1
|
Blume C, Kraus X, Heene S, Loewner S, Stanislawski N, Cholewa F, Blume H. Vascular implants - new aspects for in situ tissue engineering. Eng Life Sci 2022; 22:344-360. [PMID: 35382534 PMCID: PMC8961049 DOI: 10.1002/elsc.202100100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/10/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022] Open
Abstract
Conventional synthetic vascular grafts require ongoing anticoagulation, and autologous venous grafts are often not available in elderly patients. This review highlights the development of bioartificial vessels replacing brain-dead donor- or animal-deriving vessels with ongoing immune reactivity. The vision for such bio-hybrids exists in a combination of biodegradable scaffolds and seeding with immune-neutral cells, and here different cells sources such as autologous progenitor cells or stem cells are relevant. This kind of in situ tissue engineering depends on a suitable bioreactor system with elaborate monitoring systems, three-dimensional (3D) visualization and a potential of cell conditioning into the direction of the targeted vascular cell phenotype. Necessary bioreactor tools for dynamic and pulsatile cultivation are described. In addition, a concept for design of vasa vasorum is outlined, that is needed for sustainable nutrition of the wall structure in large caliber vessels. For scaffold design and cell adhesion additives, different materials and technologies are discussed. 3D printing is introduced as a relatively new field with promising prospects, for example, to create complex geometries or micro-structured surfaces for optimal cell adhesion and ingrowth in a standardized and custom designed procedure. Summarizing, a bio-hybrid vascular prosthesis from a controlled biotechnological process is thus coming more and more into view. It has the potential to withstand strict approval requirements applied for advanced therapy medicinal products.
Collapse
Affiliation(s)
- Cornelia Blume
- Institute for Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Xenia Kraus
- Institute for Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Sebastian Heene
- Institute for Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Sebastian Loewner
- Institute for Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Nils Stanislawski
- Institute for Microelectronic SystemsLeibniz University HannoverHannoverGermany
| | - Fabian Cholewa
- Institute for Microelectronic SystemsLeibniz University HannoverHannoverGermany
| | - Holger Blume
- Institute for Microelectronic SystemsLeibniz University HannoverHannoverGermany
| |
Collapse
|
2
|
Datta S, Jana S, Das A, Chakraborty A, Chowdhury AR, Datta P. Bioprinting of radiopaque constructs for tissue engineering and understanding degradation behavior by use of Micro-CT. Bioact Mater 2020; 5:569-576. [PMID: 32373763 PMCID: PMC7195521 DOI: 10.1016/j.bioactmat.2020.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/05/2020] [Accepted: 04/22/2020] [Indexed: 12/17/2022] Open
Abstract
Bioprinting has emerged as a potential technique to fabricate tissue engineering constructs and in vitro models directly using living cells as a raw material for fabrication, conforming to the heterogeneity and architectural complexity of the tissues. In several of tissue engineering and in vitro disease modelling or surgical planning applications, it is desirable to have radiopaque constructs for monitoring and evaluation. In the present work, enhanced radiopaque constructs are generated by substituting Calcium ions with Barium ions for crosslinking of alginate hydrogels. The constructs are characterized for their structural integrity and followed by cell culture studies to evaluate their biocompatibility. This was followed by the radiopacity evaluation. The radiological images obtained by micro-CT technique was further applied to investigate the degradation behavior of the scaffolds. In conclusion, it is observed that barium crosslinking can provide a convenient means to obtain radiopaque constructs with potential for multi-faceted applications.
Collapse
Affiliation(s)
- Sudipto Datta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103, WB, India
| | - Shuvodeep Jana
- Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Ankita Das
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103, WB, India
| | - Arindam Chakraborty
- Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103, WB, India
| | - Amit Roy Chowdhury
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103, WB, India
- Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103, WB, India
| | - Pallab Datta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103, WB, India
| |
Collapse
|
3
|
Talacua H, Söntjens SHM, Thakkar SH, Brizard AMA, van Herwerden LA, Vink A, van Almen GC, Dankers PYW, Bouten CVC, Budde RPJ, Janssen HM, Kluin J. Imaging the In Vivo Degradation of Tissue Engineering Implants by Use of Supramolecular Radiopaque Biomaterials. Macromol Biosci 2020; 20:e2000024. [PMID: 32558365 DOI: 10.1002/mabi.202000024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 01/21/2023]
Abstract
For in situ tissue engineering (TE) applications it is important that implant degradation proceeds in concord with neo-tissue formation to avoid graft failure. It will therefore be valuable to have an imaging contrast agent (CA) available that can report on the degrading implant. For this purpose, a biodegradable radiopaque biomaterial is presented, modularly composed of a bisurea chain-extended polycaprolactone (PCL2000-U4U) elastomer and a novel iodinated bisurea-modified CA additive (I-U4U). Supramolecular hydrogen bonding interactions between the components ensure their intimate mixing. Porous implant TE-grafts are prepared by simply electrospinning a solution containing PCL2000-U4U and I-U4U. Rats receive an aortic interposition graft, either composed of only PCL2000-U4U (control) or of PCL2000-U4U and I-U4U (test). The grafts are explanted for analysis at three time points over a 1-month period. Computed tomography imaging of the test group implants prior to explantation shows a decrease in iodide volume and density over time. Explant analysis also indicates scaffold degradation. (Immuno)histochemistry shows comparable cellular contents and a similar neo-tissue formation process for test and control group, demonstrating that the CA does not have apparent adverse effects. A supramolecular approach to create solid radiopaque biomaterials can therefore be used to noninvasively monitor the biodegradation of synthetic implants.
Collapse
Affiliation(s)
- Hanna Talacua
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, The Netherlands.,Department of Cardio-Thoracic Surgery, Academic Medical Center Amsterdam, P. O. Box 22660, Amsterdam, 1100 DD, The Netherlands
| | | | - Shraddha H Thakkar
- Department of Biomedical Engineering, Laboratory of Cell and Tissue Engineering, Eindhoven University of Technology, Den Dolech 2, Eindhoven, The Netherlands
| | - Aurelie M A Brizard
- Philips Research, BioMolecular Engineering, High Tech Campus Eindhoven, High Tech Campus 11, Eindhoven, The Netherlands
| | - Lex A van Herwerden
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, The Netherlands
| | - Aryan Vink
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, Room H04-312, Utrecht, The Netherlands
| | - Geert C van Almen
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, Den Dolech 2, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Dolech 2, Eindhoven, The Netherlands
| | - Patricia Y W Dankers
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, Den Dolech 2, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Dolech 2, Eindhoven, The Netherlands
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Laboratory of Cell and Tissue Engineering, Eindhoven University of Technology, Den Dolech 2, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Dolech 2, Eindhoven, The Netherlands
| | - Ricardo P J Budde
- Department of Radiology, Erasmus Medical Center Rotterdam, 's-Gravendijkwal 230, Rotterdam, The Netherlands
| | - Henk M Janssen
- SyMO-Chem BV, Eindhoven, Den Dolech 2, Eindhoven, The Netherlands
| | - Jolanda Kluin
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, The Netherlands.,Department of Cardio-Thoracic Surgery, Academic Medical Center Amsterdam, P. O. Box 22660, Amsterdam, 1100 DD, The Netherlands
| |
Collapse
|
4
|
Surmenev RA, Shkarina S, Syromotina DS, Melnik EV, Shkarin R, Selezneva II, Ermakov AM, Ivlev SI, Cecilia A, Weinhardt V, Baumbach T, Rijavec T, Lapanje A, Chaikina MV, Surmeneva MA. Characterization of biomimetic silicate- and strontium-containing hydroxyapatite microparticles embedded in biodegradable electrospun polycaprolactone scaffolds for bone regeneration. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.01.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Vojtová L, Zikmund T, Pavliňáková V, Šalplachta J, Kalasová D, Prosecká E, Brtníková J, Žídek J, Pavliňák D, Kaiser J. The 3D imaging of mesenchymal stem cells on porous scaffolds using high-contrasted x-ray computed nanotomography. J Microsc 2018; 273:169-177. [PMID: 30467862 DOI: 10.1111/jmi.12771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/12/2018] [Accepted: 11/13/2018] [Indexed: 01/15/2023]
Abstract
This study presents an X-ray computed nanotomography (nano-CT) based, high-resolution imaging technique. Thanks to a voxel resolution of 540 nm, this novel technique is suitable for observing the 3D morphology of soft biopolymeric scaffolds seeded with stem cells. A sample of highly porous collagen scaffold seeded with contrasted mesenchymal stem cells (MSC) was investigated by using lab-based nano-CT. The whole volume of the sample was analysed without its destruction. To evaluate the potential of nano-CT, a comparison measurement was done using a standard microscopy technique. Scanning electron microscopy (SEM) combined with energy dispersive X-ray analysis (EDX) established an extension and local accumulation of the contrasting agent - heavy metallic osmium tetroxide. The presented imaging technique is novel as it will help to understand better the behaviour of cells while interacting with three-dimensional biomaterials. This is crucial for both experimental and clinical tissue engineering applications in order to limit the risk of uncontrolled cell growth, and potentially tumour formation. LAY DESCRIPTION: Biomaterials play a crucial role in tissue engineering by serving as 3D scaffolds for cellular attachment, proliferation, and in growth ultimately leading to new tissue formation. Cell morphology and proliferation inside the 3D scaffold are necessary to know for assessing cell viability. However, these studies are usually negatively affected by the limitations of imaging techniques. We demonstrate that X-ray computed nanotomography (nano-CT), based on high-resolution imaging technique providing voxel resolution of 540 nm, is a suitable method for observing the 3D morphology of soft biopolymeric scaffolds seeded with stem cells. A sample of highly porous collagen scaffold seeded with contrasted mesenchymal stem cells (MSC) was investigated by using a lab-based nano-CT. The whole volume of the sample was analysed without its destruction. To evaluate the potential of nano-CT, a comparison measurement was done using a standard microscopy technique. Scanning electron microscopy in a combination with energy dispersive X-ray analysis established an extension and local accumulation of the contrasting agent - heavy metallic osmium tetroxide. The presented imaging technique is novel as it will help to understand better the behaviour of cells while interacting with three-dimensional biomaterials. This is crucial for both experimental and clinical tissue engineering applications in order to limit the risk of uncontrolled cell growth, and potentially tumour formation.
Collapse
Affiliation(s)
- L Vojtová
- CEITEC, Brno University of Technology, Brno, Czech Republic
| | - T Zikmund
- CEITEC, Brno University of Technology, Brno, Czech Republic
| | - V Pavliňáková
- CEITEC, Brno University of Technology, Brno, Czech Republic
| | - J Šalplachta
- CEITEC, Brno University of Technology, Brno, Czech Republic
| | - D Kalasová
- CEITEC, Brno University of Technology, Brno, Czech Republic
| | - E Prosecká
- Institute of Experimental Medicine ASCR v.v.i., Prague, Czech Republic
| | - J Brtníková
- CEITEC, Brno University of Technology, Brno, Czech Republic
| | - J Žídek
- CEITEC, Brno University of Technology, Brno, Czech Republic
| | - D Pavliňák
- CEPLANT, Department of Physical Electronics, Masaryk University, Brno, Czech Republic
| | - J Kaiser
- CEITEC, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
6
|
Wang L, Xu ME, Luo L, Zhou Y, Si P. Iterative feedback bio-printing-derived cell-laden hydrogel scaffolds with optimal geometrical fidelity and cellular controllability. Sci Rep 2018; 8:2802. [PMID: 29434327 PMCID: PMC5809410 DOI: 10.1038/s41598-018-21274-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 02/01/2018] [Indexed: 12/17/2022] Open
Abstract
For three-dimensional bio-printed cell-laden hydrogel tissue constructs, the well-designed internal porous geometry is tailored to obtain the desired structural and cellular properties. However, significant differences often exist between the designed and as-printed scaffolds because of the inherent characteristics of hydrogels and cells. In this study, an iterative feedback bio-printing (IFBP) approach based on optical coherence tomography (OCT) for the fabrication of cell-laden hydrogel scaffolds with optimal geometrical fidelity and cellular controllability was proposed. A custom-made swept-source OCT (SS-OCT) system was applied to characterize the printed scaffolds quantitatively. Based on the obtained empirical linear formula from the first experimental feedback loop, we defined the most appropriate design constraints and optimized the printing process to improve the geometrical fidelity. The effectiveness of IFBP was verified from the second run using gelatin/alginate hydrogel scaffolds laden with C3A cells. The mismatch of the morphological parameters greatly decreased from 40% to within 7%, which significantly optimized the cell viability, proliferation, and morphology, as well as the representative expression of hepatocyte markers, including CYP3A4 and albumin, of the printed cell-laden hydrogel scaffolds. The demonstrated protocol paves the way for the mass fabrication of cell-laden hydrogel scaffolds, engineered tissues, and scaled-up applications of the 3D bio-printing technique.
Collapse
Affiliation(s)
- Ling Wang
- Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Ming-En Xu
- Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Li Luo
- Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Yongyong Zhou
- Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Peijian Si
- Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, 310018, China
| |
Collapse
|
7
|
Salarian M, Xu WZ, Bohay R, Lui EMK, Charpentier PA. Angiogenic Rg 1 /Sr-Doped TiO 2 Nanowire/Poly(Propylene Fumarate) Bone Cement Composites. Macromol Biosci 2016; 17. [PMID: 27618224 DOI: 10.1002/mabi.201600156] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/29/2016] [Indexed: 12/11/2022]
Abstract
A new approach is provided for preparing radiopaque and angiogenic poly(propylene fumarate) (PPF) bone cements by integrating Sr-doped n-TiO2 nanowires and ginsenoside Rg1 suitable for treating osteonecrosis. High aspect ratio radiopaque TiO2 -nanowires are synthesized by strontium doping in supercritical CO2 for the first time, showing a new phase, SrTiO3 . PPF is synthesized using a transesterification method by reacting diethyl fumarate and propylene glycol, then functionalized using maleic anhydride to produce terminal carboxyl groups, which are subsequently linked to the nanowires. The strong interfacial adhesion between functionalized PPF and nanowires is examined by scanning electron microscopy, Fourier transform infrared, X-ray photoelectron spectroscopy, thermal analysis, and mechanical testing. An angiogenic modulator, ginsenoside Rg1 , is integrated into the bone cement formulation with the mechanical properties, radiopacity, drug release, and angiogenesis behavior of the formed composites explored. The results show superior radiopacity and excellent release of ginsenoside Rg1 in vitro, as well as a dose-dependent increase in the branching point numbers. The present study suggests this new methodology provides sufficient mechanical properties, radiopacity, and angiogenic activity to be suitable for cementation of necrotic bone.
Collapse
Affiliation(s)
- Mehrnaz Salarian
- Biomedical Engineering Graduate Program, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B9, Canada.,The Ontario Ginseng Innovation & Research Consortium, 1151 Richmond Street, London, ON, N6A 5B9, Canada
| | - William Z Xu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B9, Canada
| | - Richard Bohay
- Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B9, Canada
| | - Edmund M K Lui
- The Ontario Ginseng Innovation & Research Consortium, 1151 Richmond Street, London, ON, N6A 5B9, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B9, Canada
| | - Paul A Charpentier
- Biomedical Engineering Graduate Program, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B9, Canada.,Department of Chemical and Biochemical Engineering, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B9, Canada
| |
Collapse
|
8
|
Molecular basis for cytokine biomarkers of complex 3D microtissue physiology in vitro. Drug Discov Today 2016; 21:950-61. [PMID: 27021792 DOI: 10.1016/j.drudis.2016.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 02/05/2016] [Accepted: 03/16/2016] [Indexed: 11/24/2022]
Abstract
'Physiologically more-relevant' claims are readily made for cells cultured on any surface or in a scaffold that provides loosely defined 3D geometry. A set of tools to measure culture '3D-ness' more accurately are needed. Such tools should find applications in fields ranging from high-throughput identification of substrates for tissue engineering and regenerative medicine to cell-based screening of drug candidates. Until now, these fields have not provided a consensus for the most promising place to initiate the search. Here, we review recent advances in transcriptomic, proteomic, inflammation and oncology-related pathways, as well as functional studies that strongly point to cytokines as the most likely compounds to form the missing consensus.
Collapse
|
9
|
Wang L, Xu M, Zhang L, Zhou Q, Luo L. Automated quantitative assessment of three-dimensional bioprinted hydrogel scaffolds using optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2016; 7:894-910. [PMID: 27231597 PMCID: PMC4866464 DOI: 10.1364/boe.7.000894] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/15/2016] [Accepted: 02/15/2016] [Indexed: 05/13/2023]
Abstract
Reconstructing and quantitatively assessing the internal architecture of opaque three-dimensional (3D) bioprinted hydrogel scaffolds is difficult but vital to the improvement of 3D bioprinting techniques and to the fabrication of functional engineered tissues. In this study, swept-source optical coherence tomography was applied to acquire high-resolution images of hydrogel scaffolds. Novel 3D gelatin/alginate hydrogel scaffolds with six different representative architectures were fabricated using our 3D bioprinting system. Both the scaffold material networks and the interconnected flow channel networks were reconstructed through volume rendering and binarisation processing to provide a 3D volumetric view. An image analysis algorithm was developed based on the automatic selection of the spatially-isolated region-of-interest. Via this algorithm, the spatially-resolved morphological parameters including pore size, pore shape, strut size, surface area, porosity, and interconnectivity were quantified precisely. Fabrication defects and differences between the designed and as-produced scaffolds were clearly identified in both 2D and 3D; the locations and dimensions of each of the fabrication defects were also defined. It concludes that this method will be a key tool for non-destructive and quantitative characterization, design optimisation and fabrication refinement of 3D bioprinted hydrogel scaffolds. Furthermore, this method enables investigation into the quantitative relationship between scaffold structure and biological outcome.
Collapse
Affiliation(s)
- Ling Wang
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou 310018, China;
| | - Mingen Xu
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou 310018, China; Hangzhou Regenovo Corporation, Hangzhou 310018, China;
| | - LieLie Zhang
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - QingQing Zhou
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Li Luo
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
10
|
Nicolau SE, Davis LL, Duncan CC, Olsen TR, Alexis F, Whitehead DC, Van Horn BA. Oxime functionalization strategy for iodinated poly(epsilon-caprolactone) X-ray opaque materials. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27706] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Samantha E. Nicolau
- Department of Chemistry and Biochemistry; College of Charleston; 66 George St. Charleston South Carolina 29424
| | - Lundy L. Davis
- Department of Chemistry and Biochemistry; College of Charleston; 66 George St. Charleston South Carolina 29424
| | - Caroline C. Duncan
- Department of Chemistry and Biochemistry; College of Charleston; 66 George St. Charleston South Carolina 29424
| | - Timothy R. Olsen
- Department of Bioengineering; Clemson University; 203 Rhodes Research Center Annex Clemson South Carolina 29634
| | - Frank Alexis
- Department of Bioengineering; Clemson University; 203 Rhodes Research Center Annex Clemson South Carolina 29634
- Institute of Biological Interfaces of Engineering; Department of Bioengineering; Clemson University; Clemson South Carolina 29634-0905
| | - Daniel C. Whitehead
- Department of Chemistry; Clemson University; 467 Hunter Laboratories Clemson South Carolina 29634
| | - Brooke A. Van Horn
- Department of Chemistry and Biochemistry; College of Charleston; 66 George St. Charleston South Carolina 29424
| |
Collapse
|
11
|
Edmunds KJ, Gargiulo P. Imaging Approaches in Functional Assessment of Implantable Myogenic Biomaterials and Engineered Muscle Tissue. Eur J Transl Myol 2015; 25:4847. [PMID: 26913149 PMCID: PMC4749010 DOI: 10.4081/ejtm.2015.4847] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/21/2015] [Indexed: 12/13/2022] Open
Abstract
The fields of tissue engineering and regenerative medicine utilize implantable biomaterials and engineered tissues to regenerate damaged cells or replace lost tissues. There are distinct challenges in all facets of this research, but functional assessments and monitoring of such complex environments as muscle tissues present the current strategic priority. Many extant methods for addressing these questions result in the destruction or alteration of tissues or cell populations under investigation. Modern advances in non-invasive imaging modalities present opportunities to rethink some of the anachronistic methods, however, their standard employment may not be optimal when considering advancements in myology. New image analysis protocols and/or combinations of established modalities need to be addressed. This review focuses on efficacies and limitations of available imaging modalities to the functional assessment of implantable myogenic biomaterials and engineered muscle tissues.
Collapse
Affiliation(s)
- Kyle J. Edmunds
- Institute for Biomedical and Neural Engineering, University of Reykjavík
| | - Paolo Gargiulo
- Institute for Biomedical and Neural Engineering, University of Reykjavík
- University Hospital Landspítali, Reykjavík, Iceland
| |
Collapse
|
12
|
Li S, Yu J, Wade MB, Policastro GM, Becker ML. Radiopaque, Iodine Functionalized, Phenylalanine-Based Poly(ester urea)s. Biomacromolecules 2015; 16:615-24. [DOI: 10.1021/bm501669u] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Shan Li
- Departments of †Polymer Science and ‡Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Jiayi Yu
- Departments of †Polymer Science and ‡Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Mary Beth Wade
- Departments of †Polymer Science and ‡Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Gina M. Policastro
- Departments of †Polymer Science and ‡Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Matthew L. Becker
- Departments of †Polymer Science and ‡Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
13
|
Rode C, Schmidt A, Wyrwa R, Weisser J, Schmidt K, Moszner N, Gottlöber RP, Heinemann K, Schnabelrauch M. Synthesis and processability into textile structures of radiopaque, biodegradable polyesters and poly(ester-urethanes). POLYM INT 2014. [DOI: 10.1002/pi.4707] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Claudia Rode
- INNOVENT e.V.; Biomaterials Department; Prüssingstrasse 27B D-07745 Jena Germany
| | - Annika Schmidt
- INNOVENT e.V.; Biomaterials Department; Prüssingstrasse 27B D-07745 Jena Germany
| | - Ralf Wyrwa
- INNOVENT e.V.; Biomaterials Department; Prüssingstrasse 27B D-07745 Jena Germany
| | - Jürgen Weisser
- INNOVENT e.V.; Biomaterials Department; Prüssingstrasse 27B D-07745 Jena Germany
| | - Kathrin Schmidt
- Occlutech GmbH Jena; Wildenbruchstr. 15 D-07745 Jena Germany
| | - Norbert Moszner
- Ivoclar Vivadent AG; Bendererstrasse 2 FL- 9494 Schaan Liechtenstein
| | | | - Klaus Heinemann
- TITK e.V., Rudolstadt; Breitscheidstr. 97 07407 Rudolstadt Germany
| | | |
Collapse
|
14
|
Lin N, Toh GW, Feng Y, Liu XY, Xu H. Two-photon fluorescent Bombyx mori silk by molecular recognition functionalization. J Mater Chem B 2014; 2:2136-2143. [DOI: 10.1039/c3tb21602k] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Two-photon fluorescent (TPF) Bombyx mori silk fibers were acquired for bioimaging by molecular recognition functionalization.
Collapse
Affiliation(s)
- Naibo Lin
- College of Material Science and Engineering & State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Donghua University
- Shanghai, China
- Research Institute for Biomimetics and Soft Matter & College of Materials
- Xiamen University
| | - Guoyang William Toh
- MIT-Singapore Alliance
- Department of Physics
- National University of Singapore
- Singapore, Singapore
| | - Yan Feng
- College of Material Science and Engineering & State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Donghua University
- Shanghai, China
| | - X. Y. Liu
- College of Material Science and Engineering & State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Donghua University
- Shanghai, China
- Research Institute for Biomimetics and Soft Matter & College of Materials
- Xiamen University
| | - Hongyao Xu
- College of Material Science and Engineering & State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Donghua University
- Shanghai, China
| |
Collapse
|
15
|
Yu J, Lin F, Lin P, Gao Y, Becker ML. Phenylalanine-Based Poly(ester urea): Synthesis, Characterization, and in vitro Degradation. Macromolecules 2013. [DOI: 10.1021/ma401752b] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiayi Yu
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Fei Lin
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Panpan Lin
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Yaohua Gao
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Matthew L. Becker
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
- Austen Bioinnovation Institute in Akron, Akron, Ohio 44308, United States
| |
Collapse
|
16
|
Appel AA, Anastasio MA, Larson JC, Brey EM. Imaging challenges in biomaterials and tissue engineering. Biomaterials 2013; 34:6615-30. [PMID: 23768903 PMCID: PMC3799904 DOI: 10.1016/j.biomaterials.2013.05.033] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 05/18/2013] [Indexed: 12/11/2022]
Abstract
Biomaterials are employed in the fields of tissue engineering and regenerative medicine (TERM) in order to enhance the regeneration or replacement of tissue function and/or structure. The unique environments resulting from the presence of biomaterials, cells, and tissues result in distinct challenges in regards to monitoring and assessing the results of these interventions. Imaging technologies for three-dimensional (3D) analysis have been identified as a strategic priority in TERM research. Traditionally, histological and immunohistochemical techniques have been used to evaluate engineered tissues. However, these methods do not allow for an accurate volume assessment, are invasive, and do not provide information on functional status. Imaging techniques are needed that enable non-destructive, longitudinal, quantitative, and three-dimensional analysis of TERM strategies. This review focuses on evaluating the application of available imaging modalities for assessment of biomaterials and tissue in TERM applications. Included is a discussion of limitations of these techniques and identification of areas for further development.
Collapse
Affiliation(s)
- Alyssa A. Appel
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn St, Chicago, IL 60616, USA
- Research Service, Hines Veterans Administration Hospital, Hines, IL, USA
| | - Mark A. Anastasio
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jeffery C. Larson
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn St, Chicago, IL 60616, USA
- Research Service, Hines Veterans Administration Hospital, Hines, IL, USA
| | - Eric M. Brey
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn St, Chicago, IL 60616, USA
- Research Service, Hines Veterans Administration Hospital, Hines, IL, USA
| |
Collapse
|
17
|
Lartey M, Gillissen M, Adzima BJ, Takizawa K, Luebke DR, Nulwala HB. Synthesis and reactivity ratios of regioisomeric vinyl-1,2,3-triazoles with styrene. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26723] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Michael Lartey
- National Energy Technology Laboratory; Pennsylvania 15129
| | - Martijn Gillissen
- Laboratory of Macromolecular and Organic Chemistry; Eindhoven University of Technology; MB Eindhoven NL-5600 The Netherlands
| | | | - Kenichi Takizawa
- Mitsubishi Chemical Group Science and Technology Research Center; Inc. Yokohama 227-8502 Japan
| | | | - Hunaid B. Nulwala
- National Energy Technology Laboratory; Pennsylvania 15129
- Department of Chemistry; Carnegie Mellon University; Pittsburgh Pennsylvania 15213
| |
Collapse
|
18
|
Marszalek JE, Simon CG, Thodeti C, Adapala RK, Murthy A, Karim A. 2.5D constructs for characterizing phase separated polymer blend surface morphology in tissue engineering scaffolds. J Biomed Mater Res A 2013. [PMID: 23184520 DOI: 10.1002/jbm.a.34439] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Previously, we used 2D films to identify an annealed PCL-PDLLA phase-separated blend morphology which provided nanoscale surface texture and patterning that stimulated osteoblast differentiation. In order to translate these 2D surface nanopatterning effects to the walls of 3D salt-leached scaffolds, the blend phase morphology of scaffold walls must be characterized. For salt-leached scaffolds, NaCl is used as a porogen, which may affect phase separation in PCL-PDLLA blends. However, it is not possible to characterize the surface blend morphology of 3D scaffold walls using standard approaches such as AFM or optical microscopy, since scaffolds are too rough for AFM and do not transmit light for optical microscopy. We introduce a 2.5D approach that mimics the processing conditions of 3D salt-leached scaffolds, but has a geometry amenable to surface characterization by AFM and optical microscopy. For the 2.5D approach, PCL-PDLLA blend films were covered with NaCl crystals prior to annealing. The presence of NaCl significantly influenced blend morphology in PCL-PDLLA 2.5D constructs causing increased surface roughness, higher percent PCL area on the surface and a smaller PCL domain size. During cell culture on 2.5D constructs, osteoblast (MC3T3-E1) and dermal endothelial cell (MDEC) adhesion were enhanced on PCL-PDLLA blends that were annealed with NaCl while chondrogenic cell (ATDC5) adhesion was diminished. This work introduces a 2.5D approach that mimicked 3D salt-leached scaffold processing, but enabled characterization of scaffold surface properties by AFM and light microscopy, to demonstrate that the presence of NaCl during annealing strongly influenced polymer blend surface morphology and cell adhesion.
Collapse
Affiliation(s)
- Jolanta E Marszalek
- Department of Polymer Engineering, Akron Functional Materials Center, University of Akron, Ohio 44325, USA
| | | | | | | | | | | |
Collapse
|
19
|
Gas-Foamed Scaffold Gradients for Combinatorial Screening in 3D. J Funct Biomater 2012; 3:173-82. [PMID: 24956523 PMCID: PMC4031022 DOI: 10.3390/jfb3010173] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 02/28/2012] [Accepted: 03/01/2012] [Indexed: 01/09/2023] Open
Abstract
Current methods for screening cell-material interactions typically utilize a two-dimensional (2D) culture format where cells are cultured on flat surfaces. However, there is a need for combinatorial and high-throughput screening methods to systematically screen cell-biomaterial interactions in three-dimensional (3D) tissue scaffolds for tissue engineering. Previously, we developed a two-syringe pump approach for making 3D scaffold gradients for use in combinatorial screening of salt-leached scaffolds. Herein, we demonstrate that the two-syringe pump approach can also be used to create scaffold gradients using a gas-foaming approach. Macroporous foams prepared by a gas-foaming technique are commonly used for fabrication of tissue engineering scaffolds due to their high interconnectivity and good mechanical properties. Gas-foamed scaffold gradient libraries were fabricated from two biodegradable tyrosine-derived polycarbonates: poly(desaminotyrosyl-tyrosine ethyl ester carbonate) (pDTEc) and poly(desaminotyrosyl-tyrosine octyl ester carbonate) (pDTOc). The composition of the libraries was assessed with Fourier transform infrared spectroscopy (FTIR) and showed that pDTEc/pDTOc gas-foamed scaffold gradients could be repeatably fabricated. Scanning electron microscopy showed that scaffold morphology was similar between the pDTEc-rich ends and the pDTOc-rich ends of the gradient. These results introduce a method for fabricating gas-foamed polymer scaffold gradients that can be used for combinatorial screening of cell-material interactions in 3D.
Collapse
|
20
|
Lai Y, Asthana A, Cheng K, Kisaalita WS. Neural cell 3D microtissue formation is marked by cytokines' up-regulation. PLoS One 2011; 6:e26821. [PMID: 22046371 PMCID: PMC3203927 DOI: 10.1371/journal.pone.0026821] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 10/05/2011] [Indexed: 01/04/2023] Open
Abstract
Cells cultured in three dimensional (3D) scaffolds as opposed to traditional two-dimensional (2D) substrates have been considered more physiologically relevant based on their superior ability to emulate the in vivo environment. Combined with stem cell technology, 3D cell cultures can provide a promising alternative for use in cell-based assays or biosensors in non-clinical drug discovery studies. To advance 3D culture technology, a case has been made for identifying and validating three-dimensionality biomarkers. With this goal in mind, we conducted a transcriptomic expression comparison among neural progenitor cells cultured on 2D substrates, 3D porous polystyrene scaffolds, and as 3D neurospheres (in vivo surrogate). Up-regulation of cytokines as a group in 3D and neurospheres was observed. A group of 13 cytokines were commonly up-regulated in cells cultured in polystyrene scaffolds and neurospheres, suggesting potential for any or a combination from this list to serve as three-dimensionality biomarkers. These results are supportive of further cytokine identification and validation studies with cells from non-neural tissue.
Collapse
Affiliation(s)
- Yinzhi Lai
- Cellular Bioengineering Laboratory, Department of Biological and Agricultural Engineering, Faculty of Engineering, Driftmier Engineering Center, University of Georgia, Athens, Georgia, United States of America
| | - Amish Asthana
- Cellular Bioengineering Laboratory, Department of Biological and Agricultural Engineering, Faculty of Engineering, Driftmier Engineering Center, University of Georgia, Athens, Georgia, United States of America
| | - Ke Cheng
- Cellular Bioengineering Laboratory, Department of Biological and Agricultural Engineering, Faculty of Engineering, Driftmier Engineering Center, University of Georgia, Athens, Georgia, United States of America
| | - William S. Kisaalita
- Cellular Bioengineering Laboratory, Department of Biological and Agricultural Engineering, Faculty of Engineering, Driftmier Engineering Center, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
21
|
Abstract
We have developed a combinatorial platform for fabricating tissue scaffold arrays that can be used for screening cell-material interactions. Traditional research involves preparing samples one at a time for characterization and testing. Combinatorial and high-throughput (CHT) methods lower the cost of research by reducing the amount of time and material required for experiments by combining many samples into miniaturized specimens. In order to help accelerate biomaterials research, many new CHT methods have been developed for screening cell-material interactions where materials are presented to cells as a 2D film or surface. However, biomaterials are frequently used to fabricate 3D scaffolds, cells exist in vivo in a 3D environment and cells cultured in a 3D environment in vitro typically behave more physiologically than those cultured on a 2D surface. Thus, we have developed a platform for fabricating tissue scaffold libraries where biomaterials can be presented to cells in a 3D format.
Collapse
Affiliation(s)
- Carl G Simon
- Polymers Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | | | | | | | | |
Collapse
|
22
|
Simon CG, Lin-Gibson S. Combinatorial and high-throughput screening of biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2011; 23:369-387. [PMID: 20839249 DOI: 10.1002/adma.201001763] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Indexed: 05/29/2023]
Abstract
Combinatorial and high-throughput methods have been increasingly used to accelerate research and development of new biomaterials. These methods involve creating miniaturized libraries that contain many specimens in one sample in the form of gradients or arrays, followed by automated data collection and analysis. This article reviews recent advances in utilizing combinatorial and high-throughput methods to better understand cell-material interactions, particularly highlighting our efforts at the NIST Polymers Division. Specifically, fabrication techniques to generate controlled surfaces (2D) and 3D cell environments (tissue engineering scaffolds) as well as methods to characterize and analyze material properties and cell-material interactions are described. In conclusion, additional opportunities for combinatorial methods for biomaterials research are noted, including streamlined sample fabrication and characterization, appropriate and automated bioassays, and data analysis.
Collapse
Affiliation(s)
- Carl G Simon
- Polymers Division, National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD 29899, USA
| | | |
Collapse
|
23
|
Hindenlang MD, Soudakov AA, Imler GH, Laurencin CT, Nair LS, Allcock HR. Iodine-containing radio-opaque polyphosphazenes. Polym Chem 2010. [DOI: 10.1039/c0py00126k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Aamer KA, Genson KL, Kohn J, Becker ML. Impact of polymer-bound iodine on fibronectin adsorption and osteoblast cell morphology in radiopaque medical polymers: tyrosine-derived polycarbonate blends as a model system. Biomacromolecules 2009; 10:2418-26. [PMID: 19645443 DOI: 10.1021/bm900327b] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Imaging of polymer implants during surgical implantations is challenging in that most materials lack sufficient X-ray contrast. Synthetic derivatization with iodine serves to increase the scattering contrast but results in distinct physicochemical properties in the material which influence subsequent protein adsorption and cell morphology behavior. Herein we report the impact of increasing iodine inclusion on the cell morphology (cell area and shape) of MC3T3-E1 osteoblasts on a series of homopolymers and discrete blend thin films of poly(desaminotyrosyl tyrosine ethyl ester carbonate), poly(DTE carbonate), and an iodinated analogue poly(I(2)-DTE carbonate). Cell morphology is correlated to film chemical composition via measuring fibronectin (FN) adhesion protein adsorption profile on these films. FN exhibits up to 2-fold greater adsorption affinity for poly(I(2)-DTE carbonate) than (poly(DTE carbonate)). A correlation was established between cell area, roundness, and the measured FN adsorption profile on the blend films up to 75% by mass poly(I(2)-DTE carbonate). Data suggest that incorporation of iodine within the polymer backbone has a distinct impact on the way FN proteins adsorb to the surface and within the studied blend systems; the effect is composition dependent.
Collapse
Affiliation(s)
- Khaled A Aamer
- Polymers Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.
| | | | | | | |
Collapse
|
25
|
Liang X, Graf BW, Boppart SA. Imaging engineered tissues using structural and functional optical coherence tomography. JOURNAL OF BIOPHOTONICS 2009; 2:643-655. [PMID: 19672880 PMCID: PMC2883316 DOI: 10.1002/jbio.200910048] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
As the field of tissue engineering evolves, there will be an increasingly important need to visualize and track the complex dynamic changes that occur within three-dimensional constructs. Optical coherence tomography (OCT), as an emerging imaging technology applied to biological materials, offers a number of significant advantages to visualize these changes. Structural OCT has been used to investigate the longitudinal development of engineered tissues and cell dynamics such as migration, proliferation, detachment, and cell-material interactions. Optical techniques that image functional parameters or integrate multiple imaging modalities to provide complementary contrast mechanisms have been developed, such as the integration of optical coherence microscopy with multiphoton microscopy to image structural and functional information from cells in engineered tissue, optical coherence elastography to generate images or maps of strain to reflect the spatially-dependent biomechanical properties, and spectroscopic OCT to differentiate different cell types. From these results, OCT demonstrates great promise for imaging and visualizing engineered tissues, and the complex cellular dynamics that directly affect their practical and clinical use.
Collapse
Affiliation(s)
- Xing Liang
- Department of Electrical and Computer Engineering, Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Benedikt W. Graf
- Department of Electrical and Computer Engineering, Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Stephen A. Boppart
- Departments of Electrical and Computer Engineering, Bioengineering, and Internal Medicine, Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
26
|
Gradient and Microfluidic Library Approaches to Polymer Interfaces. ADVANCES IN POLYMER SCIENCE 2009. [DOI: 10.1007/12_2009_17] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
27
|
Dorsey SM, Lin-Gibson S, Simon CG. X-ray microcomputed tomography for the measurement of cell adhesionand proliferation in polymer scaffolds. Biomaterials 2009; 30:2967-74. [DOI: 10.1016/j.biomaterials.2009.02.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 02/23/2009] [Indexed: 11/16/2022]
|
28
|
Aamer KA, Stafford CM, Richter LJ, Kohn J, Becker ML. Thin Film Elastic Modulus of Degradable Tyrosine-Derived Polycarbonate Biomaterials and Their Blends. Macromolecules 2009; 42:1212-1218. [PMID: 21572899 DOI: 10.1021/ma802115b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The integrity, function, and performance of biomedical devices having thin polymeric coatings are critically dependent on the mechanical properties of the film, including the elastic modulus. In this report, the elastic moduli of several tyrosine-derived polycarbonate thin films, specifically desaminotyrosyl ethyl tyrosine polycarbonates p(DTE carbonate), an iodinated derivative p(I(2)-DTE carbonate), and several discrete blends are measured using a method based on surface wrinkling. The data shows that the elastic modulus does not vary significantly with the blend composition as the weight percentage of p(I(2)-DTE carbonate) increases for films of uniform thickness in the range of 67 to 200 nm. As a function of film thickness, the observed elastic moduli of p(DTE carbonate), p(I(2)-DTE carbonate) and their 50:50 by mass blend show little variation over the range 30 to 200 nm.
Collapse
Affiliation(s)
- Khaled A Aamer
- Polymers Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899-854
| | | | | | | | | |
Collapse
|