1
|
Dorozhkin SV. Calcium Orthophosphate (CaPO4) Containing Composites for Biomedical Applications: Formulations, Properties, and Applications. JOURNAL OF COMPOSITES SCIENCE 2024; 8:218. [DOI: 10.3390/jcs8060218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The goal of this review is to present a wide range of hybrid formulations and composites containing calcium orthophosphates (abbreviated as CaPO4) that are suitable for use in biomedical applications and currently on the market. The bioactive, biocompatible, and osteoconductive properties of various CaPO4-based formulations make them valuable in the rapidly developing field of biomedical research, both in vitro and in vivo. Due to the brittleness of CaPO4, it is essential to combine the desired osteologic properties of ceramic CaPO4 with those of other compounds to create novel, multifunctional bone graft biomaterials. Consequently, this analysis offers a thorough overview of the hybrid formulations and CaPO4-based composites that are currently known. To do this, a comprehensive search of the literature on the subject was carried out in all significant databases to extract pertinent papers. There have been many formulations found with different material compositions, production methods, structural and bioactive features, and in vitro and in vivo properties. When these formulations contain additional biofunctional ingredients, such as drugs, proteins, enzymes, or antibacterial agents, they offer improved biomedical applications. Moreover, a lot of these formulations allow cell loading and promote the development of smart formulations based on CaPO4. This evaluation also discusses basic problems and scientific difficulties that call for more investigation and advancements. It also indicates perspectives for the future.
Collapse
Affiliation(s)
- Sergey V. Dorozhkin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| |
Collapse
|
2
|
Hsu YH, Chou YC, Chen CL, Yu YH, Lu CJ, Liu SJ. Development of novel hybrid 3D-printed degradable artificial joints incorporating electrospun pharmaceutical- and growth factor-loaded nanofibers for small joint reconstruction. BIOMATERIALS ADVANCES 2024; 159:213821. [PMID: 38428121 DOI: 10.1016/j.bioadv.2024.213821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/04/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Small joint reconstruction remains challenging and can lead to prosthesis-related complications, mainly due to the suboptimal performance of the silicone materials used and adverse host reactions. In this study, we developed hybrid artificial joints using three-dimensional printing (3D printing) for polycaprolactone (PCL) and incorporated electrospun nanofibers loaded with drugs and biomolecules for small joint reconstruction. We evaluated the mechanical properties of the degradable joints and the drug discharge patterns of the nanofibers. Empirical data revealed that the 3D-printed PCL joints exhibited good mechanical and fatigue properties. The drug-eluting nanofibers sustainedly released teicoplanin, ceftazidime, and ketorolac in vitro for over 30, 19, and 30 days, respectively. Furthermore, the nanofibers released high levels of bone morphogenetic protein-2 and connective tissue growth factors for over 30 days. An in vivo animal test demonstrated that nanofiber-loaded joints released high concentrations of antibiotics and analgesics in a rabbit model for 28 days. The animals in the drug-loaded degradable joint group showed greater activity counts than those in the surgery-only group. The experimental data suggest that degradable joints with sustained release of drugs and biomolecules may be utilized in small joint arthroplasty.
Collapse
Affiliation(s)
- Yung-Heng Hsu
- Bone and Joint Research Center, Department of Orthopedic Surgery, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan
| | - Ying-Chao Chou
- Bone and Joint Research Center, Department of Orthopedic Surgery, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan
| | - Chao-Lin Chen
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yi-Hsun Yu
- Bone and Joint Research Center, Department of Orthopedic Surgery, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan
| | - Chia-Jung Lu
- Bone and Joint Research Center, Department of Orthopedic Surgery, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan; Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Shih-Jung Liu
- Bone and Joint Research Center, Department of Orthopedic Surgery, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan; Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
| |
Collapse
|
3
|
Prins W, Cornelissen MP, Goudriaan WA, Edens MA, Amaya J, Zollinger PE, Verheyen CCPM, Ettema HB. Comparison of osteolysis around 3 different cement restrictors in total hip arthroplasty. Hip Int 2024; 34:221-227. [PMID: 38414223 DOI: 10.1177/11207000231222328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
BACKGROUND AND AIM Several studies reported osteolysis around polyethylene glycol/polybutylene terephthalate (PEG/PBT) based femoral cement restrictors. Our goal was to evaluate and compare osteolysis around 3 different plug designs: the slow biodegradable PEG/PBT cement restrictor; the fast biodegradable gelatin cement restrictor; and the non-biodegradable polyethylene plug. PATIENTS AND METHODS In a retrospective multicentre cohort study chart data were extracted of patients who received a total hip arthroplasty between 2008 and 2012. A total of 961 hips were included. Cortical ratio between inner and outer cortices at the centre of the plug was measured on routine postoperative follow-up moments. Median follow up of all 3 hospitals was 3.5 years (1.4-7.3). The primary outcome was evidence of osteolysis (i.e. the difference in cortical ratio [CR]) on anteroposterior (AP) radiographs at final follow-up. RESULTS Progressive osteolysis was found around the PEG/PBT cement restrictor represented by a significantly increasing cortical ratio (ΔCR 0.067 (95% CI, 0.063-0.071). Distance from tip prosthesis to plug and size of the plug were found to be independent factors in predicting increased cortical ratio. CONCLUSIONS Our multicentre cohort shows increase of cortical ratio around the PEG/PBT cement restrictor which progresses over time. Physicians should be aware of this fact and are advised to intensify follow-up of patients who received this cement restrictor.
Collapse
Affiliation(s)
- Wybren Prins
- Department of Orthopaedic Surgery and Traumatology, Isala, Zwolle, Overijssel, The Netherlands
| | - Maarten P Cornelissen
- Department of Orthopaedic Surgery and Traumatology, Isala, Zwolle, Overijssel, The Netherlands
| | - W Alexander Goudriaan
- Department of Orthopaedic Surgery and Traumatology, Isala, Zwolle, Overijssel, The Netherlands
| | - Mireille A Edens
- Department Innovation and Science, Isala, Zwolle, Overijssel, The Netherlands
| | - Jeremy Amaya
- Department of Orthopaedic Surgery and Traumatology, Dijklander Hospital, Hoorn and Purmerend, Noord-Holland, The Netherlands
| | - Paul E Zollinger
- Department of Orthopaedic Surgery and Traumatology, Ziekenhuis Rivierenland, Tiel, Gelderland, The Netherlands
| | - Cees C P M Verheyen
- Department of Orthopaedic Surgery and Traumatology, Isala, Zwolle, Overijssel, The Netherlands
| | - Harmen B Ettema
- Department of Orthopaedic Surgery and Traumatology, Isala, Zwolle, Overijssel, The Netherlands
| |
Collapse
|
4
|
Maduka CV, Alhaj M, Ural E, Habeeb OM, Kuhnert MM, Smith K, Makela AV, Pope H, Chen S, Hix JM, Mallett CL, Chung S, Hakun M, Tundo A, Zinn KR, Hankenson KD, Goodman SB, Narayan R, Contag CH. Polylactide Degradation Activates Immune Cells by Metabolic Reprogramming. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304632. [PMID: 37737614 PMCID: PMC10625072 DOI: 10.1002/advs.202304632] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/04/2023] [Indexed: 09/23/2023]
Abstract
Polylactide (PLA) is the most widely utilized biopolymer in medicine. However, chronic inflammation and excessive fibrosis resulting from its degradation remain significant obstacles to extended clinical use. Immune cell activation has been correlated to the acidity of breakdown products, yet methods to neutralize the pH have not significantly reduced adverse responses. Using a bioenergetic model, delayed cellular changes were observed that are not apparent in the short-term. Amorphous and semi-crystalline PLA degradation products, including monomeric l-lactic acid, mechanistically remodel metabolism in cells leading to a reactive immune microenvironment characterized by elevated proinflammatory cytokines. Selective inhibition of metabolic reprogramming and altered bioenergetics both reduce these undesirable high cytokine levels and stimulate anti-inflammatory signals. The results present a new biocompatibility paradigm by identifying metabolism as a target for immunomodulation to increase tolerance to biomaterials, ensuring safe clinical application of PLA-based implants for soft- and hard-tissue regeneration, and advancing nanomedicine and drug delivery.
Collapse
Affiliation(s)
- Chima V. Maduka
- Comparative Medicine & Integrative BiologyMichigan State UniversityEast LansingMI48824USA
- Department of Biomedical EngineeringMichigan State UniversityEast LansingMI48824USA
- Institute for Quantitative Health Science & EngineeringMichigan State UniversityEast LansingMI48824USA
| | - Mohammed Alhaj
- Department of Chemical Engineering & Materials ScienceMichigan State UniversityEast LansingMI48824USA
| | - Evran Ural
- Department of Biomedical EngineeringMichigan State UniversityEast LansingMI48824USA
- Institute for Quantitative Health Science & EngineeringMichigan State UniversityEast LansingMI48824USA
| | - Oluwatosin M. Habeeb
- Department of Biomedical EngineeringMichigan State UniversityEast LansingMI48824USA
- Institute for Quantitative Health Science & EngineeringMichigan State UniversityEast LansingMI48824USA
| | - Maxwell M. Kuhnert
- Department of Biomedical EngineeringMichigan State UniversityEast LansingMI48824USA
- Institute for Quantitative Health Science & EngineeringMichigan State UniversityEast LansingMI48824USA
| | - Kylie Smith
- Department of Biomedical EngineeringMichigan State UniversityEast LansingMI48824USA
- Institute for Quantitative Health Science & EngineeringMichigan State UniversityEast LansingMI48824USA
| | - Ashley V. Makela
- Department of Biomedical EngineeringMichigan State UniversityEast LansingMI48824USA
- Institute for Quantitative Health Science & EngineeringMichigan State UniversityEast LansingMI48824USA
| | - Hunter Pope
- Department of Biomedical EngineeringMichigan State UniversityEast LansingMI48824USA
- Institute for Quantitative Health Science & EngineeringMichigan State UniversityEast LansingMI48824USA
| | - Shoue Chen
- School of PackagingMichigan State UniversityEast LansingMI48824USA
| | - Jeremy M. Hix
- Institute for Quantitative Health Science & EngineeringMichigan State UniversityEast LansingMI48824USA
| | - Christiane L. Mallett
- Institute for Quantitative Health Science & EngineeringMichigan State UniversityEast LansingMI48824USA
| | - Seock‐Jin Chung
- Department of Biomedical EngineeringMichigan State UniversityEast LansingMI48824USA
- Institute for Quantitative Health Science & EngineeringMichigan State UniversityEast LansingMI48824USA
| | - Maxwell Hakun
- Department of Biomedical EngineeringMichigan State UniversityEast LansingMI48824USA
- Institute for Quantitative Health Science & EngineeringMichigan State UniversityEast LansingMI48824USA
| | - Anthony Tundo
- Department of Biomedical EngineeringMichigan State UniversityEast LansingMI48824USA
- Institute for Quantitative Health Science & EngineeringMichigan State UniversityEast LansingMI48824USA
| | - Kurt R. Zinn
- Department of Biomedical EngineeringMichigan State UniversityEast LansingMI48824USA
- Institute for Quantitative Health Science & EngineeringMichigan State UniversityEast LansingMI48824USA
| | - Kurt D. Hankenson
- Department of Orthopedic SurgeryUniversity of Michigan Medical SchoolAnn ArborMI48109USA
| | - Stuart B. Goodman
- Department of Orthopedic SurgeryStanford UniversityStanfordCA94063USA
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Ramani Narayan
- Department of Chemical Engineering & Materials ScienceMichigan State UniversityEast LansingMI48824USA
| | - Christopher H. Contag
- Department of Biomedical EngineeringMichigan State UniversityEast LansingMI48824USA
- Institute for Quantitative Health Science & EngineeringMichigan State UniversityEast LansingMI48824USA
- Department of Microbiology & Molecular GeneticsMichigan State UniversityEast LansingMI48864USA
| |
Collapse
|
5
|
Hsu YH, Yu YH, Lee D, Chou YC, Wu CK, Lu CJ, Liu SJ. Pharmaceutical-eluting hybrid degradable hydrogel/microparticle loaded sacs for finger joint interpositional arthroplasty. BIOMATERIALS ADVANCES 2022; 137:212846. [PMID: 35929275 DOI: 10.1016/j.bioadv.2022.212846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Despite recent advances in medical technology, treatment of chronic osteomyelitis in the small joint of the hand remains challenging. Here, we exploited hybrid biodegradable hydrogel/microparticle/polycaprolactone (PCL) sacs for finger joint interpositional arthroplasty via electrospraying and rotational molding techniques. Degradable Pluronic F127, poly(lactic-co-glycolic acid) (PLGA), and PCL were starting materials for the hydrogels, microparticles, and sac, respectively. Vancomycin, ceftazidime, and lidocaine were the embedded pharmaceuticals. The in vitro and in vivo drug release behaviors of hybrid drug-eluting sacs were assessed. The empirical outcomes show that the size distribution of the electrosprayed vancomycin/ceftazidime/lidocaine PLGA microparticles was 8.25 ± 3.35 μm. Biodegradable PCL sacs offered sustainable and effective release of vancomycin, ceftazidime, and lidocaine, respectively, after 30, 16, and 11 days in vitro. The sacs also discharged high levels of anti-microbial agents for 56 days and analgesics for 14 days in a rabbit knee joint model. The blood urea nitrogen (creatinine) levels remained normal at various time points: 16.5 ± 2.5 mg/dL (0.85 ± 0.24 mg/dL), 20.0 ± 1.4 mg/dL (1.0 ± 0.16 mg/dL), 19.3 ± 2.4 mg/dL (1.13 ± 0.15 mg/dL), and 20.0 ± 2.16 mg/dL (1.0 ± 0.16 mg/dL) at days 7, 14, 21, and 35, respectively. The empirical outcomes of this study suggested that the hybrid biodegradable drug-eluting sacs with extended liberation of pharmaceuticals may find applications in the small joints for post-operative pain relief and infection control.
Collapse
Affiliation(s)
- Yung-Heng Hsu
- Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan
| | - Yi-Hsun Yu
- Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan
| | - Demei Lee
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ying-Chao Chou
- Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan
| | - Chen-Kai Wu
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chia-Jung Lu
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Shih-Jung Liu
- Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan; Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
| |
Collapse
|
6
|
Radhakrishnan J, Muthuraj M, Gandham GSPD, Sethuraman S, Subramanian A. Nanohydroxyapatite-Protein Interface in Composite Sintered Scaffold Influences Bone Regeneration in Rabbit Ulnar Segmental Defect. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:36. [PMID: 35397053 PMCID: PMC8994720 DOI: 10.1007/s10856-022-06657-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
The healing physiology of bone repair and remodeling that occurs after normal fracture is well orchestrated. However, it fails in complex clinical conditions and hence requires augmentation by grafts. In this study, composite nanohydroxyapatite (nHA), poly(hydroxybutyrate) (PHB) and poly(ɛ-caprolactone) (PCL) constituted microspheres sintered three-dimensional scaffold were evaluated in rabbit ulnar segmental defect. A composite scaffold using PHB-PCL-nHA microspheres was developed with protein interface by solvent/non-solvent sintering to provide multiple cues such as biocomposition, cancellous bone equivalent meso-micro multi-scale porosity, and compressive strength. In vitro DNA quantification and alkaline phosphatase (ALP) assays revealed that the protein interfaced composite scaffolds supported osteoblast proliferation and mineralization significantly higher than scaffolds without protein and TCPS (p < 0.05). Scanning electron micrographs of osteoblasts cultured scaffolds demonstrated cell-matrix interaction, cell spreading, colonization and filopodial extension across the porous voids. Cylindrical scaffolds (5 × 10 mm) were implanted following segmental defect (10 mm) in rabbit ulnar bone and compared with untreated control. Radiography (4, 8 and 12 weeks) and µ-computed tomography (12 weeks) analysis showed directional bone tissue formation by bridging defective site in both scaffolds with and without protein interface. Whereas, undesired sclerotic-like tissue formation was observed in control groups from 8 weeks. Histology by hot Stevenel's blue and van Gieson's picrofuchsin staining has confirmed enhanced bone maturation in scaffold groups while presence of osteoids was observed in control after 12 weeks. Thus, the developed composite matrices exhibits osteoinductive, osteoconductive properties and demonstrates its bone regenerative potential owing to its compositional, micro & macro structural and mechanical properties. Graphical abstract.
Collapse
Affiliation(s)
- Janani Radhakrishnan
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Center for Nanotechnology & Advanced Biomaterials, ABCDE Innovative Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, India
| | - Manjula Muthuraj
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Center for Nanotechnology & Advanced Biomaterials, ABCDE Innovative Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, India
| | - Gnana Santi Phani Deepika Gandham
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Center for Nanotechnology & Advanced Biomaterials, ABCDE Innovative Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, India
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Center for Nanotechnology & Advanced Biomaterials, ABCDE Innovative Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, India
| | - Anuradha Subramanian
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Center for Nanotechnology & Advanced Biomaterials, ABCDE Innovative Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, India.
| |
Collapse
|
7
|
Tailoring the Thermal and Mechanical Properties of PolyActive TM Poly(Ether-Ester) Multiblock Copolymers Via Blending with CO 2-Phylic Ionic Liquid. Polymers (Basel) 2020; 12:polym12040890. [PMID: 32290575 PMCID: PMC7240668 DOI: 10.3390/polym12040890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/01/2020] [Accepted: 04/08/2020] [Indexed: 11/21/2022] Open
Abstract
The last decade has seen an exponential increase in the number of studies focused on novel applications for ionic liquids (ILs). Blends of polymers with ILs have been proposed for use in fuel cells, batteries, gas separation membranes, packaging, etc., each requiring a set of specific physico-chemical properties. In this work, blends of four grades of the poly(ether-ester) multiblock copolymer PolyActive™ with different concentrations of the CO2-philic 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [BMIM][Tf2N] were prepared in the form of dense films by a solution casting and solvent evaporation method, in view of their potential use as gas separation membranes for CO2 capture. Depending on the polymer structure, the material properties could be tailored over a wide range by means of the IL content. All samples were dry-feeling, highly elastic self-standing dense films. The microstructure of the blends was studied by scanning electron microscopy with a backscattering detector, able to observe anisotropy in the sample, while a special topographic analysis mode allowed the visualization of surface roughness. Samples with the longest poly(ethylene oxide terephthalate) (PEOT) blocks were significantly more anisotropic than those with shorter blocks, and this heterogeneity increased with increasing IL content. DSC analysis revealed a significant decrease in the melting enthalpy and melting temperature of the crystalline PEOT domains with increasing IL content, forming an amorphous phase with Tg ≈ −50 °C, whereas the polybutylene terephthalate (PBT) phase was hardly affected. This indicates better compatibility of the IL with the polyether phase than the polyester phase. Young’s modulus was highest and most IL-dependent for the sample with the highest PEOT content and PEOT block length, due to its high crystallinity. Similarly, the sample with short PEOT blocks and high PBT content also showed a high modulus and tensile strength, but much lower maximum elongation. This study provides a detailed discussion on the correlation between the morphological, thermal, and mechanical properties of these PolyActive™/[BMIM][Tf2N] blends.
Collapse
|
8
|
Carrow JK, Di Luca A, Dolatshahi-Pirouz A, Moroni L, Gaharwar AK. 3D-printed bioactive scaffolds from nanosilicates and PEOT/PBT for bone tissue engineering. Regen Biomater 2019; 6:29-37. [PMID: 30740240 PMCID: PMC6362822 DOI: 10.1093/rb/rby024] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/08/2018] [Accepted: 10/08/2018] [Indexed: 12/20/2022] Open
Abstract
Additive manufacturing (AM) has shown promise in designing 3D scaffold for regenerative medicine. However, many synthetic biomaterials used for AM are bioinert. Here, we report synthesis of bioactive nanocomposites from a poly(ethylene oxide terephthalate) (PEOT)/poly(butylene terephthalate) (PBT) (PEOT/PBT) copolymer and 2D nanosilicates for fabricating 3D scaffolds for bone tissue engineering. PEOT/PBT have been shown to support calcification and bone bonding ability in vivo, while 2D nanosilicates induce osteogenic differentiation of human mesenchymal stem cells (hMSCs) in absence of osteoinductive agents. The effect of nanosilicates addition to PEOT/PBT on structural, mechanical and biological properties is investigated. Specifically, the addition of nanosilicate to PEOT/PBT improves the stability of nanocomposites in physiological conditions, as nanosilicate suppressed the degradation rate of copolymer. However, no significant increase in the mechanical stiffness of scaffold due to the addition of nanosilicates is observed. The addition of nanosilicates to PEOT/PBT improves the bioactive properties of AM nanocomposites as demonstrated in vitro. hMSCs readily proliferated on the scaffolds containing nanosilicates and resulted in significant upregulation of osteo-related proteins and production of mineralized matrix. The synergistic ability of nanosilicates and PEOT/PBT can be utilized for designing bioactive scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- James K Carrow
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Andrea Di Luca
- Tissue Regeneration Department, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Alireza Dolatshahi-Pirouz
- DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
| | - Lorenzo Moroni
- Tissue Regeneration Department, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitsingel 40, Maastricht, The Netherlands
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
- Department of Materials Science, Texas A&M University, College Station, TX, USA and
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX, USA
| |
Collapse
|
9
|
Pinaud J, Tang R, Gimello O, Robin JJ. Organocatalyzed ring-opening polymerization of cyclic butylene terephthalate oligomers. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28534] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Julien Pinaud
- Institut Charles Gerhardt Montpellier UMR5253 CNRS-UM-ENSCM-Equipe Ingénierie et Architectures Macromoléculaires, Université de Montpellier, Bat 17, cc1702 Place Eugène Bataillon; Montpellier Cedex 34095 France
| | - Rong Tang
- Institut Charles Gerhardt Montpellier UMR5253 CNRS-UM-ENSCM-Equipe Ingénierie et Architectures Macromoléculaires, Université de Montpellier, Bat 17, cc1702 Place Eugène Bataillon; Montpellier Cedex 34095 France
| | - Olinda Gimello
- Institut Charles Gerhardt Montpellier UMR5253 CNRS-UM-ENSCM-Equipe Ingénierie et Architectures Macromoléculaires, Université de Montpellier, Bat 17, cc1702 Place Eugène Bataillon; Montpellier Cedex 34095 France
| | - Jean-Jacques Robin
- Institut Charles Gerhardt Montpellier UMR5253 CNRS-UM-ENSCM-Equipe Ingénierie et Architectures Macromoléculaires, Université de Montpellier, Bat 17, cc1702 Place Eugène Bataillon; Montpellier Cedex 34095 France
| |
Collapse
|
10
|
Erschbamer M, Zdravkovic V, Erhardt J, Öhlschlegel C, Grob K. Osteolytic changes around biodegradable cement restrictors in hip surgery. Acta Orthop 2016; 87:239-44. [PMID: 26905752 PMCID: PMC4900087 DOI: 10.3109/17453674.2016.1152853] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Background and purpose - Biodegradable cement restrictors are widely used in hip arthroplasty. Like others, we observed osteolytic reactions associated with a specific cement restrictor (SynPlug; made of PolyActive) and reviewed our patients. Patients and methods - We identified 703 patients with suitable radiographs from our database (2007 to 2012) who underwent cemented hip arthroplasty and received a SynPlug biodegradable cement restrictor. We reviewed all available radiographs to determine the incidence, severity, and progression of osteolysis. Mean postoperative follow-up was 1.8 (1-7) years Results - 1 year after implantation, the femoral cortex showed thinning by 12% in the anterior-posterior view and by 8% in the axial view. This had increased to 14% and 12%, respectively, at the latest available follow-up postoperatively (at a mean of 4 years). Cortical thinning of less than 10% was found in 37% of patients, but cortical thinning of 10-30% was found in 56% of patients. In the remaining 7%, a reduction of more than 30% of the original cortical thickness was observed. Interpretation - Osteolytic changes associated with the SynPlug biodegradable bone restrictors are inconsistent and highly variable. While some patients showed increased weakening of the femoral cortex with the potential risk of periprosthetic fracture, in others the degree of osteolysis only increased slightly or stabilized after 2 or more years. Any cortical bone loss after total hip replacement should be avoided, so the use of PolyActive biodegradable cement restrictors should be discontinued. Patients with a PolyActive cement restrictor in place should be followed up closely after surgery.
Collapse
Affiliation(s)
| | | | | | | | - Karl Grob
- Department of Orthopaedics and Traumatology,
| |
Collapse
|
11
|
Ahadian S, Sadeghian RB, Salehi S, Ostrovidov S, Bae H, Ramalingam M, Khademhosseini A. Bioconjugated Hydrogels for Tissue Engineering and Regenerative Medicine. Bioconjug Chem 2015; 26:1984-2001. [DOI: 10.1021/acs.bioconjchem.5b00360] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Samad Ahadian
- WPI-Advanced
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Ramin Banan Sadeghian
- WPI-Advanced
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Sahar Salehi
- WPI-Advanced
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Serge Ostrovidov
- WPI-Advanced
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Hojae Bae
- College
of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong,
Kwangjin-gu, Seoul 143-701, Republic of Korea
| | - Murugan Ramalingam
- WPI-Advanced
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
- Centre
for Stem Cell Research, Institute for Stem Cell Biology and Regenerative Medicine, Christian Medical College Campus, Vellore 632002, India
| | - Ali Khademhosseini
- WPI-Advanced
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
- College
of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong,
Kwangjin-gu, Seoul 143-701, Republic of Korea
- Department
of Medicine, Center for Biomedical Engineering, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| |
Collapse
|
12
|
Dorozhkin SV. Calcium Orthophosphate-Containing Biocomposites and Hybrid Biomaterials for Biomedical Applications. J Funct Biomater 2015; 6:708-832. [PMID: 26262645 PMCID: PMC4598679 DOI: 10.3390/jfb6030708] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/31/2015] [Accepted: 08/01/2015] [Indexed: 12/30/2022] Open
Abstract
The state-of-the-art on calcium orthophosphate (CaPO4)-containing biocomposites and hybrid biomaterials suitable for biomedical applications is presented. Since these types of biomaterials offer many significant and exciting possibilities for hard tissue regeneration, this subject belongs to a rapidly expanding area of biomedical research. Through the successful combinations of the desired properties of matrix materials with those of fillers (in such systems, CaPO4 might play either role), innovative bone graft biomaterials can be designed. Various types of CaPO4-based biocomposites and hybrid biomaterials those are either already in use or being investigated for biomedical applications are extensively discussed. Many different formulations in terms of the material constituents, fabrication technologies, structural and bioactive properties, as well as both in vitro and in vivo characteristics have been already proposed. Among the others, the nano-structurally controlled biocomposites, those containing nanodimensional compounds, biomimetically fabricated formulations with collagen, chitin and/or gelatin, as well as various functionally graded structures seem to be the most promising candidates for clinical applications. The specific advantages of using CaPO4-based biocomposites and hybrid biomaterials in the selected applications are highlighted. As the way from a laboratory to a hospital is a long one and the prospective biomedical candidates have to meet many different necessities, the critical issues and scientific challenges that require further research and development are also examined.
Collapse
|
13
|
Kutikov AB, Song J. Biodegradable PEG-Based Amphiphilic Block Copolymers for Tissue Engineering Applications. ACS Biomater Sci Eng 2015; 1:463-480. [PMID: 27175443 PMCID: PMC4860614 DOI: 10.1021/acsbiomaterials.5b00122] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biodegradable tissue engineering scaffolds have great potential for delivering cells/therapeutics and supporting tissue formation. Polyesters, the most extensively investigated biodegradable synthetic polymers, are not ideally suited for diverse tissue engineering applications due to limitations associated with their hydrophobicity. This review discusses the design and applications of amphiphilic block copolymer scaffolds integrating hydrophilic poly(ethylene glycol) (PEG) blocks with hydrophobic polyesters. Specifically, we highlight how the addition of PEG results in striking changes to the physical properties (swelling, degradation, mechanical, handling) and biological performance (protein & cell adhesion) of the degradable synthetic scaffolds in vitro. We then perform a critical review of how these in vitro characteristics translate to the performance of biodegradable amphiphilic block copolymer-based scaffolds in the repair of a variety of tissues in vivo including bone, cartilage, skin, and spinal cord/nerve. We conclude the review with recommendations for future optimizations in amphiphilic block copolymer design and the need for better-controlled in vivo studies to reveal the true benefits of the amphiphilic synthetic tissue scaffolds.
Collapse
Affiliation(s)
- Artem B. Kutikov
- Department of Orthopedics and Physical Rehabilitation. University of Massachusetts Medical School. 55 Lake Ave North, Worcester, MA 01655, USA
| | - Jie Song
- Department of Orthopedics and Physical Rehabilitation. University of Massachusetts Medical School. 55 Lake Ave North, Worcester, MA 01655, USA
- Department of Cell and Developmental Biology. University of Massachusetts Medical School. 55 Lake Ave North, Worcester, MA 01655, USA
| |
Collapse
|
14
|
Zhang H, Xue D, Yu J. Is Swanson prosthesis better than Sutter prosthesis for metacarpophalangeal joint arthroplasty? A meta-analysis. J Plast Surg Hand Surg 2014; 49:45-51. [PMID: 25166510 DOI: 10.3109/2000656x.2014.942313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim of this meta-analysis is to compare the outcomes of the Swanson and Sutter prostheses (previously the Avanta prosthesis) used for metacarpophalangeal joint arthroplasty, and provide a powerful and rational conclusion regarding the use of prosthesis in MCP joint surgery. The literature search was based on PubMed, Cochrane Library, MEDLINE, EMBASE, and the Chinese National Knowledge Infrastructure. Data were evaluated using a generic evaluation tool designed by the Cochrane Bone, Joint, and Muscle Trauma Group and analysed using RevMan, version 5.0. Six randomised controlled trials were contained in this review, and five of them involving 143 patients were included in the meta-analysis. The results suggested that using the Sutter prosthesis could significantly decrease the rates of recurrence of drift when compared with the Swanson prosthesis for metacarpophalangeal joint arthroplasty (OR = 2.05, 95% Confidence interval (CI) = 1.31-3.20, p = 0.002). No significant difference in the outcomes of prosthesis fracture was found in two groups (OR = 1.07, 95% CI = 0.41-2.79, p = 0.88). Due to the limited data, the outcomes of range of motion, correction of ulnar deviation, pain, grip strength, and radiographic osteolytic changes could not be included in the meta-analyses. Theoretically, recurrence of drift was more common with Swanson prosthesis when compared with the Sutter prosthesis. No significant difference in the outcomes of prosthesis fracture was observed in two groups. More high-quality studies are required in long-term follow-up.
Collapse
Affiliation(s)
- Huahui Zhang
- Department of Plastic Surgery, The Second Affiliated Hospital of Medical College, Zhejiang University , Hangzhou , PR China
| | | | | |
Collapse
|
15
|
Rey-Rico A, Venkatesan JK, Sohier J, Moroni L, Cucchiarini M, Madry H. Adapted chondrogenic differentiation of human mesenchymal stem cells via controlled release of TGF-β1 from poly(ethylene oxide)-terephtalate/poly(butylene terepthalate) multiblock scaffolds. J Biomed Mater Res A 2014; 103:371-83. [PMID: 24665073 DOI: 10.1002/jbm.a.35181] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 02/26/2014] [Accepted: 03/19/2014] [Indexed: 01/09/2023]
Abstract
Controlled release of TGF-β1 from scaffolds is an attractive mechanism to modulate the chondrogenesis of human bone marrow mesenchymal stem cells (hBMSCs) that repopulate articular cartilage defects. Here, we evaluated the ability of porous scaffolds composed of poly(ethylene oxide)-terephtalate and poly(butylene terepthalate) (PEOT/PBT) to release bioactive TGF-β1 for chondrogenesis of hBMSCs in a pellet culture model. Chondroinduction was compared with that promoted by direct addition of the recombinant factor to the culture medium. The data show a controlled release of TGF-β1 from scaffolds for at least 21 days in vitro, with ∼10% of TGF-β1 released during this period. The delivered TGF-β1 was bioactive, as confirmed by successful chondrogenic differentiation of hBMSCs monitored by morphological, histological, immunohistochemical, biochemical, and real-time reverse transcription polymerase chain reaction analyses. Third, semiquantitative histological evaluations revealed a similar pattern of chondrogenesis compared with the positive controls. Importantly, TGF-β1-loaded scaffolds allowed for a ∼700-fold upregulation of type-II collagen mRNA compared to when pellets were maintained in the presence of the soluble TGF-β1, reflected also in the highest score of immunoreactivity to type-II collagen, not significantly different from the positive controls. Likewise, aggrecan mRNA was ∼200-fold upregulated. Interestingly, most (>94%) of the glycosaminoglycan produced remaining associated with the pellets. Analysis of hypertrophic events showed no significant difference in the average total hypertrophy score compared with the positive controls. These results demonstrate the suitability of controlled TGF-β1 release from biocompatible scaffolds to promote hBMSC chondrogenesis at a physical distance and in the absence of soluble TGF-β1.
Collapse
Affiliation(s)
- Ana Rey-Rico
- Center of Experimental Orthopaedics, Saarland University, D-66421, Homburg, Saarland, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Hanssen NMAI, Schotanus MGM, Verburg AD. Osteolysis in cemented total hip arthroplasty involving the OptiPlug cement restrictor: more than an incident? EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY AND TRAUMATOLOGY 2013; 25:45-51. [PMID: 24287638 DOI: 10.1007/s00590-013-1366-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 11/08/2013] [Indexed: 10/26/2022]
Abstract
The case report of a severe osteolytic reaction surrounding the OptiPlug cement restrictor in a 74-year-old male patient initiated a retrospective case series and closer investigation into the OptiPlug and its active compound, PolyActive. Not only did we find several cases of severe osteolysis in our own study population of 284 patients, several articles have lately described potential harmful side effects of the PolyActive material in humans. Although none of the articles have been based on large databases, we cannot guarantee the safety of this product. More research would help in our understanding of this phenomenon. Until then, we cannot recommend the use of the OptiPlug cement restrictor.
Collapse
Affiliation(s)
- N M A I Hanssen
- Resident at Maartenskliniek, Van Welderenstraat 13, 6511 MA, Nijmegen, The Netherlands,
| | | | | |
Collapse
|
17
|
Abstract
The state-of-the-art of biocomposites and hybrid biomaterials based on calcium orthophosphates that are suitable for biomedical applications is presented in this review. Since these types of biomaterials offer many significant and exciting possibilities for hard tissue regeneration, this subject belongs to a rapidly expanding area of biomedical research. Through successful combinations of the desired properties of matrix materials with those of fillers (in such systems, calcium orthophosphates might play either role), innovative bone graft biomaterials can be designed. Various types of biocomposites and hybrid biomaterials based on calcium orthophosphates, either those already in use or being investigated for biomedical applications, are extensively discussed. Many different formulations, in terms of the material constituents, fabrication technologies, structural and bioactive properties as well as both in vitro and in vivo characteristics, have already been proposed. Among the others, the nanostructurally controlled biocomposites, those containing nanodimensional compounds, biomimetically fabricated formulations with collagen, chitin and/or gelatin as well as various functionally graded structures seem to be the most promising candidates for clinical applications. The specific advantages of using biocomposites and hybrid biomaterials based on calcium orthophosphates in the selected applications are highlighted. As the way from the laboratory to the hospital is a long one, and the prospective biomedical candidates have to meet many different necessities, this review also examines the critical issues and scientific challenges that require further research and development.
Collapse
|
18
|
Badar M, Hemmen K, Nimtz M, Stieve M, Stiesch M, Lenarz T, Hauser H, Möllmann U, Vogt S, Schnabelrauch M, Mueller PP. Evaluation of madurahydroxylactone as a slow release antibacterial implant coating. Open Biomed Eng J 2010; 4:263-70. [PMID: 21625377 PMCID: PMC3102426 DOI: 10.2174/1874120701004010263] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 08/09/2010] [Accepted: 08/12/2010] [Indexed: 11/22/2022] Open
Abstract
Madurahydroxylactone (MHL), a secondary metabolite with antibacterial activity was evaluated for its suitability to generate controlled drug release coatings on medical implant materials. A smooth and firmly attached layer could be produced from a precursor solution on various metallic implant materials. In physiological salt solutions these coatings dissolved within a time period up to one week. A combination of MHL with a broad spectrum fluoroquinolone antibiotic was used to create a coating that was active against all bacterial strains tested. The time period during which the coating remained active against Pseudomonas aeruginosa was investigated. The results indicated a delayed drug release from single layer coatings in the course of seven days. MHL was biocompatible in cell culture assays and could after a delay even serve as a cell adhesion substrate for human or murine cells. The findings indicate a potential for MHL for the generation of delayed release antimicrobial implant coatings.
Collapse
Affiliation(s)
- Muhammad Badar
- Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Szymczyk A. Structure and properties of new polyester elastomers composed of poly(trimethylene terephthalate) and poly(ethylene oxide). Eur Polym J 2009. [DOI: 10.1016/j.eurpolymj.2009.05.032] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Honkanen PB, Kellomäki M, Konttinen YT, Mäkelä S, Lehto MUK. A midterm follow-up study of bioreconstructive polylactide scaffold implants in metacarpophalangeal joint arthroplasty in rheumatoid arthritis patients. J Hand Surg Eur Vol 2009; 34:179-85. [PMID: 19282407 DOI: 10.1177/1753193408099833] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This paper presents the results of a prospective study of 80 metacarpophalangeal joint arthroplasties, in which biodegradable polylactide 96/4 copolymer scaffolds were used. Twenty-three rheumatoid arthritis patients were assessed at an average of 59 months after operation, which exceeds the resorption time of P(L/D)LA 96/4 according to animal experiments. Palmar subluxation exceeded half of the bone thickness in 39 joints before operation and in nine at the last follow-up. Ulnar deviation decreased from 25 degrees to 5 degrees , extension deficit from 32 degrees to 15 degrees and active flexion from 76 degrees to 63 degrees . The results are comparable with published data on silicone implant arthroplasties. Implant resorption did not induce any significant osteolysis in the medium term and the restoration of the structure and function of the hand was maintained after implant resorption, probably as the guided fibrous tissues had replaced the dissolved implant.
Collapse
Affiliation(s)
- P B Honkanen
- Department of Internal Medicine, Center of Rheumatic Diseases, Tampere University Hospital, Tampere, Finland.
| | | | | | | | | |
Collapse
|
21
|
Ye L, Zeng X, Li H, Wang Z. Fabrication and biocompatibility of porously bioactive scaffold of nonstoichiometric apatite and poly(ε-caprolactone) nanocomposite. J Appl Polym Sci 2009. [DOI: 10.1002/app.31466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|