaffolds is required to be applied widely to cranio-maxillofacial bone defects. This paper reviews recent trends of scaffolds for crania-maxillofacial bone tissue engineering, including our studies.
Collapse
|
41
|
van de Watering FCJ, Laverman P, Cuijpers VM, Gotthardt M, Bronkhorst EM, Boerman OC, Jansen JA, van den Beucken JJJP. The biological performance of injectable calcium phosphate/PLGA cement in osteoporotic rats. Biomed Mater 2013; 8:035012. [DOI: 10.1088/1748-6041/8/3/035012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
42
|
Félix Lanao RP, Bosco R, Leeuwenburgh SCG, Kersten-Niessen MJF, Wolke JGC, van den Beucken JJJP, Jansen JA. RANKL delivery from calcium phosphate containing PLGA microspheres. J Biomed Mater Res A 2013; 101:3123-30. [PMID: 23529979 DOI: 10.1002/jbm.a.34623] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/20/2012] [Accepted: 01/22/2013] [Indexed: 11/10/2022]
Abstract
Ideally, bone substitute materials would undergo cell-mediated degradation during the remodeling process of the host bone tissue while being replaced by newly formed bone. In an attempt to exploit the capacity of Receptor Activator of Nuclear factor Kappa-B Ligand (RANKL) to stimulate osteoclast-like cells formation, this study explored different loading methods for RANKL in injectable calcium phosphate cement (CPC) and the effect on release and biological activity. RANKL was loaded via the liquid phase of CPC by adsorption onto or incorporation into poly(lactic-co-glycolic acid) (PLGA) microspheres with two different morphologies (i.e., hollow and dense), which were subsequently embedded in CPC. As controls nonembedded PLGA-microspheres were used as well as plain CPC scaffolds with RANKL adsorbed onto the surface. RANKL release and activity were evaluated by Reverse Phase High-Performance Liquid Chromatography (RP-HPLC) and osteoclast-like cells formation in cell culture experiments. Results indicated that sustained release of active RANKL can be achieved upon RANKL adsorption to PLGA microspheres, whereas inactive RANKL was released from CPC-PLGA formulations with RANKL incorporated within the microspheres or within the liquid phase of the CPC. These results demonstrate that effective loading of RANKL in injectable CPC is only possible via adsorption to PLGA microspheres, which are subsequently embedded within the CPC-matrix.
Collapse
Affiliation(s)
- Rosa P Félix Lanao
- Department of Biomaterials, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
43
|
Link DP, Gardel LS, Correlo VM, Gomes ME, Reis RL. Osteogenic properties of starch poly(ε-caprolactone) (SPCL) fiber meshes loaded with osteoblast-like cells in a rat critical-sized cranial defect. J Biomed Mater Res A 2013; 101:3059-65. [PMID: 23505136 DOI: 10.1002/jbm.a.34614] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 12/18/2012] [Accepted: 01/14/2013] [Indexed: 12/16/2022]
Abstract
Osteoblast-like cells together with a suitable scaffold can aid to the regeneration of bone defects. A suitable scaffold could be starch poly(ε-caprolactone) (SPCL) fiber meshes, which have shown a high potential to support bone formation in previous in vitro and in noncritical sized in vivo studies. The aim of this study was to assess the effect of these scaffolds alone or combined with osteoblast-like cells in the regeneration of a critical-sized cranial defect in male Fisher rats. Empty defects and defects filled with cell-free scaffolds were used as controls groups. Samples were analyzed by microcomputed tomography (micro-CT) and histological analyses. Histological analyses revealed that all study groups showed new bone formation from the defect edges toward the interior of the defects. In addition, bone was formed in the center of the scaffolds, especially in the groups containing preloaded osteoblast-like cells. Micro-CT reconstructions showed that bone formation increased over time and was enhanced with the inclusion of preloaded osteoblast-like cells compared with SPCL scaffolds alone. According to these results, the preloaded osteoblast-like cells contributed to the bone regeneration process in a critical-sized bone defect. Furthermore, SPCL fiber meshes proved to be an osteoconductive material to use for bone regeneration purposes.
Collapse
Affiliation(s)
- Dennis P Link
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | | | | | | |
Collapse
|
44
|
Wu TH, Hsu SH, Chang MH, Huang YY. Reducing scar formation by regulation of IL-1 and MMP-9 expression by using sustained release of prednisolone-loaded PDLL microspheres in a murine wound model. J Biomed Mater Res A 2012; 101:1165-72. [DOI: 10.1002/jbm.a.34413] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 06/09/2012] [Accepted: 07/25/2012] [Indexed: 01/04/2023]
|
45
|
Wang Y, Tran KK, Shen H, Grainger DW. Selective local delivery of RANK siRNA to bone phagocytes using bone augmentation biomaterials. Biomaterials 2012; 33:8540-7. [PMID: 22951320 DOI: 10.1016/j.biomaterials.2012.07.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/20/2012] [Indexed: 12/13/2022]
Abstract
Fracture healing and fracture fixation in the context of osteoporosis is extremely difficult. To inhibit osteoclast-induced bone resorption and associated implant loosening in this pathology, we describe a local delivery strategy to delivery RNA interfering technology to bone sites to target and down-regulate osteoclast formation and function. Resorbable polymer, poly(lactic-co-glycolic acid) (PLGA) microparticles were exploited as a passive phagocyte-targeting carrier to deliver RANK siRNA to both osteoclast precursors and osteoclasts - the professional phagocytes in bone. These natural phagocytes internalize micron-sized particles while most other non-targeted cells in bone cannot. PLGA-siRNA microparticles were dispersed within biomedical grade calcium-based injectable bone cement clinically used in osteoporosis as a bone augmentation biomaterial for fragility fracture prevention and fixation. siRNA released from this formulation in vitro retains bioactivity against the cell target, RANK, in cultured osteoclast precursor cells, inhibiting their progression toward the osteoclastic phenotype. These data support the proof-of-concept to utilize a clinically relevant approach to locally deliver siRNA to phagocytes in bone and improve fragility fracture healing in the context of osteoporosis. This local delivery system delivers siRNA therapeutics directly to osteoporosis sites from clinically familiar injected bone augmentation materials but could be extended to other injectable biomaterials for local siRNA delivery.
Collapse
Affiliation(s)
- Yuwei Wang
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112-5820, USA.
| | | | | | | |
Collapse
|
46
|
van de Watering FCJ, Molkenboer-Kuenen JDM, Boerman OC, van den Beucken JJJP, Jansen JA. Differential loading methods for BMP-2 within injectable calcium phosphate cement. J Control Release 2012; 164:283-90. [PMID: 22800584 DOI: 10.1016/j.jconrel.2012.07.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 07/05/2012] [Accepted: 07/08/2012] [Indexed: 10/28/2022]
Abstract
Clinical application of calcium phosphate cement (CPC; with incorporated polymeric porogens) in an injectable form implicates that loading methods for growth factors are limited. In view of this, the current study evaluated the in vitro and in vivo release kinetics of bone morphogenetic protein-2 (BMP-2) loaded on poly(d,l-lactic-co-glycolic acid) (PLGA) microparticles (CPC/PLGA), BMP-2 incorporation into the liquid phase of CPC (CPC/liquid), and BMP-2 absorbed to the surface of preset, porous CPC (CPC/surface) as a control via an in vitro release experiment and in vivo using microSPECT imaging with (125)I-labeled BMP-2. In addition, the osteoinductive capacity of scaffolds generated via the different BMP-2 loading methods was assessed in a subcutaneous rat model. Additional controls consisted of porous CPC scaffolds (CPC/porous) and CPC/PLGA (CPC/control) without BMP-2 loading. The results revealed that it is feasible to load BMP-2 into CPC via adsorption to PLGA-microparticles or the liquid phase of CPC, which resulted in a similar release profile over the course of 28 days, despite distinct protein distribution patterns. Compared to CPC-scaffolds with surface-loaded BMP-2, these loading methods showed a similar release profile, except for a significantly decreased burst release. As such, the observed osteoinductive capacity for only CPC-scaffolds with surface-loaded BMP-2 is likely to be related to this difference in burst release. It remains unclear to what extent the differential BMP-2 loading methods for injectable CPC can affect the biological response in a bone environment.
Collapse
Affiliation(s)
- Floor C J van de Watering
- Department of Biomaterials, Radboud University Nijmegen Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
47
|
Klijn RJ, van den Beucken JJ, Félix Lanao RP, Veldhuis G, Leeuwenburgh SC, Wolke JG, Meijer GJ, Jansen JA. Three Different Strategies to Obtain Porous Calcium Phosphate Cements: Comparison of Performance in a Rat Skull Bone Augmentation Model. Tissue Eng Part A 2012; 18:1171-82. [DOI: 10.1089/ten.tea.2011.0444] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Reinoud J. Klijn
- Department of Biomaterials, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | - Rosa P. Félix Lanao
- Department of Biomaterials, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | - Sander C. Leeuwenburgh
- Department of Biomaterials, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Joop G.C. Wolke
- Department of Biomaterials, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Gert J. Meijer
- Department of Implantology and Periodontology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - John A. Jansen
- Department of Biomaterials, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
48
|
He Y, Gao J, Li X, Ma Z, Zhang Y, Li M, Zhang Y, Wang X, Qiu H, Liu Y. Fabrication of Injectable Calcium Sulfate Bone Graft Material. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 21:1313-30. [PMID: 20534187 DOI: 10.1163/092050609x12517190417678] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Yongqiang He
- a School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Jianping Gao
- b School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiulan Li
- c Tianjin Orthopedic Hospital, Tianjin 300211, P. R. China
| | - Zhiqing Ma
- d School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Yang Zhang
- e Tianjin Orthopedic Hospital, Tianjin 300211, P. R. China
| | - Min Li
- f School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Yongli Zhang
- g Tianjin Huanhu Hospital, Tianjin 300060, P. R. China
| | - Xiaodong Wang
- h School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Haixia Qiu
- i School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Yu Liu
- j School of Science, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
49
|
Zhong ML, Chen XQ, Fan HS, Zhang XD. Incorporation of salmon calcitonin-loaded poly(lactide-co-glycolide) (PLGA) microspheres into calcium phosphate bone cement and the biocompatibility evaluation in vitro. J BIOACT COMPAT POL 2012. [DOI: 10.1177/0883911512438027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Slow tissue ingrowth is the major drawback for the use of calcium phosphate cements; to address the issue, salmon calcitonin–loaded biodegradable poly(lactide- co-glycolide) microspheres were incorporated into calcium phosphate cement in this study. The effects of poly(lactide- co-glycolide) weight ratio on the mechanical strength, self-setting properties, and salmon calcitonin release ability of calcium phosphate cement were systematically investigated. The in vitro degradation behavior and the cumulative mass loss (%) of the composite during incubation in phosphate-buffered saline were studied. The release of salmon calcitonin was sustained for at least 35 days, and the release rate can be tailored by adjusting the ratio of PLGA. The scanning electron microscopic images of the composites after incubation for 48 days indicated that the poly(lactide- co-glycolide) degraded completely and formed a porous structure in the calcium phosphate cement. An in vitro cell culture of the calcium phosphate cement/salmon calcitonin–poly(lactide- co-glycolide) cement provided more biocompatible than calcium phosphate cement. This composite possesses the basic performance for clinical needs, and it has potential use for treating osteoporosis and accelerating bone repair.
Collapse
Affiliation(s)
- Mei-Ling Zhong
- National Engineering Research Center for Biomaterials, Sichuan University, Sichuan, Chengdu, China
| | - Xiao-Qin Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Sichuan, Chengdu, China
| | - Hong-Song Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Sichuan, Chengdu, China
| | - Xing-Dong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Sichuan, Chengdu, China
| |
Collapse
|
50
|
Lopez-Heredia MA, Sariibrahimoglu K, Yang W, Bohner M, Yamashita D, Kunstar A, van Apeldoorn AA, Bronkhorst EM, Félix Lanao RP, Leeuwenburgh SC, Itatani K, Yang F, Salmon P, Wolke JG, Jansen JA. Influence of the pore generator on the evolution of the mechanical properties and the porosity and interconnectivity of a calcium phosphate cement. Acta Biomater 2012; 8:404-14. [PMID: 21884833 DOI: 10.1016/j.actbio.2011.08.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 07/09/2011] [Accepted: 08/11/2011] [Indexed: 12/25/2022]
Abstract
Porosity and interconnectivity are important properties of calcium phosphate cements (CPCs) and bone-replacement materials. Porosity of CPCs can be achieved by adding polymeric biodegradable pore-generating particles (porogens), which can add porosity to the CPC and can also be used as a drug-delivery system. Porosity affects the mechanical properties of CPCs, and hence is of relevance for clinical application of these cements. The current study focused on the effect of combinations of polymeric mesoporous porogens on the properties of a CPC, such as specific surface area, porosity and interconnectivity and the development of mechanical properties. CPC powder was mixed with different amounts of PLGA porogens of various molecular weights and porogen sizes. The major factors affecting the properties of the CPC were related to the amount of porogen loaded and the porogen size; the molecular weight did not show a significant effect per se. A minimal porogen size of 40 μm in 30 wt.% seems to produce a CPC with mechanical properties, porosity and interconnectivity suitable for clinical applications. The properties studied here, and induced by the porogen and CPC, can be used as a guide to evoke a specific host-response to maintain CPC integrity and to generate an explicit bone ingrowth.
Collapse
|