1
|
Limcharoen B, Wanichwecharungruang S, Banlunara W, Darvin ME. Seeing through the skin: Optical methods for visualizing transdermal drug delivery with microneedles. Adv Drug Deliv Rev 2025; 217:115478. [PMID: 39603387 DOI: 10.1016/j.addr.2024.115478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/08/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Optical methods play a pivotal role in advancing transdermal drug delivery research, particularly with the emergence of microneedle technology. This review presents a comprehensive analysis of optical methods used in studying transdermal drug delivery facilitated by microneedle technology. Beginning with an introduction to microneedle technology and skin anatomy and optical properties, the review explores the integration of optical methods for enhanced visualization. Optical imaging offers key advantages including real-time drug distribution visualization, non-invasive skin response monitoring, and quantitative drug penetration analysis. A spectrum of optical imaging modalities ranging from conventional dermoscopy and stereomicroscopy to advance techniques as fluorescence microscopy, laser scanning microscopy, in vivo imaging system, two-photon microscopy, fluorescence lifetime imaging microscopy, optical coherence tomography, Raman microspectroscopy, laser speckle contrast imaging, and photoacoustic microscopy is discussed. Challenges such as resolution and depth penetration limitations are addressed alongside potential breakthroughs and future directions in optical techniques development. The review underscores the importance of bridging the gap between preclinical and clinical studies, explores opportunities for integrating optical imaging and chemical sensing methods with drug delivery systems, and highlight the importance of non-invasive "optical biopsy" as a valuable alternative to conventional histology. Overall, this review provides insight into the role of optical methods in understanding transdermal drug delivery mechanisms with microneedles.
Collapse
Affiliation(s)
- Benchaphorn Limcharoen
- Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
| | - Supason Wanichwecharungruang
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Maxim E Darvin
- Fraunhofer Institute for Photonic Microsystems IPMS, Dresden 01109, Germany.
| |
Collapse
|
2
|
Kim M, Kang G, Min HS, Lee Y, Park S, Jung H. Evolution of microneedle applicators for vaccination: the role of the latch applicator in optimizing dissolving microneedle-based immunization. Expert Opin Drug Deliv 2024; 21:1823-1835. [PMID: 39460635 DOI: 10.1080/17425247.2024.2422939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/10/2024] [Accepted: 10/25/2024] [Indexed: 10/28/2024]
Abstract
INTRODUCTION Dissolving microneedles (DMN) offer advantages in vaccine delivery, such as enhanced immunogenicity and simplified administration, by targeting immune-rich layers of the skin. However, these benefits require precise and consistent delivery, which poses practical challenges. To address this, specialized applicators are essential for ensuring the accurate deployment of DMNs, making this technology a viable alternative to traditional methods, particularly in low- and middle-income countries (LMICs), where healthcare infrastructure is limited. AREAS COVERED In this review, we examine the advancements in DMN-based vaccination and applicator design, focusing on their joint effort. These innovations have improved the precision and efficiency of DMN vaccine delivery. Complex and costly early-stage applicators have evolved into simpler and more cost-effective designs. We highlight these developments in this review, with the latch applicator as a key example of a feature that enhances vaccine delivery. EXPERT OPINION Although applicator development has advanced DMN-based vaccination toward practical use, challenges remain. Key areas for further optimization include user friendliness, cost, packaging volume, and wear time. Once optimized, DMN vaccination may become a highly effective and accessible tool for global immunization, supporting efforts to achieve worldwide vaccine equality.
Collapse
Affiliation(s)
- Minkyung Kim
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | | | - Hye Su Min
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Youjin Lee
- Department of Integrative Biotechnology, Yonsei University, Inchon, Republic of Korea
| | - Shinyoung Park
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Hyungil Jung
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
- Juvic Inc, Seoul, Republic of Korea
- Department of Integrative Biotechnology, Yonsei University, Inchon, Republic of Korea
| |
Collapse
|
3
|
Kim G, Ahn H, Chaj Ulloa J, Gao W. Microneedle sensors for dermal interstitial fluid analysis. MED-X 2024; 2:15. [PMID: 39363915 PMCID: PMC11445365 DOI: 10.1007/s44258-024-00028-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024]
Abstract
The rapid advancement in personalized healthcare has driven the development of wearable biomedical devices for real-time biomarker monitoring and diagnosis. Traditional invasive blood-based diagnostics are painful and limited to sporadic health snapshots. To address these limitations, microneedle-based sensing platforms have emerged, utilizing interstitial fluid (ISF) as an alternative biofluid for continuous health monitoring in a minimally invasive and painless manner. This review aims to provide a comprehensive overview of microneedle sensor technology, covering microneedle design, fabrication methods, and sensing strategy. Additionally, it explores the integration of monitoring electronics for continuous on-body monitoring. Representative applications of microneedle sensing platforms for both monitoring and therapeutic purposes are introduced, highlighting their potential to revolutionize personalized healthcare. Finally, the review discusses the remaining challenges and future prospects of microneedle technology. Graphical Abstract
Collapse
Affiliation(s)
- Gwangmook Kim
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA USA
| | - Hyunah Ahn
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA USA
| | - Joshua Chaj Ulloa
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA USA
| |
Collapse
|
4
|
Zhou X, Liu H, Yu Z, Yu H, Meng D, Zhu L, Li H. Direct 3D printing of triple-responsive nanocomposite hydrogel microneedles for controllable drug delivery. J Colloid Interface Sci 2024; 670:1-11. [PMID: 38749378 DOI: 10.1016/j.jcis.2024.05.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Hydrogel microneedle patches have emerged as promising platforms for painless, minimally invasive, safe, and portable transdermal drug administration. However, the conventional mold-based fabrication processes and inherent single-functionality of such microneedles present significant hurdles to broader implementation. Herein, we have developed a novel approach utilizing a precursor solution of robust nanocomposite hydrogels to formulate photo-printable inks suitable for the direct 3D printing of high-precision, triple-responsive hydrogel microneedle patches through digital light processing (DLP) technology. The ink formulation comprises four functionally diverse monomers including 2-(dimethylamino)ethyl methacrylate, N-isopropylacrylamide, acrylic acid, and acrylamide, which were crosslinked by aluminum hydroxide nanoparticles (AH NPs) acting as both reinforcing agents and crosslinking centers. This results in the formation of a nanocomposite hydrogel characterized by exceptional mechanical strength, an essential attribute for the 3D printing of hydrogel microneeedle patches. Furthermore, this innovative 3D printing strategy facilitates facile customization of microneedle geometry and patch dimensions. As a proof-of-concept, we employed the fabricated hydrogel microneedles for transdermal delivery of bovine serum albumin (BSA). Importantly, these hydrogel microneedles displayed no cytotoxic effects and exhibited triple sensitivity to pH, temperature and glucose levels, thereby enabling more precise on-demand drug delivery. This study provides a universal method for the rapid fabrication of hydrogel microneedles with smart responsiveness for transdermal drug delivery applications.
Collapse
Affiliation(s)
- Xinmeng Zhou
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Huan Liu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Zilian Yu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Hao Yu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Decheng Meng
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Liran Zhu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Huanjun Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
5
|
Yan Q, Shen S, Liu L, Weng J, Zheng G, Dong X, Yang J, Yang Q, Xie J. Fabrication of controlled porous and ultrafast dissolution porous microneedles by organic-solvent-free ice templating method. Int J Pharm 2024; 660:124220. [PMID: 38734274 DOI: 10.1016/j.ijpharm.2024.124220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Porous Microneedles (PMNs) have been widely used in drug delivery and medical diagnosis owing to their abundant interconnected pores. However, the mechanical strength, the use of organic solvent, and drug loading capacity have long been challenging. Herein, a novel strategy of PMNs fabrication based on the Ice Templating Method is proposed that is suitable for insoluble, soluble, and nanosystem drug loading. The preparation process simplifies the traditional microneedle preparation process with a shorter preparation time. It endows the highly tunable porous morphology, enhanced mechanical strength, and rapid dissolution performance. Micro-CT three-dimensional reconstruction was used to better quantify the internal structures of PMNs, and we further established the equivalent pore network model to statistically analyze the internal pore structure parameters of PMNs. In particular, the mechanical strength is mainly negatively correlated with the surface porosity, while the dissolution velocity is mainly positively correlated with the permeability coefficient by the correlation heatmap. The poorly water-soluble Asiatic acid was encapsulated in PMNs in nanostructured lipid carriers, showing prominent hypertrophic scar healing trends. This work offers a quick and easy way of preparation that may be used to expand PMNs function and be introduced in industrial manufacturing development.
Collapse
Affiliation(s)
- Qinying Yan
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Shulin Shen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Linxiao Liu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jiaqi Weng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China; Institute of Laser Advanced Manufacturing, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, PR China; College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, PR China
| | - Gensuo Zheng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xu Dong
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jing Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Qingliang Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jing Xie
- Third Clinical College of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou 325000, PR China.
| |
Collapse
|
6
|
Wang L, Wang Y, Wu X, Wang P, Luo X, Lv S. Advances in microneedles for transdermal diagnostics and sensing applications. Mikrochim Acta 2024; 191:406. [PMID: 38898359 DOI: 10.1007/s00604-024-06458-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
Microneedles, the miniaturized needles, which can pierce the skin with minimal invasiveness open up new possibilities for constructing personalized Point-of-Care (POC) diagnostic platforms. Recent advances in microneedle-based POC diagnostic systems, especially their successful implementation with wearable technologies, enable biochemical detection and physiological recordings in a user-friendly manner. This review presents an overview of the current advances in microneedle-based sensor devices, with emphasis on the biological basis of transdermal sensing, fabrication, and application of different types of microneedles, and a summary of microneedle devices based on various sensing strategies. It concludes with the challenges and future prospects of this swiftly growing field. The aim is to present a critical and thorough analysis of the state-of-the-art development of transdermal diagnostics and sensing devices based on microneedles, and to bridge the gap between microneedle technology and pragmatic applications.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, MOE, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yingli Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, MOE, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xiao Wu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, MOE, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Peipei Wang
- Department of Rehabilitation Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266000, China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, MOE, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Shaoping Lv
- Department of Rehabilitation Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266000, China.
| |
Collapse
|
7
|
Zhao C, Wu Z, Pan B, Zhang R, Golestani A, Feng Z, Ge Y, Yang H. Functional biomacromolecules-based microneedle patch for the treatment of diabetic wound. Int J Biol Macromol 2024; 267:131650. [PMID: 38636756 DOI: 10.1016/j.ijbiomac.2024.131650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Diabetic wounds are a common complication of diabetes. The prolonged exposure to high glucose and oxidative stress in the wound environment increases the risk of bacterial infection and abnormal angiogenesis, leading to amputation. Microneedle patches have shown promise in promoting the healing of diabetic wounds through transdermal drug delivery. These patches target the four main aspects of diabetic wound treatment: hypoglycemia, antibacterial action, inflammatory regulation, and tissue regeneration. By overcoming the limitations of traditional administration methods, microneedle patches enable targeted therapy for deteriorated tissues. The design of these patches extends beyond the selection of needle tip material and biomacromolecule encapsulated drugs; it can also incorporate near-infrared rays to facilitate cascade reactions and treat diabetic wounds. In this review, we comprehensively summarize the advantages of microneedle patches compared to traditional treatment methods. We focus on the design and mechanism of these patches based on existing experimental articles in the field and discuss the potential for future research on microneedle patches.
Collapse
Affiliation(s)
- Chenyu Zhao
- School of Intelligent Medicine, China Medical University, Shenyang 110122, China; Department of China Medical University, The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110122, China; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Zhaoqi Wu
- Department of China Medical University, The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110122, China; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Boyue Pan
- Department of China Medical University, The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110122, China; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Ruihan Zhang
- Department of China Medical University, The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110122, China; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Avin Golestani
- Faculty of Life Science and Medicine, King's College London, London SE1 1UL, UK
| | - Ziyi Feng
- School of Intelligent Medicine, China Medical University, Shenyang 110122, China; Department of Plastic Surgery, The First Hospital of China Medical University, No.155, Nanjing North Street, Heping District, Shenyang 110002, China
| | - Yi Ge
- Department of China Medical University, The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110122, China; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, Shenyang 110122, China.
| |
Collapse
|
8
|
Moreno-Flores O, Rausch MK, Tepole AB. The role of interface geometry and appendages on the mesoscale mechanics of the skin. Biomech Model Mechanobiol 2024; 23:553-568. [PMID: 38129671 DOI: 10.1007/s10237-023-01791-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/29/2023] [Indexed: 12/23/2023]
Abstract
The skin is the largest organ in the human body and serves various functions, including mechanical protection and mechanosensation. Yet, even though skin's biomechanics are attributed to two main layers-epidermis and dermis-computational models have often treated this tissue as a thin homogeneous material or, when considering multiple layers, have ignored the most prominent heterogeneities of skin seen at the mesoscale. Here, we create finite element models of representative volume elements (RVEs) of skin, including the three-dimensional variation of the interface between the epidermis and dermis as well as considering the presence of hair follicles. The sinusoidal interface, which approximates the anatomical features known as Rete ridges, does not affect the homogenized mechanical response of the RVE but contributes to stress concentration, particularly at the valleys of the Rete ridges. The stress profile is three-dimensional due to the skin's anisotropy, leading to high-stress bands connecting the valleys of the Rete ridges through one type of saddle point. The peaks of the Rete ridges and the other class of saddle points of the sinusoidal surface form a second set of low-stress bands under equi-biaxial loading. Another prominent feature of the heterogeneous stress pattern is a switch in the stress jump across the interface, which becomes lower with respect to the flat interface at increasing deformations. These features are seen in both tension and shear loading. The RVE with the hair follicle showed strains concentrating at the epidermis adjacent to the hair follicle, the epithelial tissue surrounding the hair right below the epidermis, and the bulb or base region of the hair follicle. The regions of strain concentration near the hair follicle in equi-biaxial and shear loading align with the presence of distinct mechanoreceptors in the skin, except for the bulb or base region. This study highlights the importance of skin heterogeneities, particularly its potential mechanophysiological role in the sense of touch and the prevention of skin delamination.
Collapse
Affiliation(s)
- Omar Moreno-Flores
- School of Mechanical Engineering, Purdue University, AB Tepole, 585 Purdue Mall, West Lafayette, USA
| | - Manuel K Rausch
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, USA
| | - Adrian B Tepole
- School of Mechanical Engineering, Purdue University, AB Tepole, 585 Purdue Mall, West Lafayette, USA.
- Weldon School of Biomedical Eng, Purdue University, West Lafayette, USA.
| |
Collapse
|
9
|
Footner E, Firipis K, Liu E, Baker C, Foley P, Kapsa RMI, Pirogova E, O'Connell C, Quigley A. Layer-by-Layer Analysis of In Vitro Skin Models. ACS Biomater Sci Eng 2023; 9:5933-5952. [PMID: 37791888 DOI: 10.1021/acsbiomaterials.3c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
In vitro human skin models are evolving into versatile platforms for the study of skin biology and disorders. These models have many potential applications in the fields of drug testing and safety assessment, as well as cosmetic and new treatment development. The development of in vitro skin models that accurately mimic native human skin can reduce reliance on animal models and also allow for more precise, clinically relevant testing. Recent advances in biofabrication techniques and biomaterials have led to the creation of increasingly complex, multilayered skin models that incorporate important functional components of skin, such as the skin barrier, mechanical properties, pigmentation, vasculature, hair follicles, glands, and subcutaneous layer. This improved ability to recapitulate the functional aspects of native skin enhances the ability to model the behavior and response of native human skin, as the complex interplay of cell-to-cell and cell-to-material interactions are incorporated. In this review, we summarize the recent developments in in vitro skin models, with a focus on their applications, limitations, and future directions.
Collapse
Affiliation(s)
- Elizabeth Footner
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Kate Firipis
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Emily Liu
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Chris Baker
- Department of Dermatology, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Skin Health Institute, Carlton, VIC 3053, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Peter Foley
- Department of Dermatology, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Skin Health Institute, Carlton, VIC 3053, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Robert M I Kapsa
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Elena Pirogova
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Cathal O'Connell
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Anita Quigley
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| |
Collapse
|
10
|
Ibrahim A, Bakar K, Bakar J, Nirmal NP, Ikhwanuddin M, Karim NU. Effects of Annona muricata Extract on Trypsin, Cathepsin B and Collagenase Activities and Textural Changes in Chilled Macrobrachium rosenbergii. Foods 2023; 12:foods12091887. [PMID: 37174425 PMCID: PMC10178029 DOI: 10.3390/foods12091887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Texture is an important sensory attribute for overall quality and consumer acceptance of prawns. However, texture is affected during cold storage due to the proteolytic activity of endogenous proteases, resulting in poor quality and a short shelf life. The objective of this study is to determine the inhibitory effects of Annona muricata leaves extract (AMLE) (0, 3, 10 and 20%) on the trypsin, cathepsin B and collagenase activities extracted from the cephalothorax of Macrobrachium rosenbergii. In addition, the textural changes in M. rosenbergii during 20 days of cold storage (4 °C) were also determined. M. rosenbergii were soaked in four different treatments: 0, 3, 10 and 20% AMLE and 1.25% sodium metabisulphate for 10 min at 4 °C. Protease activity was significantly (p < 0.05) reduced at 10 and 20% AMLE. Similarly, cathepsin B showed a significant (p < 0.05) low after treatment at 20% AMLE. The maximum inhibitory activity of trypsin was achieved at 20% AMLE and the standard inhibitor (Tosyl-L-lysyl-chloromethane hydrochloride (TLCK)) compared to the control. Whereas, the lowest collagenase activity was obtained at 20% AMLE compared to the control. These inhibitory effects further maintain the firmness of M. rosenbergii coated with 20% AMLE up to the eighth day of storage when compared to the control. Meanwhile, the highest penetration work was found in the M. rosenbergii coated with 20% AMLE at the twentieth day of storage. In conclusion, treatment at 20% AMLE could be used as a natural preservative to inhibit protease, trypsin and collagenase activity of M. rosenbergii and thus can maintain firmness for up to 8 days of storage.
Collapse
Affiliation(s)
- Amalina Ibrahim
- Higher Institution Center of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia
| | - Kamariah Bakar
- Institute of Biotechnology Marine, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia
| | - Jamilah Bakar
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Nakhon Pathom 73170, Thailand
| | - Mhd Ikhwanuddin
- Higher Institution Center of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia
| | - Nurul Ulfah Karim
- Higher Institution Center of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia
| |
Collapse
|
11
|
Wang J, Lu Z, Cai R, Zheng H, Yu J, Zhang Y, Gu Z. Microneedle-based transdermal detection and sensing devices. LAB ON A CHIP 2023; 23:869-887. [PMID: 36629050 DOI: 10.1039/d2lc00790h] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Microneedles have been expected for the construction of next-generation biosensors towards personalization, digitization, and intellectualization due to their metrics of minimal invasiveness, high integration, and favorable biocompatibility. Herein, an overview of state-of-the-art microneedle-based detection and sensing systems is presented. First, the designs of microneedle devices based on extraction mechanisms are concluded, corresponding to different geometries and materials of microneedles. Second, the targets of equipment-assisted microneedle detections are summarized, as well as the objective significance, revealing the current performance and potential scenarios of these microneedles. Third, the trend towards highly integrated sensors is elaborated by emphasizing the sensing principles (colorimetric, fluorometric and electronic manner). Finally, the key challenges to be tackled and the perspectives on future development are discussed.
Collapse
Affiliation(s)
- Junxia Wang
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Ziyi Lu
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Ruisi Cai
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Hanqi Zheng
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jicheng Yu
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Yuqi Zhang
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Department of Burns and Wound Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Zhen Gu
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
12
|
Attiguppe AP, Chatterjee D, DasGupta A. A Novel Integrated Transdermal Drug Delivery System with Micropump and Microneedle Made from Polymers. MICROMACHINES 2022; 14:71. [PMID: 36677132 PMCID: PMC9861243 DOI: 10.3390/mi14010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/28/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Transdermal drug delivery (TDD), which enables targeted delivery with microdosing possibilities, has seen much progress in the past few years. This allows medical professionals to create bespoke treatment regimens and improve drug adherence through real-time monitoring. TDD also increases the effectiveness of the drugs in much smaller quantities. The use of polymers in the drug delivery field is on the rise owing to their low cost, scalability and ease of manufacture along with drug and bio-compatibility. In this work, we present the design, development and characterization of a polymer-based TDD platform fabricated using additive manufacturing technologies. The system consists of a polymer based micropump integrated with a drug reservoir fabricated by 3D printing and a polymer hollow microneedle array fabricated using photolithography. To the best of our knowledge, we present the fabrication and characterization of a 3D-printed piezoelectrically actuated non-planar valveless micropump and reservoir integrated with a polymer hollow microneedle array for the first time. The integrated system is capable of delivering water at a maximum flow rate of 1.03 mL/min and shows a maximum backpressure of 1.37 kPa while consuming only 400 mW. The system has the least number of moving parts. It can be easily fabricated using additive manufacturing technologies, and it is found to be suitable for drug delivery applications.
Collapse
Affiliation(s)
- Ajay Prabhakar Attiguppe
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
- Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Dhiman Chatterjee
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Amitava DasGupta
- Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
13
|
Cao HL, Cai SQ. Recent advances in electronic skins: material progress and applications. Front Bioeng Biotechnol 2022; 10:1083579. [PMID: 36588929 PMCID: PMC9795216 DOI: 10.3389/fbioe.2022.1083579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Electronic skins are currently in huge demand for health monitoring platforms and personalized medicine applications. To ensure safe monitoring for long-term periods, high-performance electronic skins that are softly interfaced with biological tissues are required. Stretchability, self-healing behavior, and biocompatibility of the materials will ensure the future application of electronic skins in biomedical engineering. This mini-review highlights recent advances in mechanically active materials and structural designs for electronic skins, which have been used successfully in these contexts. Firstly, the structural and biomechanical characteristics of biological skins are described and compared with those of artificial electronic skins. Thereafter, a wide variety of processing techniques for stretchable materials are reviewed, including geometric engineering and acquiring intrinsic stretchability. Then, different types of self-healing materials and their applications in electronic skins are critically assessed and compared. Finally, the mini-review is concluded with a discussion on remaining challenges and future opportunities for materials and biomedical research.
Collapse
|
14
|
Wang H, Fu Y, Mao J, Jiang H, Du S, Liu P, Tao J, Zhang L, Zhu J. Strong and Tough Supramolecular Microneedle Patches with Ultrafast Dissolution and Rapid-Onset Capabilities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207832. [PMID: 36189863 DOI: 10.1002/adma.202207832] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Dissolving microneedle (DMN) patches are emerging as a minimally invasive and efficient transdermal drug delivery platform. Generally, noncrystalline, water-soluble, and high-molecular-weight polymers are employed in DMNs because their sufficient intermolecular interactions can endow the DMNs with necessary mechanical strength and toughness. However, high viscosity and heavy chain entanglement of polymer solutions greatly hinder processing and dissolution of polymeric DMNs. Here, a strong and tough supramolecular DMN patch made of highly water-soluble cyclodextrin (CD) derivatives is described. Due to the synergy of multiple supramolecular interactions, the CD DMN patch exhibits robust mechanical strength outperforming the state-of-the-art polymeric DMNs. The CD DMN displays ultrafast dissolution (<30 s) in skin models by virtue of the dynamic and weak noncovalent bonds, which also enables the CD DMN and its payloads to diffuse rapidly into the deep skin layer. Moreover, the unique supramolecular structure of CD allows the CD DMNs to load not only hydrophilic drugs (e.g., rhodamine B as a model) but also hydrophobic model drugs (e.g., ibuprofen). As a proof-of-concept, CD DMNs loading ibuprofen show a rapid onset of therapeutic action in a xylene-induced acute inflammation model in mice. This work opens a new avenue for the development of mechanically robust supramolecular DMNs and broadens the applications of supramolecular materials.
Collapse
Affiliation(s)
- Hua Wang
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Yangxue Fu
- Department of Dermatology, Union Hospital, Tongji Medical College, HUST, Wuhan, 430022, P. R. China
| | - Jinzhu Mao
- Department of Dermatology, Union Hospital, Tongji Medical College, HUST, Wuhan, 430022, P. R. China
| | - Hao Jiang
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Shuo Du
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Pei Liu
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Juan Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, HUST, Wuhan, 430022, P. R. China
| | - Lianbin Zhang
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Jintao Zhu
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| |
Collapse
|
15
|
Mndlovu H, Kumar P, du Toit LC, Choonara YE. In Situ Forming Chitosan-Alginate Interpolymer Complex Bioplatform for Wound Healing and Regeneration. AAPS PharmSciTech 2022; 23:247. [PMID: 36050512 DOI: 10.1208/s12249-022-02397-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
Cytocompatibility, biocompatibility, and biodegradability are amongst the most desirable qualities of wound dressings and can be tuned during the bioplatform fabrication steps to enhance wound healing capabilities. A three-stepped approach (partial-crosslinking, freeze-drying, and pulverisation) was employed in fabricating a particulate, partially crosslinked (PC), and transferulic acid (TFA)-loaded chitosan-alginate (CS-Alg) interpolymer complex (IPC) with enhanced wound healing capabilities. The PC TFA-CS-Alg IPC bioplatform displayed fluid uptake of 3102% in 24 h and a stepwise degradation up to 53.5% in 14 days. The PC TFA-CS-Alg bioplatform was used as a bioactive delivery system with an encapsulation efficiency of 65.6%, bioactive loading of 9.4%, burst release of 58.27%, and a steady release of 1.91% per day. PC TFA-CS-Alg displayed a shift in cytocompatibility from slightly cytotoxic (60-90% cell viability) to nontoxic (> 90% cell viability) over a 72-h period in NIH-3T3 cells. The wound closure and histological evaluations of the lesions indicated better wound healing performance in lesions treated with PC TFA-CS-Alg and PC CS-Alg compared to those treated with the commercial product and the control. Application of the particulate bioplatform on the wound via sprinkles, the in situ hydrogel formation under fluid exposure, and the accelerated wound healing performances of the bioplatforms make it a good candidate for bioactive delivery system and skin tissue regeneration.
Collapse
Affiliation(s)
- Hillary Mndlovu
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Lisa C du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa.
| |
Collapse
|
16
|
In vivo, in situ and ex vivo comparison of porcine skin for microprojection array penetration depth, delivery efficiency and elastic modulus assessment. J Mech Behav Biomed Mater 2022; 130:105187. [DOI: 10.1016/j.jmbbm.2022.105187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/13/2022] [Accepted: 03/17/2022] [Indexed: 11/18/2022]
|
17
|
Chester D, Lee V, Wagner P, Nordberg M, Fisher MB, Brown AC. Elucidating the combinatorial effect of substrate stiffness and surface viscoelasticity on cellular phenotype. J Biomed Mater Res A 2022; 110:1224-1237. [PMID: 35107204 PMCID: PMC9305170 DOI: 10.1002/jbm.a.37367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/24/2021] [Accepted: 01/21/2022] [Indexed: 12/03/2022]
Abstract
Cells maintain tensional homeostasis by monitoring the mechanics of their microenvironment. In order to understand this mechanotransduction phenomenon, hydrogel materials have been developed with either controllable linear elastic or viscoelastic properties. Native biological tissues, and biomaterials used for medical purposes, often have complex mechanical properties. However, due to the difficulty in completely decoupling the elastic and viscous components of hydrogel materials, the effect of complex composite materials on cellular responses has largely gone unreported. Here, we characterize a novel composite hydrogel system capable of decoupling and individually controlling both the bulk stiffness and surface viscoelasticity of the material by combining polyacrylamide (PA) gels with microgel thin films. By taking advantage of the high degree of control over stiffness offered by PA gels and viscoelasticity, in terms of surface loss tangent, of microgel thin films, it is possible to study the influence that bulk substrate stiffness and surface loss tangent have on complex fibroblast responses, including cellular and nuclear morphology and gene expression. This material system provides a facile method for investigating cellular responses to complex material mechanics with great precision and allows for a greater understanding of cellular mechanotransduction mechanisms than previously possible through current model material platforms.
Collapse
Affiliation(s)
- Daniel Chester
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Veronica Lee
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| | - Paul Wagner
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Matthew Nordberg
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| | - Matthew B Fisher
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Ashley C Brown
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
18
|
Gök Ç, Devecioğlu İ, Güçlü B. Mechanical Impedance of Rat Glabrous Skin and Its Relation With Skin Morphometry. J Biomech Eng 2022; 144:1116027. [PMID: 34423811 DOI: 10.1115/1.4052225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 11/08/2022]
Abstract
The mechanical impedance of intact and epidermis-peeled rat glabrous skin was studied at two sites (digit and sole) and at two frequencies (40 Hz and 250 Hz). The thicknesses of skin layers at the corresponding regions were measured histologically from intact- and peeled-skin samples in every subject. Compared to intact sole skin, digital rat skin has thicker layers and higher mechanical resistance, and it is less stiff. The resistance of the skin significantly decreased after epidermal peeling at both the digit and the sole. Furthermore, peeling caused the reactance to become positive due to inertial effects. As the frequency was increased from 40 to 250 Hz, the resistance and stiffness also increased for the intact skin, while the peeled skin showed less frictional (i.e., resistance) but more inertial (i.e., positive reactance) effects. We estimated the mechanical properties of epidermis and dermis with lumped-element models developed for both intact and peeled conditions. The models predicted that dermis has higher mass, lower stiffness, and lower resistance compared to epidermis, similar to the experimental impedance results obtained in the peeled condition which consisted mostly of dermis. The overall impedance was simulated more successfully at 40 Hz. When both frequencies are considered, the models produced consistent results for resistance in both conditions. The results imply that most of the model parameters should be frequency-dependent and suggest that mechanical properties of epidermis can be related to its thickness. These findings may help in designing artificial skin for neuroprosthetic limbs.
Collapse
Affiliation(s)
- Çağlar Gök
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - İsmail Devecioğlu
- Biomedical Engineering Department, Çorlu Engineering Faculty, Tekirdağ Namık Kemal University, Tekirdağ 59860, Turkey
| | - Burak Güçlü
- Institute of Biomedical Engineering, Boğaziçi University, Kandilli Campus, Çengelköy, İstanbul 34684, Turkey
| |
Collapse
|
19
|
Park Y, Fuentes-Hernandez C, Kim K, Chou WF, Larrain FA, Graham S, Pierron ON, Kippelen B. Skin-like low-noise elastomeric organic photodiodes. SCIENCE ADVANCES 2021; 7:eabj6565. [PMID: 34910518 PMCID: PMC8673773 DOI: 10.1126/sciadv.abj6565] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/26/2021] [Indexed: 05/24/2023]
Abstract
Stretchable optoelectronics made of elastomeric semiconductors could enable the integration of intelligent systems with soft materials, such as those of the biological world. Organic semiconductors and photodiodes have been engineered to be elastomeric; however, for photodetector applications, it remains a challenge to identify an elastomeric bulk heterojunction (e-BHJ) photoactive layer that combines a low Young’s modulus and a high strain at break that yields organic photodiodes with low electronic noise values and high photodetector performance. Here, a blend of an elastomer, a donor-like polymer, and an acceptor-like molecule yields a skin-like e-BHJ with a Young’s modulus of a few megapascals, comparable to values of human tissues, and a high strain at break of 189%. Elastomeric organic photodiodes based on e-BHJ photoactive layers maintain low electronic noise current values in the tens of femtoamperes range and noise equivalent power values in the tens of picowatts range under at least 60% strain.
Collapse
Affiliation(s)
- Youngrak Park
- Center for Organic Photonics and Electronics (COPE), School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Canek Fuentes-Hernandez
- Center for Organic Photonics and Electronics (COPE), School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Kyungjin Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Wen-Fang Chou
- Center for Organic Photonics and Electronics (COPE), School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Felipe A. Larrain
- Center for Organic Photonics and Electronics (COPE), School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Samuel Graham
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Olivier N. Pierron
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Bernard Kippelen
- Center for Organic Photonics and Electronics (COPE), School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
20
|
Tijani AO, Nunez E, Singh K, Khanna G, Puri A. Transdermal Route: A Viable Option for Systemic Delivery of Antidepressants. J Pharm Sci 2021; 110:3129-3149. [PMID: 34089714 DOI: 10.1016/j.xphs.2021.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022]
Abstract
The high rise in the population suffering from depression depicts the need for improved and highly effective treatment options for this condition. Efforts to develop existing drugs into user-friendly dosage forms with a number of advantages in major depressive states, including but not limited to: sustained drug release, reduced drug dosing frequency, improved tolerance and adherence, suitability for use in diverse populations and different treatment scenarios, as well as less central nervous system side effects are required. One such non-invasive drug delivery route that could provide the aforementioned benefits in the treatment of depression is the transdermal route. A number of conventional and emerging transdermal delivery strategies have been investigated for some potent antidepressants and results depict the potential of this route as a viable means for systemic delivery of therapeutically relevant doses of the tested agents, with Emsam®, the commercially available patch of selegiline, being an evidence for the same. The investigated approaches include the formulation of transdermal patches, use of vesicular drug carriers, pro-drug approach, microemulsification, chemical as well as physical enhancement technologies. This review provides a comprehensive account of the rationale, developments made till date, scope and future prospects of delivering antidepressants via the transdermal1 route of administration.
Collapse
Affiliation(s)
- Akeemat O Tijani
- Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Estefany Nunez
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614, USA
| | - Karyn Singh
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614, USA
| | - Garima Khanna
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, Punjab 160014, India
| | - Ashana Puri
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614, USA.
| |
Collapse
|
21
|
Liu P, Du H, Chen Y, Wang H, Mao J, Zhang L, Tao J, Zhu J. Polymer microneedles with interconnected porous structures via a phase inversion route for transdermal medical applications. J Mater Chem B 2021; 8:2032-2039. [PMID: 32049084 DOI: 10.1039/c9tb02837d] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Porous polymer microneedles (MNs) have great potential in transdermal medical applications due to their three-dimensional (3D) porous structures and high porosity. However, existing approaches for the fabrication of such porous polymer MNs are complicated and only applicable to limited types of polymers. Here, we describe a facile yet effective phase inversion route to prepare polymer MNs with highly porous and interconnected pore structures. The fabrication process is simple and mild without involving high temperatures or irradiation, and can be applied to a broad spectrum of commonly used polymers (e.g., cellulose acetate (CA), polysulfone (PSF), polyethersulfone (PES), polylactic acid (PLA), etc.). Thanks to the capillary effect and large cavity given by highly porous and interconnected structures, the resulting porous polymer MNs show the capability of rapidly extracting dermal interstitial fluid (ISF) and efficiently loading/releasing drug compounds. As a proof of concept, we demonstrate the use of these porous CA MNs in the highly efficient extraction of ISF for glucose level detection and administration of insulin for hyperglycemia. Given the recent trend of painless techniques in diagnosis and treatment, the current study provides a new opportunity for the fabrication of MN-based devices for transdermal ISF extraction and drug delivery.
Collapse
Affiliation(s)
- Pei Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), and State Key Laboratory of Materials Processing and Mold Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Hongyao Du
- Department of Dermatology, Union Hospital, Tongji Medical College, HUST, Wuhan 430022, China
| | - Yu Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), and State Key Laboratory of Materials Processing and Mold Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Hua Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), and State Key Laboratory of Materials Processing and Mold Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Jinzhu Mao
- Department of Dermatology, Union Hospital, Tongji Medical College, HUST, Wuhan 430022, China
| | - Lianbin Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), and State Key Laboratory of Materials Processing and Mold Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Juan Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, HUST, Wuhan 430022, China
| | - Jintao Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), and State Key Laboratory of Materials Processing and Mold Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| |
Collapse
|
22
|
García-Guzmán JJ, Pérez-Ràfols C, Cuartero M, Crespo GA. Microneedle based electrochemical (Bio)Sensing: Towards decentralized and continuous health status monitoring. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116148] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Zhang J, Keith AN, Sheiko SS, Wang X, Wang Z. To Mimic Mechanical Properties of the Skin by Inducing Oriented Nanofiber Microstructures in Bottlebrush Cellulose- graft-diblock Copolymer Elastomers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3278-3286. [PMID: 33416300 DOI: 10.1021/acsami.0c21494] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Skin is a vital biological defense system that protects the body from physical harm with its unique mechanical properties attributed to the hierarchical organization of the protein scaffold. Developing a synthetic skinlike material has aroused great interest; however, replication of the skin's mechanical response, including anisotropic softness and strain-stiffening, is difficult to achieve. Here, to mimic the mechanical behaviors of skin, a reprocessable bottlebrush copolymer elastomer was designed with renewable and rigid cellulose as backbones; meanwhile, poly(n-butyl acrylate)-b-poly(methyl methacrylate) (PBA-b-PMMA) diblocks were designed as the grafted side chains. The so-made elastomers were subjected to a step-cyclic tensile deformation, by which the internal structures became oriented nanofibers and endowed stress-strain behaviors pretty much similar to those of the real skin. Overall, our research work currently undertaken would be of great importance in the development of a series of biomimetic skinlike polymer materials.
Collapse
Affiliation(s)
- Juan Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Andrew N Keith
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sergei S Sheiko
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Xuehui Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhigang Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
24
|
Characterization of microneedles and microchannels for enhanced transdermal drug delivery. Ther Deliv 2021; 12:77-103. [DOI: 10.4155/tde-2020-0096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microneedle (MN)-based technologies are currently one of the most innovative approaches that are being extensively investigated for transdermal delivery of low molecular weight drugs, biotherapeutic agents and vaccines. Extensive research reports, describing the fabrication and applications of different types of MNs, can be readily found in the literature. Effective characterization tools to evaluate the quality and performance of the MNs as well as for determination of the dimensional and kinetic properties of the microchannels created in the skin, are an essential and critical part of MN-based research. This review paper provides a comprehensive account of all such tools and techniques.
Collapse
|
25
|
Liu P, Du H, Wu Z, Wang H, Tao J, Zhang L, Zhu J. Hydrophilic and anti-adhesive modification of porous polymer microneedles for rapid dermal interstitial fluid extraction. J Mater Chem B 2021; 9:5476-5483. [PMID: 34156055 DOI: 10.1039/d1tb00873k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Porous polymer microneedles (MNs) with interconnected structures demonstrate great potential in dermal interstitial fluid (ISF) extraction. However, the fluid extraction rate and the recovery of the extracted ISF by the porous MNs are limited by the poor hydrophilicity and the adhesion of porous MNs. Herein, we present a facile and mild polydopamine (PDA) and poly(ethylene glycol) (PEG) coating strategy for hydrophilic and anti-adhesive modification of porous polymer MNs from a phase inversion method. As a proof-of-concept, taking polysulfone (PSF) as an example, PDA and PEG-coated MNs (PSF@PDA@PEG) are fabricated through the self-polymerization of dopamine and PEG anchoring. Thanks to the hydrophilicity and anti-adhesion of PEG, the resulting PSF@PDA@PEG MNs demonstrate improved hydrophilicity, fast fluid extraction speed, and low target molecular adhesion. Besides, this method can be extended to hydrophobic polymers generally used in medical fields, including polylactic acid (PLA), polyvinylidene fluoride (PVDF), etc. This investigation provides a new road for MN-based off-line analysis in point-of-care testing (POCT).
Collapse
Affiliation(s)
- Pei Liu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, and State Key Laboratory of Materials Processing and Mold Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Hongyao Du
- Department of Dermatology, Union Hospital, Tongji Medical College, HUST, Wuhan 430022, China
| | - Zhuoli Wu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, and State Key Laboratory of Materials Processing and Mold Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Hua Wang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, and State Key Laboratory of Materials Processing and Mold Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Juan Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, HUST, Wuhan 430022, China
| | - Lianbin Zhang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, and State Key Laboratory of Materials Processing and Mold Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Jintao Zhu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, and State Key Laboratory of Materials Processing and Mold Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| |
Collapse
|
26
|
Miao Y, Xu J, Liu Y, Yang F, Zheng X, Xie W, Zhang Y. Comparative Evaluation of the Transdermal Permeation Effectiveness of Fu's Cupping Therapy on Eight Different Types of Model Drugs. Curr Drug Deliv 2020; 18:446-459. [PMID: 33200698 DOI: 10.2174/1567201817999201116192238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/07/2020] [Accepted: 09/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Overcoming the skin barrier to achieve the transdermal penetration of drugs across the Stratum Corneum (SC) remains a significant challenge. Our previous study showed that Fu's Cupping Therapy (FCT) contributes to the transdermal enhancement and percutaneous absorption rate of representative drugs and improves their clinical effects. This work evaluated the transdermal enhancement effect of FCT on drugs with different Molecular Weights (MW). METHODS We investigated the enhancements in the transdermal penetration of eight types of model drugs through the skin of BALB/c-nu mice and Sprague Dawley rats using Franz diffusion devices. In addition, 3% azone, 5% azone, 3% peppermint oil, and 5% peppermint oil were used as penetration enhancers to study the transdermal behaviour of these drugs. RESULTS Our results showed that the BALB/c-nu mouse skin was the best transdermal media, and the optimal time for FCT was 10 min. Compared with other penetration enhancers, FCT exerted a significantly improved effect on enhancing the percutaneous penetration of the selected log(P)- model drugs in addition to the two large MW drugs (ginsenoside Rg1 and notoginsenoside R1). Statistical analysis revealed that the relationship between the log(P) of various model drugs and the permeability coefficient [log(Pcm)] of the FCT group was log(Pcm)=0.080(log(P))2-0.136 (log(P))-0.282. CONCLUSION FCT may be used as a novel method for enhancing physical penetration and thus effectively promoting the transdermal absorption of drugs and might lay a foundation for future research on drug transdermal technology.
Collapse
Affiliation(s)
- Yanyan Miao
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550002, China
| | - Jian Xu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550002, China
| | - Yao Liu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550002, China
| | - Fangfang Yang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550002, China
| | - Xiaoxia Zheng
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550002, China
| | - Weijie Xie
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550002, China
| | - Yongping Zhang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550002, China
| |
Collapse
|
27
|
Ahmad Tarar A, Mohammad U, K. Srivastava S. Wearable Skin Sensors and Their Challenges: A Review of Transdermal, Optical, and Mechanical Sensors. BIOSENSORS 2020; 10:E56. [PMID: 32481598 PMCID: PMC7345448 DOI: 10.3390/bios10060056] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/15/2020] [Accepted: 05/25/2020] [Indexed: 12/21/2022]
Abstract
Wearable technology and mobile healthcare systems are both increasingly popular solutions to traditional healthcare due to their ease of implementation and cost-effectiveness for remote health monitoring. Recent advances in research, especially the miniaturization of sensors, have significantly contributed to commercializing the wearable technology. Most of the traditional commercially available sensors are either mechanical or optical, but nowadays transdermal microneedles are also being used for micro-sensing such as continuous glucose monitoring. However, there remain certain challenges that need to be addressed before the possibility of large-scale deployment. The biggest challenge faced by all these wearable sensors is our skin, which has an inherent property to resist and protect the body from the outside world. On the other hand, biosensing is not possible without overcoming this resistance. Consequently, understanding the skin structure and its response to different types of sensing is necessary to remove the scientific barriers that are hindering our ability to design more efficient and robust skin sensors. In this article, we review research reports related to three different biosensing modalities that are commonly used along with the challenges faced in their implementation for detection. We believe this review will be of significant use to researchers looking to solve existing problems within the ongoing research in wearable sensors.
Collapse
Affiliation(s)
- Ammar Ahmad Tarar
- Department of Biological Engineering, University of Idaho, Moscow, ID 83844, USA;
| | - Umair Mohammad
- Department of Electrical & Computer Engineering, University of Idaho, Moscow, ID 83844, USA;
| | - Soumya K. Srivastava
- Department of Chemical & Materials Engineering, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
28
|
Jin R, Liao IC, Cazeneuve C, Chang JC, Ruths M, Luengo GS. Effects of Imprinted 3D Surface Patterning on Localized Changes in the Tribology of Human Stratum Corneum. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15573-15584. [PMID: 31644298 DOI: 10.1021/acs.langmuir.9b01974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Natural surfaces may exhibit remarkable surface properties due to their structure. In the case of skin, its surface topography (microrelief) influences many of its perceived sensorial properties (shine, color, touch). Imprinted patterns can modify the original microrelief, inducing a completely new set of perceived properties. To explore the effects of superimposed biomimetic surface textures on the friction of skin, human stratum corneum was prepared with and without an imprinted regular, micrometer-sized, 3D grid pattern. Atomic Force Microscopy (AFM) and optical profilometry indicated that the inherent, smaller-scale roughness of the stratum corneum remained when lines with heights of 20-200 μm and spacings of 600-2000 μm were introduced, but it was somewhat reduced on the grid lines. Surface Forces Apparatus (SFA) friction experiments on stratum corneum were performed at low speed (μm/s, back-and-forth sliding) and at more realistic, high speed (cm/s, rotational sliding). Two stratum corneum surfaces in contact did not adhere to one another, and they had a friction coefficient μ of 0.1, or lower, at low sliding speed. An interesting loading-unloading hysteresis was observed, with lower friction force on unloading, in particular, when the contact was on a grid line of the patterned samples. This suggests that the patterning locally induced different mechanical properties of the stratum corneum and that its recovery was not immediate on unloading. When one stratum corneum surface slid against a rigid glass surface, the friction coefficient was always higher than that when two stratum corneum surfaces were in contact. At high sliding speed, much higher friction coefficients were found between one stratum corneum surface and a rigid, smooth surface, μ ≥ 1. The results demonstrate that topograpic patterning by imprinting clearly modifies the tribological response of stratum corneum. This approach provides a simple method for exploring the development of biomimetic modifications of skin texture.
Collapse
Affiliation(s)
- Ruting Jin
- Department of Chemistry , University of Massachusetts Lowell , 1 University Avenue , Lowell , Massachusetts 01854 , United States
| | - I-Chien Liao
- L'Oréal Research and Innovation , Clark , New Jersey 07066 , United States
| | | | - Jeanne C Chang
- L'Oréal Research and Innovation , Clark , New Jersey 07066 , United States
| | - Marina Ruths
- Department of Chemistry , University of Massachusetts Lowell , 1 University Avenue , Lowell , Massachusetts 01854 , United States
| | - Gustavo S Luengo
- L'Oréal Research and Innovation , 93600 Aulnay-Sous-Bois , France
| |
Collapse
|
29
|
Singh P, Carrier A, Chen Y, Lin S, Wang J, Cui S, Zhang X. Polymeric microneedles for controlled transdermal drug delivery. J Control Release 2019; 315:97-113. [DOI: 10.1016/j.jconrel.2019.10.022] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/09/2019] [Accepted: 10/12/2019] [Indexed: 01/03/2023]
|
30
|
Chen Y, Feng X, Meng S. Site-specific drug delivery in the skin for the localized treatment of skin diseases. Expert Opin Drug Deliv 2019; 16:847-867. [DOI: 10.1080/17425247.2019.1645119] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yang Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, China
| | - Xun Feng
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang, China
| | - Shengnan Meng
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
31
|
van der Burg NMD, Depelsenaire ACI, Crichton ML, Kuo P, Phipps S, Kendall MAF. A low inflammatory, Langerhans cell-targeted microprojection patch to deliver ovalbumin to the epidermis of mouse skin. J Control Release 2019; 302:190-200. [PMID: 30940498 DOI: 10.1016/j.jconrel.2019.03.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/20/2019] [Accepted: 03/29/2019] [Indexed: 12/21/2022]
Abstract
In a low inflammatory skin environment, Langerhans cells (LCs) - but not dermal dendritic cells (dDCs) - contribute to the pivotal process of tolerance induction. Thus LCs are a target for specific-tolerance therapies. LCs reside just below the stratum corneum, within the skin's viable epidermis. One way to precisely deliver immunotherapies to LCs while remaining minimally invasive is with a skin delivery device such as a microprojection arrays (MPA). Today's MPAs currently achieve rapid delivery (e.g. within minutes of application), but are focussed primarily at delivery of therapeutics to the dermis, deeper within the skin. Indeed, no MPA currently delivers specifically to the epidermal LCs of mouse skin. Without any convenient, pre-clinical device available, advancement of LC-targeted therapies has been limited. In this study, we designed and tested a novel MPA that delivers ovalbumin to the mouse epidermis (eMPA) while maintaining a low, local inflammatory response (as defined by low erythema after 24 h). In comparison to available dermal-targeted MPAs (dMPA), only eMPAs with larger projection tip surface areas achieved shallow epidermal penetration at a low application energy. The eMPA characterised here induced significantly less erythema after 24 h (p = 0.0004), less epidermal swelling after 72 h (p < 0.0001) and 52% less epidermal cell death than the dMPA. Despite these differences in skin inflammation, the eMPA and dMPA promoted similar levels of LC migration out of the skin. However, only the eMPA promoted LCs to migrate with a low MHC II expression and in the absence of dDC migration. Implementing this more mouse-appropriate and low-inflammatory eMPA device to deliver potential immunotherapeutics could improve the practicality and cell-specific targeting of such therapeutics in the pre-clinical stage. Leading to more opportunities for LC-targeted therapeutics such as for allergy immunotherapy and asthma.
Collapse
Affiliation(s)
- Nicole M D van der Burg
- The Delivery of Drugs and Genes Group (D(2)G(2)), Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, QL 4072, Australia
| | - Alexandra C I Depelsenaire
- The Delivery of Drugs and Genes Group (D(2)G(2)), Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, QL 4072, Australia
| | - Michael L Crichton
- The Delivery of Drugs and Genes Group (D(2)G(2)), Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, QL 4072, Australia
| | - Paula Kuo
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, QL 4102, Australia
| | - Simon Phipps
- QIMR Berghofer Medical Research Institute, Herston, QL 4006, Australia
| | - Mark A F Kendall
- The Delivery of Drugs and Genes Group (D(2)G(2)), Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, QL 4072, Australia; The Australian National University, Canberra, Australian Capital Territory 2600, Australia.
| |
Collapse
|
32
|
Dong L, Li Y, Li Z, Xu N, Liu P, Du H, Zhang Y, Huang Y, Zhu J, Ren G, Xie J, Wang K, Zhou Y, Shen C, Zhu J, Tao J. Au Nanocage-Strengthened Dissolving Microneedles for Chemo-Photothermal Combined Therapy of Superficial Skin Tumors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:9247-9256. [PMID: 29493217 DOI: 10.1021/acsami.7b18293] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
For superficial skin tumors (SST) with high incidence, surgery and systemic therapy are relatively invasive and possible to cause severe side effect, respectively. Yet, topical therapy is confronted with the limited transdermal capacity because of the stratum corneum barrier layer of skin. Therefore, it is crucial to develop a highly effective and minimally invasive alternative transdermal approach for treating SST. Here, we developed gold nanocage (AuNC)- and chemotherapeutic drug doxorubicin (DOX)-loaded hyaluronic acid dissolving microneedle (MN) arrays. The loaded AuNCs are not only reinforcers to enhance the mechanical strength of the MNs, but also effective agents for photothermal therapy to obtain effective transdermal therapy for SST. The resultant MNs can effectively penetrate the skin, dissolve in the skin and release cargoes within the tumor site. Photothermal effect of AuNCs initiated by near-infrared laser irradiation combined with the chemotherapy effect of DOX destroyed tumors synergistically. Moreover, we verified the potent antitumor effects of the DOX/AuNC-loaded MNs after four administrations to SST-bearing mice without obvious side effects. Therefore, the drug/AuNC-loaded dissolving MN system provides a promising platform for effective, safe, minimally invasive combined treatment of SST.
Collapse
Affiliation(s)
- Liyun Dong
- Department of Dermatology, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology (HUST) , Wuhan 430022 , China
| | - Yuce Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , HUST , Wuhan 430074 , China
| | - Zhao Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , HUST , Wuhan 430074 , China
| | - Nan Xu
- Department of Dermatology, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology (HUST) , Wuhan 430022 , China
| | - Pei Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , HUST , Wuhan 430074 , China
| | - Hongyao Du
- Department of Dermatology, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology (HUST) , Wuhan 430022 , China
| | - Yamin Zhang
- Department of Dermatology, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology (HUST) , Wuhan 430022 , China
| | - Yuqiong Huang
- Department of Dermatology, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology (HUST) , Wuhan 430022 , China
| | - Jinjin Zhu
- Department of Dermatology, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology (HUST) , Wuhan 430022 , China
| | - Guichao Ren
- Department of Dermatology, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology (HUST) , Wuhan 430022 , China
| | - Jun Xie
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , HUST , Wuhan 430074 , China
| | - Ke Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , HUST , Wuhan 430074 , China
| | - Yajie Zhou
- Department of Dermatology, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology (HUST) , Wuhan 430022 , China
| | - Chen Shen
- Department of Dermatology, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology (HUST) , Wuhan 430022 , China
| | - Jintao Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , HUST , Wuhan 430074 , China
| | - Juan Tao
- Department of Dermatology, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology (HUST) , Wuhan 430022 , China
| |
Collapse
|
33
|
Abstract
The mechanical properties of the skin are important for various applications. Numerous tests have been conducted to characterize the mechanical behavior of this tissue, and this article presents a review on different experimental methods used. A discussion on the general mechanical behavior of the skin, including nonlinearity, viscoelasticity, anisotropy, loading history dependency, failure properties, and aging effects, is presented. Finally, commonly used constitutive models for simulating the mechanical response of skin are discussed in the context of representing the empirically observed behavior.
Collapse
Affiliation(s)
- Hamed Joodaki
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA
| | - Matthew B Panzer
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
34
|
Peñuela L, Negro C, Massa M, Repaci E, Cozzani E, Parodi A, Scaglione S, Quarto R, Raiteri R. Atomic force microscopy for biomechanical and structural analysis of human dermis: A complementary tool for medical diagnosis and therapy monitoring. Exp Dermatol 2018; 27:150-155. [DOI: 10.1111/exd.13468] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Leonardo Peñuela
- Department of Informatics, Bioengineering, Robotics, and System Engineering; University of Genoa; Genoa Italy
| | - Carola Negro
- Department of Informatics, Bioengineering, Robotics, and System Engineering; University of Genoa; Genoa Italy
| | - Michela Massa
- Advanced Biotechnology Center; San Martino Hospital; University of Genoa; Genoa Italy
| | - Erica Repaci
- Advanced Biotechnology Center; San Martino Hospital; University of Genoa; Genoa Italy
| | - Emanuele Cozzani
- Clinic of Dermatology, DISSAL; Section of Dermatology; University of Genoa; IRCCS-AOU San Martino-IST; Genoa Italy
| | - Aurora Parodi
- Clinic of Dermatology, DISSAL; Section of Dermatology; University of Genoa; IRCCS-AOU San Martino-IST; Genoa Italy
| | - Silvia Scaglione
- Research National Council; IEIIT Institute (CNR-IEIIT) Genoa; Genoa Italy
| | - Rodolfo Quarto
- Advanced Biotechnology Center; San Martino Hospital; University of Genoa; Genoa Italy
| | - Roberto Raiteri
- Department of Informatics, Bioengineering, Robotics, and System Engineering; University of Genoa; Genoa Italy
| |
Collapse
|
35
|
New regime in the mechanical behavior of skin: strain-softening occurring before strain-hardening. J Mech Behav Biomed Mater 2017; 69:98-106. [DOI: 10.1016/j.jmbbm.2016.12.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/19/2016] [Accepted: 12/23/2016] [Indexed: 11/19/2022]
|
36
|
Xie WJ, Zhang YP, Xu J, Sun XB, Yang FF. The Effect and Mechanism of Transdermal Penetration Enhancement of Fu's Cupping Therapy: New Physical Penetration Technology for Transdermal Administration with Traditional Chinese Medicine (TCM) Characteristics. Molecules 2017; 22:molecules22040525. [PMID: 28346390 PMCID: PMC6154618 DOI: 10.3390/molecules22040525] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/09/2017] [Accepted: 03/22/2017] [Indexed: 01/06/2023] Open
Abstract
Background: In this paper, a new type of physical penetration technology for transdermal administration with traditional Chinese medicine (TCM) characteristics is presented. Fu’s cupping therapy (FCT), was established and studied using in vitro and in vivo experiments and the penetration effect and mechanism of FCT physical penetration technology was preliminarily discussed. Methods: With 1-(4-chlorobenzoyl)-5-methoxy-2-methylindole-3-ylacetic acid (indomethacin, IM) as a model drug, the establishment of high, medium, and low references was completed for the chemical permeation system via in vitro transdermal tests. Furthermore, using chemical penetration enhancers (CPEs) and iontophoresis as references, the percutaneous penetration effect of FCT for IM patches was evaluated using seven species of in vitro diffusion kinetics models and in vitro drug distribution; the IM quantitative analysis method in vivo was established using ultra-performance liquid chromatography-tandem mass spectrometry technology (UPLC-MS/MS), and pharmacokinetic parameters: area under the zero and first moment curves from 0 to last time t (AUC0–t, AUMC0–t), area under the zero and first moment curves from 0 to infinity (AUC0–∞, AUMC0–∞), maximum plasma concentration (Cmax) and mean residence time (MRT), were used as indicators to evaluate the percutaneous penetration effect of FCT in vivo. Additionally, we used the 3K factorial design to study the joint synergistic penetration effect on FCT and chemical penetration enhancers. Through scanning electron microscopy (SEM) and transmission electron microscope (TEM) imaging, micro- and ultrastructural changes on the surface of the stratum corneum (SC) were observed to explore the FCT penetration mechanism. Results: In vitro and in vivo skin permeation experiments revealed that both the total cumulative percutaneous amount and in vivo percutaneous absorption amount of IM using FCT were greater than the amount using CPEs and iontophoresis. Firstly, compared with the control group, the indomethacin skin percutaneous rate of the FCT low-intensity group (FCTL) was 35.52%, and the enhancement ratio (ER) at 9 h was 1.76X, roughly equivalent to the penetration enhancing effect of the CPEs and iontophoresis. Secondly, the indomethacin percutaneous ratio of the FCT middle-intensity group (FCTM) and FCT high-intensity group (FCTH) were 47.36% and 54.58%, respectively, while the ERs at 9 h were 3.58X and 8.39X, respectively. Thirdly, pharmacokinetic data showed that in vivo indomethacin percutaneous absorption of the FCT was much higher than that of the control, that of the FCTM was slightly higher than that of the CPE, and that of the FCTM group was significantly higher than all others. Meanwhile, variance analysis indicated that the combination of the FCT penetration enhancement method and the CPE method had beneficial effects in enhancing skin penetration: the significance level of the CPE method was 0.0004, which was lower than 0.001, meaning the difference was markedly significant; the significance level of the FCT was also below 0.0001 and its difference markedly significant. The significance level of factor interaction A × B was lower than 0.0001, indicating that the difference in synergism was markedly significant. Moreover, SEM and TEM images showed that the SC surfaces of Sprague-Dawley rats treated with FCT were damaged, and it was difficult to observe the complete surface structure, with SC pores growing larger and its special “brick structure” becoming looser. This indicated that the barrier function of the skin was broken, thus revealing a potentially major route of skin penetration. Conclusion: FCT, as a new form of transdermal penetration technology, has significant penetration effects with TCM characteristics and is of high clinical value. It is worth promoting its development.
Collapse
Affiliation(s)
- Wei-Jie Xie
- School of Pharmacy, Guiyang College of Traditional Chinese Medicine, No. 50 Shi Dong Road, Guiyang 550002, China.
| | - Yong-Ping Zhang
- School of Pharmacy, Guiyang College of Traditional Chinese Medicine, No. 50 Shi Dong Road, Guiyang 550002, China.
| | - Jian Xu
- School of Pharmacy, Guiyang College of Traditional Chinese Medicine, No. 50 Shi Dong Road, Guiyang 550002, China.
| | - Xiao-Bo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Fang-Fang Yang
- School of Pharmacy, Guiyang College of Traditional Chinese Medicine, No. 50 Shi Dong Road, Guiyang 550002, China.
| |
Collapse
|
37
|
Meliga SC, Coffey JW, Crichton ML, Flaim C, Veidt M, Kendall MA. The hyperelastic and failure behaviors of skin in relation to the dynamic application of microscopic penetrators in a murine model. Acta Biomater 2017; 48:341-356. [PMID: 27746361 DOI: 10.1016/j.actbio.2016.10.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 09/25/2016] [Accepted: 10/12/2016] [Indexed: 12/20/2022]
Abstract
In-depth understanding of skin elastic and rupture behavior is fundamental to enable next-generation biomedical devices to directly access areas rich in cells and biomolecules. However, the paucity of skin mechanical characterization and lack of established fracture models limits their rational design. We present an experimental and numerical study of skin mechanics during dynamic interaction with individual and arrays of micro-penetrators. Initially, micro-indentation of individual skin strata revealed hyperelastic moduli were dramatically rate-dependent, enabling extrapolation of stiffness properties at high velocity regimes (>1ms-1). A layered finite-element model satisfactorily predicted the penetration of micro-penetrators using characteristic fracture energies (∼10pJμm-2) significantly lower than previously reported (≫100pJμm-2). Interestingly, with our standard application conditions (∼2ms-1, 35gpistonmass), ∼95% of the application kinetic energy was transferred to the backing support rather than the skin ∼5% (murine ear model). At higher velocities (∼10ms-1) strain energy accumulated in the top skin layers, initiating fracture before stress waves transmitted deformation to the backing material, increasing energy transfer efficiency to 55%. Thus, the tools developed provide guidelines to rationally engineer skin penetrators to increase depth targeting consistency and payload delivery across patients whilst minimizing penetration energy to control skin inflammation, tolerability and acceptability. STATEMENT OF SIGNIFICANCE The mechanics of skin penetration by dynamically-applied microscopic tips is investigated using a combined experimental-computational approach. A FE model of skin is parameterized using indentation tests and a ductile-failure implementation validated against penetration assays. The simulations shed light on skin elastic and fracture properties, and elucidate the interaction with microprojection arrays for vaccine delivery allowing rational design of next-generation devices.
Collapse
|
38
|
Moronkeji K, Todd S, Dawidowska I, Barrett SD, Akhtar R. The role of subcutaneous tissue stiffness on microneedle performance in a representative in vitro model of skin. J Control Release 2016; 265:102-112. [PMID: 27838272 DOI: 10.1016/j.jconrel.2016.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/14/2016] [Accepted: 11/08/2016] [Indexed: 12/28/2022]
Abstract
There has been growing interest in the mechanical behaviour of skin due to the rapid development of microneedle devices for drug delivery applications into skin. However, most in vitro experimentation studies that are used to evaluate microneedle performance do not consider the biomechanical properties of skin or that of the subcutaneous layers. In this study, a representative experimental model of skin was developed which was comprised of subcutaneous and muscle mimics. Neonatal porcine skin from the abdominal and back regions was used, with gelatine gels of differing water content (67, 80, 88 and 96%) to represent the subcutaneous tissue, and a type of ballistic gelatine, Perma-Gel®, as a muscle mimic. Dynamic nanoindentation was used to characterize the mechanical properties of each of these layers. A custom-developed impact test rig was used to apply dense polymethylmethacrylate (PMMA) microneedles to the skin models in a controlled and repeatable way with quantification of the insertion force and velocity. Image analysis methods were used to measure penetration depth and area of the breach caused by microneedle penetration following staining and optical imaging. The nanoindentation tests demonstrated that the tissue mimics matched expected values for subcutaneous and muscle tissue, and that the compliance of the subcutaneous mimics increased linearly with water content. The abdominal skin was thinner and less stiff as compared to back skin. The maximum force decreased with gel water content in the abdominal skin but not in the back skin. Overall, larger and deeper perforations were found in the skin models with increasing water content. These data demonstrate the importance of subcutaneous tissue on microneedle performance and the need for representative skin models in microneedle technology development.
Collapse
Affiliation(s)
- K Moronkeji
- Centre for Materials and Structures, School of Engineering, University of Liverpool, L69 3GH, United Kingdom
| | - S Todd
- Renephra Ltd., MedTech Centre, Manchester Science Park, Pencroft Way, M15 6JJ, United Kingdom
| | - I Dawidowska
- Renephra Ltd., MedTech Centre, Manchester Science Park, Pencroft Way, M15 6JJ, United Kingdom
| | - S D Barrett
- Department of Physics, University of Liverpool, L69 7ZE, United Kingdom
| | - R Akhtar
- Centre for Materials and Structures, School of Engineering, University of Liverpool, L69 3GH, United Kingdom.
| |
Collapse
|
39
|
Transdermal Drug Delivery. Drug Deliv 2016. [DOI: 10.1201/9781315382579-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
40
|
Crichton ML, Archer-Jones C, Meliga S, Edwards G, Martin D, Huang H, Kendall MA. Characterising the material properties at the interface between skin and a skin vaccination microprojection device. Acta Biomater 2016; 36:186-94. [PMID: 26956913 DOI: 10.1016/j.actbio.2016.02.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/04/2016] [Accepted: 02/26/2016] [Indexed: 01/14/2023]
Abstract
UNLABELLED The rapid emergence of micro-devices for biomedical applications over the past two decades has introduced new challenges for the materials used in the devices. Devices like microneedles and the Nanopatch, require sufficient strength to puncture skin often with sharp-slender micro-scale profiles, while maintaining mechanical integrity. For these technologies we sought to address two important questions: 1) On the scale at which the device operates, what forces are required to puncture the skin? And 2) What loads can the projections/microneedles withstand prior to failure. First, we used custom fabricated nanoindentation micro-probes to puncture skin at the micrometre scale, and show that puncture forces are ∼0.25-1.75mN for fresh mouse skin, in agreement with finite element simulations for our device. Then, we used two methods to perform strength tests of Nanopatch projections with varied aspect ratios. The first method used a nanoindenter to apply a force directly on the top or on the side of individual silicon projections (110μm in length, 10μm base radius), to measure the force of fracture. Our second method used an Instron to fracture full rows of projections and characterise a range of projection designs (with the method verified against previous nanoindentation experiments). Finally, we used Cryo-Scanning Electron Microscopy to visualise projections in situ in the skin to confirm the behaviour we quantified, qualitatively. STATEMENT OF SIGNIFICANCE Micro-device development has proliferated in the past decade, including devices that interact with tissues for biomedical outcomes. The field of microneedles for vaccine delivery to skin has opened new material challenges both in understanding tissue material properties and device material. In this work we characterise both the biomaterial properties of skin and the material properties of our microprojection vaccine delivery device. This study directly measures the micro-scale puncture properties of skin, whilst demonstrating clearly how these relate to device design. This will be of strong interest to those in the field of biomedical microdevices. This includes work in the field of wearable and semi-implantable devices, which will require clear understanding of tissue behaviour and material characterisation.
Collapse
|
41
|
Ventrelli L, Marsilio Strambini L, Barillaro G. Microneedles for Transdermal Biosensing: Current Picture and Future Direction. Adv Healthc Mater 2015; 4:2606-40. [PMID: 26439100 DOI: 10.1002/adhm.201500450] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Indexed: 01/01/2023]
Abstract
A novel trend is rapidly emerging in the use of microneedles, which are a miniaturized replica of hypodermic needles with length-scales of hundreds of micrometers, aimed at the transdermal biosensing of analytes of clinical interest, e.g., glucose, biomarkers, and others. Transdermal biosensing via microneedles offers remarkable opportunities for moving biosensing technologies and biochips from research laboratories to real-field applications, and envisages easy-to-use point-of-care microdevices with pain-free, minimally invasive, and minimal-training features that are very attractive for both developed and emerging countries. In addition to this, microneedles for transdermal biosensing offer a unique possibility for the development of biochips provided with end-effectors for their interaction with the biological system under investigation. Direct and efficient collection of the biological sample to be analyzed will then become feasible in situ at the same length-scale of the other biochip components by minimally trained personnel and in a minimally invasive fashion. This would eliminate the need for blood extraction using hypodermic needles and reduce, in turn, related problems, such as patient infections, sample contaminations, analysis artifacts, etc. The aim here is to provide a thorough and critical analysis of state-of-the-art developments in this novel research trend, and to bridge the gap between microneedles and biosensors.
Collapse
Affiliation(s)
- Letizia Ventrelli
- Dipartimento di Ingegneria dell'Informazione; Università di Pisa; Via G. Caruso 16 56122 Pisa Italy
| | | | - Giuseppe Barillaro
- Dipartimento di Ingegneria dell'Informazione; Università di Pisa; Via G. Caruso 16 56122 Pisa Italy
- Istituto di Fisiologia Clinica; Consiglio Nazionale delle Ricerche; via G. Moruzzi 1 56124 Pisa Italy
| |
Collapse
|
42
|
Lee JH, Hinchet R, Kim TY, Ryu H, Seung W, Yoon HJ, Kim SW. Control of Skin Potential by Triboelectrification with Ferroelectric Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:5553-5558. [PMID: 26292202 DOI: 10.1002/adma.201502463] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/10/2015] [Indexed: 06/04/2023]
Abstract
Negatively polarized ferroelectric polymer β-P(VDF-TrFE) shows higher positive triboelectric properties than skin, which could lead to new medical applications. Kelvin force microscope measurements and triboelectric nanogenerator characterizations are performed to demonstrate this new property. In addition, how many negative charges are exchanged by contact electrification between the negatively polarized β-P(VDF-TrFE) and the skin is estimated.
Collapse
Affiliation(s)
- Ju-Hyuck Lee
- SKKU Advanced Institute of Nanotechnology (SAINT), Center for Human Interface Nanotechnology (HINT), Sungkyunkwan University (SKKU), Suwon, 440-746, Republic of Korea
| | - Ronan Hinchet
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 440-746, Republic of Korea
| | - Tae Yun Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Center for Human Interface Nanotechnology (HINT), Sungkyunkwan University (SKKU), Suwon, 440-746, Republic of Korea
| | - Hanjun Ryu
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 440-746, Republic of Korea
| | - Wanchul Seung
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 440-746, Republic of Korea
| | - Hong-Joon Yoon
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 440-746, Republic of Korea
| | - Sang-Woo Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Center for Human Interface Nanotechnology (HINT), Sungkyunkwan University (SKKU), Suwon, 440-746, Republic of Korea
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 440-746, Republic of Korea
| |
Collapse
|
43
|
Álvarez-Asencio R, Wallqvist V, Kjellin M, Rutland MW, Camacho A, Nordgren N, Luengo GS. Nanomechanical properties of human skin and introduction of a novel hair indenter. J Mech Behav Biomed Mater 2015; 54:185-93. [PMID: 26469630 DOI: 10.1016/j.jmbbm.2015.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 09/01/2015] [Accepted: 09/14/2015] [Indexed: 11/18/2022]
Abstract
The mechanical resistance of the stratum corneum, the outermost layer of skin, to deformation has been evaluated at different length scales using Atomic Force Microscopy. Nanomechanical surface mapping was first conducted using a sharp silicon tip and revealed that Young׳s modulus of the stratum corneum varied over the surface with a mean value of about 0.4GPa. Force indentation measurements showed permanent deformation of the skin surface only at high applied loads (above 4µN). The latter effect was further demonstrated using nanomechanical imaging in which the obtained depth profiles clearly illustrate the effects of increased normal force on the elastic/plastic surface deformation. Force measurements utilizing the single hair fiber probe supported the nanoindentation results of the stratum corneum being highly elastic at the nanoscale, but revealed that the lateral scale of the deformation determines the effective elastic modulus.This result resolves the fact that the reported values in the literature vary greatly and will help to understand the biophysics of the interaction of razor cut hairs that curl back during growth and interact with the skin.
Collapse
Affiliation(s)
- Rubén Álvarez-Asencio
- KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, SE-100 44 Stockholm, Sweden; Institute for Advanced Studies, IMDEA Nanoscience, c/Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
| | - Viveca Wallqvist
- SP Technical Research Institute of Sweden, SP Chemistry, Materials and Surfaces, SE-114 86 Stockholm, Sweden
| | - Mikael Kjellin
- SP Technical Research Institute of Sweden, SP Chemistry, Materials and Surfaces, SE-114 86 Stockholm, Sweden
| | - Mark W Rutland
- KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, SE-100 44 Stockholm, Sweden; SP Technical Research Institute of Sweden, SP Chemistry, Materials and Surfaces, SE-114 86 Stockholm, Sweden
| | | | - Niklas Nordgren
- SP Technical Research Institute of Sweden, SP Chemistry, Materials and Surfaces, SE-114 86 Stockholm, Sweden.
| | | |
Collapse
|
44
|
Needle-Free Dermal Delivery of a Diphtheria Toxin CRM197 Mutant on Potassium-Doped Hydroxyapatite Microparticles. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:586-92. [PMID: 25809632 DOI: 10.1128/cvi.00121-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/21/2015] [Indexed: 11/20/2022]
Abstract
Injections with a hypodermic needle and syringe (HNS) are the current standard of care globally, but the use of needles is not without limitation. While a plethora of needle-free injection devices exist, vaccine reformulation is costly and presents a barrier to their widespread clinical application. To provide a simple, needle-free, and broad-spectrum protein antigen delivery platform, we developed novel potassium-doped hydroxyapatite (K-Hap) microparticles with improved protein loading capabilities that can provide sustained local antigen presentation and release. K-Hap showed increased protein adsorption over regular hydroxyapatite (P < 0.001), good structural retention of the model antigen (CRM197) with 1% decrease in α-helix content and no change in β-sheet content upon adsorption, and sustained release in vitro. Needle-free intradermal powder inoculation with K-Hap-CRM197 induced significantly higher IgG1 geometric mean titers (GMTs) than IgG2a GMTs in a BALB/c mouse model (P < 0.001) and induced IgG titer levels that were not different from the current clinical standard (P > 0.05), namely, alum-adsorbed CRM197 by intramuscular (i.m.) delivery. The presented results suggest that K-Hap microparticles may be used as a novel needle-free delivery vehicle for some protein antigens.
Collapse
|
45
|
Moronkeji K, Akhtar R. Mechanical Properties of Aging Human Skin. ENGINEERING MATERIALS AND PROCESSES 2015. [DOI: 10.1007/978-3-319-03970-1_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
46
|
Isaza J, Ramirez J. Incidence of Temperature and Indenter Diameter on the Mechanical Response of Skin during Indentation Test. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.proeng.2015.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
Ren Q, Deng C, Meng L, Chen Y, Chen L, Sha X, Fang X. In vitro, ex vivo, and in vivo evaluation of the effect of saturated fat acid chain length on the transdermal behavior of ibuprofen-loaded microemulsions. J Pharm Sci 2014; 103:1680-91. [PMID: 24700251 DOI: 10.1002/jps.23958] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/26/2014] [Accepted: 03/06/2014] [Indexed: 11/07/2022]
Abstract
In this study, the effect of the saturated fatty acid (FA) chain length in the oil phase on the behavior of Ibuprofen (IBU)-loaded transdermal microemulsion (ME) was evaluated in vitro, ex vivo, and in vivo. Three oils classified as long (LFA), medium (MFA), and short (SFA) chain length oils, Cremophor RH40 (surfactant) and Transcutol P (cosurfactant) were selected after experimental optimization. The physicochemical properties of ME were characterized, including IBU solubility in excipients, pseudo-ternary phase diagram construction, particle size, zeta potential, viscosity, and stability. Permeation flux and residual amount of IBU ex vivo using Franz cell system occurred in the following order: MFA-based ME > LFA-based ME > SFA-based ME, which correlated well with the results of confocal scanning laser microscopy study and the in vivo retention study. The results of in vitro cytotoxicity study and skin irritation tests measured by differential scanning calorimetry were ranked in the following order: LFA-based ME > MFA-based ME > SFA-based ME. Moreover, MFA-based ME has the highest analgesic activity among all the treatment groups. MFA was found to be an optimal oil phase with appropriate FA chain length for IBU-loaded transdermal ME, which exhibited excellent physicochemical properties, low toxicity, and good permeability profile.
Collapse
Affiliation(s)
- Qiuyue Ren
- Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | | | | | | | | | | | | |
Collapse
|
48
|
The nano-scale mechanical properties of the extracellular matrix regulate dermal fibroblast function. J Invest Dermatol 2014; 134:1862-1872. [PMID: 24670384 DOI: 10.1038/jid.2014.90] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 01/09/2014] [Accepted: 01/23/2014] [Indexed: 12/12/2022]
Abstract
Changes in the mechanical properties of dermis occur during skin aging or tissue remodeling and affect the activity of resident fibroblasts. With the aim to establish elastic culture substrates that reproduce the variable softness of dermis, we determined Young's elastic modulus E of human dermis at the cell perception level using atomic force microscopy. The E of dermis ranged from 0.1 to 10 kPa, varied depending on body area and dermal layer, and tended to increase with age in 26-55-year-old donors. The activation state of human dermal fibroblasts cultured on "skin-soft" E (5 kPa) silicone culture substrates was compared with stiff plastic culture (GPa), collagen gel cultures (0.1-9 kPa), and fresh human dermal tissue. Fibroblasts cultured on skin-soft silicones displayed low mRNA levels of fibrosis-associated genes and increased expression of the matrix metalloproteinases (MMPs) MMP-1 and MMP-3 as compared with collagen gel and plastic cultures. The activation profile exhibited by fibroblasts on "skin-soft" silicone culture substrates was most comparable with that of human dermis than any other tested culture condition. Hence, providing biomimetic mechanical conditions generates fibroblasts that are more suitable to investigate physiologically relevant cell processes than fibroblasts spontaneously activated by stiff conventional culture surfaces.
Collapse
|
49
|
Sohier J, Corre P, Perret C, Pilet P, Weiss P. Novel and simple alternative to create nanofibrillar matrices of interest for tissue engineering. Tissue Eng Part C Methods 2013; 20:285-96. [PMID: 23937338 DOI: 10.1089/ten.tec.2013.0147] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Synthetic analogs to natural extracellular matrix (ECM) at the nanometer level are of great potential for regenerative medicine. This study introduces a novel and simple method to produce polymer nanofibers and evaluates the properties of the resulting structures, as well as their suitability to support cells and their potential interest for bone and vascular applications. The devised approach diffracts a polymer solution by means of a spraying apparatus and of an airstream as sole driving force. The resulting nanofibers were produced in an effective fashion and a factorial design allowed isolating the processing parameters that control nanofiber size and distribution. The nanofibrillar matrices revealed to be of very high porosity and were effectively colonized by human bone marrow mesenchymal cells, while allowing ECM production and osteoblastic differentiation. In vivo, the matrices provided support for new bone formation and provided a good patency as small diameter vessel grafts.
Collapse
Affiliation(s)
- Jérôme Sohier
- 1 INSERM U 791, Laboratory for Osteo-Articular and Dental Tissue Engineering (LIOAD), University of Nantes , Nantes, France
| | | | | | | | | |
Collapse
|
50
|
Jor JWY, Parker MD, Taberner AJ, Nash MP, Nielsen PMF. Computational and experimental characterization of skin mechanics: identifying current challenges and future directions. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2013; 5:539-56. [PMID: 23757148 DOI: 10.1002/wsbm.1228] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/25/2013] [Accepted: 04/26/2013] [Indexed: 12/21/2022]
Abstract
The characterization of skin mechanics has many clinical implications and has been an active area of research for the past few decades. Biomechanical models have evolved from earlier empirical models to state-of-the-art structural models that provide linkage between tissue microstructure and macroscopic stress-strain response. To maximize the accuracy and predictive capabilities of such computational models, there is a need to reliably identify often a large number of unknown model parameters. This is critically dependent on the availability of experimental data that cover an extensive range of different deformation modes, and quantification of internal structural features, such as collagen orientation. To this end, future challenges should include the ongoing development of noninvasive instrumentation and imaging modalities for in vivo skin measurements. We highlight the important concept of tightly integrating computational models, instrumentation, and imaging modalities into a single platform to investigate skin biomechanics.
Collapse
Affiliation(s)
- Jessica W Y Jor
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | | | | | | | | |
Collapse
|