1
|
Muñoz E, Loyola AC, Pitol-Palin L, Okamoto R, Shibli J, Messora M, Novaes AB, Scombatti de Souza S. Synthetic Bone Blocks Produced by Additive Manufacturing in the Repair of Critical Bone Defects. Tissue Eng Part C Methods 2024; 30:533-546. [PMID: 39311460 DOI: 10.1089/ten.tec.2024.0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
This study evaluated the efficacy of synthetic bone blocks, composed of hydroxyapatite (HA) or β-tricalcium phosphate (B-TCP), which were produced by additive manufacturing and used for the repair of critical size bone defects (CSDs) in rat calvaria. Sixty rats were divided into five groups (n = 12): blood clot (CONTROL), 3D-printed HA (HA), 3D-printed β-TCP (B-TCP), 3D-printed HA + autologous micrograft (HA+RIG), and 3D-printed β-TCP + autologous micrograft (B-TCP+RIG). CSDs were surgically created in the parietal bone and treated with the respective biomaterials. The animals were euthanized at 30 and 60 days postsurgery for microcomputed tomography (micro-CT) histomorphometric, and immunohistochemical analysis to assess new bone formation. Micro-CT analysis showed that both biomaterials were incorporated into the animals' calvaria. The HA+RIG group, especially at 60 days, exhibited a significant increase in bone formation compared with the control. The use of 3D-printed bioceramics resulted in thinner trabeculae but a higher number of trabeculae compared with the control. Histomorphometric analysis showed bone islands in close contact with the B-TCP and HA blocks at 30 days. The HA blocks (HA and HA+RIG groups) showed statistically higher new bone formation values with further improvement when autologous micrografts were included. Immunohistochemical analysis showed the expression of bone repair proteins. At 30 days, the HA+RIG group had moderate Osteopontin (OPN) staining, indicating that the repair process had started, whereas other groups showed no staining. At 60 days, the HA+RIG group showed slight staining, similar to that of the control. Osteocalcin (OCN) staining, indicating osteoblastic activity, showed moderate expression in the HA and HA+RIG groups at 30 days, with slight expression in the B-TCP and B-TCP+RIG groups. The combination of HA blocks with autologous micrografts significantly enhanced bone repair, suggesting that the presence of progenitor cells and growth factors in the micrografts contributed to the improved outcomes. It was concluded that 3D-printed bone substitute blocks, associated with autologous micrografts, are highly effective in promoting bone repair in CSDs in rat calvaria.
Collapse
Affiliation(s)
- Eladio Muñoz
- School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Ana Carolina Loyola
- School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Leticia Pitol-Palin
- Araçatuba Dental School, São Paulo State University-UNESP, Araçatuba, Brazil
| | - Roberta Okamoto
- Araçatuba Dental School, São Paulo State University-UNESP, Araçatuba, Brazil
| | - Jamil Shibli
- Plenum Bioengenharia, M3 Health Indústria e Comércio de Produtos Médicos, Odontológicos e Correlatos S.A, Jundiaí, Brazil
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, Brazil
| | - Michel Messora
- School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Arthur Belém Novaes
- School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | | |
Collapse
|
2
|
Bayram F, Göçmen G, Özkan Y. Evaluating risk factors and complications in mandibular ramus block grafting: a retrospective cohort study. Clin Oral Investig 2024; 28:226. [PMID: 38514518 PMCID: PMC10957589 DOI: 10.1007/s00784-024-05613-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
OBJECTIVES This retrospective cohort study aimed to identify the complications and risk factors associated with alveolar grafting using autologous mandibular ramus grafts, guided by the research question: What are the complications encountered in patients undergoing alveolar bone grafting using autologous mandibular ramus block and what are the risk factors associated with the development of these complications? MATERIALS AND METHODS The study included 70 patients who underwent alveolar crest augmentation with autologous mandibular ramus block grafting. Intraoperative, early postoperative, and late postoperative complications were analyzed, as were various risk factors. RESULTS The results showed that the majority of patients had successful outcomes with minimal complications. Sex was found to significantly influence the visibility of the inferior alveolar nerve (IAN). Early postoperative complications were associated with IAN visibility and the use of a single screw for graft fixation. Late postoperative complications were significantly associated with the presence of infection. CONCLUSION The findings emphasize the importance of careful surgical techniques, infection prevention, and patient selection in minimizing complications. CLINICAL RELEVANCE This article may contribute to clinicians' and so patients' understanding of potential risk factors associated with over all ramus block grafting procedure. Based on this information, clinicians can also improve their ability to manage risk factors and associated complications and compare ramus block grafting with other alternatives to determine the best treatment approach for that particular patient.
Collapse
Affiliation(s)
- Ferit Bayram
- Department of Oral and Maxillofacial Surgery, Marmara University School of Dentistry, Istanbul, 34854, Turkey.
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Marmara, Basibuyuk Yolu 9/3 34854 Basibuyuk / Maltepe / Istanbul, Istanbul, 34854, Turkey.
| | - Gökhan Göçmen
- Department of Oral and Maxillofacial Surgery, Marmara University School of Dentistry, Istanbul, 34854, Turkey
| | - Yaşar Özkan
- Department of Oral and Maxillofacial Surgery, Marmara University School of Dentistry, Istanbul, 34854, Turkey
| |
Collapse
|
3
|
Li Q, He W, Li W, Luo S, Zhou M, Wu D, Li Y, Wu S. Band-Aid-Like Self-Fixed Barrier Membranes Enable Superior Bone Augmentation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206981. [PMID: 37029705 PMCID: PMC10238180 DOI: 10.1002/advs.202206981] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/10/2023] [Indexed: 06/04/2023]
Abstract
In guided bone regeneration surgery, a barrier membrane is usually used to inhibit soft tissue from interfering with osteogenesis. However, current barrier membranes usually fail to resist the impact of external forces on bone-augmented region, thus causing severe displacement of membranes and their underlying bone graft materials, eventually leading to unsatisfied bone augmentation. Herein, a new class of local double-layered adhesive barrier membranes (ABMs) is developed to successfully immobilize bone graft materials. The air-dried adhesive hydrogel layers with suction-adhesion properties enable ABMs to firmly adhere to the wet bone surface through a "stick-and-use" band-aid-like strategy and effectively prevent the displacement of membranes and the leakage of bone grafts in uncontained bone defect treatment. Furthermore, the strategy is versatile for preparing diverse adhesive barrier membranes and immobilizing different bone graft materials for various surgical regions. By establishing such a continuous barrier for the bone graft material, this strategy may open a novel avenue for designing the next-generation barrier membranes.
Collapse
Affiliation(s)
- Qianqian Li
- Hospital of StomatologyGuanghua School of StomatologyGuangdong Provincial Key Laboratory of StomatologySun Yat‐sen UniversityGuangzhou510055P. R. China
| | - Wenyi He
- PCFM LabSchool of ChemistrySun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Weiran Li
- Hospital of StomatologyGuanghua School of StomatologyGuangdong Provincial Key Laboratory of StomatologySun Yat‐sen UniversityGuangzhou510055P. R. China
| | - Shulu Luo
- Hospital of StomatologyGuanghua School of StomatologyGuangdong Provincial Key Laboratory of StomatologySun Yat‐sen UniversityGuangzhou510055P. R. China
| | - Minghong Zhou
- Medical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080P. R. China
| | - Dingcai Wu
- PCFM LabSchool of ChemistrySun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Yan Li
- Hospital of StomatologyGuanghua School of StomatologyGuangdong Provincial Key Laboratory of StomatologySun Yat‐sen UniversityGuangzhou510055P. R. China
| | - Shuyi Wu
- Hospital of StomatologyGuanghua School of StomatologyGuangdong Provincial Key Laboratory of StomatologySun Yat‐sen UniversityGuangzhou510055P. R. China
| |
Collapse
|
4
|
Vaquette C, Carluccio D, Batstone M, Ivanovski S. Workflow for Fabricating 3D-Printed Resorbable Personalized Porous Scaffolds for Orofacial Bone Regeneration. Methods Mol Biol 2023; 2588:485-492. [PMID: 36418706 DOI: 10.1007/978-1-0716-2780-8_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Resorption of alveolar bone following tooth extraction is a physiological process that can often prevent the placement of dental implants due to the limited bone remaining. In severe cases, vertical bone augmentation, which aims to restore bone in an extraskeletal dimension (outside of the skeletal envelope), is required prior to implant placement. While current treatment strategies rely on autologous grafts, or "Guided Bone Regeneration" involving the placement of particulate bone grafting biomaterials under a protective membrane, the field is shifting to patient-matched solutions. Herein, we describe the various steps required for modeling the patient data, creating the patient-matched scaffold geometry and 3D-printing using the biodegradable polymer polycaprolactone for application in the oro-dental and craniofacial areas.
Collapse
Affiliation(s)
- Cedryck Vaquette
- School of Dentistry, Centre for Oral Regeneration, Reconstruction and Rehabilitation (COR3), The University of Queensland, Herston, QLD, Australia.,Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD, Australia
| | - Danilo Carluccio
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD, Australia
| | - Martin Batstone
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD, Australia
| | - Sašo Ivanovski
- School of Dentistry, Centre for Oral Regeneration, Reconstruction and Rehabilitation (COR3), The University of Queensland, Herston, QLD, Australia. .,Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD, Australia.
| |
Collapse
|
5
|
Current Approaches in Vertical Bone Augmentation and Large Bone Deficiencies in the Orofacial Region. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
6
|
Dorozhkin SV. Calcium Orthophosphate (CaPO4)-Based Bioceramics: Preparation, Properties, and Applications. COATINGS 2022; 12:1380. [DOI: 10.3390/coatings12101380] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Various types of materials have been traditionally used to restore damaged bones. In the late 1960s, a strong interest was raised in studying ceramics as potential bone grafts due to their biomechanical properties. A short time later, such synthetic biomaterials were called bioceramics. Bioceramics can be prepared from diverse inorganic substances, but this review is limited to calcium orthophosphate (CaPO4)-based formulations only, due to its chemical similarity to mammalian bones and teeth. During the past 50 years, there have been a number of important achievements in this field. Namely, after the initial development of bioceramics that was just tolerated in the physiological environment, an emphasis was shifted towards the formulations able to form direct chemical bonds with the adjacent bones. Afterwards, by the structural and compositional controls, it became possible to choose whether the CaPO4-based implants would remain biologically stable once incorporated into the skeletal structure or whether they would be resorbed over time. At the turn of the millennium, a new concept of regenerative bioceramics was developed, and such formulations became an integrated part of the tissue engineering approach. Now, CaPO4-based scaffolds are designed to induce bone formation and vascularization. These scaffolds are usually porous and harbor various biomolecules and/or cells. Therefore, current biomedical applications of CaPO4-based bioceramics include artificial bone grafts, bone augmentations, maxillofacial reconstruction, spinal fusion, and periodontal disease repairs, as well as bone fillers after tumor surgery. Prospective future applications comprise drug delivery and tissue engineering purposes because CaPO4 appear to be promising carriers of growth factors, bioactive peptides, and various types of cells.
Collapse
|
7
|
Sufaru IG, Macovei G, Stoleriu S, Martu MA, Luchian I, Kappenberg-Nitescu DC, Solomon SM. 3D Printed and Bioprinted Membranes and Scaffolds for the Periodontal Tissue Regeneration: A Narrative Review. MEMBRANES 2022; 12:membranes12090902. [PMID: 36135920 PMCID: PMC9505571 DOI: 10.3390/membranes12090902] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 05/31/2023]
Abstract
Numerous technologies and materials were developed with the aim of repairing and reconstructing the tissue loss in patients with periodontitis. Periodontal guided bone regeneration (GBR) and guided tissue regeneration (GTR) involves the use of a membrane which prevents epithelial cell migration, and helps to maintain the space, creating a protected area in which tissue regeneration is favored. Over the time, manufacturing procedures of such barrier membranes followed important improvements. Three-dimensional (3D) printing technology has led to major innovations in periodontal regeneration methods, using technologies such as inkjet printing, light-assisted 3D printing or micro-extrusion. Besides the 3D printing of monophasic and multi-phasic scaffolds, bioprinting and tissue engineering have emerged as innovative technologies which can change the way we see GTR and GBR.
Collapse
Affiliation(s)
- Irina-Georgeta Sufaru
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| | - Georgiana Macovei
- Department of Oral and Dental Diagnostics, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| | - Simona Stoleriu
- Department of Cariology and Restorative Dental Therapy, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| | - Maria-Alexandra Martu
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| | - Ionut Luchian
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| | | | - Sorina Mihaela Solomon
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| |
Collapse
|
8
|
Vaquette C, Mitchell J, Ivanovski S. Recent Advances in Vertical Alveolar Bone Augmentation Using Additive Manufacturing Technologies. Front Bioeng Biotechnol 2022; 9:798393. [PMID: 35198550 PMCID: PMC8858982 DOI: 10.3389/fbioe.2021.798393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/13/2021] [Indexed: 11/26/2022] Open
Abstract
Vertical bone augmentation is aimed at regenerating bone extraskeletally (outside the skeletal envelope) in order to increase bone height. It is generally required in the case of moderate to severe atrophy of bone in the oral cavity due to tooth loss, trauma, or surgical resection. Currently utilized surgical techniques, such as autologous bone blocks, distraction osteogenesis, and Guided Bone Regeneration (GBR), have various limitations, including morbidity, compromised dimensional stability due to suboptimal resorption rates, poor structural integrity, challenging handling properties, and/or high failure rates. Additive manufacturing (3D printing) facilitates the creation of highly porous, interconnected 3-dimensional scaffolds that promote vascularization and subsequent osteogenesis, while providing excellent handling and space maintaining properties. This review describes and critically assesses the recent progress in additive manufacturing technologies for scaffold, membrane or mesh fabrication directed at vertical bone augmentation and Guided Bone Regeneration and their in vivo application.
Collapse
|
9
|
Nanostructured Zn-Substituted Monetite Based Material Induces Higher Bone Regeneration Than Anorganic Bovine Bone and β-Tricalcium Phosphate in Vertical Augmentation Model in Rabbit Calvaria. NANOMATERIALS 2021; 12:nano12010143. [PMID: 35010093 PMCID: PMC8746457 DOI: 10.3390/nano12010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 11/17/2022]
Abstract
The capacity of a nanostructured multicomponent material composed of Zn-substituted monetite, amorphous calcium phosphate, hydroxyapatite and silica gel (MSi) to promote vertical bone augmentation was compared with anorganic bovine bone (ABB) and synthetic β-tricalcium phosphate (β-TCP). The relation between biological behavior and physicochemical properties of the materials was also studied. The in vivo study was conducted in a vertical bone augmentation model in rabbit calvaria for 10 weeks. Significant differences in the biological behavior of the materials were observed. MSi showed significantly higher bone regeneration (39%) than ABB and β-TCP (24%). The filled cylinder volume was similar in MSi (92%) and ABB (91%) and significantly lower in β-TCP (81%) implants. In addition, β-TCP showed the highest amount of non-osteointegrated particles (17%). MSi was superior to the control materials because it maintains the volume of the defect almost full, with the highest bone formation, the lowest number of remaining particles, which are almost fully osteointegrated and having the lowest amount of connective tissue. Besides, the bone formed was mature, with broad trabeculae, high vascularization and osteogenic activity. MSi resorbs gradually over time with an evident increment of the porosity and simultaneous colonization for vascularized new bone. In addition, the osteoinductive behavior of MSi material was evidenced.
Collapse
|
10
|
Fairag R, Li L, Ramirez-GarciaLuna JL, Taylor MS, Gaerke B, Weber MH, Rosenzweig DH, Haglund L. A Composite Lactide-Mineral 3D-Printed Scaffold for Bone Repair and Regeneration. Front Cell Dev Biol 2021; 9:654518. [PMID: 34307346 PMCID: PMC8299729 DOI: 10.3389/fcell.2021.654518] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 06/21/2021] [Indexed: 01/08/2023] Open
Abstract
Orthopedic tumor resection, trauma, or degenerative disease surgeries can result in large bone defects and often require bone grafting. However, standard autologous bone grafting has been associated with donor site morbidity and/or limited quantity. As an alternate, allografts with or without metallic or polyether-etherketone have been used as grafting substitutes. However, these may have drawbacks as well, including stress shielding, pseudarthrosis, disease-transmission, and infection. There is therefore a need for alternative bone substitutes, such as the use of mechanically compliant three-dimensional (3D)-printed scaffolds. Several off-the-shelf materials are available for low-cost fused deposition 3D printing such as polylactic acid (PLA) and polycaprolactone (PCL). We have previously described the feasibility of 3D-printed PLA scaffolds to support cell activity and extracellular matrix deposition. In this study, we investigate two medical-grade filaments consistent with specifications found in American Society for Testing and Materials (ASTM) standard for semi-crystalline polylactide polymers for surgical implants, a pure polymer (100M) and a copolymeric material (7415) for their cytocompatibility and suitability in bone tissue engineering. Moreover, we assessed the impact on osteo-inductive properties with the addition of beta-tricalcium phosphate (β-TCP) minerals and assessed their mechanical properties. 100M and 7415 scaffolds with the additive β-TCP demonstrated superior mesenchymal stem cells (MSCs) differentiation detected via increased alkaline phosphatase activity (6-fold and 1.5-fold, respectively) and mineralized matrix deposition (14-fold and 5-fold, respectively) in vitro. Furthermore, we evaluated in vivo compatibility, biosafety and bone repair potential in a rat femur window defect model. 100M+β -TCP implants displayed a positive biosafety profile and showed significantly enhanced new bone formation compared to 100M implants evidenced by μCT (39 versus 25% bone volume/tissue volume ratio) and histological analysis 6 weeks post-implantation. These scaffolds are encouraging composite biomaterials for repairing bone applications with a great potential for clinical translation. Further analyses are required with appropriate evaluation in a larger critical-sized defect animal model with long-term follow-up.
Collapse
Affiliation(s)
- Rayan Fairag
- Department of Surgery, Division of Orthopaedic Surgery, McGill University, Montreal, QC, Canada
- Research Institute of McGill University Health Center, Montreal General Hospital, Montreal, QC, Canada
- Department of Orthopedic Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Li Li
- Department of Surgery, Division of Orthopaedic Surgery, McGill University, Montreal, QC, Canada
- Research Institute of McGill University Health Center, Montreal General Hospital, Montreal, QC, Canada
| | | | | | | | - Michael H. Weber
- Department of Surgery, Division of Orthopaedic Surgery, McGill University, Montreal, QC, Canada
- Research Institute of McGill University Health Center, Montreal General Hospital, Montreal, QC, Canada
| | - Derek H. Rosenzweig
- Department of Surgery, Division of Orthopaedic Surgery, McGill University, Montreal, QC, Canada
- Research Institute of McGill University Health Center, Montreal General Hospital, Montreal, QC, Canada
| | - Lisbet Haglund
- Department of Surgery, Division of Orthopaedic Surgery, McGill University, Montreal, QC, Canada
- Research Institute of McGill University Health Center, Montreal General Hospital, Montreal, QC, Canada
- Shriners Hospital for Children, Montreal, QC, Canada
| |
Collapse
|
11
|
Zhang Z, Gan Y, Guo Y, Lu X, Li X. Animal models of vertical bone augmentation (Review). Exp Ther Med 2021; 22:919. [PMID: 34335880 PMCID: PMC8290405 DOI: 10.3892/etm.2021.10351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/10/2021] [Indexed: 11/28/2022] Open
Abstract
Vertical bone augmentation is an important challenge in dental implantology. Existing vertical bone augmentation techniques, along with bone grafting materials, have achieved certain clinical progress but continue to have numerous limitations. In order to evaluate the possibility of using biomaterials to develop bone substitutes, medical devices and/or new bone grafting techniques for vertical bone augmentation, it is essential to establish clinically relevant animal models to investigate their biocompatibility, mechanical properties, applicability and safety. The present review discusses recent animal experiments related to vertical bone augmentation. In addition, surgical protocols for establishing relevant preclinical models with various animal species were reviewed. The present study aims to provide guidance for selecting experimental animal models of vertical bone augmentation.
Collapse
Affiliation(s)
- Zepeng Zhang
- Department of Oral and Maxillofacial Surgery, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, P.R. China
| | - Yaxin Gan
- Department of Oral and Maxillofacial Surgery, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, P.R. China
| | - Yarong Guo
- Department of Oral and Maxillofacial Surgery, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, P.R. China
| | - Xuguang Lu
- Department of Oral and Maxillofacial Surgery, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, P.R. China
| | - Xianqi Li
- Department of Oral and Maxillofacial Surgery, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, P.R. China.,Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, Nagano 399-0781, Japan
| |
Collapse
|
12
|
Zhou H, Yang L, Gbureck U, Bhaduri SB, Sikder P. Monetite, an important calcium phosphate compound-Its synthesis, properties and applications in orthopedics. Acta Biomater 2021; 127:41-55. [PMID: 33812072 DOI: 10.1016/j.actbio.2021.03.050] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022]
Abstract
This review recognizes a unique calcium phosphate (CaP) phase known as monetite or dicalcium phosphate anhydrous (DCPA, CaHPO4), and presents an overview of its properties, processing, and applications in orthopedics. The motivation for the present effort is to highlight the state-of-the-art research and development of monetite and propel the research community to explore more of its potentials in orthopedics. After a brief introduction of monetite, we provide a summary of its various synthesis routes like dehydration, solvent-based, energy-assisted processes and also discuss the formation of different crystal structures with respect to the synthesis conditions. Subsequently, we discuss the material's noteworthy physico-chemical properties including the crystal structure, vibrational spectra, solubility, thermal decomposition, and conversion to other phases. Of note, we focus on the biological (in vitro and in vivo) properties of monetite, given its ever-increasing popularity as a biomaterial for medical implants. Appropriately, we discuss various orthopedic applications of monetite as bone cement, implant coatings, granules for defect fillers, and scaffolds. Many in vitro and in vivo studies confirmed the favorable osteointegration and osteoconduction properties of monetite products, along with a better balance between implant resorption and new bone formation as compared to other CaP phases. The review ends with translational aspects of monetite and presents thoughts about its possible future research directions. Further research may explore but not limited to improvements in mechanical strength of monetite-based scaffolds, using monetite particles as a therapeutic agent delivery, and tissue engineering strategies where monetite serves as the biomaterial. STATEMENT OF SIGNIFICANCE: This is the first review that focusses on the favorable potential of monetite for hard tissue repair and regeneration. The article accurately covers the "Synthesis-Structure-Property-Applications" correlations elaborating on monetite's diverse material properties. Special focus is put on the in vitro and in vivo properties of the material highlighting monetite as an orthopedic material-of-choice. The synthesis techniques are discussed which provide important information about the different fabrication routes for monetite. Most importantly, the review provides comprehensive knowledge about the diverse biomedical applications of monetite as granules, defect--specific scaffolds, bone cements and implant coatings. This review will help to highlight monetite's potential as an effective regenerative medicine and catalyze the continuing translation of this bioceramic from the laboratory to clinics.
Collapse
Affiliation(s)
- H Zhou
- Center for Health Science and Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, China; International Research Center for Translational Orthopaedics (IRCTO), Jiangsu, China
| | - L Yang
- Center for Health Science and Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, China; International Research Center for Translational Orthopaedics (IRCTO), Jiangsu, China
| | - U Gbureck
- Department for Functional Materials in Medicine and Dentistry, University Hospital of Würzburg, Würzburg, Germany
| | - S B Bhaduri
- Department of Mechanical, Industrial & Manufacturing Engineering, The University of Toledo, Toledo, OH, USA; ENG-EEC Division, The National Science Foundation (NSF), Alexandria, VA, USA
| | - P Sikder
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, USA.
| |
Collapse
|
13
|
Mostafavi A, Abdullah T, Russell CS, Mostafavi E, Williams TJ, Salah N, Alshahrie A, Harris S, Basri SMM, Mishra YK, Webster TJ, Memic A, Tamayol A. In situ printing of scaffolds for reconstruction of bone defects. Acta Biomater 2021; 127:313-326. [PMID: 33705990 DOI: 10.1016/j.actbio.2021.03.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023]
Abstract
Bone defects are commonly caused by traumatic injuries and tumor removal and critically sized defects overwhelm the regenerative capacity of the native tissue. Reparative strategies such as auto, xeno, and allografts have proven to be insufficient to reconstruct and regenerate these defects. For the first time, we introduce the use of handheld melt spun three dimensional printers that can deposit materials directly within the defect site to properly fill the cavity and form free-standing scaffolds. Engineered composite filaments were generated from poly(caprolactone) (PCL) doped with zinc oxide nanoparticles and hydroxyapatite microparticles. The use of PCL-based materials allowed low-temperature printing to avoid overheating of the surrounding tissues. The in situ printed scaffolds showed moderate adhesion to wet bone tissue, which can prevent scaffold dislocation. The printed scaffolds showed to be osteoconductive and supported the osteodifferentiation of mesenchymal stem cells. Biocompatibility of the scaffolds upon in vivo printing subcutaneously in mice showed promising results. STATEMENT OF SIGNIFICANCE.
Collapse
Affiliation(s)
- Azadeh Mostafavi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, United States
| | | | - Carina S Russell
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, United States
| | - Ebrahim Mostafavi
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States
| | - Tyrell J Williams
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, United States
| | - Numan Salah
- Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Alshahrie
- Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Seth Harris
- Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States
| | | | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Sønderborg, Denmark
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States
| | - Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Ali Tamayol
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, United States; Department of Biomedical Engineering, University of Connecticut, Farmington, Connecticut, United States.
| |
Collapse
|
14
|
|
15
|
Ozaki H, Hamai R, Shiwaku Y, Sakai S, Tsuchiya K, Suzuki O. Mutual chemical effect of autograft and octacalcium phosphate implantation on enhancing intramembranous bone regeneration. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:345-362. [PMID: 34104115 PMCID: PMC8168741 DOI: 10.1080/14686996.2021.1916378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/22/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
This study examined the effect of a mixture of octacalcium phosphate (OCP) and autologous bone on bone regeneration in rat calvaria critical-sized defect (CSD). Mechanically mixed OCP and autologous bone granules (OCP+Auto), approximately 500 to 1000 μm in diameter, and each individual material were implanted in rat CSD for 8 weeks, and subjected to X-ray micro-computed tomography (micro-CT), histology, tartrate-resistant acid phosphatase (TRAP) staining, and histomorphometry for bone regeneration. Osteoblastic differentiation from mesenchymal stem cells (D1 cells) was examined in the presence of non-contacting materials by alkaline phosphatase (ALP) activity for 21 days. The material properties and medium composition before and after the incubation were determined by selected area electron diffraction (SAED) under transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), and chemical analysis. The results showed that while bone formation coupled with TRAP-positive osteoclastic resorption and cellular ALP activity were the highest in the Auto group, a positive effect per OCP weight or per autologous bone weight on ALP activity was found. Although the OCP structure was maintained even after the incubation (SAED), micro-deposits were grown on OCP surfaces (TEM). Fibrous tissue was also exposed on the autologous bone surfaces (SEM). Through FT-IR absorption, it was determined that bone mineral-like characteristics of the phosphate group increased in the OCP + Auto group. These findings were interpreted as a structural change from OCP to the apatitic phase, a conclusion supported by the medium degree of saturation changes. The results demonstrate the mutual chemical effect of mixing OCP with autologous bone as an active bone substitute material.
Collapse
Affiliation(s)
- Hisashi Ozaki
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai, Japan
- Department of Dentistry, Oral and Maxillofacial Surgery, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Ryo Hamai
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yukari Shiwaku
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai, Japan
- Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Susumu Sakai
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Kaori Tsuchiya
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Osamu Suzuki
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
16
|
Vaquette C, Mitchell J, Fernandez-Medina T, Kumar S, Ivanovski S. Resorbable additively manufactured scaffold imparts dimensional stability to extraskeletally regenerated bone. Biomaterials 2021; 269:120671. [PMID: 33493771 DOI: 10.1016/j.biomaterials.2021.120671] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 12/19/2022]
Abstract
Dimensionally stable vertical bone regeneration outside of the existing bony envelope is a major challenge in the field of orofacial surgery. In this study, we demonstrate that a highly porous, resorbable scaffold fabricated using additive manufacturing techniques enables reproducible extra-skeletal bone formation and prevents bone resorption. An additively manufactured medical grade polycaprolactone (mPCL) biphasic scaffold mimicking the architecture of the jaw bone, consisting of a 3D-printed outer shell overlying an inner highly porous melt electrowritten scaffold, was assessed for its ability to support dimensionally stable bone regeneration in an extraskeletal ovine calvarial model. To investigate bone formation capacity (stage 1), 7 different constructs placed under a protective dome were assessed 8 weeks post-implantation: Empty control, Biphasic scaffold with hydrogel (PCL-Gel), PCL-Gel with 75 or 150 μg of BMP-2 (PCL-BMP-75 and PCL-BMP-150), hydrogel only (Gel), Gel containing 75 or 150 μg of BMP-2 (Gel-BMP-75 and Gel-BMP-150). To assess dimensional stability (stage 2), in a separate cohort, 5 animals were similarly implanted with 2 samples of each of the Gel-BMP-150 and PCL-BMP-150 groups, and after 8 weeks of healing, the protective domes were removed and titanium implants were placed in the regenerated bone and allowed to heal for a further 8 weeks. Bone formation and osseointegration were assessed using micro-computed tomography, histology and histomorphometry. In stage 1, enhanced bone formation was found in the BMP-2 containing groups, especially the PCL-BMP constructs whereby regeneration of full bone height was achieved in a reproducible manner. There was no significant bone volume increase with the higher dose of BMP-2. In the dimensional stability assessment (stage 2), after the rtemoval of the protective dome, the biphasic scaffold prevented bone resorption whereas in the absence of the scaffold, the bone previously formed in the hydrogel underwent extensive resorption. This was attributed to the space maintenance properties and dimensional stability of the biphasic scaffold. Titanium implants osseointegrated into the newly formed bone within the biphasic scaffolds. In conclusion, additively manufactured biphasic scaffolds functionalized with BMP-2 facilitated dimensionally stable bone regeneration that supported dental implant osseointegration.
Collapse
Affiliation(s)
- C Vaquette
- The University of Queensland, School of Dentistry, Herston, Queensland, Australia.
| | - J Mitchell
- The University of Queensland, School of Dentistry, Herston, Queensland, Australia.
| | - T Fernandez-Medina
- The University of Queensland, School of Dentistry, Herston, Queensland, Australia.
| | - S Kumar
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.
| | - S Ivanovski
- The University of Queensland, School of Dentistry, Herston, Queensland, Australia.
| |
Collapse
|
17
|
Zhao F, Yang Z, Liu L, Chen D, Shao L, Chen X, Fz, Ls, Fz, Zy, Ll, Xc, Dc, Xc, Ls, Fz, Xc. Design and evaluation of a novel sub-scaffold dental implant system based on the osteoinduction of micro-nano bioactive glass. BIOMATERIALS TRANSLATIONAL 2020; 1:82-88. [PMID: 35837658 PMCID: PMC9255813 DOI: 10.3877/cma.j.issn.2096-112x.2020.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022]
Abstract
Alveolar ridge atrophy brings great challenges for endosteal implantation due to the lack of adequate vertical bone mass to hold the implants. To overcome this limitation, we developed a novel dental implant design: sub-scaffold dental implant system (SDIS), which is composed of a metal implant and a micro-nano bioactive glass scaffold. This implant system can be directly implanted under mucous membranes without adding any biomolecules or destroying the alveolar ridge. To evaluate the performance of the novel implant system in vivo, SDISs were implanted into the sub-epicranial aponeurosis space of Sprague-Dawley rats. After 6 weeks, the SDIS and surrounding tissues were collected and analysed by micro-CT, scanning electron microscopy and histology. Our results showed that SDISs implanted into the sub-epicranial aponeurosis had integrated with the skull without any mobility and could stably support a denture. Moreover, this design achieved alveolar ridge augmentation, as active osteogenesis could be observed outside the cortical bone. Considering that the microenvironment of the sub-epicranial aponeurosis space is similar to that of the alveolar ridge, SDISs have great potential for clinical applications in the treatment of atrophic alveolar ridges. The study was approved by the Animal Care Committee of Guangdong Pharmaceutical University (approval No. 2017370).
Collapse
Affiliation(s)
- Fujian Zhao
- Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhen Yang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province, China,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Lu Liu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province, China,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Beijing, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong Province, China,Corresponding authors: Xiaofeng Chen, ; Longquan Shao,
| | - Xiaofeng Chen
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province, China,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong Province, China,Corresponding authors: Xiaofeng Chen, ; Longquan Shao,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Liu W, Du B, Tan S, Wang Q, Li Y, Zhou L. Vertical Guided Bone Regeneration in the Rabbit Calvarium Using Porous Nanohydroxyapatite Block Grafts Coated with rhVEGF 165 and Cortical Perforation. Int J Nanomedicine 2020; 15:10059-10073. [PMID: 33335394 PMCID: PMC7737884 DOI: 10.2147/ijn.s268182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022] Open
Abstract
Introduction Vertical bone augmentation without osseous walls to support the stability of clots and bone grafts remains a challenge in dental implantology. The objectives of this study were to confirm that cortical perforation of the recipient bed is necessary and to evaluate whether nanohydroxyapatite (nHA) block grafts coated with recombinant human vascular endothelial growth factor165 (rhVEGF165) and cortical perforation can improve vertical bone regeneration. Materials and Methods We prepared nHA blocks coated with or without rhVEGF165 on the rabbit calvarium through cortical perforation, and designated the animals as the nonperforated group (N-nHA), rhVEGF165 group (NV-nHA), perforated group (P-nHA) and rhVEGF165 on perforated group (PV-nHA). Micro-computed tomography (micro-CT) and fluorescence microscopy were selected to evaluate parameters of vertical bone regeneration at 4 and 6 weeks. Results The ratio of the newly formed bone volume to the titanium dome volume (BV/TV) and the bone mineral density (BMD) were significantly higher in the PV-nHA group than in the N-nHA group at 4 and 6 weeks, as determined using micro-CT. The fluorescence analysis showed slightly greater increases in new bone regeneration (NB%) and vertical height (VH%) gains in the P-nHA group than in the N-nHA group. Greater increases in NB% and VH% were observed in groups treated with rhVEGF165 and perforation than in the blank groups, with significant differences detected at 4 and 6 weeks (N-nHA compared with PV-nHA, p<0.05). A greater VH% that was observed at the midline of the block in the PV-nHA group than in the other three groups at both time points (0.75±0.53% at 4 weeks and 0.83±0.42% at 6 weeks). Conclusion According to the present study, cortical perforation is necessary and nHA blocks coated with rhVEGF165 and decoration could work synergistically to improve vertical bone regeneration by directly affecting primary osteoblasts and promoting angiogenesis and osteoinduction.
Collapse
Affiliation(s)
- Weizhen Liu
- Department of Periodontics, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Bing Du
- Center of Stomatology, The Second People's Hospital of Foshan, Foshan, Guangdong, People's Republic of China
| | - Siyi Tan
- Center of Stomatology, Panyu Central Hospital, Guangzhou, Guangdong, People's Republic of China
| | - Qin Wang
- Department of Oral Maxillofacial Surgery, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yi Li
- Department of Periodontics, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Lei Zhou
- Center of Oral Implantology, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
19
|
Abstract
Compared with non-degradable materials, biodegradable biomaterials play an increasingly important role in the repairing of severe bone defects, and have attracted extensive attention from researchers. In the treatment of bone defects, scaffolds made of biodegradable materials can provide a crawling bridge for new bone tissue in the gap and a platform for cells and growth factors to play a physiological role, which will eventually be degraded and absorbed in the body and be replaced by the new bone tissue. Traditional biodegradable materials include polymers, ceramics and metals, which have been used in bone defect repairing for many years. Although these materials have more or fewer shortcomings, they are still the cornerstone of our development of a new generation of degradable materials. With the rapid development of modern science and technology, in the twenty-first century, more and more kinds of new biodegradable materials emerge in endlessly, such as new intelligent micro-nano materials and cell-based products. At the same time, there are many new fabrication technologies of improving biodegradable materials, such as modular fabrication, 3D and 4D printing, interface reinforcement and nanotechnology. This review will introduce various kinds of biodegradable materials commonly used in bone defect repairing, especially the newly emerging materials and their fabrication technology in recent years, and look forward to the future research direction, hoping to provide researchers in the field with some inspiration and reference.
Collapse
Affiliation(s)
- Shuai Wei
- Tianjin Hospital, Tianjin University, No. 406 Jiefang South Road, Tianjin, 300211 China
| | - Jian-Xiong Ma
- Tianjin Hospital, Tianjin University, No. 406 Jiefang South Road, Tianjin, 300211 China
| | - Lai Xu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, No. 19 Qixiu Road, Chongchuan District, Nantong, 226001 China
| | - Xiao-Song Gu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, No. 19 Qixiu Road, Chongchuan District, Nantong, 226001 China
| | - Xin-Long Ma
- Tianjin Hospital, Tianjin University, No. 406 Jiefang South Road, Tianjin, 300211 China
| |
Collapse
|
20
|
Kim JW, Yang BE, Hong SJ, Choi HG, Byeon SJ, Lim HK, Chung SM, Lee JH, Byun SH. Bone Regeneration Capability of 3D Printed Ceramic Scaffolds. Int J Mol Sci 2020; 21:ijms21144837. [PMID: 32650589 PMCID: PMC7402304 DOI: 10.3390/ijms21144837] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 01/01/2023] Open
Abstract
In this study, we evaluated the bone regenerative capability of a customizable hydroxyapatite (HA) and tricalcium phosphate (TCP) scaffold using a digital light processing (DLP)-type 3D printing system. Twelve healthy adult male beagle dogs were the study subjects. A total of 48 defects were created, with two defects on each side of the mandible in all the dogs. The defect sites in the negative control group (sixteen defects) were left untreated (the NS group), whereas those in the positive control group (sixteen defects) were filled with a particle-type substitute (the PS group). The defect sites in the experimental groups (sixteen defects) were filled with a 3D printed substitute (the 3DS group). Six dogs each were exterminated after healing periods of 4 and 8 weeks. Radiological and histomorphometrical evaluations were then performed. None of the groups showed any specific problems. In radiological evaluation, there was a significant difference in the amount of new bone formation after 4 weeks (p < 0.05) between the PS and 3DS groups. For both of the evaluations, the difference in the total amount of bone after 8 weeks was statistically significant (p < 0.05). There was no statistically significant difference in new bone between the PS and 3DS groups in both evaluations after 8 weeks (p > 0.05). The proposed HA/TCP scaffold without polymers, obtained using the DLP-type 3D printing system, can be applied for bone regeneration. The 3D printing of a HA/TCP scaffold without polymers can be used for fabricating customized bone grafting substitutes.
Collapse
Affiliation(s)
- Ju-Won Kim
- Department of Oral and Maxillofacial Surgery, Dentistry, Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Korea; (J.-W.K.); (B.-E.Y.)
- Graduate School of Clinical Dentistry, Hallym University, Chuncheon 24252, Korea
| | - Byoung-Eun Yang
- Department of Oral and Maxillofacial Surgery, Dentistry, Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Korea; (J.-W.K.); (B.-E.Y.)
- Graduate School of Clinical Dentistry, Hallym University, Chuncheon 24252, Korea
| | - Seok-Jin Hong
- Department of Otorhinolaryngology-Head & Neck Surgery, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Dongtan 18450, Korea;
| | - Hyo-Geun Choi
- Department of Otorhinolaryngology-Head & Neck Surgery, Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Korea;
| | - Sun-Ju Byeon
- Department of Pathology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Dongtan 18450, Korea;
| | - Ho-Kyung Lim
- Department of Oral and Maxillofacial Surgery, Dentistry, Korea University Guro Hospital, Seoul 08308, Korea;
| | | | - Jong-Ho Lee
- Department of Oral & Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul 03080, Korea;
| | - Soo-Hwan Byun
- Department of Oral and Maxillofacial Surgery, Dentistry, Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Korea; (J.-W.K.); (B.-E.Y.)
- Graduate School of Clinical Dentistry, Hallym University, Chuncheon 24252, Korea
- Department of Oral & Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul 03080, Korea;
- Correspondence: ; Tel.: +82-10-8787-2640
| |
Collapse
|
21
|
Colazo JM, Evans BC, Farinas AF, Al-Kassis S, Duvall CL, Thayer WP. Applied Bioengineering in Tissue Reconstruction, Replacement, and Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2020; 25:259-290. [PMID: 30896342 DOI: 10.1089/ten.teb.2018.0325] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPACT STATEMENT The use of autologous tissue in the reconstruction of tissue defects has been the gold standard. However, current standards still face many limitations and complications. Improving patient outcomes and quality of life by addressing these barriers remain imperative. This article provides historical perspective, covers the major limitations of current standards of care, and reviews recent advances and future prospects in applied bioengineering in the context of tissue reconstruction, replacement, and regeneration.
Collapse
Affiliation(s)
- Juan M Colazo
- 1Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,2Medical Scientist Training Program, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Brian C Evans
- 3Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Angel F Farinas
- 4Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Salam Al-Kassis
- 4Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Craig L Duvall
- 3Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Wesley P Thayer
- 3Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee.,4Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
22
|
Padilla S, Benito-Garzón L, Enciso Sanz S, Garzón-Gutiérrez A, García Carrodeguas R, Rodríguez MA, Garcia de Castro A, Canillas M. Novel Osteoinductive and Osteogenic Scaffolds of Monetite, Amorphous Calcium Phosphate, Hydroxyapatite, and Silica Gel: Influence of the Hydroxyapatite/Monetite Ratio on Their In Vivo Behavior and on Their Physical and Chemical Properties. ACS Biomater Sci Eng 2020; 6:3440-3453. [DOI: 10.1021/acsbiomaterials.9b01689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sussette Padilla
- Departamento de Química en Ciencias Farmacéuticas, Facultad Farmacia, Universidad Complutense, Madrid 28040, Spain
- AzureBio SL, Tres Cantos, Madrid 28760, Spain
| | - Lorena Benito-Garzón
- Departamento de Cirugía, Facultad de Medicina, Universidad de Salamanca, Salamanca 37008, Spain
| | | | | | | | | | | | - María Canillas
- Instituto de Cerámica y Vidrio, CSIC, Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
23
|
Zhao X, Zou L, Chen Y, Tang Z. Staged horizontal bone augmentation for dental implants in aesthetic zones: A prospective randomized controlled clinical trial comparing a half-columnar bone block harvested from the ramus versus a rectangular bone block from the symphysis. Int J Oral Maxillofac Surg 2020; 49:1326-1334. [PMID: 32273165 DOI: 10.1016/j.ijom.2019.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 10/18/2019] [Accepted: 12/18/2019] [Indexed: 10/24/2022]
Abstract
In this study, the clinical outcomes of horizontal ridge augmentation using half-columnar bone grafts from the ramus (group I: 27 patients, 32 implants) versus rectangular bone grafts from the symphysis (group II: 19 patients, 27 implants) were compared; grafts were combined with organic bovine bone and collagen membrane. Cone beam computed tomography images were obtained preoperatively, immediately after restoration (baseline), and 1 year after loading. Four months after grafting, horizontal bone resorption at the alveolar crest did not differ significantly between the two groups (P=0.291). At 4mm apical to the alveolar crest, horizontal bone resorption in group I was significantly less than that in group II (P=0.041). One year after loading, horizontal bone resorption in group I was lower than that in group II, with no significant difference. The residual thickness of the labial bone at the implant site in group I was significantly higher than that in group II. Horizontal ridge augmentation with either a half-columnar autogenous graft from the ramus or a rectangular autogenous graft from the symphysis can provide acceptable results in aesthetic regions. The half-columnar group demonstrated better graft stability both at 4 months after augmentation and 1 year after loading.
Collapse
Affiliation(s)
- X Zhao
- The Second Dental Centre, Peking University School and Hospital of Stomatology, Chaoyang District, Beijing, China; National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Haidian District, Beijing, China
| | - L Zou
- The Second Dental Centre, Peking University School and Hospital of Stomatology, Chaoyang District, Beijing, China
| | - Y Chen
- The Second Dental Centre, Peking University School and Hospital of Stomatology, Chaoyang District, Beijing, China
| | - Z Tang
- The Second Dental Centre, Peking University School and Hospital of Stomatology, Chaoyang District, Beijing, China; National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Haidian District, Beijing, China.
| |
Collapse
|
24
|
Teng F, Wei L, Yu D, Deng L, Zheng Y, Lin H, Liu Y. Vertical bone augmentation with simultaneous implantation using deproteinized bovine bone block functionalized with a slow delivery of BMP-2. Clin Oral Implants Res 2020; 31:215-228. [PMID: 31730250 DOI: 10.1111/clr.13558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/01/2019] [Accepted: 10/30/2019] [Indexed: 11/28/2022]
Abstract
OBJECTIVE We hypothesized that a biomimetic calcium phosphate (CaP) coating which incorporates morphogenetic protein 2 (BMP-2) on the deproteinized bovine bone (DBB) blocks could be used to enhance the vertical alveolar ridge augmentation for the one-stage onlay surgery with simultaneous implants insertion. We aimed to test this hypothesis in vivo. MATERIAL AND METHODS Beagles dogs were used for the study (n = 6 specimens per group). One month after building the edentulous animal model, 4 mm vertical alveolar bone loss were surgically created and four groups of blocks (W × L × H: 7 mm × 10 mm × 4 mm) were randomly fixed onto the reduced alveolar ridge by implants: (a) DBB blocks alone (negative control group); (b) DBB blocks with superficial adsorption of 50 μg BMP-2 (ad.BMP-2 group); (c) DBB blocks coated by biomimetic CaP coating which incorporates 50 μg BMP-2 (inc.BMP-2 group); and (d) autologous bone blocks (positive control group). After 3 months of healing, samples were harvested for micro-CT and histomorphometric analyses. RESULTS In histomorphometry, the inc.BMP-2 group showed a significantly thicker (coronal-apically) and wider (buccal-lingually) augmented bone area, better bone-to-implant contact than the negative control group. In both the micro-CT and histomorphometry, the inc.BMP-2 group showed more mineralized tissue than the negative control group and the inc.BMP-2 group also showed significantly more newly formed bone and residual grafts than the negative control group in the upper half of the blocks. In micro-CT, the inc.BMP-2 group showed significantly more bone-to-graft contact percentage than the ad.BMP-2 group. In both micro-CT and histomorphometry, the inc.BMP-2 group showed significantly more percentage of mineralized tissue than the ad.BMP-2 group. No significant differences were found between the inc.BMP-2 group and the positive control group either in micro-CT or in histomorphometry. CONCLUSIONS The DBB blocks with coating-delivered BMP-2 significantly enhanced the efficacy of vertical alveolar bone augmentation, compared with the unloaded blocks and blocks with adsorbed BMP-2, in the one-stage onlay surgery with simultaneous implant insertion.
Collapse
Affiliation(s)
- Fei Teng
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China.,Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| | - Lingfei Wei
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands.,Department of Oral Implantology, Yantai Stomatological Hospital, Yantai, China
| | - Dedong Yu
- 2nd Dental Center, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Liquan Deng
- School/Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuanna Zheng
- School/Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haiyan Lin
- Hangzhou Dental Hospital, Hangzhou, China
| | - Yuelian Liu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Anavi Lev K, Chaushu L, Schwarz F, Artzi Z. Bone-implant-contact and new bone formation around implants placed in FDB blocks compared to placement at the adjunction of particulate FDB. Clin Implant Dent Relat Res 2019; 22:21-28. [PMID: 31746114 DOI: 10.1111/cid.12856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/29/2019] [Accepted: 09/22/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND The efficacy of human freeze-dried bone (h-FDB) as particulate vs block forms as a proper onlay augmented bone graft material to accommodate implants is undetermined. PURPOSE To evaluate osseointegration and new bone formation at implants placed in FDB blocks (BL group) and those at the adjunction of particulate FDB (PR group). MATERIALS AND METHODS Twelve pairs of h-FDB blocks were stabilized bilaterally to the calvaria of 12 rabbits. Twenty-four SLA implants were placed at the remodeled grafted blocks, 4 months later. A circumferential gap was created around one implant in each pair and packed with particulate h-FDB. Section biopsies were obtained at 2-month post implant placement (6 months post-block grafting). Bone-to-implant contact (BIC) and bone-area fraction (BAF) were histomorphometrically calculated. RESULTS The mean BIC was 34.4% and 33.5% for the BL and PR groups, respectively. The mean BAF was 23.9% and 26.4% for the corresponding groups, respectively. Osseointegration and newly formed bone were evident mostly between the threaded portions of the implants in proximity to the host rabbit calvaria compared to its cervical neck. CONCLUSION The particulate and the cancellous block h-FDB forms yielded similar BIC and BAF outcome. Full revascularization/revitalization is questioned.
Collapse
Affiliation(s)
- Karen Anavi Lev
- Department of Periodontology and Oral Implantology, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liat Chaushu
- Department of Periodontology and Oral Implantology, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Frank Schwarz
- Department of Oral Surgery and Implantology at the Centre for Dentistry and Oral Medicine (Carolinum), Johann Wolfgang Goethe-University Frankfurt, Germany
| | - Zvi Artzi
- Department of Periodontology and Oral Implantology, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
26
|
El Zahwy M, Taha SAAK, Mounir R, Mounir M. Assessment of vertical ridge augmentation and marginal bone loss using autogenous onlay vs inlay grafting techniques with simultaneous implant placement in the anterior maxillary esthetic zone: A randomized clinical trial. Clin Implant Dent Relat Res 2019; 21:1140-1147. [DOI: 10.1111/cid.12849] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/07/2019] [Accepted: 09/16/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Mohamed El Zahwy
- Surgery and Oral Medecin DepartmentNational Research Center Cairo Egypt
| | | | - Ragia Mounir
- Oral and Maxillofacial Surgery DepartmentFaculty of Dentistry, Cairo University Cairo Egypt
| | - Mohamed Mounir
- Oral and Maxillofacial Surgery DepartmentFaculty of Dentistry, Cairo University Cairo Egypt
| |
Collapse
|
27
|
Jayasree R, Kumar TSS, Venkateswari R, Nankar RP, Doble M. Eggshell derived brushite bone cement with minimal inflammatory response and higher osteoconductive potential. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:113. [PMID: 31583477 DOI: 10.1007/s10856-019-6315-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/21/2019] [Indexed: 06/10/2023]
Abstract
Brushite cements are known for excellent osteoconductive and degradation properties, however, its widespread use is limited due to rapid setting time and poor mechanical properties. The eggshell derived calcium phosphates exhibits improved physical and biological properties due to the presence of biologically relevant ions. In this study, eggshell derived brushite cement (EB) was fabricated using β-tricalcium phosphate synthesized from eggshells. The presence of trace elements in EB prolonged its setting time. The size of brushite crystals in EB was found to be smaller than the pure brushite cement (PB) leading to increased initial compressive strength and higher in vitro degradation rate. The L6 and MG63 cell lines exhibited good biocompatibility with the cement at the end 72 h. In vivo studies of the cements were performed in rat calvarial defect model. Micro CT analysis showed faster degradation and accelerated bone formation in EB filled defect. Histological studies revealed infiltration of inflammatory cells into the implant site for both the cements till 6th week. However, inflammation was found to be significantly reduced at the 12th week in EB compared to PB leading to complete bone bridge formation. Multi-ion substituted EB seems to be a potential bone substitute material with a reasonable setting time for ease of handling, higher mechanical strength, minimal inflammatory response and higher bone regeneration.
Collapse
Affiliation(s)
- R Jayasree
- Medical Materials Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - T S Sampath Kumar
- Medical Materials Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, 600036, India.
| | - R Venkateswari
- Department of Medical Biochemistry, Dr. ALM Mudaliar Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, 600042, India
| | - Rakesh P Nankar
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Mukesh Doble
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
28
|
Sheha ED, Gandhi SD, Colman MW. 3D printing in spine surgery. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S164. [PMID: 31624730 DOI: 10.21037/atm.2019.08.88] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The applications of three-dimensional (3D) printing, or additive manufacturing, to the field of spine surgery continue to grow in number and scope especially in recent years as improved manufacturing techniques and use of sterilizable materials have allowed for creation of 3D printed implants. While 3D printing in spine surgery was initially limited to use as visual aids in preoperative planning for complex pathology, it has more recently been used to create intraoperative patient-specific screw guides and templates and is increasingly being used in surgical education and training. As patient-specific treatment and personalized medicine gains popularity in medicine, 3D printing provides a similar option for the surgical fields, particularly in the creation of customizable implants. 3D printing is a relatively new field as it pertains to spine surgery, and as such, it lacks long-term data on clinical outcomes and cost effectiveness; however, the apparent benefits and seemingly boundless applications of this growing technology make it an attractive option for the future of spine surgery.
Collapse
Affiliation(s)
- Evan D Sheha
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Sapan D Gandhi
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Matthew W Colman
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
29
|
Charbonnier B, Abdulla M, Gorgy A, Shash H, Zhang Z, Gbureck U, Harvey E, Makhoul N, Gilardino M, Barralet J. Treatment of Critical-Sized Calvarial Defects in Rats with Preimplanted Transplants. Adv Healthc Mater 2019; 8:e1900722. [PMID: 31414583 DOI: 10.1002/adhm.201900722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/30/2019] [Indexed: 12/12/2022]
Abstract
The local environment and the defect features have made the skull one of the most difficult regions to repair. Finding alternative strategies to repair large cranial defects, thereby avoiding the current limitations of autograft or polymeric and ceramic prostheses constitute an unmet need. In this study, the regeneration of an 8 mm critical-sized calvarial defect treated by autograft or by a monetite scaffold directly placed in the defect or preimplanted (either cranial bone transplant or subcutaneous pocket) and then transplanted within the bone defect is compared. The data reveal that transplantation of preimplanted monetite transplant scaffolds greatly improves the skull vault closure compared to subcutaneously preimplanted or directly placed materials. Autografts, while clearly filling the defect volume with bone appear effective since bone volume inside the defect volume is obviously high, but are not well fused to the skull. The preimplantation site has a large influence on the regeneration of the defect. Transplantation of induced bone inside materials has the potential to reduce the need for autograft harvest without damaging the skeleton. This first demonstration indicates that cranial repair may be possible without recourse to bioactives or cultured cell therapies.
Collapse
Affiliation(s)
- Baptiste Charbonnier
- Department of Mechanical EngineeringMcGill University 817 Sherbrooke Street West Montreal H3G 1C3 Quebec Canada
| | - Mohamed Abdulla
- Department of SurgeryFaculty of MedicineMontreal General HospitalMcGill University Montreal H3G 1A4 Canada
| | - Andrew Gorgy
- Department of SurgeryFaculty of MedicineMontreal General HospitalMcGill University Montreal H3G 1A4 Canada
| | - Hani Shash
- Department of SurgeryFaculty of MedicineMontreal General HospitalMcGill University Montreal H3G 1A4 Canada
| | - Zishuai Zhang
- Faculty of Dentistry 3640 University St. Montreal H3A 0C7 Canada
| | - Uwe Gbureck
- Department of Functional Materials in Medicine and DentistryUniversity Hospital of Würzburg Pleicherwall 2 Würzburg 97070 Germany
| | - Ed Harvey
- Department of Mechanical EngineeringMcGill University 817 Sherbrooke Street West Montreal H3G 1C3 Quebec Canada
| | - Nicholas Makhoul
- Department of SurgeryFaculty of MedicineMontreal General HospitalMcGill University Montreal H3G 1A4 Canada
| | - Mirko Gilardino
- Department of Mechanical EngineeringMcGill University 817 Sherbrooke Street West Montreal H3G 1C3 Quebec Canada
| | - Jake Barralet
- Department of SurgeryFaculty of MedicineMontreal General HospitalMcGill University Montreal H3G 1A4 Canada
- Faculty of Dentistry 3640 University St. Montreal H3A 0C7 Canada
| |
Collapse
|
30
|
Synthetic Blocks for Bone Regeneration: A Systematic Review and Meta-Analysis. Int J Mol Sci 2019; 20:ijms20174221. [PMID: 31466409 PMCID: PMC6747264 DOI: 10.3390/ijms20174221] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 12/15/2022] Open
Abstract
This systematic review is aimed at evaluating the effectiveness of synthetic block materials for bone augmentation in preclinical in vivo studies. An electronic search was performed on Pubmed, Scopus, EMBASE. Articles selected underwent risk-of-bias assessment. The outcomes were: new bone formation and residual graft with histomorphometry, radiographic bone density, soft tissue parameters, complications. Meta-analysis was performed to compare new bone formation in test (synthetic blocks) vs. control group (autogenous blocks or spontaneous healing). The search yielded 214 articles. After screening, 39 studies were included, all performed on animal models: rabbits (n = 18 studies), dogs (n = 4), rats (n = 7), minipigs (n = 4), goats (n = 4), and sheep (n = 2). The meta-analysis on rabbit studies showed significantly higher new bone formation for synthetic blocks with respect to autogenous blocks both at four-week (mean difference (MD): 5.91%, 95% confidence intervals (CI): 1.04, 10.79%, p = 0.02) and at eight-week healing (MD: 4.44%, 95% CI: 0.71, 8.17%, p = 0.02). Other animal models evidenced a trend for better outcomes with synthetic blocks, though only based on qualitative analysis. Synthetic blocks may represent a viable resource in bone regenerative surgery for achieving new bone formation. Differences in the animal models, the design of included studies, and the bone defects treated should be considered when generalizing the results. Clinical studies are needed to confirm the effectiveness of synthetic blocks in bone augmentation procedures.
Collapse
|
31
|
Hassan MN, Yassin MA, Suliman S, Lie SA, Gjengedal H, Mustafa K. The bone regeneration capacity of 3D-printed templates in calvarial defect models: A systematic review and meta-analysis. Acta Biomater 2019; 91:1-23. [PMID: 30980937 DOI: 10.1016/j.actbio.2019.04.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 12/23/2022]
Abstract
3D-printed templates are being used for bone tissue regeneration (BTR) as temporary guides. In the current review, we analyze the factors considered in producing potentially bioresorbable/degradable 3D-printed templates and their influence on BTR in calvarial bone defect (CBD) animal models. In addition, a meta-analysis was done to compare the achieved BTR for each type of template material (polymer, ceramic or composites). Database collection was completed by January 2018, and the inclusion criteria were all titles and keywords combining 3D printing and BTR in CBD models. Clinical trials and poorly-documented in vivo studies were excluded from this study. A total of 45 relevant studies were finally included and reviewed, and an additional check list was followed before inclusion in the meta-analysis, where material type, porosity %, and the regenerated bone area were collected and analyzed statistically. Overall, the capacity of the printed templates to support BTR was found to depend in large part on the amount of available space (porosity %) provided by the printed templates. Printed ceramic and composite templates showed the best BTR capacity, and the optimum printed template structure was found to have total porosity >50% with a pore diameter between 300 and 400 µm. Additional features and engineered macro-channels within the printed templates increased BTR capacity at long time points (12 weeks). Although the size of bone defects in rabbits was larger than in rats, BTR was greater in rabbits (almost double) at all time points and for all materials used. STATEMENT OF SIGNIFICANCE: In the present study, we reviewed the factors considered in producing degradable 3D-printed templates and their influence on bone tissue regeneration (BTR) in calvarial bone defects through the last 15 years. A meta-analysis was applied on the collected data to quantify and analyze BTR related to each type of template material. The concluded data states the importance of 3D-printed templates for BTR and indicates the ideal design required for an effective clinical translation. The evidence-based guidelines for the best BTR capacity endorse the use of printed composite and ceramic templates with total porosity >50%, pore diameter between 300 and 400 µm, and added engineered macro-channels within the printed templates.
Collapse
|
32
|
Casap N, Rushinek H, Jensen OT. Vertical Alveolar Augmentation Using BMP-2/ACS/Allograft with Printed Titanium Shells to Establish an Early Vascular Scaffold. Oral Maxillofac Surg Clin North Am 2019; 31:473-487. [PMID: 31133506 DOI: 10.1016/j.coms.2019.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Traditional reconstruction of major alveolar ridge deficiency has required autogenous cortical cancellous particulate bone grafts, often augmented with particulate allogeneic components. Now there is a new concept to consider, that of orthoalveolar form. This paradigm shift involves components of the tissue engineering triad of inductive growth factors combined with a matrix and stem cells, together with osteotomies or devices designed for space maintenance. Reported here is early experience with computer technology used to redesign deficient alveolar ridges deriving ideal alveolar-shaped bone-forms made from powdered titanium, sintered by laser at high temperature using rapid prototype technology.
Collapse
Affiliation(s)
- Nardy Casap
- Department of Oral and Maxillofacial Surgery, Hebrew University-Hadassah School of Dental Medicine, PO Box 12272, Jerusalem 91120, Israel.
| | - Heli Rushinek
- Department of Oral and Maxillofacial Surgery, Hebrew University-Hadassah School of Dental Medicine, PO Box 12272, Jerusalem 91120, Israel
| | - Ole T Jensen
- Department of Oral Maxillofacial Surgery, University of Utah, School of Dentistry, 530 Wakara Way, Salt Lake City, Utah 84108, USA
| |
Collapse
|
33
|
Ahangar P, Aziz M, Rosenzweig DH, Weber MH. Advances in personalized treatment of metastatic spine disease. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:223. [PMID: 31297388 DOI: 10.21037/atm.2019.04.41] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The spine is one of the most common sites of bony metastases, and its involvement leads to significant patient morbidity. Surgical management in these patients is aimed at improving quality of life and functional status throughout the course of the disease. Resection of metastases often leads to critical size bone defects, presenting a challenge to achieving adequate bone regeneration to fill the void. Current treatment options for repairing these defects are bone grafting and commercial bone cements; however, each has associated limitations. Additionally, tumor recurrence and tumor-induced bone loss make bone regeneration particularly difficult. Systemic therapeutic delivery, such as bisphosphonates, have become standard of care to combat bone loss despite unfavorable systemic side-effects and lack of local efficacy. Developments from tissue engineering have introduced novel materials with osteoinductive and osteoconductive properties which also act as structural support scaffolds for bone regeneration. These new materials can also act as a therapeutic reservoir to sustainably release drugs locally as an alternative to systemic therapy. In this review, we outline recent advancements in tissue engineering and the role of translational research in developing implants that can fully repair bone defects while also delivering local therapeutics to curb tumor recurrence and improve patient quality of life.
Collapse
Affiliation(s)
- Pouyan Ahangar
- Division of Orthopedic Surgery, McGill University, Montreal, QC, Canada.,The Research Institute of the McGill University Health Centre, Injury, Repair and Recovery Program, Montreal, QC, Canada.,Montreal General Hospital C10.148.6, Montreal, QC, Canada
| | - Mina Aziz
- Division of Orthopedic Surgery, McGill University, Montreal, QC, Canada.,The Research Institute of the McGill University Health Centre, Injury, Repair and Recovery Program, Montreal, QC, Canada.,Montreal General Hospital C10.148.6, Montreal, QC, Canada.,Clinical Investigator Program, McGill University, Montreal, QC, Canada
| | - Derek H Rosenzweig
- Division of Orthopedic Surgery, McGill University, Montreal, QC, Canada.,The Research Institute of the McGill University Health Centre, Injury, Repair and Recovery Program, Montreal, QC, Canada.,Montreal General Hospital C10.148.6, Montreal, QC, Canada
| | - Michael H Weber
- Division of Orthopedic Surgery, McGill University, Montreal, QC, Canada.,The Research Institute of the McGill University Health Centre, Injury, Repair and Recovery Program, Montreal, QC, Canada.,Montreal General Hospital C10.148.6, Montreal, QC, Canada
| |
Collapse
|
34
|
Fine N, Sheikh Z, Al‐Jaf F, Oveisi M, Borenstein A, Hu Y, Pilliar R, Grynpas M, Glogauer M. Differential response of human blood leukocytes to brushite, monetite, and calcium polyphosphate biomaterials. J Biomed Mater Res B Appl Biomater 2019; 108:253-262. [DOI: 10.1002/jbm.b.34385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 03/30/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Noah Fine
- Faculty of DentistryUniversity of Toronto Toronto Ontario Canada
| | - Zeeshan Sheikh
- Faculty of DentistryUniversity of Toronto Toronto Ontario Canada
- Lunenfeld‐Tanenbaum Research Institute (LTRI), Mount Sinai Hospital Toronto Ontario Canada
- Department of Laboratory Medicine and Pathobiology (LMP)University of Toronto Toronto Ontario Canada
| | - Faik Al‐Jaf
- Faculty of DentistryUniversity of Toronto Toronto Ontario Canada
| | - Morvarid Oveisi
- Faculty of DentistryUniversity of Toronto Toronto Ontario Canada
| | - Alon Borenstein
- Faculty of DentistryUniversity of Toronto Toronto Ontario Canada
| | - Youxin Hu
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto Toronto Ontario Canada
| | - Robert Pilliar
- Faculty of DentistryUniversity of Toronto Toronto Ontario Canada
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto Toronto Ontario Canada
| | - Marc Grynpas
- Lunenfeld‐Tanenbaum Research Institute (LTRI), Mount Sinai Hospital Toronto Ontario Canada
- Department of Laboratory Medicine and Pathobiology (LMP)University of Toronto Toronto Ontario Canada
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto Toronto Ontario Canada
| | - Michael Glogauer
- Faculty of DentistryUniversity of Toronto Toronto Ontario Canada
- Princess Margaret Cancer Centre, Department of Dental Oncology and Maxillofacial Prosthetics Toronto Ontario Canada
| |
Collapse
|
35
|
Gul M, Arif A, Ghafoor R. Role of three-dimensional printing in periodontal regeneration and repair: Literature review. J Indian Soc Periodontol 2019; 23:504-510. [PMID: 31849394 PMCID: PMC6906903 DOI: 10.4103/jisp.jisp_46_19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Three-dimensional (3D) printing is the process of building 3D objects by additive manufacturing approach. It is being used in endodontics, periodontology, maxillofacial surgery, prosthodontics, orthodontics, and restorative dentistry, but our review article is focused on periodontal application. A detailed literature search was done on PubMed/Medline and Google Scholar using various key terms. A total of 45 articles were included in this study. Most of the studies were in vitro, preclinical, case reports, retrospective, and prospective studies. Few clinical trials have also been done. Periodontal applications included education models, scaffolds, socket preservation, and sinus and bone augmentation and guided implant placement. It showed better alveolar ridge preservation, better regenerative capabilities, greater reduction in pocket depth and bony fill, ease of implant placement in complex cases with greater precision and reduced time with improved outcome and an important tool for education and training using simulated models.
Collapse
Affiliation(s)
- Meisha Gul
- Department of Surgery, JHS Building 1st Floor Dental Clinics, Aga Khan University Hospital, Karachi, Pakistan
| | - Aysha Arif
- Department of Surgery, JHS Building 1st Floor Dental Clinics, Aga Khan University Hospital, Karachi, Pakistan
| | - Robia Ghafoor
- Department of Surgery, JHS Building 1st Floor Dental Clinics, Aga Khan University Hospital, Karachi, Pakistan
| |
Collapse
|
36
|
Applications of 3D printing on craniofacial bone repair: A systematic review. J Dent 2019; 80:1-14. [DOI: 10.1016/j.jdent.2018.11.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 09/09/2018] [Accepted: 11/07/2018] [Indexed: 12/14/2022] Open
|
37
|
Mansour HH, Badr A, Osman AH, Atef M. Anterior maxillary sandwich osteotomy technique with simultaneous implant placement: A novel approach for management of vertical deficiency. Clin Implant Dent Relat Res 2018; 21:160-168. [PMID: 30411842 DOI: 10.1111/cid.12687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/20/2018] [Accepted: 09/25/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND The introduction of sandwich osteotomy technique with simultaneous implant placement allowed various procedures to be carried out with a level of great precision and accuracy thus saving time for the patient and clinician. PURPOSE The aim of the current study is to evaluate the efficacy of this new technique regarding increasing the anterior maxillary alveolar height with simultaneous implant placement. MATERIALS AND METHODS Nine patients suffering from multiple missing anterior maxillary teeth were selected with vertical dimension not less than 10 mm. anterior maxillary sandwich osteotomy technique was carried out for all patients using xenograft bone particulate with simultaneous implant placement at single stage surgery. RESULTS For two patients, four implants showed significant marginal bone loss with maximum marginal bone loss up to 2.8 mm. However, the immediate postoperative follow up went uneventful for all nine patients included in the present study. None of them showed any complication regarding postoperative wound dehiscence, infection, or segment mobility. Four months postoperative upon the prosthetic phase, all the 18 placed implant were clinically osseointegtated. CONCLUSION All 18 implants were successfully integrated in the present study. The prosthetic phase started after 4 months for all cases and there was no need for harvesting of autogenous bone from the patient. But further studies are required to evaluate the viability of such approach in single implant placement cases.
Collapse
Affiliation(s)
- Hesham Hussein Mansour
- Faculty of Oral and Dental Medicine, Department of Oral Implantology, Cairo University, Cairo, Egypt
| | - Ahmed Badr
- Faculty of Oral and Dental Medicine, Department of Oral Implantology, Cairo University, Cairo, Egypt
| | - Ahmed Hesham Osman
- Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, British University in Egypt, Cairo, Egypt
| | - Mohammed Atef
- Faculty of Oral and Dental Medicine, Department of Oral and Maxillofacial Surgery, Cairo University, Cairo, Egypt
| |
Collapse
|
38
|
Rider P, Kačarević ŽP, Alkildani S, Retnasingh S, Schnettler R, Barbeck M. Additive Manufacturing for Guided Bone Regeneration: A Perspective for Alveolar Ridge Augmentation. Int J Mol Sci 2018; 19:E3308. [PMID: 30355988 PMCID: PMC6274711 DOI: 10.3390/ijms19113308] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/18/2018] [Accepted: 10/21/2018] [Indexed: 12/14/2022] Open
Abstract
Three-dimensional (3D) printing has become an important tool in the field of tissue engineering and its further development will lead to completely new clinical possibilities. The ability to create tissue scaffolds with controllable characteristics, such as internal architecture, porosity, and interconnectivity make it highly desirable in comparison to conventional techniques, which lack a defined structure and repeatability between scaffolds. Furthermore, 3D printing allows for the production of scaffolds with patient-specific dimensions using computer-aided design. The availability of commercially available 3D printed permanent implants is on the rise; however, there are yet to be any commercially available biodegradable/bioresorbable devices. This review will compare the main 3D printing techniques of: stereolithography; selective laser sintering; powder bed inkjet printing and extrusion printing; for the fabrication of biodegradable/bioresorbable bone tissue scaffolds; and, discuss their potential for dental applications, specifically augmentation of the alveolar ridge.
Collapse
Affiliation(s)
- Patrick Rider
- Botiss Biomaterials GmbH, Hauptstr. 28, 15806 Zossen, Germany.
| | - Željka Perić Kačarević
- Department of Anatomy, Histology and Embryology, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek 31000, Croatia.
| | - Said Alkildani
- Department of Biomedical Engineering, Faculty of Applied Medical Sciences, German-Jordanian University, Amman 11180, Jordan.
| | - Sujith Retnasingh
- Institutes for Environmental Toxicology, Martin-Luther-Universität, Halle-Wittenberg and Faculty of Biomedical Engineering, Anhalt University of Applied Science, 06366 Köthen, Germany.
| | - Reinhard Schnettler
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Mike Barbeck
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
39
|
Ahangar P, Akoury E, Ramirez Garcia Luna AS, Nour A, Weber MH, Rosenzweig DH. Nanoporous 3D-Printed Scaffolds for Local Doxorubicin Delivery in Bone Metastases Secondary to Prostate Cancer. MATERIALS 2018; 11:ma11091485. [PMID: 30134523 PMCID: PMC6165313 DOI: 10.3390/ma11091485] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 12/28/2022]
Abstract
The spine is the most common site of bone metastasis, often originating from prostate, lung, and breast cancers. High systemic doses of chemotherapeutics such as doxorubicin (DOX), cisplatin, or paclitaxel often have severe side effects. Surgical removal of spine metastases also leaves large defects which cannot spontaneously heal and require bone grafting. To circumvent these issues, we designed an approach for local chemotherapeutic delivery within 3D-printed scaffolds which could also potentially serve as a bone substitute. Direct treatment of prostate cancer cell line LAPC4 and patient derived spine metastases cells with 0.01 µM DOX significantly reduced metabolic activity, proliferation, migration, and spheroid growth. We then assessed uptake and release of DOX in a series of porous 3D-printed scaffolds on LAPC4 cells as well as patient-derived spine metastases cells. Over seven days, 60–75% of DOX loaded onto scaffolds could be released, which significantly reduced metabolic activity and proliferation of both LAPC4 and patient derived cells, while unloaded scaffolds had no effect. Porous 3D-printed scaffolds may provide a novel and inexpensive approach to locally deliver chemotherapeutics in a patient-specific manner at tumor resection sites. With a composite design to enhance strength and promote sustained drug release, the scaffolds could reduce systemic negative effects, enhance bone repair, and improve patient outcomes.
Collapse
Affiliation(s)
- Pouyan Ahangar
- Division of Orthopedic Surgery, McGill University, Montreal, QC H3G 1A4, Canada.
| | - Elie Akoury
- Division of Orthopedic Surgery, McGill University, Montreal, QC H3G 1A4, Canada.
| | - Ana Sofia Ramirez Garcia Luna
- Division of Orthopedic Surgery, McGill University, Montreal, QC H3G 1A4, Canada.
- Medical Faculty Mannheim, Heidelberg University, D-68167 Heidelberg, Germany.
| | - Antone Nour
- Division of Orthopedic Surgery, McGill University, Montreal, QC H3G 1A4, Canada.
| | - Michael H Weber
- Division of Orthopedic Surgery, McGill University, Montreal, QC H3G 1A4, Canada.
- The Research Institute of the McGill University Health Centre, Montreal, QC H3H 2L9, Canada.
| | - Derek H Rosenzweig
- Division of Orthopedic Surgery, McGill University, Montreal, QC H3G 1A4, Canada.
- The Research Institute of the McGill University Health Centre, Montreal, QC H3H 2L9, Canada.
- Montreal General Hospital C10.148.6, 1650 Cedar Ave, Montreal, QC H3G 1A4, Canada.
| |
Collapse
|
40
|
Preethi Soundarya S, Haritha Menon A, Viji Chandran S, Selvamurugan N. Bone tissue engineering: Scaffold preparation using chitosan and other biomaterials with different design and fabrication techniques. Int J Biol Macromol 2018; 119:1228-1239. [PMID: 30107161 DOI: 10.1016/j.ijbiomac.2018.08.056] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 01/01/2023]
Abstract
In the recent years, a paradigm shift is taking place where metallic/synthetic implants and tissue grafts are being replaced by tissue engineering approach. A well designed three-dimensional scaffold is one of the fundamental tools to guide tissue formation in vitro and in vivo. Bone is a highly dynamic and an integrative tissue, and thus enormous efforts have been invested in bone tissue engineering to design a highly porous scaffold which plays a critical role in guiding bone growth and regeneration. Numerous techniques have been developed to fabricate highly interconnected, porous scaffold for bone tissue engineering applications with the help of biomolecules such as chitosan, collagen, gelatin, silk, etc. We aim, in this review, to provide an overview of different types of fabrication techniques for scaffold preparation in bone tissue engineering using biological macromolecules.
Collapse
Affiliation(s)
- S Preethi Soundarya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - A Haritha Menon
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - S Viji Chandran
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
41
|
Yen HH, Stathopoulou PG. CAD/CAM and 3D-Printing Applications for Alveolar Ridge Augmentation. ACTA ACUST UNITED AC 2018; 5:127-132. [PMID: 30505646 DOI: 10.1007/s40496-018-0180-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Purpose of review CAD/CAM and 3D-printing are emerging manufacturing technologies in dentistry. In the field of alveolar ridge augmentation, graft customization utilizing these technologies can result in significant reduction of surgical time. A review of the literature on materials, techniques and applications of CAD/CAM and 3D-printing available for alveolar ridge augmentation was performed. Recent findings CAD/CAM applications for milling of customized block grafts of allogeneic, xenogeneic, and alloplastic origins have been reported, and currently only limited products are commercially available. 3D-printing applications are limited to alloplastic graft materials and containment shells, and have been mostly used in animal studies for optimizing biomaterials' properties. Summary While current data support the potential use of CAD/CAM and 3D-printing for graft customization for alveolar ridge augmentation procedures, additional research is needed on predictability and long-term stability of the grafted sites.
Collapse
Affiliation(s)
- Howard H Yen
- Postdoctoral Periodontics Resident, Department of Periodontics, University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania, USA
| | - Panagiota G Stathopoulou
- Assistant Professor of Periodontics and Director of Postdoctoral Periodontics, Department of Periodontics, University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
42
|
Iwama R, Anada T, Shiwaku Y, Tsuchiya K, Takahashi T, Suzuki O. Osteogenic cellular activity around onlaid octacalcium phosphate-gelatin composite onto rat calvaria. J Biomed Mater Res A 2018; 106:1322-1333. [DOI: 10.1002/jbm.a.36335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/21/2017] [Accepted: 01/05/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Ryosuke Iwama
- Division of Oral and Maxillofacial Surgery; Tohoku University Graduate School of Dentistry; Sendai 980-8575 Japan
- Division of Craniofacial Function Engineering; Tohoku University Graduate School of Dentistry; Sendai 980-8575 Japan
| | - Takahisa Anada
- Division of Craniofacial Function Engineering; Tohoku University Graduate School of Dentistry; Sendai 980-8575 Japan
| | - Yukari Shiwaku
- Division of Craniofacial Function Engineering; Tohoku University Graduate School of Dentistry; Sendai 980-8575 Japan
- Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry; Sendai 980-8575 Japan
| | - Kaori Tsuchiya
- Division of Craniofacial Function Engineering; Tohoku University Graduate School of Dentistry; Sendai 980-8575 Japan
| | - Tetsu Takahashi
- Division of Oral and Maxillofacial Surgery; Tohoku University Graduate School of Dentistry; Sendai 980-8575 Japan
| | - Osamu Suzuki
- Division of Craniofacial Function Engineering; Tohoku University Graduate School of Dentistry; Sendai 980-8575 Japan
| |
Collapse
|
43
|
Drager J, Ramirez-GarciaLuna JL, Kumar A, Gbureck U, Harvey EJ, Barralet JE. Hypoxia Biomimicry to Enhance Monetite Bone Defect Repair. Tissue Eng Part A 2017; 23:1372-1381. [DOI: 10.1089/ten.tea.2016.0526] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Justin Drager
- Division of Orthopaedics, McGill University Health Center, Montreal, Canada
| | | | - Abhishek Kumar
- Division of Orthopaedics, McGill University Health Center, Montreal, Canada
| | - Uwe Gbureck
- Department for Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany
| | - Edward J. Harvey
- Division of Orthopaedics, McGill University Health Center, Montreal, Canada
- Bone Engineering Labs, Research Institute-McGill University Health Centre, Montreal, Canada
| | - Jake E. Barralet
- Division of Orthopaedics, McGill University Health Center, Montreal, Canada
| |
Collapse
|
44
|
Vella JB, Trombetta RP, Hoffman MD, Inzana J, Awad H, Benoit DSW. Three dimensional printed calcium phosphate and poly(caprolactone) composites with improved mechanical properties and preserved microstructure. J Biomed Mater Res A 2017; 106:663-672. [PMID: 29044984 DOI: 10.1002/jbm.a.36270] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/17/2017] [Accepted: 10/12/2017] [Indexed: 12/18/2022]
Abstract
Biphasic calcium phosphate scaffolds formed via three dimensional (3D) printing technology to exhibit porosity and chemical resorbability to promote osseointegration often lack the strength and toughness required to withstand loading in bone tissue engineering applications. Herein, sintering and CaP:poly(caprolactone) (PCL) composite formation were explored to improve 3D printed scaffold strength and toughness. Hydroxyapatite and α-tricalcium phosphate (α-TCP) biphasic calcium powders were printed using phosphoric acid binder, which generated monetite and hydroxyapatite scaffolds. Upon sintering, evolution of β-TCP was observed along with an increase in flexural strength and modulus but no effect on fracture toughness was observed. Furthermore, scaffold porosity increased with sintering. Additionally, two techniques of PCL composite formation were employed: postprint precipitation and 3D print codeposition to further augment scaffold mechanical properties. While both techniques significantly improved flexural strength, flexural modulus, and fracture toughness under most conditions explored, precipitation yielded more substantial increases in these properties, which is attributed to better continuity of the PCL phase. However, precipitation also compromised surface porosity due to PCL passivation of the calcium phosphate surface, which may subsequently hinder scaffold integration and bone regeneration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 663-672, 2018.
Collapse
Affiliation(s)
- Joseph B Vella
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627.,Center for Musculoskeletal Research, University of Rochester, Rochester, New York 14642.,Department of Otolaryngology, University of Rochester Medical Center, Rochester, New York 14642
| | - Ryan P Trombetta
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627.,Center for Musculoskeletal Research, University of Rochester, Rochester, New York 14642
| | - Michael D Hoffman
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627.,Center for Musculoskeletal Research, University of Rochester, Rochester, New York 14642
| | - Jason Inzana
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627.,Center for Musculoskeletal Research, University of Rochester, Rochester, New York 14642
| | - Hani Awad
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627.,Center for Musculoskeletal Research, University of Rochester, Rochester, New York 14642
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627.,Center for Musculoskeletal Research, University of Rochester, Rochester, New York 14642.,Department of Chemical Engineering, University of Rochester, Rochester, New York 14627
| |
Collapse
|
45
|
Assessment of vertical ridge augmentation in anterior aesthetic zone using onlay xenografts with titanium mesh versus the inlay bone grafting technique: A randomized clinical trial. Int J Oral Maxillofac Surg 2017; 46:1458-1465. [DOI: 10.1016/j.ijom.2017.04.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 01/04/2017] [Accepted: 04/23/2017] [Indexed: 11/18/2022]
|
46
|
Oryan A, Alidadi S, Bigham-Sadegh A. Dicalcium Phosphate Anhydrous: An Appropriate Bioceramic in Regeneration of Critical-Sized Radial Bone Defects in Rats. Calcif Tissue Int 2017; 101:530-544. [PMID: 28761974 DOI: 10.1007/s00223-017-0309-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/22/2017] [Indexed: 01/28/2023]
Abstract
The present study aimed to evaluate and compare the effectiveness of composites of calcium phosphates including β-tri calcium phosphate (β-TCP), dicalcium phosphate anhydrous (DCPA, monetite), mono-calcium phosphate monohydrate (MCPM), and hydroxyapatite (HA) with the chitosan-gelatin-platelet gel (CGP) on the healing of experimentally induced critical size radial bone defects in rats after 8 weeks of injury. Eighty bilateral bone defects were created in the radial bones of 40 adult male Sprague-Dawley rats. The defects were either left empty (untreated or defect group), or treated with autograft, CGP, CGP-DCP, CGP-TCP, CGP/β-TCP/DCPA (CGP-TD), CGP-TD/MCPM (CGP-TDM), and CGP-TDM/HA (CGP-TDMH) scaffolds. The injured forelimbs were evaluated by radiography, gross morphology, three-dimensional computed tomography scanning, histopathology, histomorphometry, scanning electron microscopy, and biomechanical testing. The materials were analyzed using X-ray diffraction to verify the crystalline nature of their structures, and their crystallinity was revealed based on the diffraction peaks achieved from the XRD analysis. The best results were achieved by the CGP-DCP scaffold and the autograft. The CGP-TCP and CGP-TDMH scaffolds were not degraded, while the CGP-DCP, CGP-TDM, CGP-TD, and CGP scaffolds were biodegraded and enhanced bone formation compared with the CGP-TCP and CGP-TDMH groups (P < 0.05). Overall, the CGP-DCP treated defects showed significant improvement in bone formation and union, bone volume, maximum load, and stiffness compared to the CGP group (P < 0.05). It could be concluded that the CGP-DCP scaffold can be considered as a suitable substitute to autograft. In fact, this study demonstrated that DCPA or monetite has high healing potential due to its biocompatibility, biodegradability and biomechanical, osteoconductive and osteoinductive properties of this bioceramic.
Collapse
Affiliation(s)
- Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Soodeh Alidadi
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Amin Bigham-Sadegh
- Department of Surgery and Radiology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
47
|
Bertol LS, Schabbach R, Loureiro Dos Santos LA. Different post-processing conditions for 3D bioprinted α-tricalcium phosphate scaffolds. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:168. [PMID: 28916883 DOI: 10.1007/s10856-017-5989-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
The development of 3D printing hardware, software and materials has enabled the production of bone substitute scaffolds for tissue engineering. Calcium phosphates cements, such as those based on α-tricalcium phosphate (α-TCP), have recognized properties of osteoinductivity, osteoconductivity and resorbability and can be used to 3D print scaffolds to support and induce tissue formation and be replaced by natural bone. At present, however, the mechanical properties found for 3D printed bone scaffolds are only satisfactory for non-load bearing applications. This study varied the post-processing conditions of the 3D powder printing process of α-TCP cement scaffolds by either immersing the parts into binder, Ringer's solution or phosphoric acid, or by sintering in temperatures ranging from 800 to 1500 °C. The porosity, composition (phase changes), morphology, shrinkage and compressive strength were evaluated. The mechanical strength of the post-processed 3D printed scaffolds increased compared to the green parts and was in the range of the trabecular bone. Although the mechanical properties achieved are still low, the high porosity presented by the scaffolds can potentially result in greater bone ingrowth. The phases present in the scaffolds after the post-processing treatments were calcium-deficient hydroxyapatite, brushite, monetite, and unreacted α-TCP. Due to their chemical composition, the 3D printed scaffolds are expected to be resorbable, osteoinductive, and osteoconductive.
Collapse
Affiliation(s)
- Liciane Sabadin Bertol
- Laboratory of Biomaterials (Labiomat), Materials Departament, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, 91501-970, Porto Alegre, RS, Brazil.
| | - Rodrigo Schabbach
- Laboratory of Biomaterials (Labiomat), Materials Departament, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, 91501-970, Porto Alegre, RS, Brazil
| | - Luis Alberto Loureiro Dos Santos
- Laboratory of Biomaterials (Labiomat), Materials Departament, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, 91501-970, Porto Alegre, RS, Brazil
| |
Collapse
|
48
|
Jessop ZM, Al-Sabah A, Gardiner MD, Combellack E, Hawkins K, Whitaker IS. 3D bioprinting for reconstructive surgery: Principles, applications and challenges. J Plast Reconstr Aesthet Surg 2017; 70:1155-1170. [PMID: 28734756 DOI: 10.1016/j.bjps.2017.06.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/26/2017] [Accepted: 06/01/2017] [Indexed: 12/25/2022]
Abstract
Despite the increasing laboratory research in the growing field of 3D bioprinting, there are few reports of successful translation into surgical practice. This review outlines the principles of 3D bioprinting including software and hardware processes, biocompatible technological platforms and suitable bioinks. The advantages of 3D bioprinting over traditional tissue engineering techniques in assembling cells, biomaterials and biomolecules in a spatially controlled manner to reproduce native tissue macro-, micro- and nanoarchitectures are discussed, together with an overview of current progress in bioprinting tissue types relevant for plastic and reconstructive surgery. If successful, this platform technology has the potential to biomanufacture autologous tissue for reconstruction, obviating the need for donor sites or immunosuppression. The biological, technological and regulatory challenges are highlighted, with strategies to overcome these challenges by using an integrated approach from the fields of engineering, biomaterial science, cell biology and reconstructive microsurgery.
Collapse
Affiliation(s)
- Zita M Jessop
- Reconstructive Surgery & Regenerative Medicine Group, Institute of Life Science, Swansea University Medical School, Swansea, UK; The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, UK
| | - Ayesha Al-Sabah
- Reconstructive Surgery & Regenerative Medicine Group, Institute of Life Science, Swansea University Medical School, Swansea, UK
| | | | - Emman Combellack
- Reconstructive Surgery & Regenerative Medicine Group, Institute of Life Science, Swansea University Medical School, Swansea, UK; The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, UK
| | - Karl Hawkins
- Rheology Research Group, Swansea University Medical School, Swansea, UK
| | - Iain S Whitaker
- Reconstructive Surgery & Regenerative Medicine Group, Institute of Life Science, Swansea University Medical School, Swansea, UK; The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, UK.
| |
Collapse
|
49
|
Sheikh Z, Zhang YL, Tamimi F, Barralet J. Effect of processing conditions of dicalcium phosphate cements on graft resorption and bone formation. Acta Biomater 2017; 53:526-535. [PMID: 28213100 DOI: 10.1016/j.actbio.2017.02.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/21/2017] [Accepted: 02/13/2017] [Indexed: 11/18/2022]
Abstract
Dicalcium phosphate cements (brushite and monetite) are resorbable biomaterials with osteoconductive potential for bone repair and regeneration that have yet to gain widespread commercial use. Brushite can be converted to monetite by heat treatments additionally resulting in various changes in the physico-chemical properties. However, since conversion is most commonly performed using autoclave sterilisation (wet heating), it is uncertain whether the properties observed for monetite as a result of heating brushite under dry conditions affect resorption and bone formation favourably. This study was designed to produce monetite grafts of differing physical form by autoclaving and dry heating (under vacuum) to be compared with brushite biomaterials in an orthotopic pre-clinical implantation model in rabbit for 12weeks. It was observed that monetite grafts had higher porosity and specific surface area than their brushite precursors. The autoclaved monetite grafts had compressive strength reduced by 50% when compared with their brushite precursors. However, the dry heat converted monetite grafts had compressive strength comparable with brushite. Results from in vivo experiments revealed that both types of monetite graft materials resorbed faster than brushite and more bone formation was achieved. There was no significant difference in the amount of bone formed between the two types of monetite grafts. The implanted brushite grafts underwent phase transformation to form hydroxyapatite, which ultimately limited bioresorption. However, this was not observed in both types of monetite grafts. In summary, both autoclaving and dry heating the preset brushite cement grafts resulted in monetite biomaterials which were more resorbable with potential to be investigated and optimized for orthopaedic and maxillofacial bone repair and regeneration applications. STATEMENT OF SIGNIFICANCE We present in this original research article a comparison between dicalcium phosphate cement based grafts (brushite and 2 types of monetite grafts prepared by wet and dry thermal processing) with regards to resorption and bone formation in vivo after orthotopic implantation in rabbit condylar femural region. To the best of our knowledge this is the first in vivo study that reports a comparison resorption and bone formation using brushite and two types of monetite biomaterials. Also, we have included in the manuscript a summary of all the in vivo studies performed on brushite and monetite biomaterials to date. This includes cement composition, physical properties (porosity and surface area), implantation and histomorphometrical details such as animal species, site of implantation, observation period, percentage bone tissue formation and residual graft material. In addition, we calculated the percentage resorption of graft materials based upon various implantation sites and included that into the discussion section. The results of this original research provides greater understanding of the resorption processes of dicalcium phosphate based grafts, allowing preparation of bone substitute materials with more predictable resorption profiles in future.
Collapse
Affiliation(s)
- Zeeshan Sheikh
- Faculty of Dentistry, McGill University, 3640, Strathcona Anatomy and Dentistry Building, Rue University, Montreal, Quebec H3A 0C7, Canada.
| | - Yu Ling Zhang
- Faculty of Dentistry, McGill University, 3640, Strathcona Anatomy and Dentistry Building, Rue University, Montreal, Quebec H3A 0C7, Canada.
| | - Faleh Tamimi
- Faculty of Dentistry, McGill University, 3640, Strathcona Anatomy and Dentistry Building, Rue University, Montreal, Quebec H3A 0C7, Canada.
| | - Jake Barralet
- Faculty of Dentistry, McGill University, 3640, Strathcona Anatomy and Dentistry Building, Rue University, Montreal, Quebec H3A 0C7, Canada; Division of Orthopaedics, Department of Surgery, Faculty of Medicine, McGill University, 1650 Cedar Ave, Montreal General Hospital, Montreal, Quebec H3G 1A4, Canada.
| |
Collapse
|
50
|
Kantarci A, Hasturk H, Van Dyke TE. Animal models for periodontal regeneration and peri-implant responses. Periodontol 2000 2017; 68:66-82. [PMID: 25867980 DOI: 10.1111/prd.12052] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2013] [Indexed: 11/28/2022]
Abstract
Translation of experimental data to the clinical setting requires the safety and efficacy of such data to be confirmed in animal systems before application in humans. In dental research, the animal species used is dependent largely on the research question or on the disease model. Periodontal disease and, by analogy, peri-implant disease, are complex infections that result in a tissue-degrading inflammatory response. It is impossible to explore the complex pathogenesis of periodontitis or peri-implantitis using only reductionist in-vitro methods. Both the disease process and healing of the periodontal and peri-implant tissues can be studied in animals. Regeneration (after periodontal surgery), in response to various biologic materials with potential for tissue engineering, is a continuous process involving various types of tissue, including epithelia, connective tissues and alveolar bone. The same principles apply to peri-implant healing. Given the complexity of the biology, animal models are necessary and serve as the standard for successful translation of regenerative materials and dental implants to the clinical setting. Smaller species of animal are more convenient for disease-associated research, whereas larger animals are more appropriate for studies that target tissue healing as the anatomy of larger animals more closely resembles human dento-alveolar architecture. This review focuses on the animal models available for the study of regeneration in periodontal research and implantology; the advantages and disadvantages of each animal model; the interpretation of data acquired; and future perspectives of animal research, with a discussion of possible nonanimal alternatives. Power calculations in such studies are crucial in order to use a sample size that is large enough to generate statistically useful data, whilst, at the same time, small enough to prevent the unnecessary use of animals.
Collapse
|