1
|
Pegoraro C, Domingo-Ortí I, Conejos-Sánchez I, Vicent MJ. Unlocking the Mitochondria for Nanomedicine-based Treatments: Overcoming Biological Barriers, Improving Designs, and Selecting Verification Techniques. Adv Drug Deliv Rev 2024; 207:115195. [PMID: 38325562 DOI: 10.1016/j.addr.2024.115195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/13/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Enhanced targeting approaches will support the treatment of diseases associated with dysfunctional mitochondria, which play critical roles in energy generation and cell survival. Obstacles to mitochondria-specific targeting include the presence of distinct biological barriers and the need to pass through (or avoid) various cell internalization mechanisms. A range of studies have reported the design of mitochondrially-targeted nanomedicines that navigate the complex routes required to influence mitochondrial function; nonetheless, a significant journey lies ahead before mitochondrially-targeted nanomedicines become suitable for clinical use. Moving swiftly forward will require safety studies, in vivo assays confirming effectiveness, and methodologies to validate mitochondria-targeted nanomedicines' subcellular location/activity. From a nanomedicine standpoint, we describe the biological routes involved (from administration to arrival within the mitochondria), the features influencing rational design, and the techniques used to identify/validate successful targeting. Overall, rationally-designed mitochondria-targeted-based nanomedicines hold great promise for precise subcellular therapeutic delivery.
Collapse
Affiliation(s)
- Camilla Pegoraro
- Polymer Therapeutics Laboratory and CIBERONC, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Inés Domingo-Ortí
- Polymer Therapeutics Laboratory and CIBERONC, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Inmaculada Conejos-Sánchez
- Polymer Therapeutics Laboratory and CIBERONC, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - María J Vicent
- Polymer Therapeutics Laboratory and CIBERONC, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| |
Collapse
|
2
|
Gao T, Xia X, Tajima K, Yamamoto T, Isono T, Satoh T. Polyether/Polythioether Synthesis via Ring-Opening Polymerization of Epoxides and Episulfides Catalyzed by Alkali Metal Carboxylates. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tianle Gao
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Xiaochao Xia
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Kenji Tajima
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Takuya Yamamoto
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Takuya Isono
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Toshifumi Satoh
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| |
Collapse
|
3
|
Geven M, d'Arcy R, Turhan ZY, El-Mohtadi F, Alshamsan A, Tirelli N. Sulfur-based oxidation-responsive polymers. Chemistry, (chemically selective) responsiveness and biomedical applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110387] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
4
|
El Mohtadi F, d’Arcy R, Burke J, Rios De La Rosa JM, Gennari A, Marotta R, Francini N, Donno R, Tirelli N. “Tandem” Nanomedicine Approach against Osteoclastogenesis: Polysulfide Micelles Synergically Scavenge ROS and Release Rapamycin. Biomacromolecules 2019; 21:305-318. [DOI: 10.1021/acs.biomac.9b01348] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Farah El Mohtadi
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Richard d’Arcy
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Jason Burke
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Julio M. Rios De La Rosa
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Arianna Gennari
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Roberto Marotta
- Electron Microscopy Facility, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Nora Francini
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Roberto Donno
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Nicola Tirelli
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
| |
Collapse
|
5
|
Dong YC, Hajfathalian M, Maidment PSN, Hsu JC, Naha PC, Si-Mohamed S, Breuilly M, Kim J, Chhour P, Douek P, Litt HI, Cormode DP. Effect of Gold Nanoparticle Size on Their Properties as Contrast Agents for Computed Tomography. Sci Rep 2019; 9:14912. [PMID: 31624285 PMCID: PMC6797746 DOI: 10.1038/s41598-019-50332-8] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/10/2019] [Indexed: 01/17/2023] Open
Abstract
Computed tomography (CT) is one of the most commonly used clinical imaging modalities. There have recently been many reports of novel contrast agents for CT imaging. In particular, the development of gold nanoparticles (AuNP) as CT contrast agents is a topic of intense interest. AuNP have favorable characteristics for this application such as high payloads of contrast generating material, strong X-ray attenuation, excellent biocompatibility, tailorable surface chemistry, and tunable sizes and shapes. However, there have been conflicting reports on the role of AuNP size on their contrast generation for CT. We therefore sought to extensively investigate the AuNP size-CT contrast relationship. In order to do this, we synthesized AuNP with sizes ranging from 4 to 152 nm and capped them with 5 kDa m-PEG. The contrast generation of AuNP of different sizes was investigated with three clinical CT, a spectral photon counting CT (SPCCT) and two micro CT systems. X-ray attenuation was quantified as attenuation rate in Hounsfield units per unit concentration (HU/mM). No statistically significant difference in CT contrast generation was found among different AuNP sizes via phantom imaging with any of the systems tested. Furthermore, in vivo imaging was performed in mice to provide insight into the effect of AuNP size on animal biodistribution at CT dose levels, which has not previously been explored. Both in vivo imaging and ex vivo analysis with inductively coupled plasma optical emission spectroscopy (ICP-OES) indicated that AuNP that are 15 nm or smaller have long blood circulation times, while larger AuNP accumulated in the liver and spleen more rapidly. Therefore, while we observed no AuNP size effect on CT contrast generation, there is a significant effect of size on AuNP diagnostic utility.
Collapse
Affiliation(s)
- Yuxi C Dong
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA, 19104, USA
- Department of Bioengineering, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA, 19104, USA
| | - Maryam Hajfathalian
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA, 19104, USA
| | - Portia S N Maidment
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA, 19104, USA
| | - Jessica C Hsu
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA, 19104, USA
- Department of Bioengineering, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA, 19104, USA
| | - Pratap C Naha
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA, 19104, USA
| | - Salim Si-Mohamed
- Department of Radiology, Hôpital Cardio-Vasculaire et Pneumologique Louis Pradel, Lyon, France
- Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), UMR CNRS 5220, Inserm U1044, University Lyon1 Claude Bernard, Lyon, France
| | - Marine Breuilly
- Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), UMR CNRS 5220, Inserm U1044, University Lyon1 Claude Bernard, Lyon, France
| | - Johoon Kim
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA, 19104, USA
- Department of Bioengineering, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA, 19104, USA
| | - Peter Chhour
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA, 19104, USA
| | - Philippe Douek
- Department of Radiology, Hôpital Cardio-Vasculaire et Pneumologique Louis Pradel, Lyon, France
- Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), UMR CNRS 5220, Inserm U1044, University Lyon1 Claude Bernard, Lyon, France
| | - Harold I Litt
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA, 19104, USA
- Department of Medicine, Division of Cardiovascular Medicine, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA, 19104, USA
| | - David P Cormode
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA, 19104, USA.
- Department of Bioengineering, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA, 19104, USA.
- Department of Medicine, Division of Cardiovascular Medicine, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA, 19104, USA.
| |
Collapse
|
6
|
Rajkovic O, Gourmel C, d'Arcy R, Wong R, Rajkovic I, Tirelli N, Pinteaux E. Reactive Oxygen Species‐Responsive Nanoparticles for the Treatment of Ischemic Stroke. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900038] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Olivera Rajkovic
- Faculty of Biology, Medicine and HealthAV Hill BuildingThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Charlotte Gourmel
- Division of Pharmacy and OptometrySchool of Health SciencesStopford BuildingThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Richard d'Arcy
- Laboratory of Polymers and BiomaterialsFondazione Instituto Italiano di Tecnologia via Morego 30 16163 Genova Italy
| | - Raymond Wong
- Faculty of Biology, Medicine and HealthAV Hill BuildingThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ivana Rajkovic
- Faculty of Biology, Medicine and HealthAV Hill BuildingThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Nicola Tirelli
- Division of Pharmacy and OptometrySchool of Health SciencesStopford BuildingThe University of Manchester Oxford Road Manchester M13 9PL UK
- Laboratory of Polymers and BiomaterialsFondazione Instituto Italiano di Tecnologia via Morego 30 16163 Genova Italy
| | - Emmanuel Pinteaux
- Faculty of Biology, Medicine and HealthAV Hill BuildingThe University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
7
|
Pérez-Camargo RA, d’Arcy R, Iturrospe A, Arbe A, Tirelli N, Müller AJ. Influence of Chain Primary Structure and Topology (Branching) on Crystallization and Thermal Properties: The Case of Polysulfides. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02659] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Ricardo A. Pérez-Camargo
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Richard d’Arcy
- Division of Pharmacy & Optometry, University of Manchester, Manchester, M13 9PT, U.K
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Amaia Iturrospe
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU) - Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
| | - Arantxa Arbe
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU) - Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
| | - Nicola Tirelli
- Division of Pharmacy & Optometry, University of Manchester, Manchester, M13 9PT, U.K
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Alejandro J. Müller
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
8
|
El-Mohtadi F, d'Arcy R, Tirelli N. Oxidation-Responsive Materials: Biological Rationale, State of the Art, Multiple Responsiveness, and Open Issues. Macromol Rapid Commun 2018; 40:e1800699. [DOI: 10.1002/marc.201800699] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/13/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Farah El-Mohtadi
- Division of Pharmacy and Optometry; School of Health Sciences; Faculty of Biology; Medicine, and Health; The University of Manchester; Manchester M13 9PT UK
| | - Richard d'Arcy
- Laboratory of Polymers and Biomaterials; Fondazione Istituto Italiano di Tecnologia; 16163 Genova Italy
| | - Nicola Tirelli
- Division of Pharmacy and Optometry; School of Health Sciences; Faculty of Biology; Medicine, and Health; The University of Manchester; Manchester M13 9PT UK
- Laboratory of Polymers and Biomaterials; Fondazione Istituto Italiano di Tecnologia; 16163 Genova Italy
| |
Collapse
|
9
|
|
10
|
Muszanska AK, Rochford ETJ, Gruszka A, Bastian AA, Busscher HJ, Norde W, van der Mei HC, Herrmann A. Antiadhesive polymer brush coating functionalized with antimicrobial and RGD peptides to reduce biofilm formation and enhance tissue integration. Biomacromolecules 2014; 15:2019-26. [PMID: 24833130 DOI: 10.1021/bm500168s] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This paper describes the synthesis and characterization of polymer-peptide conjugates to be used as infection-resistant coating for biomaterial implants and devices. Antiadhesive polymer brushes composed of block copolymer Pluronic F-127 (PF127) were functionalized with antimicrobial peptides (AMP), able to kill bacteria on contact, and arginine-glycine-aspartate (RGD) peptides to promote the adhesion and spreading of host tissue cells. The antiadhesive and antibacterial properties of the coating were investigated with three bacterial strains: Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa. The ability of the coating to support mammalian cell growth was determined using human fibroblast cells. Coatings composed of the appropriate ratio of the functional components: PF127, PF127 modified with AMP, and PF127 modified with RGD showed good antiadhesive and bactericidal properties without hampering tissue compatibility.
Collapse
Affiliation(s)
- Agnieszka K Muszanska
- University of Groningen and University Medical Center Groningen , Department of Biomedical Engineering, P.O. Box 196, 9700 AD Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
11
|
d'Arcy R, Tirelli N. Fishing for fire: strategies for biological targeting and criteria for material design in anti-inflammatory therapies. POLYM ADVAN TECHNOL 2014. [DOI: 10.1002/pat.3264] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Richard d'Arcy
- School of Medicine/Institute of Inflammation and Repair; University of Manchester; Manchester M13 9PT UK
| | - Nicola Tirelli
- School of Medicine/Institute of Inflammation and Repair; University of Manchester; Manchester M13 9PT UK
- School of Materials; University of Manchester; Manchester M13 9PT UK
| |
Collapse
|
12
|
Song CC, Du FS, Li ZC. Oxidation-responsive polymers for biomedical applications. J Mater Chem B 2014; 2:3413-3426. [DOI: 10.1039/c3tb21725f] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This article summarizes recent progress in the design and synthesis of various oxidation-responsive polymers and their application in biomedical fields.
Collapse
Affiliation(s)
- Cheng-Cheng Song
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education
- Department of Polymer Science & Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| | - Fu-Sheng Du
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education
- Department of Polymer Science & Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| | - Zi-Chen Li
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education
- Department of Polymer Science & Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| |
Collapse
|
13
|
Jeanmaire D, Laliturai J, Almalik A, Carampin P, Richard d'Arcy, Lallana E, Evans R, Winpenny REP, Tirelli N. Chemical specificity in REDOX-responsive materials: the diverse effects of different Reactive Oxygen Species (ROS) on polysulfide nanoparticles. Polym Chem 2014. [DOI: 10.1039/c3py01475d] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
14
|
Song CC, Ji R, Du FS, Li ZC. Oxidation-Responsive Poly(amino ester)s Containing Arylboronic Ester and Self-Immolative Motif: Synthesis and Degradation Study. Macromolecules 2013. [DOI: 10.1021/ma401656t] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Cheng-Cheng Song
- Beijing National Laboratory for Molecular Sciences, Key
Laboratory of Polymer Chemistry and Physics of Ministry of Education,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Ran Ji
- Beijing National Laboratory for Molecular Sciences, Key
Laboratory of Polymer Chemistry and Physics of Ministry of Education,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Fu-Sheng Du
- Beijing National Laboratory for Molecular Sciences, Key
Laboratory of Polymer Chemistry and Physics of Ministry of Education,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Zi-Chen Li
- Beijing National Laboratory for Molecular Sciences, Key
Laboratory of Polymer Chemistry and Physics of Ministry of Education,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
15
|
Vo CD, Cadman CJ, Donno R, Goos JACM, Tirelli N. Combination of episulfide ring-opening polymerization with ATRP for the preparation of amphiphilic block copolymers. Macromol Rapid Commun 2013; 34:156-62. [PMID: 23319175 DOI: 10.1002/marc.201200636] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 10/10/2012] [Indexed: 11/08/2022]
Abstract
We report for the first time the combination of ATRP and ring-opening episulfide polymerization as a means to synthesize polysulfide-based low-dispersity amphiphilic block copolymers. The most significant finding is the possibility to perform ATRP under mild conditions using poly(propylene sulfide) macroinitiators, apparently without any significant copper sequestration by the polysulfides. Using glycerol monomethacrylate (GMMA) as a hydrophilic monomer, the polymers self-assembled in colloidal structures with a morphology depending on the PS/GMMA ratio, but also probably on GMMA degree of polymerization. We here also present a new AFM-based method to calculate the average number of amphiphilic macromolecules per micelle.
Collapse
Affiliation(s)
- Cong-Duan Vo
- School of Materials, University of Manchester, Manchester, UK
| | | | | | | | | |
Collapse
|
16
|
Affiliation(s)
- Stéphanie Deshayes
- Department of Bioengineering; University of California; Los Angeles California 90095
| | - Andrea M. Kasko
- Department of Bioengineering; University of California; Los Angeles California 90095
| |
Collapse
|
17
|
Reversible disulphide formation in polymer networks: A versatile functional group from synthesis to applications. Eur Polym J 2013. [DOI: 10.1016/j.eurpolymj.2013.03.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
18
|
Optimization of cell receptor-specific targeting through multivalent surface decoration of polymeric nanocarriers. J Control Release 2013; 168:41-9. [PMID: 23419950 DOI: 10.1016/j.jconrel.2013.02.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 02/05/2013] [Accepted: 02/09/2013] [Indexed: 11/21/2022]
Abstract
Treatment of tuberculosis is impaired by poor drug bioavailability, systemic side effects, patient non-compliance, and pathogen resistance to existing therapies. The mannose receptor (MR) is known to be involved in the recognition and internalization of Mycobacterium tuberculosis. We present a new assembly process to produce nanocarriers with variable surface densities of mannose targeting ligands in a single step, using kinetically-controlled, block copolymer-directed assembly. Nanocarrier association with murine macrophage J774 cells expressing the MR is examined as a function of incubation time and temperature, nanocarrier size, dose, and PEG corona properties. Amphiphilic diblock copolymers are prepared with terminal hydroxyl, methoxy, or mannoside functionality and incorporated into nanocarrier formulations at specific ratios by Flash NanoPrecipitation. Association of nanocarriers protected by a hydroxyl-terminated PEG corona with J774 cells is size dependent, while nanocarriers with methoxy-terminated PEG coronas do not associate with cells, regardless of size. Specific targeting of the MR is investigated using nanocarriers having 0-75% mannoside-terminated PEG chains in the PEG corona. This is a wider range of mannose densities than has been previously studied. Maximum nanocarrier association is attained with 9% mannoside-terminated PEG chains, increasing uptake more than 3-fold compared to non-targeted nanocarriers with a 5kgmol(-1) methoxy-terminated PEG corona. While a 5kgmol(-1) methoxy-terminated PEG corona prevents non-specific uptake, a 1.8kgmol(-1) methoxy-terminated PEG corona does not sufficiently protect the nanocarriers from nonspecific association. There is continuous uptake of MR-targeted nanocarriers at 37°C, but a saturation of association at 4°C. The majority of targeted nanocarriers associated with J774E cells are internalized at 37°C and uptake is receptor-dependent, diminishing with competitive inhibition by dextran. This characterization of nanocarrier uptake and targeting provides promise for optimizing drug delivery to macrophages for TB treatment and establishes a general route for optimizing targeted formulations of nanocarriers for specific delivery at targeted sites.
Collapse
|
19
|
Shah NB, Bischof JC. Blood protein and blood cell interactions with gold nanoparticles: the need for in vivo studies. ACTA ACUST UNITED AC 2013. [DOI: 10.1515/bnm-2012-0003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractGold nanoparticles (GNPs) have gained in prominence within the field of nanomedicine with recent advancement of several embodiments to clinical trials. To ensure their success in the clinic it has become increasingly clear that a deeper understanding of the biological interactions of GNPs is imperative. Since the majority of GNPs are intended for systemic intravenous use, an immediate and critical biological interaction is between the blood and the GNP. Blood is composed of plasma proteins and cells. Both of these components can induce downstream effects upon interacting with GNPs that ultimately influence their medical impact. For instance, proteins from the blood can cover the GNP to create a biological identity through formation of a protein corona that is quite different from the originally synthesized GNP. Once in the bloodstream this protein coated GNP evokes both positive and negative physiological responses such as biodistribution into tissue for therapy (i.e., cancer) and toxicity or off target accumulation in the reticuloendothelial system (RES) that must be controlled for optimal use. In this review, we summarize predominantly in vitro studies of GNP interactions with blood plasma proteins and blood cells and make the case that more in vivo study is urgently needed to optimal design and control GNP use in medicine. In some cases where no specific GNP blood studies exist, we draw the readers’ attention to studies conducted with other types of nanoparticles as reference.
Collapse
|
20
|
Lallana E, Ferreri T, Carroccio SC, Puga AM, Tirelli N. End-group rearrangements in poly(propylene sulfide) matrix-assisted laser desorption/ionization time-of-flight analysis. Experimental evidence and possible mechanisms. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:2158-2164. [PMID: 22886812 DOI: 10.1002/rcm.6337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
RATIONALE Polysulfides [poly(1,2-alkylene sulfides)] are oxidation-responsive polymers that are finding application in drug release and biomaterials. The precise knowledge of their macromolecular characteristics is of the essence in view of their application to biological systems. METHODS Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with and without silver trifluoroacetate was used to characterize a series of polymers with increasing molecular weight in the range 1000-4000 g/mol and with low polydispersity (<1.12). RESULTS Well-resolved peaks and accurate mass-measured values were obtained using a 2-(4-hydroxyphenylazo)benzoic acid (HABA) matrix, but significant fragmentations took place in the absence of silver as a cationizing reagent. Elimination reactions appeared to occur at terminal groups and limited depolymerization could be recorded. Interestingly, the most common fragmentation pathway seemed to be based on an as-yet-unreported process of hydrogen transfer requiring the presence both of ester groups and of thioethers. CONCLUSIONS The use of an appropriate cationizing reagent (silver trifluoroacetate) appeared to suppress end-group eliminations; we hypothesize that this action is based on the involvement of the terminal groups in silver chelation.
Collapse
Affiliation(s)
- Enrique Lallana
- School of Materials, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | |
Collapse
|
21
|
Carampin P, Lallana E, Laliturai J, Carroccio SC, Puglisi C, Tirelli N. Oxidant-Dependent REDOX Responsiveness of Polysulfides. MACROMOL CHEM PHYS 2012. [DOI: 10.1002/macp.201200264] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Allen BL, Johnson JD, Walker JP. Hydrolase stabilization via entanglement in poly(propylene sulfide) nanoparticles: stability towards reactive oxygen species. NANOTECHNOLOGY 2012; 23:294009. [PMID: 22743846 DOI: 10.1088/0957-4484/23/29/294009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In the advancement of green syntheses and sustainable reactions, enzymatic biocatalysis offers extremely high reaction rates and selectivity that goes far beyond the reach of chemical catalysts; however, these enzymes suffer from typical environmental constraints, e.g. operational temperature, pH and tolerance to oxidative environments. A common hydrolase enzyme, diisopropylfluorophosphatase (DFPase, EC 3.1.8.2), has demonstrated a pronounced efficacy for the hydrolysis of a variety of substrates for potential toxin remediation, but suffers from the aforementioned limitations. As a means to enhance DFPase's stability in oxidative environments, enzymatic covalent immobilization within the polymeric matrix of poly(propylene sulfide) (PPS) nanoparticles was performed. By modifying the enzyme's exposed lysine residues via thiolation, DFPase is utilized as a comonomer/crosslinker in a mild emulsion polymerization. The resultant polymeric polysulfide shell acts as a 'sacrificial barrier' by first oxidizing to polysulfoxides and polysulfones, rendering DFPase in an active state. DFPase-PPS nanoparticles thus retain activity upon exposure to as high as 50 parts per million (ppm) of hypochlorous acid (HOCl), while native DFPase is observed as inactive at 500 parts per billion (ppb). This trend is also confirmed by enzyme-generated (chloroperoxidase (CPO), EC 1.11.1.10) reactive oxygen species (ROS) including both HOCl (3 ppm) and ClO(2) (100 ppm).
Collapse
Affiliation(s)
- Brett L Allen
- FLIR Systems, Inc., 2240 William Pitt Way, Pittsburgh, PA 15238, USA.
| | | | | |
Collapse
|
23
|
Hu P, Tirelli N. Scavenging ROS: superoxide dismutase/catalase mimetics by the use of an oxidation-sensitive nanocarrier/enzyme conjugate. Bioconjug Chem 2012; 23:438-49. [PMID: 22292618 DOI: 10.1021/bc200449k] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reactive Oxygen Species (ROS) are quintessential inflammatory compounds with oxidizing behavior. We have successfully developed a micellar system with responsiveness at the same time to two of the most important ROS: superoxide and hydrogen peroxide. This allows for an effective and selective capture of the two compounds and, in perspective, for inflammation-responsive drug release. The system is composed of superoxide dismutase (SOD) conjugated to oxidation-sensitive amphiphilic polysulfide/PEG block copolymers; the conjugate combines the SOD reactivity toward superoxide with that of hydrophobic thioethers toward hydrogen peroxide. Specifically, here we have demonstrated how this hybrid system can efficiently convert superoxide into hydrogen peroxide, which is then "mopped-up" by the polysulfides: this modus operandi is functionally analogous to the SOD/catalase combination, with the advantages of (a) being based on a single and more stable system, and (b) a higher overall efficiency due the physical proximity of the two ROS-reactive centers (SOD and polysulfides).
Collapse
Affiliation(s)
- Ping Hu
- School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | | |
Collapse
|
24
|
Nguyen DH, Joung YK, Choi JH, Moon HT, Park KD. Targeting ligand-functionalized and redox-sensitive heparin-Pluronic nanogels for intracellular protein delivery. Biomed Mater 2011; 6:055004. [PMID: 21849723 DOI: 10.1088/1748-6041/6/5/055004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The heparin-Pluronic (HP) conjugate was coupled via redox-sensitive disulfide bond and contains a vinyl sulfone (VS) group with high reactivity to some functional groups such as thiol group. Heparin was conjugated with cystamine and the terminal hydroxyl groups of Pluronic were activated with the VS group, followed by coupling of VS groups of Pluronic with cystamine of heparin. The chemical structure, heparin content and VS group content of the resulting product were determined by (1)H NMR, FT-IR, toluidine blue assay and Ellman's method. The HP conjugate formed a type of nanogel in an aqueous medium, showing a critical micelle concentration of approximately 129.35 mg L(-1), a spherical shape and the mean diameter of 115.7 nm, which were measured by AFM and DLS. The release test demonstrated that HP nanogel was rapidly degraded when treated with glutathione. Cytotoxicity results showed a higher viability of drug-free HP nanogel than that of drug-loaded one. Cyclo(Arg-Gly-Asp-D-Phe-Cys) (cRGDfC) peptide was efficiently conjugated to VS groups of HP nanogel and exhibited higher cellular uptake than unmodified nanogels. All results suggest a novel multi-functional nanocarrier delivery and effective release of proteins to the intracellular region in a redox-sensitive manner.
Collapse
Affiliation(s)
- Dai Hai Nguyen
- Department of Molecular Science and Technology, Ajou University, Yeoungtong, Suwon, Korea
| | | | | | | | | |
Collapse
|
25
|
Allen BL, Johnson JD, Walker JP. Encapsulation and enzyme-mediated release of molecular cargo in polysulfide nanoparticles. ACS NANO 2011; 5:5263-5272. [PMID: 21595444 DOI: 10.1021/nn201477y] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Poly(propylene sulfide) nanoparticles (<150 nm) have been synthesized by an anionic, ring-opening emulsion polymerization. Upon exposure to parts per million (ppm) levels of oxidizing agent (NaOCl), hydrophobic polysulfide particles are oxidized to hydrophilic polysulfoxides and polysulfones. Utilizing this mechanism, the encapsulation of hydrophobic molecular cargo, including Nile red and Reichardt's dye, within polysulfide nanoparticles has been characterized by a variety of microscopic and spectroscopic methods and its release demonstrated via chemical oxidation. Moreover, release of cargo has been enzymatically driven by oxidoreductase enzymes such as chloroperoxidase and myeloperoxidase in the presence of low concentrations of sodium chloride (200 mM) and hydrogen peroxide (500 μM). This oxidation-driven mechanism holds promise for controlled encapsulation and release of a variety of hydrophobic cargos.
Collapse
Affiliation(s)
- Brett L Allen
- FLIR Systems, Inc., 2240 William Pitt Way, Pittsburgh, Pennsylvania 15238, United States.
| | | | | |
Collapse
|
26
|
Grieshaber SE, Nie T, Yan C, Zhong S, Teller SS, Clifton RJ, Pochan DJ, Kiick KL, Jia X. Assembly Properties of an Alanine-Rich, Lysine-Containing Peptide and the Formation of Peptide/Polymer Hybrid Hydrogels. MACROMOL CHEM PHYS 2010; 212:229-239. [PMID: 21359141 DOI: 10.1002/macp.201000446] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We are interested in developing peptide/polymer hybrid hydrogels that are chemically diverse and structurally complex. Towards this end, an alanine-based peptide doped with charged lysines with a sequence of (AKA(3)KA)(2) (AK2) was selected from the crosslinking regions of the natural elastin. Pluronic(®) F127, known to self-assemble into defined micellar structures, was employed as the synthetic building blocks. Fundamental investigations on the environmental effects on the secondary structure and assembly properties of AK2 peptide were carried out with or without the F-127 micelles. At a relatively low peptide concentration (~0.5 mg/mL), the F127 micelles are capable of not only increasing the peptide helicity but also stabilizing it against thermal denaturation. At a higher peptide concentration in basic media, the AK2 peptide developed a substantial amount of β-sheet structure that is conducive to the formation of nanofibrils. The fibril formation was confirmed collectively by atomic force microscopy (AFM), small angle neutron scattering (SANS) and transmission electron microscopy (TEM). The assembly kinetics is strongly dependent on solution temperature and pH; an increased temperature and a more basic environment led to faster fibril assembly. The self-assembled nanoscale structures were covalently interlocked via the Michael-type addition reaction between vinyl sulfone-decorated F127 micelles and the lysine amines exposed at the surface of the nanofibers. The crosslinked hybrid hydrogels were viscoelastic, exhibiting an elastic modulus of approximately 17 kPa and a loss tangent of 0.2.
Collapse
Affiliation(s)
- Sarah E Grieshaber
- Department of Materials Science and Engineering, Delaware Biotechnology Institute, University of Delaware, Newark DE 19716, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Dowling MB, Li L, Park J, Kumi G, Nan A, Ghandehari H, Fourkas JT, DeShong P. Multiphoton-Absorption-Induced-Luminescence (MAIL) Imaging of Tumor-Targeted Gold Nanoparticles. Bioconjug Chem 2010; 21:1968-77. [DOI: 10.1021/bc100115m] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Matthew B. Dowling
- Department of Bioengineering, Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742-2111, United States, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States, and Department of Bioengineering, University of Utah, Salt Lake City, Utah 84101, United States
| | - Linjie Li
- Department of Bioengineering, Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742-2111, United States, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States, and Department of Bioengineering, University of Utah, Salt Lake City, Utah 84101, United States
| | - Juhee Park
- Department of Bioengineering, Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742-2111, United States, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States, and Department of Bioengineering, University of Utah, Salt Lake City, Utah 84101, United States
| | - George Kumi
- Department of Bioengineering, Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742-2111, United States, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States, and Department of Bioengineering, University of Utah, Salt Lake City, Utah 84101, United States
| | - Anjan Nan
- Department of Bioengineering, Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742-2111, United States, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States, and Department of Bioengineering, University of Utah, Salt Lake City, Utah 84101, United States
| | - Hamid Ghandehari
- Department of Bioengineering, Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742-2111, United States, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States, and Department of Bioengineering, University of Utah, Salt Lake City, Utah 84101, United States
| | - John T. Fourkas
- Department of Bioengineering, Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742-2111, United States, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States, and Department of Bioengineering, University of Utah, Salt Lake City, Utah 84101, United States
| | - Philip DeShong
- Department of Bioengineering, Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742-2111, United States, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States, and Department of Bioengineering, University of Utah, Salt Lake City, Utah 84101, United States
| |
Collapse
|
28
|
Mu CJ, LaVan DA, Langer RS, Zetter BR. Self-assembled gold nanoparticle molecular probes for detecting proteolytic activity in vivo. ACS NANO 2010; 4:1511-20. [PMID: 20146506 PMCID: PMC2847389 DOI: 10.1021/nn9017334] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Target-activatable fluorogenic probes based on gold nanoparticles (AuNPs) functionalized with self-assembled heterogeneous monolayers of dye-labeled peptides and poly(ethylene glycol) have been developed to visualize proteolytic activity in vivo. A one-step synthesis strategy that allows simple generation of surface-defined AuNP probe libraries is presented as a means of tailoring and evaluating probe characteristics for maximal fluorescence enhancement after protease activation. Optimal AuNP probes targeted to trypsin and urokinase-type plasminogen activator required the incorporation of a dark quencher to achieve 5- to 8-fold signal amplification. These probes exhibited extended circulation time in vivo and high image contrast in a mouse tumor model.
Collapse
Affiliation(s)
- C. Jenny Mu
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts 02139
- Vascular Biology Program, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115
| | - David A. LaVan
- National Institute of Standards and Technology, Gaithersburg, MD 20899
| | - Robert S. Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, 45 Carleton Street, Cambridge, Massachusetts 02142
| | - Bruce R. Zetter
- Vascular Biology Program, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115
- Department of Surgery, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115
- Corresponding author
| |
Collapse
|
29
|
Di Meo EM, Di Crescenzo A, Velluto D, O’Neil CP, Demurtas D, Hubbell JA, Fontana A. Assessing the Role of Poly(ethylene glycol-bl-propylene sulfide) (PEG-PPS) Block Copolymers in the Preparation of Carbon Nanotube Biocompatible Dispersions. Macromolecules 2010. [DOI: 10.1021/ma902443j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Erika Maria Di Meo
- Dipartimento di Scienze del Farmaco, Università “G. d’Annunzio”, Via dei Vestini, I-66013 Chieti, Italy
| | - Antonello Di Crescenzo
- Dipartimento di Scienze del Farmaco, Università “G. d’Annunzio”, Via dei Vestini, I-66013 Chieti, Italy
| | - Diana Velluto
- Institute for Bioengineering and Institute for Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Station 15, CH-1015 Lausanne, Switzerland
| | - Conlin P. O’Neil
- Institute for Bioengineering and Institute for Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Station 15, CH-1015 Lausanne, Switzerland
| | - Davide Demurtas
- Interdisciplinary Center for Electon Microscopy (CIME), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jeffrey A. Hubbell
- Institute for Bioengineering and Institute for Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Station 15, CH-1015 Lausanne, Switzerland
| | - Antonella Fontana
- Dipartimento di Scienze del Farmaco, Università “G. d’Annunzio”, Via dei Vestini, I-66013 Chieti, Italy
| |
Collapse
|
30
|
Soliman M, Allen S, Davies MC, Alexander C. Responsive polyelectrolyte complexes for triggered release of nucleic acid therapeutics. Chem Commun (Camb) 2010; 46:5421-33. [DOI: 10.1039/c0cc00794c] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
31
|
Pangburn TO, Petersen MA, Waybrant B, Adil MM, Kokkoli E. Peptide- and aptamer-functionalized nanovectors for targeted delivery of therapeutics. J Biomech Eng 2009; 131:074005. [PMID: 19655996 DOI: 10.1115/1.3160763] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Targeted delivery of therapeutics is an area of vigorous research, and peptide- and aptamer-functionalized nanovectors are a promising class of targeted delivery vehicles. Both peptide- and aptamer-targeting ligands can be readily designed to bind a target selectively with high affinity, and more importantly are molecules accessible by chemical synthesis and relatively compact compared with antibodies and full proteins. The multitude of peptide ligands that have been used for targeted delivery are covered in this review, with discussion of binding selectivity and targeting performance for these peptide sequences where possible. Aptamers are RNA or DNA strands evolutionarily engineered to specifically bind a chosen target. Although use of aptamers in targeted delivery is a relatively new avenue of research, the current state of the field is covered and promises of future advances in this area are highlighted. Liposomes, the classic drug delivery vector, and polymeric nanovectors functionalized with peptide or aptamer binding ligands will be discussed in this review, with the exclusion of other drug delivery vehicles. Targeted delivery of therapeutics, from DNA to classic small molecule drugs to protein therapeutics, by these targeted nanovectors is reviewed with coverage of both in vitro and in vivo deliveries. This is an exciting and dynamic area of research and this review seeks to discuss its broad scope.
Collapse
Affiliation(s)
- Todd O Pangburn
- Department of Chemical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
32
|
Lutolf MP, Blau HM. Artificial stem cell niches. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2009; 21:3255-68. [PMID: 20882496 PMCID: PMC3099745 DOI: 10.1002/adma.200802582] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Stem cells are characterized by their dual ability to reproduce themselves (self-renew) and specialize (differentiate), yielding a plethora of daughter cells that maintain and regenerate tissues. In contrast to their embryonic counterparts, adult stem cells retain their unique functions only if they are in intimate contact with an instructive microenvironment, termed stem cell niche. In these niches, stem cells integrate a complex array of molecular signals that, in concert with induced cell-intrinsic regulatory networks, control their function and balance their numbers in response to physiologic demands. This progress report provides a perspective on how advanced materials technologies could be used (i) to engineer and systematically analyze specific aspects of functional stem cells niches in a controlled fashion in vitro and (ii) to target stem cell niches in vivo. Such "artificial niches" constitute potent tools for elucidating stem cell regulatory mechanisms with the capacity to directly impact the development of novel therapeutic strategies for tissue regeneration.
Collapse
Affiliation(s)
- Matthias P. Lutolf
- Prof. M. P. Lutolf, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland), , Prof. H. M. Blau, Baxter Laboratory in Genetic Pharmacology, Stanford University School of Medicine, Stanford, CA (USA),
| | - Helen M. Blau
- Prof. M. P. Lutolf, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland), , Prof. H. M. Blau, Baxter Laboratory in Genetic Pharmacology, Stanford University School of Medicine, Stanford, CA (USA),
| |
Collapse
|
33
|
Nasti A, Zaki NM, de Leonardis P, Ungphaiboon S, Sansongsak P, Rimoli MG, Tirelli N. Chitosan/TPP and chitosan/TPP-hyaluronic acid nanoparticles: systematic optimisation of the preparative process and preliminary biological evaluation. Pharm Res 2009; 26:1918-30. [PMID: 19507009 DOI: 10.1007/s11095-009-9908-0] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 05/07/2009] [Indexed: 11/24/2022]
Abstract
PURPOSE Chitosan is one of the most sought-after components for designing nanoparticles for drug delivery applications. However, despite the large number of studies, reproducibility is often an issue; generally more attention should be focused on purity and precise characterization of the starting material, as well as on the development of robust preparative procedures. METHODS Using a rational experimental design, we have studied the influence of a number of orthogonal factors (pH, concentrations, ratios of components, different methods of mixing) in the preparation of chitosan/triphosphate (TPP) nanoparticles and in their coating with hyaluronic acid (HA), aiming at the minimisation of size polydispersity, the maximisation of zeta potential and long-term stability, and at the control over average nanoparticle size. RESULTS AND CONCLUSION Three optimised nanoparticles have been developed (two uncoated and one HA-coated) and their toxicity on fibroblasts and macrophages has been evaluated: experiments showed the beneficial character of HA-coating in the reduction of toxicity (IC50 raised from 0.7-0.8 mg/mL to 1.8 mg/mL) and suggested that the uncoated chitosan/TPP nanoparticles had toxic effects following internalisation rather than membrane disruption.
Collapse
Affiliation(s)
- Alessandro Nasti
- School of Pharmacy, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK
| | | | | | | | | | | | | |
Collapse
|
34
|
Wang L, Hu P, Tirelli N. Amphiphilic star block copolymers: Influence of branching on lyotropic/interfacial properties. POLYMER 2009. [DOI: 10.1016/j.polymer.2009.04.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Bae JW, Lee E, Park KM, Park KD. Vinyl Sulfone-Terminated PEG−PLLA Diblock Copolymer for Thiol-Reactive Polymeric Micelle. Macromolecules 2009. [DOI: 10.1021/ma900185x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jin Woo Bae
- Department of Molecular Science and Technology, Ajou University, 5 Woncheon, Yeongtong, Suwon 443-749, Korea
| | - Eugene Lee
- Department of Molecular Science and Technology, Ajou University, 5 Woncheon, Yeongtong, Suwon 443-749, Korea
| | - Kyung Min Park
- Department of Molecular Science and Technology, Ajou University, 5 Woncheon, Yeongtong, Suwon 443-749, Korea
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, 5 Woncheon, Yeongtong, Suwon 443-749, Korea
| |
Collapse
|
36
|
Vo CD, Kilcher G, Tirelli N. Polymers and Sulfur: what are Organic Polysulfides Good For? Preparative Strategies and Biological Applications. Macromol Rapid Commun 2009; 30:299-315. [PMID: 21706606 DOI: 10.1002/marc.200800740] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Accepted: 11/29/2008] [Indexed: 11/08/2022]
Abstract
Sulfur(II)-containing polymers (polysulfides) combine flexible synthetic and processing techniques with a unique responsiveness to oxidants. Here, the polysulfide oxidative sensitivity is put into the biological context of the development of new anti-inflammatory therapies - the development of new anti-inflammatory methodologies, adopted interactions and the minimisation of foreign-body reactions - through the review of 50 years of research on polysulfide synthetic methodologies. Attention is paid to the identification of the most flexible and robust preparative techniques.
Collapse
Affiliation(s)
- Cong Duan Vo
- Laboratory of Polymers and Biomaterials, School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | | | | |
Collapse
|
37
|
Abstract
Oxidation is an almost ubiquitous feature of inflammatory reactions. We discuss the development of nanocarriers that respond to the presence of oxidants with profound physical reorganization, which could in perspective allow their use for delivering anti-inflammatory principles in an inflammation-responsive fashion. We also present a study demonstrating that the response of polysulfide nanoparticles has a bulk character, i.e., the odixation reactions happen homogeneously throughout the nanoparticles, and not interfacially.
Collapse
|