1
|
Valioglu F, Valipour F, Atazadeh S, Hasansadeh M, Khosrowshahi ND, Nezamdoust FV, Mohammad-Jafarieh P, Rahbarghazi R, Mahdipour M. Recent advances in shape memory scaffolds and regenerative outcomes. Biomed Eng Lett 2024; 14:1279-1301. [PMID: 39465110 PMCID: PMC11502725 DOI: 10.1007/s13534-024-00417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/17/2024] [Accepted: 08/01/2024] [Indexed: 10/29/2024] Open
Abstract
The advent of tissue engineering (TE) technologies has revolutionized human medicine over the last few decades. Despite splendid advances in the fabricating and development of different substrates for regenerative purposes, non-responsive static composites have been used to heal injured tissues. After being transplanted into the target sites, grafts will lose their original features, leading to a reduction in regenerative potential. Along with these statements, the use of shape memory polymers (SMPs), smart substrates with unique physicochemical properties, has been extended in different disciplines of regenerative medicine in recent years. These substrates are intelligent and they can easily change physicogeometry features such as stiffness, strain size, shape, etc. in response to external stimuli. It has been proposed that SMPs can easily acquire their original properties after deformation, even in the presence or absence of certain stimuli. It has been indicated that the application of distinct synthesis protocols is required to fabricate dynamically switchable surfaces with prominent cell-to-substrate interaction, resulting in better regulation of cell function, dynamic growth, and reparative mechanisms. Here, we aimed to scrutinize the prominent regenerative properties of SMPs in the TE and regenerative medicine fields. Whether and how SMPs can orchestrate certain cell behavior, with reconfigurable features and adaptability were discussed in detail.
Collapse
Affiliation(s)
- Ferzane Valioglu
- Technology Development Zones Management CO, Sakarya University, Sakarya, Turkey
| | - Fereshteh Valipour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shadi Atazadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, Iran
| | - Maryam Hasansadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, Iran
| | | | - Fereshteh Vaziri Nezamdoust
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Mohammad-Jafarieh
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mahdipour
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Xie W, Wei X, Kang H, Jiang H, Chu Z, Lin Y, Hou Y, Wei Q. Static and Dynamic: Evolving Biomaterial Mechanical Properties to Control Cellular Mechanotransduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204594. [PMID: 36658771 PMCID: PMC10037983 DOI: 10.1002/advs.202204594] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/28/2022] [Indexed: 06/17/2023]
Abstract
The extracellular matrix (ECM) is a highly dynamic system that constantly offers physical, biological, and chemical signals to embraced cells. Increasing evidence suggests that mechanical signals derived from the dynamic cellular microenvironment are essential controllers of cell behaviors. Conventional cell culture biomaterials, with static mechanical properties such as chemistry, topography, and stiffness, have offered a fundamental understanding of various vital biochemical and biophysical processes, such as cell adhesion, spreading, migration, growth, and differentiation. At present, novel biomaterials that can spatiotemporally impart biophysical cues to manipulate cell fate are emerging. The dynamic properties and adaptive traits of new materials endow them with the ability to adapt to cell requirements and enhance cell functions. In this review, an introductory overview of the key players essential to mechanobiology is provided. A biophysical perspective on the state-of-the-art manipulation techniques and novel materials in designing static and dynamic ECM-mimicking biomaterials is taken. In particular, different static and dynamic mechanical cues in regulating cellular mechanosensing and functions are compared. This review to benefit the development of engineering biomechanical systems regulating cell functions is expected.
Collapse
Affiliation(s)
- Wenyan Xie
- Department of BiotherapyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuan610065China
| | - Xi Wei
- Department of Mechanical EngineeringThe University of Hong KongHong KongChina
| | - Heemin Kang
- Department of Materials Science and EngineeringKorea UniversitySeoul02841South Korea
| | - Hong Jiang
- Department of BiotherapyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuan610065China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering (Joint Appointment with School of Biomedical Sciences)The University of Hong KongHong KongChina
| | - Yuan Lin
- Department of Mechanical EngineeringThe University of Hong KongHong KongChina
| | - Yong Hou
- Department of Electrical and Electronic EngineeringThe University of Hong KongHong KongChina
- Institut für Chemie und BiochemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Qiang Wei
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials and EngineeringSichuan UniversityChengdu610065China
| |
Collapse
|
3
|
Zhang Y, Habibovic P. Delivering Mechanical Stimulation to Cells: State of the Art in Materials and Devices Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110267. [PMID: 35385176 DOI: 10.1002/adma.202110267] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Biochemical signals, such as growth factors, cytokines, and transcription factors are known to play a crucial role in regulating a variety of cellular activities as well as maintaining the normal function of different tissues and organs. If the biochemical signals are assumed to be one side of the coin, the other side comprises biophysical cues. There is growing evidence showing that biophysical signals, and in particular mechanical cues, also play an important role in different stages of human life ranging from morphogenesis during embryonic development to maturation and maintenance of tissue and organ function throughout life. In order to investigate how mechanical signals influence cell and tissue function, tremendous efforts have been devoted to fabricating various materials and devices for delivering mechanical stimuli to cells and tissues. Here, an overview of the current state of the art in the design and development of such materials and devices is provided, with a focus on their design principles, and challenges and perspectives for future research directions are highlighted.
Collapse
Affiliation(s)
- Yonggang Zhang
- Department of Instructive Biomaterials Engineering, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Pamela Habibovic
- Department of Instructive Biomaterials Engineering, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| |
Collapse
|
4
|
Zare M, Davoodi P, Ramakrishna S. Electrospun Shape Memory Polymer Micro-/Nanofibers and Tailoring Their Roles for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:933. [PMID: 33917478 PMCID: PMC8067457 DOI: 10.3390/nano11040933] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022]
Abstract
Shape memory polymers (SMPs) as a relatively new class of smart materials have gained increasing attention in academic research and industrial developments (e.g., biomedical engineering, aerospace, robotics, automotive industries, and smart textiles). SMPs can switch their shape, stiffness, size, and structure upon being exposed to external stimuli. Electrospinning technique can endow SMPs with micro-/nanocharacteristics for enhanced performance in biomedical applications. Dynamically changing micro-/nanofibrous structures have been widely investigated to emulate the dynamical features of the ECM and regulate cell behaviors. Structures such as core-shell fibers, developed by coaxial electrospinning, have also gained potential applications as drug carriers and artificial blood vessels. The clinical applications of micro-/nanostructured SMP fibers include tissue regeneration, regulating cell behavior, cell growth templates, and wound healing. This review presents the molecular architecture of SMPs, the recent developments in electrospinning techniques for the fabrication of SMP micro-/nanofibers, the biomedical applications of SMPs as well as future perspectives for providing dynamic biomaterials structures.
Collapse
Affiliation(s)
- Mohadeseh Zare
- School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT, UK;
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore 119260, Singapore
| | - Pooya Davoodi
- School of Pharmacy and Bioengineering, Hornbeam Building, Keele University, Staffordshire ST5 5BG, UK;
- Guy Hilton Research Centre, Institute of Science and Technology in Medicine, Keele University, Staffordshire ST4 7QB, UK
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore 119260, Singapore
| |
Collapse
|
5
|
De Martino S, Netti PA. Dynamic azopolymeric interfaces for photoactive cell instruction. BIOPHYSICS REVIEWS 2020; 1:011302. [PMID: 38505629 PMCID: PMC10903377 DOI: 10.1063/5.0025175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/26/2020] [Indexed: 03/21/2024]
Abstract
The ability to affect a wide range of biophysical properties through the use of light has led to the development of dynamic cell instructive materials. Using photoresponsive materials such as azopolymers, smart systems that use external, minimally damaging, light irradiation can be used to trigger specific surface morpho-physical properties in the presence of living cells. The interaction of light with an azopolymer film induces a mass migration phenomenon, allowing a variety of topographic patterns to be embossed on the polymeric film. Photoisomerization induces conformational changes at the molecular and macroscopic scale, resulting in light-induced variations of substrate morphological, physical, and mechanical properties. In this review, we discuss the photoactuation of azopolymeric interfaces to provide guidelines for the engineering and design of azopolymer films. Laser micropatterning for the modulation of azopolymer surfaces is examined as a way to diversify the capabilities of these polymers in cellular systems. Mass migration effects induced by azopolymer switching provides a foundation for performing a broad range of cellular manipulation techniques. Applications of azopolymers are explored in the context of dynamic culture systems, gaining insight into the complex processes involved in dynamic cell-material interactions. The review highlights azopolymers as a candidate for various applications in cellular control, including cell alignment, migration, gene expression, and others. Recent advances have underlined the importance of these systems in applications regarding three-dimensional cell culture and stem cell morphology. Azopolymers can be used not only to manipulate cells but also to probe for mechanistic studies of cellular crosstalk in response to chemical and mechanical stimuli.
Collapse
|
6
|
Biomimetic corneal stroma using electro-compacted collagen. Acta Biomater 2020; 113:360-371. [PMID: 32652228 DOI: 10.1016/j.actbio.2020.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022]
Abstract
Engineering substantia propria (or stroma of cornea) that mimics the function and anatomy of natural tissue is vital for in vitro modelling and in vivo regeneration. There are, however, few examples of bioengineered biomimetic corneal stroma. Here we describe the construction of an orthogonally oriented 3D corneal stroma model (3D-CSM) using pure electro-compacted collagen (EC). EC films comprise aligned collagen fibrils and support primary human corneal stromal cells (hCSCs). Cell-laden constructs are analogous to the anatomical structure of native human cornea. The hCSCs are guided by the topographical cues provided by the aligned collagen fibrils of the EC films. Importantly, the 3D-CSM are biodegradable, highly transparent, glucose-permeable and comprise quiescent hCSCs. Gene expression analysis indicated the presence of aligned collagen fibrils is strongly coupled to downregulation of active fibroblast/myofibroblast markers α-SMA and Thy-1, with a concomitant upregulation of the dormant keratocyte marker ALDH3. The 3D-CSM represents the first example of an optimally robust biomimetic engineered corneal stroma that is constructed from pure electro-compacted collagen for cell and tissue support. The 3D-CSM is a significant advance for synthetic corneal stroma engineering, with the potential to be used for full-thickness and functional cornea replacement, as well as informing in vivo tissue regeneration. STATEMENT OF SIGNIFICANCE: This manuscript represents the first example of a robust, transparent, glucose permeable and pure collagen-based biomimetic 3D corneal stromal model (3D-CSM) constructed from pure electro-compacted collagen. The collagen fibrils of 3D-CSM are aligned and orthogonally arranged, mimicking native human corneal stroma. The alignment of collagen fibrils correlates with the direction of current applied for electro-compaction and influences human corneal stromal cell (hCSC) orientation. Moreover, 3D-CSM constructs support a corneal keratocyte phenotype; an essential requirement for modelling healthy corneal stroma. As-prepared 3D-CSM hold great promise as corneal stromal substitutes for research and translation, with the potential to be used for full-thickness cornea replacement.
Collapse
|
7
|
De Martino S, Cavalli S, Netti PA. Photoactive Interfaces for Spatio-Temporal Guidance of Mesenchymal Stem Cell Fate. Adv Healthc Mater 2020; 9:e2000470. [PMID: 32431096 DOI: 10.1002/adhm.202000470] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/19/2020] [Indexed: 01/30/2023]
Abstract
Patterned surfaces have proved effective in guiding stem cells commitment to a specific lineage by presenting highly ordered biophysical/biochemical cues at the cellmaterial interface. Their potency in controlling cell fate can be significantly empowered by encoding logic of space and time control of signal presentation. Here, azopolymeric photoactive interfaces are proposed to present/withdraw morphophysical signals to living cells using a green light trigger in a non-invasive spatio-temporal controlled way. To assess the potency of these dynamic platforms in controlling cell decision and fate, topography changes are actuated by light at specific times to reverse the fate of otherwise committed human mesenchymal stem cells (hMSC) toward osteoblastic lineage. It is first proved by dynamic change from ordered parallel patterning to flat or grid surfaces, that it is possible to induce cyclic cellular and nuclear stretches. Furthermore, by culturing hMSCs on a specific pattern known to prime them toward osteoblast lineage, the possibility to reroute or reverse stem cell fate decision by dynamic modulation of morphophysical signal is proved. To conclude, dynamic topographies can control the spatial conformation of hMSCs, modulate lineage reversal even after several weeks of culture and redirect lineage specification in response to light-induced changes in the microenvironment.
Collapse
Affiliation(s)
- Selene De Martino
- Center for Advanced Biomaterials for Healthcare, IIT@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci, 53, Napoli, 80125, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale, DICMAPI, Università degli Studi di Napoli Federico II, Piazzale Tecchio, 80, Napoli, 80125, Italy
| | - Silvia Cavalli
- Center for Advanced Biomaterials for Healthcare, IIT@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci, 53, Napoli, 80125, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Healthcare, IIT@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci, 53, Napoli, 80125, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale, DICMAPI, Università degli Studi di Napoli Federico II, Piazzale Tecchio, 80, Napoli, 80125, Italy
| |
Collapse
|
8
|
Linke P, Suzuki R, Yamamoto A, Nakahata M, Kengaku M, Fujiwara T, Ohzono T, Tanaka M. Dynamic Contact Guidance of Myoblasts by Feature Size and Reversible Switching of Substrate Topography: Orchestration of Cell Shape, Orientation, and Nematic Ordering of Actin Cytoskeletons. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7538-7551. [PMID: 30376342 DOI: 10.1021/acs.langmuir.8b02972] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biological cells in tissues alter their shapes, positions, and orientations in response to dynamic changes in their physical microenvironments. Here, we investigated the dynamic response of myoblast cells by fabricating substrates displaying microwrinkles that can reversibly change their direction within 60 s by axial compression and relaxation. To quantitatively assess the collective order of cells, we introduced the nematic order parameter of cells that takes not only the distribution of cell-wrinkle angles but also the degree of cell elongation into account. On the subcellular level, we also calculated the nematic order parameter of actin cytoskeletons that takes the rearrangement of actin filaments into consideration. The results obtained on substrates with different wrinkle wavelengths implied the presence of a characteristic wavelength beyond which the order parameters of both cells and actin cytoskeletons level off. Immunofluorescence labeling of vinculin showed that the focal adhesions were all concentrated on the peaks of wrinkles when the wavelength is below the characteristic value. On the other hand, we found focal adhesions on both the peaks and the troughs of wrinkles when the wavelength exceeds the characteristic level. The emergence of collective ordering of cytoskeletons and the adaptation of cell shapes and orientations were monitored by live cell imaging after the seeding of cells from suspensions. After the cells had reached the steady state, the orientation of wrinkles was abruptly changed by 90°. The dynamic response of myoblasts to the drastic change in surface topography was monitored, demonstrating the coordination of the shape and orientation of cells and the nematic ordering of actin cytoskeletons. The "dynamic" substrates established in this study can be used as a powerful tool in mechanobiology that helps us understand how cytoskeletons, cells, and cell ensembles respond to dynamic contact guidance cues.
Collapse
Affiliation(s)
- Philipp Linke
- Physical Chemistry of Biosystems, Institute of Physical Chemistry , Heidelberg University , D69120 Heidelberg , Germany
| | | | | | - Masaki Nakahata
- Department of Material Engineering Science, Graduate School of Engineering Science , Osaka University , 560-8531 Osaka , Japan
| | | | | | - Takuya Ohzono
- Electronics and Photonics Research Institute , National Institute for Advanced Industrial Science and Technology , 305-8505 Tsukuba , Japan
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, Institute of Physical Chemistry , Heidelberg University , D69120 Heidelberg , Germany
| |
Collapse
|
9
|
Ali M, Shear JB. Real time remodeling of cellular morphology using optical imprinting of cell-culture substrates. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/aafc8e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Cimmino C, Rossano L, Netti PA, Ventre M. Spatio-Temporal Control of Cell Adhesion: Toward Programmable Platforms to Manipulate Cell Functions and Fate. Front Bioeng Biotechnol 2018; 6:190. [PMID: 30564573 PMCID: PMC6288377 DOI: 10.3389/fbioe.2018.00190] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 11/21/2018] [Indexed: 01/06/2023] Open
Abstract
Biophysical and biochemical signals of material surfaces potently regulate cell functions and fate. In particular, micro- and nano-scale patterns of adhesion signals can finely elicit and affect a plethora of signaling pathways ultimately affecting gene expression, in a process known as mechanotransduction. Our fundamental understanding of cell-material signals interaction and reaction is based on static culturing platforms, i.e., substrates exhibiting signals whose configuration is time-invariant. However, cells in-vivo are exposed to arrays of biophysical and biochemical signals that change in time and space and the way cells integrate these might eventually dictate their behavior. Advancements in fabrication technologies and materials engineering, have recently enabled the development of culturing platforms able to display patterns of biochemical and biophysical signals whose features change in time and space in response to external stimuli and according to selected programmes. These dynamic devices proved to be particularly helpful in shedding light on how cells adapt to a dynamic microenvironment or integrate spatio-temporal variations of signals. In this work, we present the most relevant findings in the context of dynamic platforms for controlling cell functions and fate in vitro. We place emphasis on the technological aspects concerning the fabrication of platforms displaying micro- and nano-scale dynamic signals and on the physical-chemical stimuli necessary to actuate the spatio-temporal changes of the signal patterns. In particular, we illustrate strategies to encode material surfaces with dynamic ligands and patterns thereof, topographic relieves and mechanical properties. Additionally, we present the most effective, yet cytocompatible methods to actuate the spatio-temporal changes of the signals. We focus on cell reaction and response to dynamic changes of signal presentation. Finally, potential applications of this new generation of culturing systems for in vitro and in vivo applications, including regenerative medicine and cell conditioning are presented.
Collapse
Affiliation(s)
- Chiara Cimmino
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for Healthcare@CRIB, Fondazione Istituto Italiano di Tecnologia, Naples, Italy
| | - Lucia Rossano
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for Healthcare@CRIB, Fondazione Istituto Italiano di Tecnologia, Naples, Italy
| | - Paolo Antonio Netti
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for Healthcare@CRIB, Fondazione Istituto Italiano di Tecnologia, Naples, Italy
| | - Maurizio Ventre
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for Healthcare@CRIB, Fondazione Istituto Italiano di Tecnologia, Naples, Italy
| |
Collapse
|
11
|
Hernandez DS, Ritschdorff ET, Connell JL, Shear JB. In Situ Imprinting of Topographic Landscapes at the Cell-Substrate Interface. J Am Chem Soc 2018; 140:14064-14068. [PMID: 30350959 DOI: 10.1021/jacs.8b09226] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In their native environments, adherent cells encounter dynamic topographical cues involved in promoting differentiation, orientation, and migration. Ideally, such processes would be amenable to study in cell culture using tools capable of imposing dynamic, arbitrary, and reversible topographic features without perturbing environmental conditions or causing chemical and/or structural disruptions to the substrate surface. To address this need, we report here development of an in vitro strategy for challenging cells with dynamic topographical experiences in which protein-based hydrogel substrate surfaces are modified in real time by positioning a pulsed, near-infrared laser focus within the hydrogel, promoting chemical cross-linking which results in local contraction of the protein matrix. Scanning the laser focus through arbitrary patterns directed by a dynamic reflective mask creates an internal contraction pattern that is projected onto the hydrogel surface as features such as rings, pegs, and grooves. By subjecting substrates to a sequence of scan patterns, we show that topographic features can be created, then eliminated or even reversed. Because laser-induced shrinkage can be confined to 3D voxels isolated from the cell-substrate interface, hydrogel modifications are made without damaging cells or disrupting the chemical or structural integrity of the surface.
Collapse
Affiliation(s)
- Derek S Hernandez
- University Station, A5300, Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Eric T Ritschdorff
- University Station, A5300, Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Jodi L Connell
- University Station, A5300, Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Jason B Shear
- University Station, A5300, Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
12
|
Zhang W, Zhang K, Li G, Yan S, Cui L, Yin J. Effects of large dimensional deformation of a porous structure on stem cell fate activated by poly(l-glutamic acid)-based shape memory scaffolds. Biomater Sci 2018; 6:2738-2749. [DOI: 10.1039/c8bm00705e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effects of mechanostructural stimuli on stem cell fate in 3D structures have been investigated in a poly(l-glutamic acid)-based shape memory porous scaffold; the results indicate the scaffold a potential cell carrier.
Collapse
Affiliation(s)
- Weijun Zhang
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Kunxi Zhang
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Guifei Li
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Shifeng Yan
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Lei Cui
- Department of Orthopaedics Surgery
- Shanghai Tongji Hospital
- Tongji University School of Medicine
- Shanghai 200065
- P. R. China
| | - Jingbo Yin
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- P. R. China
| |
Collapse
|
13
|
Koçer G, Ter Schiphorst J, Hendrikx M, Kassa HG, Leclère P, Schenning APHJ, Jonkheijm P. Light-Responsive Hierarchically Structured Liquid Crystal Polymer Networks for Harnessing Cell Adhesion and Migration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29. [PMID: 28474746 DOI: 10.1002/adma.201606407] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 03/20/2017] [Indexed: 05/12/2023]
Abstract
Extracellular microenvironment is highly dynamic where spatiotemporal regulation of cell-instructive cues such as matrix topography tightly regulates cellular behavior. Recapitulating dynamic changes in stimuli-responsive materials has become an important strategy in regenerative medicine to generate biomaterials which closely mimic the natural microenvironment. Here, light responsive liquid crystal polymer networks are used for their adaptive and programmable nature to form hybrid surfaces presenting micrometer scale topographical cues and changes in nanoscale roughness at the same time to direct cell migration. This study shows that the cell speed and migration patterns are strongly dependent on the height of the (light-responsive) micrometer scale topographies and differences in surface nanoroughness. Furthermore, switching cell migration patterns upon in situ temporal changes in surface nanoroughness, points out the ability to dynamically control cell behavior on these surfaces. Finally, the possibility is shown to form photoswitchable topographies, appealing for future studies where topographies can be rendered reversible on demand.
Collapse
Affiliation(s)
- Gülistan Koçer
- Bioinspired Molecular Engineering Laboratory, MIRA Institute for Biomedical Technology and Technical Medicine and Molecular Nanofabrication Group, MESA+ Institute for Nanotechnology, Department of Science and Technology, University of Twente, 7500, AE, Enschede, The Netherlands
| | - Jeroen Ter Schiphorst
- Functional Organic Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5612, AE, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600, MB, Eindhoven, The Netherlands
| | - Matthew Hendrikx
- Functional Organic Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5612, AE, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600, MB, Eindhoven, The Netherlands
| | - Hailu G Kassa
- University of Mons (UMONS), Laboratory for Chemistry of Novel Materials, Center for Innovation and Research in Materials and Polymers (CIRMAP), Research Institute for Materials Science and Engineering, Place du Parc, 20, B-7000, Mons, Belgium
| | - Philippe Leclère
- Functional Organic Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5612, AE, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600, MB, Eindhoven, The Netherlands
- University of Mons (UMONS), Laboratory for Chemistry of Novel Materials, Center for Innovation and Research in Materials and Polymers (CIRMAP), Research Institute for Materials Science and Engineering, Place du Parc, 20, B-7000, Mons, Belgium
| | - Albertus P H J Schenning
- Functional Organic Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5612, AE, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600, MB, Eindhoven, The Netherlands
| | - Pascal Jonkheijm
- Bioinspired Molecular Engineering Laboratory, MIRA Institute for Biomedical Technology and Technical Medicine and Molecular Nanofabrication Group, MESA+ Institute for Nanotechnology, Department of Science and Technology, University of Twente, 7500, AE, Enschede, The Netherlands
| |
Collapse
|
14
|
Uto K, Aoyagi T, DeForest CA, Hoffman AS, Ebara M. A Combinational Effect of "Bulk" and "Surface" Shape-Memory Transitions on the Regulation of Cell Alignment. Adv Healthc Mater 2017; 6. [PMID: 28169506 DOI: 10.1002/adhm.201601439] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Indexed: 12/23/2022]
Abstract
A novel shape-memory cell culture platform has been designed that is capable of simultaneously tuning surface topography and dimensionality to manipulate cell alignment. By crosslinking poly(ε-caprolactone) (PCL) macromonomers of precisely designed nanoarchitectures, a shape-memory PCL with switching temperature near body temperature is successfully prepared. The temporary strain-fixed PCLs are prepared by processing through heating, stretching, and cooling about the switching temperature. Temporary nanowrinkles are also formed spontaneously during the strain-fixing process with magnitudes that are dependent on the applied strain. The surface features completely transform from wrinkled to smooth upon shape-memory activation over a narrow temperature range. Shape-memory activation also triggers dimensional deformation in an initial fixed strain-dependent manner. A dynamic cell-orienting study demonstrates that surface topographical changes play a dominant role in cell alignment for samples with lower fixed strain, while dimensional changes play a dominant role in cell alignment for samples with higher fixed strain. The proposed shape-memory cell culture platform will become a powerful tool to investigate the effects of spatiotemporally presented mechanostructural stimuli on cell fate.
Collapse
Affiliation(s)
- Koichiro Uto
- International Research Center for Materials Nanoarchitectonics (WPI-MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba 305-0044 Japan
| | - Takao Aoyagi
- International Research Center for Materials Nanoarchitectonics (WPI-MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba 305-0044 Japan
| | - Cole A. DeForest
- Department of Chemical Engineering; University of Washington; 4000 15 Ave NE Seattle WA 98195 USA
| | - Allan S. Hoffman
- Department of Bioengineering; University of Washington; 3720 15 Ave NE Seattle WA 98195 USA
| | - Mitsuhiro Ebara
- International Research Center for Materials Nanoarchitectonics (WPI-MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba 305-0044 Japan
| |
Collapse
|
15
|
Uto K, Tsui JH, DeForest CA, Kim DH. Dynamically Tunable Cell Culture Platforms for Tissue Engineering and Mechanobiology. Prog Polym Sci 2017; 65:53-82. [PMID: 28522885 PMCID: PMC5432044 DOI: 10.1016/j.progpolymsci.2016.09.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human tissues are sophisticated ensembles of many distinct cell types embedded in the complex, but well-defined, structures of the extracellular matrix (ECM). Dynamic biochemical, physicochemical, and mechano-structural changes in the ECM define and regulate tissue-specific cell behaviors. To recapitulate this complex environment in vitro, dynamic polymer-based biomaterials have emerged as powerful tools to probe and direct active changes in cell function. The rapid evolution of polymerization chemistries, structural modulation, and processing technologies, as well as the incorporation of stimuli-responsiveness, now permit synthetic microenvironments to capture much of the dynamic complexity of native tissue. These platforms are comprised not only of natural polymers chemically and molecularly similar to ECM, but those fully synthetic in origin. Here, we review recent in vitro efforts to mimic the dynamic microenvironment comprising native tissue ECM from the viewpoint of material design. We also discuss how these dynamic polymer-based biomaterials are being used in fundamental cell mechanobiology studies, as well as towards efforts in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Koichiro Uto
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, United States
| | - Jonathan H. Tsui
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, United States
| | - Cole A. DeForest
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, United States
- Department of Chemical Engineering, University of Washington, 4000 15th Ave NE, Seattle, WA 98195, United States
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, United States
| |
Collapse
|
16
|
Anisotropically organized three-dimensional culture platform for reconstruction of a hippocampal neural network. Nat Commun 2017; 8:14346. [PMID: 28146148 PMCID: PMC5296669 DOI: 10.1038/ncomms14346] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 12/19/2016] [Indexed: 01/06/2023] Open
Abstract
In native tissues, cellular and acellular components are anisotropically organized and often aligned in specific directions, providing structural and mechanical properties for actuating biological functions. Thus, engineering alignment not only allows for emulation of native tissue structures but might also enable implementation of specific functionalities. However, achieving desired alignment is challenging, especially in three-dimensional constructs. By exploiting the elastomeric property of polydimethylsiloxane and fibrillogenesis kinetics of collagen, here we introduce a simple yet effective method to assemble and align fibrous structures in a multi-modular three-dimensional conglomerate. Applying this method, we have reconstructed the CA3–CA1 hippocampal neural circuit three-dimensionally in a monolithic gel, in which CA3 neurons extend parallel axons to and synapse with CA1 neurons. Furthermore, we show that alignment of the fibrous scaffold facilitates the establishment of functional connectivity. This method can be applied for reconstructing other neural circuits or tissue units where anisotropic organization in a multi-modular structure is desired. Alignment or anisotropic organisation within and between cells enables biological function but is challenging to engineer. Here, the authors align collagen fibres in a pre-strained polydimethylsiloxane mould to generate a 3D scaffold that guides hippocampal neuron axon growth to form CA3–CA1 neural circuits.
Collapse
|
17
|
Xie R, Hu J, Guo X, Ng F, Qin T. Topographical Control of Preosteoblast Culture by Shape Memory Foams. ADVANCED ENGINEERING MATERIALS 2016. [DOI: 10.1002/adem.201600343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ruiqi Xie
- Institute of Textiles and Clothing; The Hong Kong Polytechnic University; Hung Hom Hong Kong 999077 China
| | - Jinlian Hu
- Smart Polymeric Materials Research Center for Biomedical Applications; Shenzhen Base; The Hong Kong Polytechnic University; Shen Zhen 518000 China
- Institute of Textiles and Clothing; The Hong Kong Polytechnic University; Hung Hom Hong Kong 999077 China
| | - Xia Guo
- Department of Rehabilitation Sciences; The Hong Kong Polytechnic University; Hung Hom Hong Kong 999077 China
| | - Frankie Ng
- Institute of Textiles and Clothing; The Hong Kong Polytechnic University; Hung Hom Hong Kong 999077 China
| | - Tingwu Qin
- Division of Stem Cell and Tissue Engineering; State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy; West China Hospital, Sichuan University; Chengdu Sichuan 610000 China
| |
Collapse
|
18
|
Pham JT, Xue L, del Campo A, Salierno M. Guiding cell migration with microscale stiffness patterns and undulated surfaces. Acta Biomater 2016; 38:106-15. [PMID: 27109767 DOI: 10.1016/j.actbio.2016.04.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 01/13/2023]
Abstract
UNLABELLED By placing stiff structures under soft materials, prior studies have demonstrated that cells sense and prefer to position themselves over the stiff structures. However, an understanding of how cells migrate on such surfaces has not been established. Many studies have also shown that cells readily align to surface topography. Here we investigate the influence of these two aspects in directing cell migration on surfaces with 5 and 10μm line stiffness patterns (a cellular to subcellular length scale). A simple approach to create flat, stiffness-patterned surfaces by suspending a thin, low modulus polydimethylsiloxane (PDMS) film over a high modulus PDMS structure is presented, as well as a route to add undulations. We confirm that cells are able to sense through the thin film by observation of focal adhesions being positioned on stiff regions. We examine migration by introducing migration efficiency, a quantitative parameter to determine how strongly cells migrate in a certain direction. We found that cells have a preference to align and migrate along stiffness patterns while the addition of undulations boosts this effect, significantly increasing migration efficiency in either case. Interestingly, we found speed to play little role in the migration efficiency and to be mainly influenced by the top layer modulus. Our results demonstrate that both stiffness patterns and surface undulations are important considerations when investigating the interactions of cells with biomaterial surfaces. STATEMENT OF SIGNIFICANCE Two common physical considerations for cell-surface interactions include patterned stiffness and patterned topography. However, their relative influences on cell migration behavior have not been established, particularly on cellular to subcellular scale patterns. For stiffness patterning, it has been recently shown that cells tend to position themselves over a stiff structure that is placed under a thin soft layer. By quantifying the directional migration efficiency on such surfaces with and without undulations, we show that migration can be manipulated by flat stiffness patterns, although surface undulations also play a strong role. Our results offer insight on the effect of cellular scale stiffness and topographical patterns on cell migration, which is critical for the development of fundamental cell studies and engineered implants.
Collapse
|
19
|
Bernardeschi I, Greco F, Ciofani G, Marino A, Mattoli V, Mazzolai B, Beccai L. A soft, stretchable and conductive biointerface for cell mechanobiology. Biomed Microdevices 2016; 17:46. [PMID: 25797705 DOI: 10.1007/s10544-015-9950-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In mechanobiology the study of cell response to mechanical stimuli is fundamental, and the involved processes (i.e., mechanotransduction) need to be investigated by interfacing (mechanically and electrically) with the cells in dynamic and non-invasive natural-like conditions. In this work, we present a novel soft, stretchable and conductive biointerface that allows both cell mechanical stimulation and dynamic impedance recording. The biointerface stretchability and conductivity, jointly to the biocompatibility and transparency needed to perform cell culture studies, were obtained by exploiting the formation of wrinkles on the surface of a 90 nm thick conductive layer of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) on a pre-stretched 130 μm thick poly(dimethylsiloxane) (PDMS) substrate. Cell adhesion and proliferation of SH-SY5Y human neuroblastoma cells were evaluated, and cell differentiation on the corrugated surface was assessed. We demonstrate how the biointerface remains conductive when applying uniaxial strain up to 10%, and when cell culturing is performed. Finally, a reduction of about 30% of the relative impedance variation signal was measured, with respect to the control, as a result of the mechanical stimulation of cells.
Collapse
Affiliation(s)
- Irene Bernardeschi
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025, Pontedera, PI, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Allen J, Ryu J, Maggi A, Flores B, Greer JR, Desai T. Tunable Microfibers Suppress Fibrotic Encapsulation via Inhibition of TGFβ Signaling. Tissue Eng Part A 2015; 22:142-50. [PMID: 26507808 DOI: 10.1089/ten.tea.2015.0087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fibrotic encapsulation limits the efficacy and lifetime of implantable biomedical devices. Microtopography has shown promise in the regulation of myofibroblast differentiation, a key driver of fibrotic encapsulation. However, existing studies have not systematically isolated the requisite geometric parameters for suppression of myofibroblast differentiation via microtopography, and there has not been in vivo validation of this technology to date. To address these issues, a novel lamination method was developed to afford more control over topography dimensions. Specifically, in this study we focus on fiber length and its effect on myofibroblast differentiation. Fibroblasts cultured on films with microfibers exceeding 16 μm in length lost the characteristic morphology associated with myofibroblast differentiation, while shorter microfibers of 6 μm length failed to produce this phenotype. This increase in length corresponded to a 50% decrease in fiber stiffness, which acts as a mechanical cue to influence myofibroblast differentiation. Longer microfiber films suppressed expression of myofibroblast-specific genes (αSMA, Col1α2, and Col3α1) and TGFβ signaling components (TGFβ1, TβR2, and Smad3). About 16 μm long microfiber films subcutaneously implanted in a mouse wound-healing model generated a substantially thinner fibrotic capsule and less deposition of collagen in the wound bed. Together, these results identify a critical feature length threshold for microscale topography-mediated repression of fibrotic encapsulation. This study also demonstrates a simple and powerful strategy to improve surface biocompatibility and reduce fibrotic encapsulation around implanted materials.
Collapse
Affiliation(s)
- Jessica Allen
- 1 UCSF Department of Bioengineering and Therapeutic Sciences, San Francisco , California
| | - Jubin Ryu
- 2 UCSF Department of Dermatology, San Francisco , California
| | - Alessandro Maggi
- 3 California Institute of Technology , Department of Medical Engineering, Pasadena, California
| | - Bianca Flores
- 1 UCSF Department of Bioengineering and Therapeutic Sciences, San Francisco , California
| | - Julia R Greer
- 4 California Institute of Technology, Division of Engineering and Applied Science, Kavli Nanoscience Institute , Pasadena, California
| | - Tejal Desai
- 1 UCSF Department of Bioengineering and Therapeutic Sciences, San Francisco , California
| |
Collapse
|
21
|
Dhowre HS, Rajput S, Russell NA, Zelzer M. Responsive cell–material interfaces. Nanomedicine (Lond) 2015; 10:849-71. [DOI: 10.2217/nnm.14.222] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Major design aspects for novel biomaterials are driven by the desire to mimic more varied and complex properties of a natural cellular environment with man-made materials. The development of stimulus responsive materials makes considerable contributions to the effort to incorporate dynamic and reversible elements into a biomaterial. This is particularly challenging for cell–material interactions that occur at an interface (biointerfaces); however, the design of responsive biointerfaces also presents opportunities in a variety of applications in biomedical research and regenerative medicine. This review will identify the requirements imposed on a responsive biointerface and use recent examples to demonstrate how some of these requirements have been met. Finally, the next steps in the development of more complex biomaterial interfaces, including multiple stimuli-responsive surfaces, surfaces of 3D objects and interactive biointerfaces will be discussed.
Collapse
Affiliation(s)
- Hala S Dhowre
- University of Nottingham, Neurophotonics Lab, Faculty of Engineering, Nottingham, NG7 2RD, UK
- University of Nottingham, School of Pharmacy, Boots Science Building, University Park, Nottingham, NG7 2RD, UK
| | - Sunil Rajput
- University of Nottingham, Neurophotonics Lab, Faculty of Engineering, Nottingham, NG7 2RD, UK
- University of Nottingham, School of Pharmacy, Boots Science Building, University Park, Nottingham, NG7 2RD, UK
| | - Noah A Russell
- University of Nottingham, Neurophotonics Lab, Faculty of Engineering, Nottingham, NG7 2RD, UK
| | - Mischa Zelzer
- University of Nottingham, School of Pharmacy, Boots Science Building, University Park, Nottingham, NG7 2RD, UK
- Interface & Surface Analysis Centre, Boots Science Building, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- National Physical Laboratory, Teddington, Middlesex, TW11 0LW, UK
| |
Collapse
|
22
|
Lithography-free fabrication of reconfigurable substrate topography for contact guidance. Biomaterials 2014; 39:164-72. [PMID: 25468368 DOI: 10.1016/j.biomaterials.2014.10.078] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/25/2014] [Accepted: 10/27/2014] [Indexed: 11/20/2022]
Abstract
Mammalian cells detect and respond to topographical cues presented in natural and synthetic biomaterials both in vivo and in vitro. Micro- and nano-structures influence the adhesion, morphology, proliferation, migration, and differentiation of many phenotypes. Although the mechanisms that underpin cell-topography interactions remain elusive, synthetic substrates with well-defined micro- and nano-structures are important tools to elucidate the origin of these responses. Substrates with reconfigurable topography are desirable because programmable cues can be harmonized with dynamic cellular responses. Here we present a lithography-free fabrication technique that can reversibly present topographical cues using an actuation mechanism that minimizes the confounding effects of applied stimuli. This method utilizes strain-induced buckling instabilities in bilayer substrate materials with rigid uniform silicon oxide membranes that are thermally deposited on elastomeric substrates. The resulting surfaces are capable of reversible of substrates between three distinct states: flat substrates (A = 1.53 ± 0.55 nm; Rms = 0.317 ± 0.048 nm); parallel wavy grating arrays (A∥= 483.6 ± 7.8 nm; λ∥= 4.78 ± 0.16 μm); perpendicular wavy grating arrays (A⊥= 429.3 ± 5.8 nm; λ⊥= 4.95 ± 0.36 μm). The cytoskeleton dynamics of 3T3 fibroblasts in response to these surfaces was measured using optical microscopy. Fibroblasts cultured on dynamic substrates that are switched from flat to topographic features (FLAT-WAVY) exhibit a robust and rapid change in gross morphology as measured by a reduction in circularity from 0.30 ± 0.13 to 0.15 ± 0.08 after 5 min. Conversely, dynamic substrate sequences of FLAT-WAVY-FLAT do not significantly alter the gross steady-state morphology. Taken together, substrates that present topographic structures reversibly can elucidate dynamic aspects of cell-topography interactions.
Collapse
|
23
|
Uzel SGM, Pavesi A, Kamm RD. Microfabrication and microfluidics for muscle tissue models. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:279-93. [PMID: 25175338 DOI: 10.1016/j.pbiomolbio.2014.08.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 08/19/2014] [Indexed: 12/14/2022]
Abstract
The relatively recent development of microfluidic systems with wide-ranging capabilities for generating realistic 2D or 3D systems with single or multiple cell types has given rise to an extensive collection of platform technologies useful in muscle tissue engineering. These new systems are aimed at (i) gaining fundamental understanding of muscle function, (ii) creating functional muscle constructs in vitro, and (iii) utilizing these constructs a variety of applications. Use of microfluidics to control the various stimuli that promote differentiation of multipotent cells into cardiac or skeletal muscle is first discussed. Next, systems that incorporate muscle cells to produce either 2D sheets or 3D tissues of contractile muscle are described with an emphasis on the more recent 3D platforms. These systems are useful for fundamental studies of muscle biology and can also be incorporated into drug screening assays. Applications are discussed for muscle actuators in the context of microrobotics and in miniaturized biological pumps. Finally, an important area of recent study involves coculture with cell types that either activate muscle or facilitate its function. Limitations of current designs and the potential for improving functionality for a wider range of applications is also discussed, with a look toward using current understanding and capabilities to design systems of greater realism, complexity and functionality.
Collapse
Affiliation(s)
- Sebastien G M Uzel
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Andrea Pavesi
- Singapore MIT Alliance for Research and Technology, BioSystems and Micromechanics, 1 CREATE way, #04-13/14 Enterprise Wing, Singapore 138602, Singapore
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Singapore MIT Alliance for Research and Technology, BioSystems and Micromechanics, 1 CREATE way, #04-13/14 Enterprise Wing, Singapore 138602, Singapore; Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
24
|
Hu J, Hardy C, Chen CM, Yang S, Voloshin AS, Liu Y. Enhanced cell adhesion and alignment on micro-wavy patterned surfaces. PLoS One 2014; 9:e104502. [PMID: 25105589 PMCID: PMC4126693 DOI: 10.1371/journal.pone.0104502] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 07/14/2014] [Indexed: 11/30/2022] Open
Abstract
Various micropatterns have been fabricated and used to regulate cell adhesion, morphology and function. Micropatterns created by standard photolithography process are usually rectangular channels with sharp corners (microgrooves) which provide limited control over cells and are not favorable for cell-cell interaction and communication. This paper proposes a new micropattern with smooth wavy surfaces (micro-waves) to control the position and orientation of cells. To characterize cell growth and responses on the micro-patterned substrates, bovine aortic endothelial cells were seeded onto surfaces with micro-grooves and micro-waves for 24 h. As a result, the cells on the micro-wavy pattern appeared to have a lower death rate and better alignment compared to those on the micro-grooved pattern. In addition, flow-induced shear stress was applied to examine the adhesion strength of cells on the micro-wavy pattern. Results showed that cells adhered to the wavy surface displayed both improved alignment and adhesion strength compared to those on the flat surface. The combination of increased alignment, lower death rate and enhanced adhesion strength of cells on the micro-wavy patterns will offer advantages in potential applications for cell phenotype, proliferation and tissue engineering.
Collapse
Affiliation(s)
- Jia Hu
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Camille Hardy
- Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Chi-Mon Chen
- Department of Material Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Shu Yang
- Department of Material Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Arkady S. Voloshin
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania, United States of America
- Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Yaling Liu
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania, United States of America
- Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
25
|
Ebara M, Uto K, Idota N, Hoffman JM, Aoyagi T. The taming of the cell: shape-memory nanopatterns direct cell orientation. Int J Nanomedicine 2014; 9 Suppl 1:117-26. [PMID: 24872707 PMCID: PMC4024980 DOI: 10.2147/ijn.s50677] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We report here that the direction of aligned cells on nanopatterns can be tuned to a perpendicular direction without use of any biochemical reagents. This was enabled by shape-memory activation of nanopatterns that transition from a memorized temporal pattern to the original permanent pattern by heating. The thermally induced shape-memory nanopatterns were prepared by chemically crosslinking semi-crystalline poly(ε-caprolactone) (PCL) in a mold to show shape-memory effects over its melting temperature (Tm = 33°C). Permanent surface patterns were first generated by crosslinking the PCL macromonomers in a mold, and temporary surface patterns were then embossed onto the permanent patterns. The temporary surface patterns could be easily triggered to transition quickly to the permanent surface patterns by a 37°C heat treatment, while surface wettability was independent of temperature. To investigate the role of dynamic and reversible surface nanopatterns on cell alignment on the PCL films before and after a topographic transition, NIH 3T3 fibroblasts were seeded on fibronectin-coated PCL films with a temporary grooved topography (grooves with a height of 300 nm and width of 2 μm were spaced 9 μm apart). Interestingly, cells did not change their direction immediately after the surface transition. However, cell alignment was gradually lost with time, and finally cells realigned parallel to the permanent grooves that emerged. The addition of a cytoskeletal inhibitor prevented realignment. These results clearly indicate that cells can sense dynamic changes in the surrounding environments and spontaneously adapt to a new environment by remodeling their cytoskeleton. These findings will serve as the basis for new development of spatiotemporal tunable materials to direct cell fate.
Collapse
Affiliation(s)
- Mitsuhiro Ebara
- Biomaterials Unit, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki, Tsukuba, Japan
| | - Koichiro Uto
- Biomaterials Unit, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki, Tsukuba, Japan
| | - Naokazu Idota
- Biomaterials Unit, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki, Tsukuba, Japan
| | - John M Hoffman
- Biomaterials Unit, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki, Tsukuba, Japan
| | - Takao Aoyagi
- Biomaterials Unit, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki, Tsukuba, Japan
| |
Collapse
|
26
|
Li Y, Huang G, Zhang X, Wang L, Du Y, Lu TJ, Xu F. Engineering cell alignment in vitro. Biotechnol Adv 2014; 32:347-65. [DOI: 10.1016/j.biotechadv.2013.11.007] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 11/16/2013] [Accepted: 11/17/2013] [Indexed: 01/03/2023]
|
27
|
Kim BC, Moraes C, Huang J, Thouless M, Takayama S. Fracture-based micro- and nanofabrication for biological applications. Biomater Sci 2014; 2:288-296. [PMID: 24707353 PMCID: PMC3972810 DOI: 10.1039/c3bm60276a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
While fracture is generally considered to be undesirable in various manufacturing processes, delicate control of fracture can be successfully implemented to generate structures at micro/nano length scales. Fracture-based fabrication techniques can serve as a template-free manufacturing method, and enables highly-ordered patterns or fluidic channels to be formed over large areas in a simple and cost-effective manner. Such technologies can be leveraged to address biologically-relevant problems, such as in the analysis of biomolecules or in the design of culture systems that imitate the cellular or molecular environment. This mini review provides an overview of current fracture-guided fabrication techniques and their biological applications. We first survey the mechanical principles of fracture-based approaches. Then we describe biological applications at the cellular and molecular levels. Finally, we discuss unique advantages of the different system for biological studies.
Collapse
Affiliation(s)
- Byoung Choul Kim
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI 48109, USA
- Macromolecular Science and Engineering Center, College of Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, MI 48109, USA
| | - Christopher Moraes
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI 48109, USA
| | - Jiexi Huang
- Department of Mechanical Engineering, College of Engineering, University of Michigan, 2350 Hayward St., Ann Arbor, MI 48109, USA
| | - M.D. Thouless
- Department of Mechanical Engineering, College of Engineering, University of Michigan, 2350 Hayward St., Ann Arbor, MI 48109, USA
- Department of Materials Science & Engineering, College of Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, MI 48109, USA
| | - Shuichi Takayama
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI 48109, USA
- Macromolecular Science and Engineering Center, College of Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, MI 48109, USA
| |
Collapse
|
28
|
Aligning cells in arbitrary directions on a membrane sheet using locally formed microwrinkles. Biotechnol Lett 2013; 36:391-6. [DOI: 10.1007/s10529-013-1368-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 09/18/2013] [Indexed: 11/26/2022]
|
29
|
Wang J, Chen A, Lieu DK, Karakikes I, Chen G, Keung W, Chan CW, Hajjar RJ, Costa KD, Khine M, Li RA. Effect of engineered anisotropy on the susceptibility of human pluripotent stem cell-derived ventricular cardiomyocytes to arrhythmias. Biomaterials 2013; 34:8878-86. [PMID: 23942210 DOI: 10.1016/j.biomaterials.2013.07.039] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/11/2013] [Indexed: 01/02/2023]
Abstract
Human (h) pluripotent stem cells (PSC) such as embryonic stem cells (ESC) can be directed into cardiomyocytes (CMs), representing a potential unlimited cell source for disease modeling, cardiotoxicity screening and myocardial repair. Although the electrophysiology of single hESC-CMs is now better defined, their multi-cellular arrhythmogenicity has not been thoroughly assessed due to the lack of a suitable experimental platform. Indeed, the generation of ventricular (V) fibrillation requires single-cell triggers as well as sustained multi-cellular reentrant events. Although native VCMs are aligned in a highly organized fashion such that electrical conduction is anisotropic for coordinated contractions, hESC-derived CM (hESC-CM) clusters are heterogenous and randomly organized, and therefore not representative of native conditions. Here, we reported that engineered alignment of hESC-VCMs on biomimetic grooves uniquely led to physiologically relevant responses. Aligned but not isotropic control preparations showed distinct longitudinal (L) and transverse (T) conduction velocities (CV), resembling the native human V anisotropic ratio (AR = LCV/TCV = 1.8-2.0). Importantly, the total incidence of spontaneous and inducible arrhythmias significantly reduced from 57% in controls to 17-23% of aligned preparations, thereby providing a physiological baseline for assessing arrhythmogenicity. As such, promotion of pro-arrhythmic effect (e.g., spatial dispersion by β adrenergic stimulation) could be better predicted. Mechanistically, such anisotropy-induced electrical stability was not due to maturation of the cellular properties of hESC-VCMs but their physical arrangement. In conclusion, not only do functional anisotropic hESC-VCMs engineered by multi-scale topography represent a more accurate model for efficacious drug discovery and development as well as arrhythmogenicity screening (of pharmacological and genetic factors), but our approach may also lead to future transplantable prototypes with improved efficacy and safety against arrhythmias.
Collapse
Affiliation(s)
- Jiaxian Wang
- Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Hong Kong.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Leal-Egaña A, Díaz-Cuenca A, Boccaccini AR. Tuning of cell-biomaterial anchorage for tissue regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:4049-4057. [PMID: 24063035 DOI: 10.1002/adma.201301227] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Which mechanisms mediate cell attachment to biomaterials? What role does the surface charge or wettability play on cell-material anchorage? What are the currently investigated strategies to modify cell-matrix adherence spatiotemporally? Considering the development of scaffolds made of biocompatible materials to temporarily replace the structure and/or function of the extracellular matrix, focus is given to the analysis of the specific (i.e., cell adhesive peptide sequences) and unspecific (i.e., surface charge, wettability) mechanisms mediating cell-matrix interactions. Furthermore, because natural tissue regeneration is characterized by the dynamic attachment/detachment of different cell populations, the design of advanced scaffolds for tissue engineering, based in the spatiotemporal tuning of cell-matrix anchorage is discussed.
Collapse
Affiliation(s)
- Aldo Leal-Egaña
- Institute of Biomaterials, Friedrich-Alexander Universität Erlangen Nürnberg, Cauerstraße 6, 91058 Erlangen, Germany.
| | | | | |
Collapse
|
31
|
Le DM, Tycon MA, Fecko CJ, Ashby VS. Near-infrared activation of semi-crystalline shape memory polymer nanocomposites. J Appl Polym Sci 2013. [DOI: 10.1002/app.39604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Duy M. Le
- Department of Chemistry; University of North Carolina; Chapel Hill; North Carolina; 27599
| | - Michael A. Tycon
- Department of Chemistry; University of North Carolina; Chapel Hill; North Carolina; 27599
| | - Christopher J. Fecko
- Department of Chemistry; University of North Carolina; Chapel Hill; North Carolina; 27599
| | - Valerie S. Ashby
- Department of Chemistry; University of North Carolina; Chapel Hill; North Carolina; 27599
| |
Collapse
|
32
|
Zhang W, Li M, Wang C, Zhou JG, Yao D. Micropatterning of Porous Structures from Co/Continuous Polymer Blends. ADVANCES IN POLYMER TECHNOLOGY 2013. [DOI: 10.1002/adv.21260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Kiang JD, Wen JH, del Álamo JC, Engler AJ. Dynamic and reversible surface topography influences cell morphology. J Biomed Mater Res A 2013; 101:2313-21. [PMID: 23355509 DOI: 10.1002/jbm.a.34543] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 11/14/2012] [Accepted: 11/19/2012] [Indexed: 11/06/2022]
Abstract
Microscale and nanoscale surface topography changes can influence cell functions, including morphology. Although in vitro responses to static topography are novel, cells in vivo constantly remodel topography. To better understand how cells respond to changes in topography over time, we developed a soft polyacrylamide hydrogel with magnetic nickel microwires randomly oriented in the surface of the material. Varying the magnetic field around the microwires reversibly induced their alignment with the direction of the field, causing the smooth hydrogel surface to develop small wrinkles; changes in surface roughness, ΔRRMS , ranged from 0.05 to 0.70 μm and could be oscillated without hydrogel creep. Vascular smooth muscle cell morphology was assessed when exposed to acute and dynamic topography changes. Area and shape changes occurred when an acute topographical change was imposed for substrates exceeding roughness of 0.2 μm, but longer-term oscillating topography did not produce significant changes in morphology irrespective of wire stiffness. These data imply that cells may be able to use topography changes to transmit signals as they respond immediately to changes in roughness.
Collapse
Affiliation(s)
- Jennifer D Kiang
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | |
Collapse
|
34
|
Wang Y, Jiang S, Shi H, Zhang W, Qiao J, Wu M, Tian Y, Niu Z, Huang Y. Hetero-epitaxy of anisotropic polycaprolactone films for the guidance of smooth muscle cell growth. Chem Commun (Camb) 2013; 49:10421-3. [DOI: 10.1039/c3cc46359a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Smooth muscle cells take direction on anisotropic biocompatible composite films fabricated by rubbing alignment.
Collapse
Affiliation(s)
- Yanming Wang
- National Research Center of Engineering Plastics
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing
- P. R. China
| | - Shidong Jiang
- National Research Center of Engineering Plastics
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing
- P. R. China
| | - Haigang Shi
- National Research Center of Engineering Plastics
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing
- P. R. China
| | - Wei Zhang
- National Research Center of Engineering Plastics
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing
- P. R. China
| | - Jing Qiao
- National Research Center of Engineering Plastics
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing
- P. R. China
| | - Man Wu
- National Research Center of Engineering Plastics
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing
- P. R. China
| | - Ye Tian
- National Research Center of Engineering Plastics
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing
- P. R. China
| | - Zhongwei Niu
- National Research Center of Engineering Plastics
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing
- P. R. China
| | - Yong Huang
- National Research Center of Engineering Plastics
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing
- P. R. China
| |
Collapse
|
35
|
Guvendiren M, Burdick JA. Stem cell response to spatially and temporally displayed and reversible surface topography. Adv Healthc Mater 2013. [PMID: 23184470 DOI: 10.1002/adhm.201200105] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The dynamic alignment of cells and matrix is critical in many biological processes, including during tissue development and in the progression of a variety of diseases; yet, nearly all in vitro models are static. Thus, it is of great interest to temporally and spatially manipulate cellular alignment to better understand and develop strategies to control these biological processes. Here, strain-responsive buckling patterns on PDMS substrates are used to dynamically and spatially control human mesenchymal stem cell (hMSC) organization. The results indicate that cellular alignment and pattern recognition are strongly diminished with culture time, which can be overcome by limiting cellular proliferation. Preferential alignment of the hMSCs is completely eliminated after the topography switch from patterned to flat, and can be reversibly repeated for at least 8 cycles. The hMSCs are responsive to dynamic changes in pattern size, where the distribution of the cells with preferential alignment increase with increasing pattern amplitude and decreasing wavelength. Furthermore, by introducing a biaxial stretching system, dynamic control is introduced over the cellular orientation angle and order, and by controlling the UV-ozone exposure of the PDMS, the topographical features can be spatially patterned.
Collapse
Affiliation(s)
- Murat Guvendiren
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
36
|
Jun I, Kim SJ, Choi E, Park KM, Rhim T, Park J, Park KD, Shin H. Preparation of biomimetic hydrogels with controlled cell adhesive properties and topographical features for the study of muscle cell adhesion and proliferation. Macromol Biosci 2012; 12:1502-13. [PMID: 22965817 DOI: 10.1002/mabi.201200148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 07/06/2012] [Indexed: 12/21/2022]
Abstract
Synthetic substrates with defined chemical and structural characteristics may potentially be prepared to mimic the living ECM to regulate cell adhesion and growth. Hydrogels with cell-adhesive peptides (0.28 ± 0.03 nmol peptide cm(-2) , TTA-R-0.5; and 0.91 ± 0.12 nmol peptide cm(-2) , TTA-R-2.0) and/or micro-scaled topographical patterns (10, 25, and 80 µm grooves) are prepared using enzymatic polymerization. The adherent morphology and proliferation of C2C12 skeletal myoblasts and human aortic smooth muscle cells (hAoSM) on the hydrogels are studied. The newly developed hydrogels may be useful in investigating the roles of cell adhesion and substrate surface properties in the communication of adherent cells with the ECM.
Collapse
Affiliation(s)
- Indong Jun
- Department of Bioengineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Mimicking dynamic in vivo environments with stimuli-responsive materials for cell culture. Trends Biotechnol 2012; 30:426-39. [DOI: 10.1016/j.tibtech.2012.04.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 04/17/2012] [Accepted: 04/18/2012] [Indexed: 12/27/2022]
|
38
|
Holthaus MG, Stolle J, Treccani L, Rezwan K. Orientation of human osteoblasts on hydroxyapatite-based microchannels. Acta Biomater 2012; 8:394-403. [PMID: 21855660 DOI: 10.1016/j.actbio.2011.07.031] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/19/2011] [Accepted: 07/29/2011] [Indexed: 11/16/2022]
Abstract
The effect of calcium phosphate-based microchannels on the growth and orientation of human osteoblast cells is investigated in this study. As substrates, hydroxyapatite-based microchannels with high contouring accuracy were fabricated by a novel micro-moulding technique. Microchannels obtained by this method featured widths ranging from 16.0±0.7 to 76.6±1.4 μm and depths from 7.9±0.8 to 15.5±1.3 μm. Surface and contour characterization was carried out using X-ray diffraction analysis, scanning electron microscopy imaging and 3D-confocal profilometry. Cell activity and alignment on microchannels with different widths were determined after 1 and 3 days by photometric spectroscopy and fluorescence microscopic imaging and statistically analysed by Tukey's multiple comparison test. On days 1 and 3 for microchannels of width 16 and 30 μm, 70-80% of the osteoblasts oriented within an angular range of 0-15° relative to the microchannel direction. Interestingly, only 20% of the cells grew inside the microchannels for channel widths of 16 and 30 μm. Substrates with channel widths of 45, 65 and 76 μm allowed ∼40% of the cells to grow inside. The depth of the microchannel showed hardly any significant impact. All micropatterned surfaces provoked a good cell attachment, as flat and spread cell morphologies with lamellipodiae and filopodiae could already be observed after 1 day. The effect of the microchannels on osteoblast activity was determined using the colorimetric WST-1 assay. In addition, the cell differentiation was assessed by collagen type I staining. The cell activity obtained by WST-1 assay differed insignificantly for all micropatterned samples of various widths and depths. The assessment of collagen type I yielded the same amounts for all micropatterned samples after 1, 3 and 7 days. In summary, the microchannel width of HA-based patterns has a distinct effect on the directed growth of human osteoblast cells, allowing novel design strategies for surfaces such as dental implants.
Collapse
Affiliation(s)
- M G Holthaus
- University of Bremen, Advanced Ceramics, Bremen, Germany
| | | | | | | |
Collapse
|
39
|
Chen A, Lieu DK, Freschauf L, Lew V, Sharma H, Wang J, Nguyen D, Karakikes I, Hajjar RJ, Gopinathan A, Botvinick E, Fowlkes CC, Li RA, Khine M. Shrink-film configurable multiscale wrinkles for functional alignment of human embryonic stem cells and their cardiac derivatives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2011; 23:5785-91. [PMID: 22065428 DOI: 10.1002/adma.201103463] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Indexed: 05/04/2023]
Abstract
A biomimetic substrate for cell-culture is fabricated by plasma treatment of a prestressed thermoplastic shrink film to create tunable multiscaled alignment "wrinkles". Using this substrate, the functional alignment of human embryonic stem cell derived cardiomyocytes is demonstrated.
Collapse
Affiliation(s)
- Aaron Chen
- Department of Chemical Engineering and Material Science, University of California, Irvine, 92697, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Soares ALF, Stekelenburg M, Baaijens FPT. Remodeling of the collagen fiber architecture due to compaction in small vessels under tissue engineered conditions. J Biomech Eng 2011; 133:071002. [PMID: 21823741 DOI: 10.1115/1.4003870] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mechanical loading protocols in tissue engineering (TE) aim to improve the deposition of a properly organized collagen fiber network. In addition to collagen remodeling, these conditioning protocols can result in tissue compaction. Tissue compaction is beneficial to tissue collagen alignment, yet it may lead to a loss of functionality of the TE construct due to changes in geometry after culture. Here, a mathematical model is presented to relate the changes in collagen architecture to the local compaction within a TE small blood vessel, assuming that under static conditions, compaction is the main factor responsible for collagen fiber organization. An existing structurally based model is extended to incorporate volumetric tissue compaction. Subsequently, the model is applied to describe the collagen architecture of TE constructs under either strain based or stress based stimulus functions. Our computations indicate that stress based simulations result in a helical collagen fiber distribution along the vessel wall. The helix pitch angle increases from a circumferential direction in the inner wall, over about 45 deg in the middle vessel layer, to a longitudinal direction in the outer wall. These results are consistent with experimental data from TE small diameter blood vessels. In addition, our results suggest a stress dependent remodeling of the collagen, suggesting that cell traction is responsible for collagen orientation. These findings may be of value to design improved mechanical conditioning protocols to optimize the collagen architecture in engineered tissues.
Collapse
Affiliation(s)
- Ana L F Soares
- Eindhoven University of Technology, Department of Biomedical Engineering, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | | | | |
Collapse
|
41
|
Moraes C, Sun Y, Simmons CA. (Micro)managing the mechanical microenvironment. Integr Biol (Camb) 2011; 3:959-71. [PMID: 21931883 DOI: 10.1039/c1ib00056j] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mechanical forces are critical components of the cellular microenvironment and play a pivotal role in driving cellular processes in vivo. Dissecting cellular responses to mechanical forces is challenging, as even "simple" mechanical stimulation in vitro can cause multiple interdependent changes in the cellular microenvironment. These stimuli include solid deformation, fluid flows, altered physical and chemical surface features, and a complex transfer of loads between the various interacting components of a biological culture system. The active mechanical and biochemical responses of cells to these stimuli in generating internal forces, reorganizing cellular structures, and initiating intracellular signals that specify cell fate and remodel the surrounding environment further complicates cellular response to mechanical forces. Moreover, cells present a non-linear response to combinations of mechanical forces, materials, chemicals, surface features, matrix properties and other effectors. Microtechnology-based approaches to these challenges can yield key insights into the mechanical nature of cellular behaviour, by decoupling stimulation parameters; enabling multimodal control over combinations of stimuli; and increasing experimental throughput to systematically probe cellular response. In this critical review, we briefly discuss the complexities inherent in the mechanical stimulation of cells; survey and critically assess the applications of present microtechnologies in the field of experimental mechanobiology; and explore opportunities and possibilities to use these tools to obtain a deeper understanding of mechanical interactions between cells and their environment.
Collapse
Affiliation(s)
- Christopher Moraes
- Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | | | | |
Collapse
|
42
|
Le DM, Kulangara K, Adler AF, Leong KW, Ashby VS. Dynamic topographical control of mesenchymal stem cells by culture on responsive poly(ε-caprolactone) surfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2011; 23:3278-83. [PMID: 21626577 PMCID: PMC3972817 DOI: 10.1002/adma.201100821] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/22/2011] [Indexed: 05/21/2023]
Affiliation(s)
- Duy M. Le
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599 (USA)
| | - Karina Kulangara
- Department of Biomedical Engineering, Duke University, Durham, NC 27710 (USA)
| | - Andrew F. Adler
- Department of Biomedical Engineering, Duke University, Durham, NC 27710 (USA)
| | - Kam W. Leong
- Department of Biomedical Engineering, Duke University, Durham, NC 27710 (USA)
| | | |
Collapse
|
43
|
Abstract
Shape memory polymers (SMPs) are a class of "smart" materials that have the ability to change from a fixed, temporary shape to a pre-determined permanent shape upon the application of a stimulus such as heat(1-5). In a typical shape memory cycle, the SMP is first deformed at an elevated temperature that is higher than its transition temperature, T(trans;) [either the melting temperature (T(m;)) or the glass transition temperature (T(g;))]. The deformation is elastic in nature and mainly leads to a reduction in conformational entropy of the constituent network chains (following the rubber elasticity theory). The deformed SMP is then cooled to a temperature below its T(trans;) while maintaining the external strain or stress constant. During cooling, the material transitions to a more rigid state (semi-crystalline or glassy), which kinetically traps or "freezes" the material in this low-entropy state leading to macroscopic shape fixing. Shape recovery is triggered by continuously heating the material through T(trans;) under a stress-free (unconstrained) condition. By allowing the network chains (with regained mobility) to relax to their thermodynamically favored, maximal-entropy state, the material changes from the temporary shape to the permanent shape. Cells are capable of surveying the mechanical properties of their surrounding environment(6). The mechanisms through which mechanical interactions between cells and their physical environment control cell behavior are areas of active research. Substrates of defined topography have emerged as powerful tools in the investigation of these mechanisms. Mesoscale, microscale, and nanoscale patterns of substrate topography have been shown to direct cell alignment, cell adhesion, and cell traction forces(7-14). These findings have underscored the potential for substrate topography to control and assay the mechanical interactions between cells and their physical environment during cell culture, but the substrates used to date have generally been passive and could not be programmed to change significantly during culture. This physical stasis has limited the potential of topographic substrates to control cells in culture. Here, active cell culture (ACC) SMP substrates are introduced that employ surface shape memory to provide programmed control of substrate topography and deformation. These substrates demonstrate the ability to transition from a temporary grooved topography to a second, nearly flat memorized topography. This change in topography can be used to control cell behavior under standard cell culture conditions.
Collapse
Affiliation(s)
- Kevin A Davis
- Department of Biomedical and Chemical Engineering, Syracuse Biomaterials Institute, NY, USA
| | | | | | | |
Collapse
|
44
|
Davis KA, Burke KA, Mather PT, Henderson JH. Dynamic cell behavior on shape memory polymer substrates. Biomaterials 2011; 32:2285-93. [DOI: 10.1016/j.biomaterials.2010.12.006] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 12/01/2010] [Indexed: 01/31/2023]
|
45
|
Raghavan S, Lam MT, Foster LL, Gilmont RR, Somara S, Takayama S, Bitar KN. Bioengineered three-dimensional physiological model of colonic longitudinal smooth muscle in vitro. Tissue Eng Part C Methods 2011; 16:999-1009. [PMID: 20001822 DOI: 10.1089/ten.tec.2009.0394] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The objective of this study was to develop a physiological model of longitudinal smooth muscle tissue from isolated longitudinal smooth muscle cells arranged in the longitudinal axis. METHODS Longitudinal smooth muscle cells from rabbit sigmoid colon were isolated and expanded in culture. Cells were seeded at high densities onto laminin-coated Sylgard surfaces with defined wavy microtopographies. A highly aligned cell sheet was formed, to which addition of fibrin resulted in delamination. RESULTS (1) Acetylcholine (ACh) induced a dose-dependent, rapid, and sustained force generation. (2) Absence of extracellular calcium attenuated the magnitude and sustainability of ACh-induced force by 50% and 60%, respectively. (3) Vasoactive intestinal peptide also attenuated the magnitude and sustainability of ACh-induced force by 40% and 60%, respectively. These data were similar to force generated by longitudinal tissue. (4) Bioengineered constructs also maintained smooth muscle phenotype and calcium-dependence characteristics. SUMMARY This is a novel physiologically relevant in vitro three-dimensional model of colonic longitudinal smooth muscle tissue. Bioengineered three-dimensional longitudinal smooth muscle presents the ability to generate force, and respond to contractile agonists and relaxant peptides similar to native longitudinal tissue. This model has potential applications to investigate the underlying pathophysiology of dysfunctional colonic motility. It also presents as a readily implantable band-aid colonic longitudinal muscle tissue.
Collapse
Affiliation(s)
- Shreya Raghavan
- Department of Pediatrics-Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0658, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Chung JY, Nolte AJ, Stafford CM. Surface wrinkling: a versatile platform for measuring thin-film properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2011; 23:349-68. [PMID: 20814918 DOI: 10.1002/adma.201001759] [Citation(s) in RCA: 273] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Indexed: 05/04/2023]
Abstract
Surface instabilities in soft matter have been the subject of increasingly innovative research aimed at better understanding the physics of their formation and their utility in patterning, organizing, and measuring materials properties on the micro and nanoscale. The focus of this Review is on a type of instability pattern known as surface wrinkling, covering the general concepts of this phenomenon and several recent applications involving the measurement of thin-film properties. The ability of surface wrinkling to yield new insights into particularly challenging materials systems such as ultrathin films, polymer brushes, polyelectrolyte multilayer assemblies, ultrasoft materials, and nanoscale structured materials is highlighted. A perspective on the future directions of this maturing field, including the prospects for advanced thin-film metrology methods, facile surface patterning, and the control of topology-sensitive phenomena, such as wetting and adhesion, is also presented.
Collapse
Affiliation(s)
- Jun Young Chung
- Polymers Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | | | | |
Collapse
|
47
|
Langley KR, Sharp JS. Microtextured surfaces with gradient wetting properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:18349-56. [PMID: 21028810 DOI: 10.1021/la1036212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Patterned surfaces with microwrinkled surface structures were prepared by thermally evaporating thin aluminum (10-300 nm thick) (Al) layers onto thick prestrained layers of a silicone elastomer and subsequently releasing the strain. This resulted in the formation of sinusoidal periodic surface wrinkles with characteristic wavelengths in the 3-42 μm range and amplitudes as large as 3.6 ± 0.4 μm. The Al thickness dependence of the wrinkle wavelengths and amplitudes was determined for different values of the applied prestrain and compared to a recent large-amplitude deflection theory of wrinkle formation. The results were found to be in good agreement with theory. Samples with spatial gradients in wrinkle wavelength and amplitude were also produced by applying mechanical strain gradients to the silicone elastomer layers prior to deposition of the Al capping layers. Sessile water droplets that were placed on these surfaces were found to have contact angles that were dependent upon their position. Moreover, these samples were shown to direct the motion of small water droplets when the substrates were vibrated.
Collapse
Affiliation(s)
- Kevin R Langley
- School of Physics and Astronomy and Nottingham Nanotechnology and Nanoscience Centre, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | |
Collapse
|
48
|
Yeong WY, Yu H, Lim KP, Ng KLG, Boey YCF, Subbu VS, Tan LP. Multiscale Topological Guidance for Cell Alignment via Direct Laser Writing on Biodegradable Polymer. Tissue Eng Part C Methods 2010; 16:1011-21. [DOI: 10.1089/ten.tec.2009.0604] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Wai Yee Yeong
- Division of Materials Technology, School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Haiyang Yu
- Division of Materials Technology, School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Kee Pah Lim
- Division of Materials Technology, School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Ka Lai Gary Ng
- Singapore Institute of Manufacturing Technology, Singapore
| | - Yin Chiang Freddy Boey
- Division of Materials Technology, School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Venkatraman S. Subbu
- Division of Materials Technology, School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Lay Poh Tan
- Division of Materials Technology, School of Materials Science and Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
49
|
Davidson P, Bigerelle M, Bounichane B, Giazzon M, Anselme K. Definition of a simple statistical parameter for the quantification of orientation in two dimensions: application to cells on grooves of nanometric depths. Acta Biomater 2010; 6:2590-8. [PMID: 20123045 DOI: 10.1016/j.actbio.2010.01.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 01/20/2010] [Accepted: 01/26/2010] [Indexed: 12/21/2022]
Abstract
Contact guidance is generally evaluated by measuring the orientation angle of cells. However, statistical analyses are rarely performed on these parameters. Here we propose a statistical analysis based on a new parameter sigma, the orientation parameter, defined as the dispersion of the distribution of orientation angles. This parameter can be used to obtain a truncated Gaussian distribution that models the distribution of the data between -90 degrees and +90 degrees. We established a threshold value of the orientation parameter below which the data can be considered to be aligned within a 95% confidence interval. Applying our orientation parameter to cells on grooves and using a modelling approach, we established the relationship sigma=alpha(meas)+(52 degrees -alpha(meas))/(1+C(GDE)R) where the parameter C(GDE) represents the sensitivity of cells to groove depth, and R the groove depth. The values of C(GDE) obtained allowed us to compare the contact guidance of human osteoprogenitor (HOP) cells across experiments involving different groove depths, times in culture and inoculation densities. We demonstrate that HOP cells are able to identify and respond to the presence of grooves 30, 100, 200 and 500 nm deep and that the deeper the grooves, the higher the cell orientation. The evolution of the sensitivity (C(GDE)) with culture time is roughly sigmoidal with an asymptote, which is a function of inoculation density. The sigma parameter defined here is a universal parameter that can be applied to all orientation measurements and does not require a mathematical background or knowledge of directional statistics.
Collapse
|
50
|
Nagamine K, Kawashima T, Ishibashi T, Kaji H, Kanzaki M, Nishizawa M. Micropatterning contractile C2C12 myotubes embedded in a fibrin gel. Biotechnol Bioeng 2010; 105:1161-7. [PMID: 20014142 DOI: 10.1002/bit.22636] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Contractile C(2)C(12) myotube line patterns embedded in a fibrin gel have been developed to afford a physiologically relevant and stable bioassay system. The C(2)C(12) myotube/fibrin gel system was prepared by transferring a myotube monolayer from a glass substrate to a fibrin gel while retaining the original line patterns of myotubes. To endow the myotubes with contractile activity, a series of electrical pulses was applied through a pair of carbon electrodes placed at either side of a fibrin gel separately. The frequency and magnitude of myotube contraction were functions of the pulse frequency and duration, respectively. We found that the myotubes supported by an elastic fibrin gel maintained their line patterns and contractile activities for a longer period of time (1 week) than myotubes adhered on a conventional culture dish.
Collapse
Affiliation(s)
- Kuniaki Nagamine
- Department of Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | | | | | | | | | | |
Collapse
|