1
|
Mitevska A, Santacruz C, Martin EJ, Jones IE, Ghiacy A, Dixon S, Mostafazadeh N, Peng Z, Kiskinis E, Finan JD. Polyurethane Culture Substrates Enable Long-Term Neuron Monoculture in a Human in vitro Model of Neurotrauma. Neurotrauma Rep 2023; 4:682-692. [PMID: 37908320 PMCID: PMC10615064 DOI: 10.1089/neur.2023.0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
Human induced pluripotent stem cell (hiPSC)-derived cells can reproduce human-specific pathophysiology, patient-specific vulnerability, and gene-environment interactions in neurological disease. Human in vitro models of neurotrauma therefore have great potential to advance the field. However, this potential cannot be realized until important biomaterials challenges are addressed. Status quo stretch injury models of neurotrauma culture cells on sheets of polydimethylsiloxane (PDMS) that are incompatible with long-term monoculture of hiPSC-derived neurons. Here, we overcame this challenge in an established human in vitro neurotrauma model by replacing PDMS with a highly biocompatible form of polyurethane (PU). This substitution allowed long-term monoculture of hiPSC-derived neurons. It also changed the biomechanics of stretch injury. We quantified these changes experimentally using high-speed videography and digital image correlation. We used finite element modeling to quantify the influence of the culture substrate's thickness, stiffness, and coefficient of friction on membrane stretch and concluded that the coefficient of friction explained most of the observed biomechanical changes. Despite these changes, we demonstrated that the modified model produced a robust, dose-dependent trauma phenotype in hiPSC-derived neuron monocultures. In summary, the introduction of this PU film makes it possible to maintain hiPSC-derived neurons in monoculture for long periods in a human in vitro neurotrauma model. In doing so, it opens new horizons in the field of neurotrauma by enabling the unique experimental paradigms (e.g., isogenic models) associated with hiPSC-derived neurons.
Collapse
Affiliation(s)
- Angela Mitevska
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Citlally Santacruz
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Eric J. Martin
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ian E. Jones
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Arian Ghiacy
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Simon Dixon
- Biomer Technology Ltd., Warrington, United Kingdom
| | - Nima Mostafazadeh
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Zhangli Peng
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Evangelos Kiskinis
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - John D. Finan
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
2
|
Harnessing conserved signaling and metabolic pathways to enhance the maturation of functional engineered tissues. NPJ Regen Med 2022; 7:44. [PMID: 36057642 PMCID: PMC9440900 DOI: 10.1038/s41536-022-00246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/05/2022] [Indexed: 11/08/2022] Open
Abstract
The development of induced-pluripotent stem cell (iPSC)-derived cell types offers promise for basic science, drug testing, disease modeling, personalized medicine, and translatable cell therapies across many tissue types. However, in practice many iPSC-derived cells have presented as immature in physiological function, and despite efforts to recapitulate adult maturity, most have yet to meet the necessary benchmarks for the intended tissues. Here, we summarize the available state of knowledge surrounding the physiological mechanisms underlying cell maturation in several key tissues. Common signaling consolidators, as well as potential synergies between critical signaling pathways are explored. Finally, current practices in physiologically relevant tissue engineering and experimental design are critically examined, with the goal of integrating greater decision paradigms and frameworks towards achieving efficient maturation strategies, which in turn may produce higher-valued iPSC-derived tissues.
Collapse
|
3
|
Nahak BK, Mishra A, Preetam S, Tiwari A. Advances in Organ-on-a-Chip Materials and Devices. ACS APPLIED BIO MATERIALS 2022; 5:3576-3607. [PMID: 35839513 DOI: 10.1021/acsabm.2c00041] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The organ-on-a-chip (OoC) paves a way for biomedical applications ranging from preclinical to clinical translational precision. The current trends in the in vitro modeling is to reduce the complexity of human organ anatomy to the fundamental cellular microanatomy as an alternative of recreating the entire cell milieu that allows systematic analysis of medicinal absorption of compounds, metabolism, and mechanistic investigation. The OoC devices accurately represent human physiology in vitro; however, it is vital to choose the correct chip materials. The potential chip materials include inorganic, elastomeric, thermoplastic, natural, and hybrid materials. Despite the fact that polydimethylsiloxane is the most commonly utilized polymer for OoC and microphysiological systems, substitute materials have been continuously developed for its advanced applications. The evaluation of human physiological status can help to demonstrate using noninvasive OoC materials in real-time procedures. Therefore, this Review examines the materials used for fabricating OoC devices, the application-oriented pros and cons, possessions for device fabrication and biocompatibility, as well as their potential for downstream biochemical surface alteration and commercialization. The convergence of emerging approaches, such as advanced materials, artificial intelligence, machine learning, three-dimensional (3D) bioprinting, and genomics, have the potential to perform OoC technology at next generation. Thus, OoC technologies provide easy and precise methodologies in cost-effective clinical monitoring and treatment using standardized protocols, at even personalized levels. Because of the inherent utilization of the integrated materials, employing the OoC with biomedical approaches will be a promising methodology in the healthcare industry.
Collapse
Affiliation(s)
- Bishal Kumar Nahak
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden
| | - Anshuman Mishra
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden
| | - Subham Preetam
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden
| | - Ashutosh Tiwari
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden
| |
Collapse
|
4
|
Pasman T, Baptista D, van Riet S, Truckenmüller RK, Hiemstra PS, Rottier RJ, Stamatialis D, Poot AA. Development of Porous and Flexible PTMC Membranes for In Vitro Organ Models Fabricated by Evaporation-Induced Phase Separation. MEMBRANES 2020; 10:E330. [PMID: 33167539 PMCID: PMC7694515 DOI: 10.3390/membranes10110330] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 11/16/2022]
Abstract
Polymeric membranes are widely applied in biomedical applications, including in vitro organ models. In such models, they are mostly used as supports on which cells are cultured to create functional tissue units of the desired organ. To this end, the membrane properties, e.g., morphology and porosity, should match the tissue properties. Organ models of dynamic (barrier) tissues, e.g., lung, require flexible, elastic and porous membranes. Thus, membranes based on poly (dimethyl siloxane) (PDMS) are often applied, which are flexible and elastic. However, PDMS has low cell adhesive properties and displays small molecule ad- and absorption. Furthermore, the introduction of porosity in these membranes requires elaborate methods. In this work, we aim to develop porous membranes for organ models based on poly(trimethylene carbonate) (PTMC): a flexible polymer with good cell adhesive properties which has been used for tissue engineering scaffolds, but not in in vitro organ models. For developing these membranes, we applied evaporation-induced phase separation (EIPS), a new method in this field based on solvent evaporation initiating phase separation, followed by membrane photo-crosslinking. We optimised various processing variables for obtaining form-stable PTMC membranes with average pore sizes between 5 to 8 µm and water permeance in the microfiltration range (17,000-41,000 L/m2/h/bar). Importantly, the membranes are flexible and are suitable for implementation in in vitro organ models.
Collapse
Affiliation(s)
- Thijs Pasman
- Department of Biomaterials Science and Technology, Technical Medical (TechMed) Centre, Faculty of Science and Technology, University of Twente, 7522 NB Enschede, The Netherlands; (T.P.); (D.S.)
| | - Danielle Baptista
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.B.); (R.K.T.)
| | - Sander van Riet
- Department of Pulmonology, Leiden University Medical Centre, 2300 RC Leiden, The Netherlands; (S.v.R.); (P.S.H.)
| | - Roman K. Truckenmüller
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.B.); (R.K.T.)
| | - Pieter S. Hiemstra
- Department of Pulmonology, Leiden University Medical Centre, 2300 RC Leiden, The Netherlands; (S.v.R.); (P.S.H.)
| | - Robbert J. Rottier
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, 3000 CB Rotterdam, The Netherlands;
| | - Dimitrios Stamatialis
- Department of Biomaterials Science and Technology, Technical Medical (TechMed) Centre, Faculty of Science and Technology, University of Twente, 7522 NB Enschede, The Netherlands; (T.P.); (D.S.)
| | - André A. Poot
- Department of Biomaterials Science and Technology, Technical Medical (TechMed) Centre, Faculty of Science and Technology, University of Twente, 7522 NB Enschede, The Netherlands; (T.P.); (D.S.)
| |
Collapse
|
5
|
Marx-Blümel L, Marx C, Weise F, Frey J, Perner B, Schlingloff G, Lindig N, Hampl J, Sonnemann J, Brauer D, Voigt A, Singh S, Beck B, Jäger UM, Wang ZQ, Beck JF, Schober A. Biomimetic reconstruction of the hematopoietic stem cell niche for in vitro amplification of human hematopoietic stem cells. PLoS One 2020; 15:e0234638. [PMID: 32569325 PMCID: PMC7307768 DOI: 10.1371/journal.pone.0234638] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022] Open
Abstract
Hematopoietic stem cell transplantation is successfully applied since the late 1950s; however, its efficacy still needs to be increased. A promising strategy is to transplant high numbers of pluripotent hematopoietic stem cells (HSCs). Therefore, an improved ex vivo culture system that supports proliferation and maintains HSC pluripotency would override possible limitations in cell numbers gained from donors. To model the natural HSC niche in vitro, we optimized the HSC medium composition with a panel of cytokines and valproic acid and used an artificial 3D bone marrow-like scaffold made of polydimethylsiloxane (PDMS). This 3D scaffold offered a suitable platform to amplify human HSCs in vitro and, simultaneously, to support their viability, multipotency and ability for self-renewal. Silicon oxide-covering of PDMS structures further improved amplification of CD34+ cells, although the conservation of naïve HSCs was better on non-covered 3D PDMS. Finally, we found that HSC cultivated on non-covered 3D PDMS generated most pluripotent colonies within colony forming unit assays. In conclusion, by combining biological and biotechnological approaches, we optimized in vitro HSCs culture conditions, resulting in improved amplification, multipotency maintenance and vitality of HSCs.
Collapse
Affiliation(s)
- L. Marx-Blümel
- Department of Paediatric Haematology and Oncology, Children’s Clinic, Jena University Hospital, Jena, Germany
- Research Center Lobeda, Jena University Hospital, Jena, Germany
- * E-mail:
| | - C. Marx
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Jena, Germany
| | - F. Weise
- Institute for Micro and Nanotechnologies MacroNano, Nano-Biosystem Technology, Ilmenau University of Technology, Ilmenau, Germany
| | - J. Frey
- Department of Paediatric Haematology and Oncology, Children’s Clinic, Jena University Hospital, Jena, Germany
- Research Center Lobeda, Jena University Hospital, Jena, Germany
| | - B. Perner
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Jena, Germany
| | - G. Schlingloff
- Institute for Micro and Nanotechnologies MacroNano, Nano-Biosystem Technology, Ilmenau University of Technology, Ilmenau, Germany
| | - N. Lindig
- Department of Paediatric Haematology and Oncology, Children’s Clinic, Jena University Hospital, Jena, Germany
- Research Center Lobeda, Jena University Hospital, Jena, Germany
| | - J. Hampl
- Institute for Micro and Nanotechnologies MacroNano, Nano-Biosystem Technology, Ilmenau University of Technology, Ilmenau, Germany
| | - J. Sonnemann
- Department of Paediatric Haematology and Oncology, Children’s Clinic, Jena University Hospital, Jena, Germany
- Research Center Lobeda, Jena University Hospital, Jena, Germany
| | - D. Brauer
- Institute for Micro and Nanotechnologies MacroNano, Nano-Biosystem Technology, Ilmenau University of Technology, Ilmenau, Germany
| | - A. Voigt
- Department of Paediatric Haematology and Oncology, Children’s Clinic, Jena University Hospital, Jena, Germany
- Research Center Lobeda, Jena University Hospital, Jena, Germany
| | - S. Singh
- Institute for Micro and Nanotechnologies MacroNano, Nano-Biosystem Technology, Ilmenau University of Technology, Ilmenau, Germany
| | - B. Beck
- Department of Paediatric Haematology and Oncology, Children’s Clinic, Jena University Hospital, Jena, Germany
- Research Center Lobeda, Jena University Hospital, Jena, Germany
| | - Ute-Maria Jäger
- Department of Paediatric Haematology and Oncology, Children’s Clinic, Jena University Hospital, Jena, Germany
- Research Center Lobeda, Jena University Hospital, Jena, Germany
| | - Z. Q. Wang
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Jena, Germany
- Faculty of Biological Sciences, Friedrich-Schiller-University of Jena, Jena, Germany
| | - J. F. Beck
- Department of Paediatric Haematology and Oncology, Children’s Clinic, Jena University Hospital, Jena, Germany
| | - A. Schober
- Institute for Micro and Nanotechnologies MacroNano, Nano-Biosystem Technology, Ilmenau University of Technology, Ilmenau, Germany
| |
Collapse
|
6
|
Siddiqui S, Chandrasekaran A, Lin N, Tufenkji N, Moraes C. Microfluidic Shear Assay to Distinguish between Bacterial Adhesion and Attachment Strength on Stiffness-Tunable Silicone Substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8840-8849. [PMID: 31177781 DOI: 10.1021/acs.langmuir.9b00803] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tuning surface composition and stiffness is now an established strategy to improve the integration of medical implants. Recent evidence suggests that matrix stiffness affects bacterial adhesion, but contradictory findings have been reported in the literature. Distinguishing between the effects of bacterial adhesion and attachment strength on these surfaces may help interpret these findings. Here, we develop a precision microfluidic shear assay to quantify bacterial adhesion strength on stiffness-tunable and biomolecule-coated silicone materials. We demonstrate that bacteria are more strongly attached to soft silicones, compared to stiff silicones; as determined by retention against increasing shear flows. Interestingly, this effect is reduced when the surface is coated with matrix biomolecules. These results demonstrate that bacteria do sense and respond to stiffness of the surrounding environment and that precisely defined assays are needed to understand the interplay among surface mechanics, composition, and bacterial binding.
Collapse
|
7
|
Schüller-Ravoo S, Teixeira SM, Papenburg B, Stamatialis D, Feijen J, Grijpma DW. Microstructured Photo-Crosslinked Poly(Trimethylene Carbonate) for Use in Soft Lithography Applications: A Biodegradable Alternative for Poly(Dimethylsiloxane). Chemphyschem 2018; 19:2085-2092. [PMID: 29436757 DOI: 10.1002/cphc.201701308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Indexed: 12/25/2022]
Abstract
Photo-crosslinkable poly(trimethylene carbonate) (PTMC) macromers were used to fabricate microstructured surfaces. Microstructured PTMC surfaces were obtained by hot embossing the macromer against structured silicon masters and subsequent photo-crosslinking, resulting in network formation. The microstructures of the master could be precisely replicated, limiting the shrinkage. Microstructured PTMC was investigated for use in two different applications: as stamping material to transfer a model protein to another surface and as structured substrate for cell culture. Using the flexible and elastic materials as stamps, bovine serum albumin labelled with fluorescein isothiocyanate was patterned on glass surfaces. In cell culture experiments, the behavior of human mesenchymal stem cells on nonstructured and microstructured PTMC surfaces was investigated. The cells strongly adhered to the PTMC surfaces and proliferated well. Compared to poly(dimethylsiloxane) (PDMS), which is commonly used in soft lithography, the PTMC networks offer significant advantages. They show better compatibility with cells, are biodegradable, and have much better mechanical properties. Both materials are transparent, flexible, and elastic at room temperature, but the tear resistance of PTMC networks is much higher than that of PDMS. Thus, PTMC might be an alternative material to PDMS in the fields of biology, medicine, and tissue engineering, in which microfabricated devices are increasingly being applied.
Collapse
Affiliation(s)
- Sigrid Schüller-Ravoo
- MIRA Institute for Biomedical Engineering and Technical Medicine, and Department of Biomaterials Science and Technology, University of Twente, P.O. Box 217, 7500, AE, Enschede, The Netherlands
| | - Sandra M Teixeira
- MIRA Institute for Biomedical Engineering and Technical Medicine, and Department of Biomaterials Science and Technology, University of Twente, P.O. Box 217, 7500, AE, Enschede, The Netherlands
| | - Bernke Papenburg
- MIRA Institute for Biomedical Engineering and Technical Medicine, and Department of Membrane Science and Technology, University of Twente, P.O. Box 217, 7500, AE, Enschede, The Netherlands
| | - Dimitrios Stamatialis
- MIRA Institute for Biomedical Engineering and Technical Medicine, and Department of Biomaterials Science and Technology, University of Twente, P.O. Box 217, 7500, AE, Enschede, The Netherlands
| | - Jan Feijen
- MIRA Institute for Biomedical Engineering and Technical Medicine, and Department of Biomaterials Science and Technology, University of Twente, P.O. Box 217, 7500, AE, Enschede, The Netherlands
| | - Dirk W Grijpma
- MIRA Institute for Biomedical Engineering and Technical Medicine, and Department of Biomaterials Science and Technology, University of Twente, P.O. Box 217, 7500, AE, Enschede, The Netherlands
| |
Collapse
|
8
|
Zhu R, Wang X, Yang J, Wang Y, Zhang Z, Hou Y, Lin F. Influence of hydroxyl-terminated polydimethylsiloxane on high-strength biocompatible polycarbonate urethane films. ACTA ACUST UNITED AC 2016; 12:015011. [PMID: 27934785 DOI: 10.1088/1748-605x/12/1/015011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The present study describes a series of novel polycarbonate urethane films that were fabricated via the solution-casting method from 4,4'-methylenebis(cyclohexyl isocyanate) (H12MDI) and 1,4-butanediol (BDO) chain extender as hard segments, poly(1,6-hexanediol)carbonate diols (PCDL) and hydroxyl-terminated polydimethylsiloxane (PDMS) as soft segments, with dibutyltin dilaurate as the catalyst. Varied molar ratios of PDMS (less than 30%) were utilized to enhance the mechanical properties and biocompatibilities. The microstructure and degrees of phase separation were characterized using atomic force microscopy. The chemical structure and surface morphology of the materials were further confirmed by attenuated total reflectance Fourier transform infrared spectroscopy, 1H NMR and 13C NMR, water droplet contact angle and scanning electron microscopy. Thermal properties were measured by differential scanning calorimetry. MTT assay and hemolytic tests were studied for evaluating cellular viability and hemocompatibility of fabricated films using L929 fibroblast cells and adult rabbit blood. The results demonstrated polyurethane films with soft segments partially replaced by PDMS could remarkably improve the biocompatibility while maintaining relatively stable mechanical behavior, making them exciting potential candidates for artificial vessels or other tissue engineering applications.
Collapse
Affiliation(s)
- Rong Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, People's Republic of China. Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
9
|
Domansky K, Leslie DC, McKinney J, Fraser JP, Sliz JD, Hamkins-Indik T, Hamilton GA, Bahinski A, Ingber DE. Clear castable polyurethane elastomer for fabrication of microfluidic devices. LAB ON A CHIP 2013; 13:3956-64. [PMID: 23954953 PMCID: PMC3877836 DOI: 10.1039/c3lc50558h] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Polydimethylsiloxane (PDMS) has numerous desirable properties for fabricating microfluidic devices, including optical transparency, flexibility, biocompatibility, and fabrication by casting; however, partitioning of small hydrophobic molecules into the bulk of PDMS hinders industrial acceptance of PDMS microfluidic devices for chemical processing and drug development applications. Here we describe an attractive alternative material that is similar to PDMS in terms of optical transparency, flexibility and castability, but that is also resistant to absorption of small hydrophobic molecules.
Collapse
Affiliation(s)
- Karel Domansky
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Moraes C, Likhitpanichkul M, Lam CJ, Beca BM, Sun Y, Simmons CA. Microdevice array-based identification of distinct mechanobiological response profiles in layer-specific valve interstitial cells. Integr Biol (Camb) 2013; 5:673-80. [PMID: 23403640 DOI: 10.1039/c3ib20254b] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aortic valve homeostasis is mediated by valvular interstitial cells (VICs) found in spatially distinct and mechanically dynamic layers of the valve leaflet. Disease progression is associated with the pathological differentiation of VICs to myofibroblasts, but the mechanobiological response profiles of cells specific to different layers in the leaflet remains undefined. Conventional mechanically dynamic macroscale culture technologies require a large number of cells per set of environmental conditions. However, large scale expansion of primary VICs in vitro does not maintain in vivo phenotypes, and hence conventional macroscale techniques are not well-suited to systematically probe response of these cell types to combinatorially manipulated mechanobiological cues. To address this issue, we developed a microfabricated composite material screening array to determine the combined effects of dynamic substrate stretch, soluble cues and matrix proteins on small populations of primary cells. We applied this system to study VICs isolated from distinct layers of the valve leaflet and determined that (1) mechanical stability and cellular adhesion to the engineered composite materials were significantly improved as compared to conventional stretching technologies; (2) VICs demonstrate layer-specific mechanobiological profiles; and (3) mechanical stimulation, matrix proteins and soluble cues produce integrated and distinct responses in layer-specific VIC populations. Strikingly, myofibroblast differentiation was most significantly influenced by cell origin, despite the presence of potent mechanobiological cues such as applied strain and TGF-β1. These results demonstrate that spatially-distinct VIC subpopulations respond differentially to microenvironmental cues, with implications for valve tissue engineering and pathobiology. The developed platform enables rapid identification of biological phenomena arising from systematically manipulating the cellular microenvironment, and may be of utility in screening mechanosensitive cell cultures with applications in drug screening, tissue engineering and fundamental cell biology.
Collapse
Affiliation(s)
- Christopher Moraes
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | | | | | | | | | | |
Collapse
|
11
|
MacQueen L, Sun Y, Simmons CA. Mesenchymal stem cell mechanobiology and emerging experimental platforms. J R Soc Interface 2013; 10:20130179. [PMID: 23635493 PMCID: PMC3673151 DOI: 10.1098/rsif.2013.0179] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/10/2013] [Indexed: 12/18/2022] Open
Abstract
Experimental control over progenitor cell lineage specification can be achieved by modulating properties of the cell's microenvironment. These include physical properties of the cell adhesion substrate, such as rigidity, topography and deformation owing to dynamic mechanical forces. Multipotent mesenchymal stem cells (MSCs) generate contractile forces to sense and remodel their extracellular microenvironments and thereby obtain information that directs broad aspects of MSC function, including lineage specification. Various physical factors are important regulators of MSC function, but improved understanding of MSC mechanobiology requires novel experimental platforms. Engineers are bridging this gap by developing tools to control mechanical factors with improved precision and throughput, thereby enabling biological investigation of mechanics-driven MSC function. In this review, we introduce MSC mechanobiology and review emerging cell culture platforms that enable new insights into mechanobiological control of MSCs. Our main goals are to provide engineers and microtechnology developers with an up-to-date description of MSC mechanobiology that is relevant to the design of experimental platforms and to introduce biologists to these emerging platforms.
Collapse
Affiliation(s)
- Luke MacQueen
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Craig A. Simmons
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Wu WI, Sask KN, Brash JL, Selvaganapathy PR. Polyurethane-based microfluidic devices for blood contacting applications. LAB ON A CHIP 2012; 12:960-970. [PMID: 22273592 DOI: 10.1039/c2lc21075d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Protein adsorption on PDMS surfaces poses a significant challenge in microfluidic devices that come into contact with biofluids such as blood. Polyurethane (PU) is often used for the construction of medical devices, but despite having several attractive properties for biointerfacing, it has not been widely used in microfluidic devices. In this work we developed two new fabrication processes for making thin, transparent and flexible PU-based microfluidic devices. Methods for the fabrication and bonding of microchannels, the integration of fluidic interconnections and surface modification with hydrophilic polyethylene oxide (PEO) to reduce protein adsorption are detailed. Using these processes, microchannels were produced having high transparency (96% that of glass in visible light), high bond strength (326.4 kPa) and low protein adsorption (80% reduction in fibrinogen adsorption vs. unmodified PDMS), which is critical for prevention of fouling. Our findings indicate that PEO modified PU could serve as an effective alternative to PDMS in blood contacting microfluidic applications.
Collapse
Affiliation(s)
- Wen-I Wu
- Department of Mechanical Engineering, McMaster University, Hamilton, ON, Canada
| | | | | | | |
Collapse
|
13
|
Wang MC, Lin JJ, Tseng HJ, Hsu SH. Characterization, antimicrobial activities, and biocompatibility of organically modified clays and their nanocomposites with polyurethane. ACS APPLIED MATERIALS & INTERFACES 2012; 4:338-350. [PMID: 22128903 DOI: 10.1021/am2014103] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A novel method to exfoliate the montmorillonite clay was developed previously to generate random nanosilicate platelets (NSP), one kind of delaminated clay. To improve their dispersion in a polymer, we modified NSPs by three types of surfactants (cationic Qa, nonionic Qb, and anionic Qc) in this study and used them to prepare nanocomposites with polyurethane (PU). The zeta potential, antimicrobial ability, and biocompatibility of these surfactant-modified NSPs (abbreviated "NSQ") were characterized. It was found that the zeta potential of Qa-modified NSP (NSQa) was positive, whereas those of NSP and the other two NSQs (NSQb and NSQc) were negative. All NSQ presented less cytotoxicity than NSP. NSQa and NSQc showed excellent antimicrobial activities against S. aureus (Gram-positive strain) and E. coli (Gram-negative strain). The nanocomposites of NSQ with PU were then characterized for surface and mechanical properties, cell attachment and proliferation, antimicrobial activity in vitro, and biocompatibility in vivo. A higher surfactant to NSP ratio was found to improve the dispersion of NSQ in PU matrix. The mechanical properties of all PU/NSQ nanocomposites were significantly enhanced. Among various NSQ, only NSQa were observed to migrate to the composite surface. The attachment and proliferation of endothelial cells and fibroblasts in vitro as well as biocompatibility in vivo were significantly better for PU/NSQa containing 1% of NSQa than other materials. The microbiostasis ratios of PU/NSQ nanocomposites containing 1% NSQa or NSQc were >90%. These results proposed the safety and potential antimicrobial applications of surfactant-modified delaminated clays and their nanocomposites with PU polymer.
Collapse
Affiliation(s)
- Ming-Chien Wang
- Department of Chemical Engineering, National Chung Hsing University, Taichung, 40227 Taiwan, ROC
| | | | | | | |
Collapse
|
14
|
Moraes C, Sun Y, Simmons CA. (Micro)managing the mechanical microenvironment. Integr Biol (Camb) 2011; 3:959-71. [PMID: 21931883 DOI: 10.1039/c1ib00056j] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mechanical forces are critical components of the cellular microenvironment and play a pivotal role in driving cellular processes in vivo. Dissecting cellular responses to mechanical forces is challenging, as even "simple" mechanical stimulation in vitro can cause multiple interdependent changes in the cellular microenvironment. These stimuli include solid deformation, fluid flows, altered physical and chemical surface features, and a complex transfer of loads between the various interacting components of a biological culture system. The active mechanical and biochemical responses of cells to these stimuli in generating internal forces, reorganizing cellular structures, and initiating intracellular signals that specify cell fate and remodel the surrounding environment further complicates cellular response to mechanical forces. Moreover, cells present a non-linear response to combinations of mechanical forces, materials, chemicals, surface features, matrix properties and other effectors. Microtechnology-based approaches to these challenges can yield key insights into the mechanical nature of cellular behaviour, by decoupling stimulation parameters; enabling multimodal control over combinations of stimuli; and increasing experimental throughput to systematically probe cellular response. In this critical review, we briefly discuss the complexities inherent in the mechanical stimulation of cells; survey and critically assess the applications of present microtechnologies in the field of experimental mechanobiology; and explore opportunities and possibilities to use these tools to obtain a deeper understanding of mechanical interactions between cells and their environment.
Collapse
Affiliation(s)
- Christopher Moraes
- Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | | | | |
Collapse
|
15
|
Moraes C, Sun Y, Simmons CA. Microfabricated platforms for mechanically dynamic cell culture. J Vis Exp 2010:2224. [PMID: 21206477 DOI: 10.3791/2224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The ability to systematically probe in vitro cellular response to combinations of mechanobiological stimuli for tissue engineering, drug discovery or fundamental cell biology studies is limited by current bioreactor technologies, which cannot simultaneously apply a variety of mechanical stimuli to cultured cells. In order to address this issue, we have developed a series of microfabricated platforms designed to screen for the effects of mechanical stimuli in a high-throughput format. In this protocol, we demonstrate the fabrication of a microactuator array of vertically displaced posts on which the technology is based, and further demonstrate how this base technology can be modified to conduct high-throughput mechanically dynamic cell culture in both two-dimensional and three-dimensional culture paradigms.
Collapse
Affiliation(s)
- Christopher Moraes
- Department of Mechanical and Industrial Engineering, University of Toronto, Canada
| | | | | |
Collapse
|
16
|
Moraes C, Chen JH, Sun Y, Simmons CA. Microfabricated arrays for high-throughput screening of cellular response to cyclic substrate deformation. LAB ON A CHIP 2010; 10:227-34. [PMID: 20066251 DOI: 10.1039/b914460a] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Mechanical forces play an important role in regulating cellular function and have been shown to modulate cellular response to other factors in the cellular microenvironment. Presently, no technique exists to rapidly screen for the effects of a range of uniform mechanical forces on cellular function. In this work, we developed and characterized a novel microfabricated array capable of simultaneously applying cyclic equibiaxial substrate strains ranging in magnitude from 2 to 15% to small populations of adherent cells. The array is versatile, and capable of simultaneously generating a range of substrate strain fields and magnitudes. The design can be extended to combinatorially manipulate other mechanobiological culture parameters in the cellular microenvironment. As a first demonstration of this technology, the array was used to determine the effects of equibiaxial mechanical strain on activation of the canonical Wnt/beta-catenin signaling pathway in cardiac valve mesenchymal progenitor cells. This high-throughput approach to mechanobiological screening enabled the identification of a novel co-dependence between strain magnitude and duration of stimulation in controlling beta-catenin nuclear accumulation. More generally, this versatile platform has broad applicability in the fields of mechanobiology, tissue engineering and pathobiology.
Collapse
Affiliation(s)
- Christopher Moraes
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, Canada M5S 3G8
| | | | | | | |
Collapse
|
17
|
Microfabricated Devices for Studying Cellular Biomechanics and Mechanobiology. CELLULAR AND BIOMOLECULAR MECHANICS AND MECHANOBIOLOGY 2010. [DOI: 10.1007/8415_2010_24] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|