1
|
Li Z, Han S, Cui G, Xue B, Li J, Man Y, Zhang H, Teng L. Oral liposomes encapsulating ginsenoside compound K for rheumatoid arthritis therapy. Int J Pharm 2023; 643:123247. [PMID: 37467813 DOI: 10.1016/j.ijpharm.2023.123247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/26/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
Ginsenoside compound K (GCK) can efficiently treat rheumatoid arthritis (RA) due to its immune and anti-inflammatory functions. However, GCK exists some shortcomings such as poor aqueous solubility, low permeability to the intestinal cell membrane, and serious P-gp efflux, thus limiting its application. In order to solve these problems, a folic acid-targeted drug delivery system based on liposomes (FA-LP-GCK) was developed. The prepared FA-LP-GCK had a uniform size distribution and spherical structure, the particle size was 249.13 ± 1.40 nm. Meanwhile, they had high encapsulation efficiency (93.33 ± 0.05 %). FA-LP-GCK also presented good stability in artificial gastric juice, so they can be absorbed into the intestine and enter the blood circulation. The activated RAW 264.7 cells were chosen to evaluate the cytotoxicity and cellular uptake capacity of FA-LP-GCK. FA-LP-GCK showed stronger growth inhibition and cellular uptake ability against activated macrophages. Finally, the efficacy of FA-LP-GCK in vivo was evaluated in the adjuvant arthritis rat model. The results showed that FA-LP-GCK can significantly reduce joint swelling. Furthermore, it can significantly inhibit the expression of pro-inflammatory cytokines and improve synovial hyperplasia of joints and pathological changes in the spleen. Therefore, FA-LP-GCK may be a potential therapeutic approach for RA.
Collapse
Affiliation(s)
- Ziwei Li
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Songren Han
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Guilin Cui
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Beilin Xue
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jiaxin Li
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yuhong Man
- Department of Neurology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Huan Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
2
|
Thong PQ, Thu Huong LT, Tu ND, My Nhung HT, Khanh L, Manh DH, Nam PH, Phuc NX, Alonso J, Qiao J, Sridhar S, Thu HP, Phan MH, Kim Thanh NT. Multifunctional nanocarriers of Fe 3O 4@PLA-PEG/curcumin for MRI, magnetic hyperthermia and drug delivery. Nanomedicine (Lond) 2022; 17:1677-1693. [PMID: 36621896 DOI: 10.2217/nnm-2022-0070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background: Despite medicinal advances, cancer is still a big problem requiring better diagnostic and treatment tools. Magnetic nanoparticle (MNP)-based nanosystems for multiple-purpose applications were developed for these unmet needs. Methods: This study fabricated novel trifunctional MNPs of Fe3O4@PLA-PEG for drug release, MRI and magnetic fluid hyperthermia. Result: The MNPs provided a significant loading of curcumin (∼11%) with controllable release ability, a high specific absorption rate of 82.2 W/g and significantly increased transverse relaxivity (r2 = 364.75 mM-1 s-1). The in vivo study confirmed that the MNPs enhanced MRI contrast in tumor observation and low-field magnetic fluid hyperthermia could effectively reduce the tumor size in mice bearing sarcoma 180. Conclusion: The nanocarrier has potential for drug release, cancer treatment monitoring and therapy.
Collapse
Affiliation(s)
- Phan Quoc Thong
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 11355, Vietnam.,University of Khanh Hoa, 1 Nguyen Chanh, Nha Trang, 57100, Vietnam
| | - Le Thi Thu Huong
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 11355, Vietnam.,Faculty of Natural Resources and Environment, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi, 12400, Vietnam
| | - Nguyen Dac Tu
- Hanoi University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi, 11400, Vietnam
| | - Hoang Thi My Nhung
- Hanoi University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi, 11400, Vietnam
| | - Lam Khanh
- 108 Military Central Hospital, 1 Tran Hung Dao, Hanoi, 11000, Vietnam
| | - Do Hung Manh
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 11355, Vietnam
| | - Pham Hong Nam
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 11355, Vietnam.,Graduate University of Science & Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 12400, Vietnam
| | - Nguyen Xuan Phuc
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 11355, Vietnam.,Duy Tan University, 3 Quang Trung, Danang, 50300, Vietnam
| | - Javier Alonso
- Department of CITIMAC, Universidad de Cantabria, Santander, 39005, Spain.,Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Ju Qiao
- Department of Physics, Bioengineering & Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Srinivas Sridhar
- Department of Physics, Bioengineering & Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Ha Phuong Thu
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 11355, Vietnam
| | - Manh Huong Phan
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Nguyen Thi Kim Thanh
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT, London.,UCL Healthcare Biomagnetics & Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK
| |
Collapse
|
3
|
Phua VJX, Yang CT, Xia B, Yan SX, Liu J, Aw SE, He T, Ng DCE. Nanomaterial Probes for Nuclear Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:582. [PMID: 35214911 PMCID: PMC8875160 DOI: 10.3390/nano12040582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023]
Abstract
Nuclear imaging is a powerful non-invasive imaging technique that is rapidly developing in medical theranostics. Nuclear imaging requires radiolabeling isotopes for non-invasive imaging through the radioactive decay emission of the radionuclide. Nuclear imaging probes, commonly known as radiotracers, are radioisotope-labeled small molecules. Nanomaterials have shown potential as nuclear imaging probes for theranostic applications. By modifying the surface of nanomaterials, multifunctional radio-labeled nanomaterials can be obtained for in vivo biodistribution and targeting in initial animal imaging studies. Various surface modification strategies have been developed, and targeting moieties have been attached to the nanomaterials to render biocompatibility and enable specific targeting. Through integration of complementary imaging probes to a single nanoparticulate, multimodal molecular imaging can be performed as images with high sensitivity, resolution, and specificity. In this review, nanomaterial nuclear imaging probes including inorganic nanomaterials such as quantum dots (QDs), organic nanomaterials such as liposomes, and exosomes are summarized. These new developments in nanomaterials are expected to introduce a paradigm shift in nuclear imaging, thereby creating new opportunities for theranostic medical imaging tools.
Collapse
Affiliation(s)
- Vanessa Jing Xin Phua
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (V.J.X.P.); (S.X.Y.); (S.E.A.); (D.C.E.N.)
| | - Chang-Tong Yang
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (V.J.X.P.); (S.X.Y.); (S.E.A.); (D.C.E.N.)
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Bin Xia
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China; (B.X.); (T.H.)
| | - Sean Xuexian Yan
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (V.J.X.P.); (S.X.Y.); (S.E.A.); (D.C.E.N.)
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jiang Liu
- Department of Computer Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, China;
| | - Swee Eng Aw
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (V.J.X.P.); (S.X.Y.); (S.E.A.); (D.C.E.N.)
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Tao He
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China; (B.X.); (T.H.)
| | - David Chee Eng Ng
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (V.J.X.P.); (S.X.Y.); (S.E.A.); (D.C.E.N.)
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
4
|
Ryu C, Lee H, Kim H, Hwang S, Hadadian Y, Mohanty A, Park IK, Cho B, Yoon J, Lee JY. Highly Optimized Iron Oxide Embedded Poly(Lactic Acid) Nanocomposites for Effective Magnetic Hyperthermia and Biosecurity. Int J Nanomedicine 2022; 17:31-44. [PMID: 35023918 PMCID: PMC8743620 DOI: 10.2147/ijn.s344257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/21/2021] [Indexed: 12/29/2022] Open
Abstract
Introduction Iron oxide magnetic nanoparticles (IONPs) have attracted considerable attention for various biomedical applications owing to their ease of synthesis, strong magnetic properties, and biocompatibility. In particular, IONPs can generate heat under an alternating magnetic field, the effects of which have been extensively studied for magnetic hyperthermia therapy. However, the development of IONPs with high heating efficiency, biocompatibility, and colloidal stability in physiological environments is still required for their safe and effective application in biomedical fields. Methods We synthesized magnetic IONP/polymer nanocomposites (MNCs) by embedding IONPs in a poly(L-lactic acid) (PLA) matrix via nanoemulsion. The IONP contents (Fe: 9–22 [w/w]%) in MNCs were varied to investigate their effects on the magnetic and hyperthermia performances based on their optimal interparticle interactions. Further, we explored the stability, cytocompatibility, biodistribution, and in vivo tissue compatibility of the MNCs. Results The MNCs showed enhanced heating efficiency with over two-fold increase compared to nonembedded bare IONPs. The relationship between the IONP content and heating performance in MNCs was nonmonotonous. The highest heating performance was obtained from MNC2, which contain 13% Fe (w/w), implying that interparticle interactions in MNCs can be optimized to achieve high heating performance. In addition, the MNCs exhibited good colloidal stability under physiological conditions and maintained their heating efficiency during 48 h of incubation in cell culture medium. Both in vitro and in vivo studies revealed excellent biocompatibility of the MNC. Conclusion Our nanocomposites, comprising biocompatible IONPs and PLA, display improved heating efficiency, good colloidal stability, and cytocompatibility, and thus will be beneficial for diverse biomedical applications, including magnetic hyperthermia for cancer treatment.
Collapse
Affiliation(s)
- Chiseon Ryu
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Hwangjae Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Hohyeon Kim
- School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Seong Hwang
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Yaser Hadadian
- School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.,Research Center for Nanorobotics in Brain, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Ayeskanta Mohanty
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun-gun, Jeollanam-do, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun-gun, Jeollanam-do, Republic of Korea
| | - Beongki Cho
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jungwon Yoon
- School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.,Research Center for Nanorobotics in Brain, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| |
Collapse
|
5
|
Jani P, Suman S, Subramanian S, Korde A, Gohel D, Singh R, Sawant K. Development of mitochondrial targeted theranostic nanocarriers for treatment of gliomas. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Costa A, Vale N. Strategies for the treatment of breast cancer: from classical drugs to mathematical models. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:6328-6385. [PMID: 34517536 DOI: 10.3934/mbe.2021316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Breast cancer is one of the most common cancers and generally affects women. It is a heterogeneous disease that presents different entities, different biological characteristics, and differentiated clinical behaviors. With this in mind, this literature review had as its main objective to analyze the path taken from the simple use of classical drugs to the application of mathematical models, which through the many ongoing studies, have been considered as one of the reliable strategies, explaining the reasons why chemotherapy is not always successful. Besides, the most commonly mentioned strategies are immunotherapy, which includes techniques and therapies such as the use of antibodies, cytokines, antitumor vaccines, oncolytic and genomic viruses, among others, and nanoparticles, including metallic, magnetic, polymeric, liposome, dendrimer, micelle, and others, as well as drug reuse, which is a process by which new therapeutic indications are found for existing and approved drugs. The most commonly used pharmacological categories are cardiac, antiparasitic, anthelmintic, antiviral, antibiotic, and others. For the efficient development of reused drugs, there must be a process of exchange of purposes, methods, and information already available, and for their better understanding, computational mathematical models are then used, of which the methods of blind search or screening, based on the target, knowledge, signature, pathway or network and the mechanism to which it is directed, stand out. To conclude it should be noted that these different strategies can be applied alone or in combination with each other always to improve breast cancer treatment.
Collapse
Affiliation(s)
- Ana Costa
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
7
|
Kandasamy G, Maity D. Multifunctional theranostic nanoparticles for biomedical cancer treatments - A comprehensive review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112199. [PMID: 34225852 DOI: 10.1016/j.msec.2021.112199] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 12/16/2022]
Abstract
Modern-day search for the novel agents (their preparation and consequent implementation) to effectively treat the cancer is mainly fuelled by the historical failure of the conventional treatment modalities. Apart from that, the complexities such as higher rate of cell mutations, variable tumor microenvironment, patient-specific disparities, and the evolving nature of cancers have made this search much stronger in the latest times. As a result of this, in about two decades, the theranostic nanoparticles (TNPs) - i.e., nanoparticles that integrate therapeutic and diagnostic characteristics - have been developed. The examples for TNPs include mesoporous silica nanoparticles, luminescence nanoparticles, carbon-based nanomaterials, metal nanoparticles, and magnetic nanoparticles. These TNPs have emerged as single and powerful cancer-treating multifunctional nanoplatforms, as they widely provide the necessary functionalities to overcome the previous/conventional limitations including lack of the site-specific delivery of anti-cancer drugs, and real-time continuous monitoring of the target cancer sites while performing therapeutic actions. This has been mainly possible due to the association of the as-developed TNPs with the already-available unique diagnostic (e.g., luminescence, photoacoustic, and magnetic resonance imaging) and therapeutic (e.g., photothermal, photodynamic, hyperthermia therapy) modalities in the biomedical field. In this review, we have discussed in detail about the recent developments on the aforementioned important TNPs without/with targeting ability (i.e., attaching them with ligands or tumor-specific antibodies) and also the strategies that are implemented to increase their tumor accumulation and to enhance their theranostic efficacies for effective biomedical cancer treatments.
Collapse
Affiliation(s)
- Ganeshlenin Kandasamy
- Department of Biomedical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, India
| | - Dipak Maity
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, India.
| |
Collapse
|
8
|
Chen Y, Mo L, Wang X, Chen B, Hua Y, Gong L, Yang F, Li Y, Chen F, Zhu G, Ni W, Zhang C, Cheng Y, Luo Y, Shi J, Qiu M, Wu S, Tan Z, Wang K. TPGS-1000 exhibits potent anticancer activity for hepatocellular carcinoma in vitro and in vivo. Aging (Albany NY) 2020; 12:1624-1642. [PMID: 31986488 PMCID: PMC7053644 DOI: 10.18632/aging.102704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 01/02/2020] [Indexed: 12/15/2022]
Abstract
D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS1000) is the most active water-soluble derivative of vitamin E and has been widely used as a carrier of solvents, plasticizers, emulsifiers, absorbent agents and refractory drug delivery systems. However, its anti-hepatocellular carcinoma (HCC) properties have not been explored. HCC cells were treated with different concentrations of TPGS1000. Cell survival was tested by CCK8 assay, and cell migration was tested by wound healing and Transwell assay. EdU staining verified cell proliferation, and signalling pathway was assayed by Western blot analysis. The BALB/c-nu mouse xenograft model was established to test HCC cell growth in vivo. In vitro TPGS1000 significantly inhibited the viability and mobility of HCC cells (HepG2, Hep3B and Huh7) in a dose-dependent manner. Cell cycle analysis indicated that TPGS1000 treatment arrested the HCC cell cycle in the G0/G1 phase, and induction of cell apoptosis was confirmed by TUNEL and Annexin V-7-AAD staining. Further pharmacological analysis indicated that collapse of the transmembrane potential of mitochondria, increased ROS generation, PARP-induced cell apoptosis and FoxM1-p21-mediated cell cycle arresting, were involved in the anti-HCC activity of TPGS1000. Moreover, treatment in vivo with TPGS1000 effectively impaired the growth of HCC xenografts in nude mice.
Collapse
Affiliation(s)
- Yidan Chen
- Cancer Research Institute, Hangzhou Cancer Hospital, Zhejiang, China
| | - Liqin Mo
- Cancer Research Institute, Hangzhou Cancer Hospital, Zhejiang, China
| | - Xuan Wang
- Life Sciences Research Institute, College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, China
| | - Bi Chen
- Oncology Department, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, China
| | - Yunfen Hua
- College of Pharmaceutical Science, Zhejiang University of Technology, Zhejiang, China
| | - Linyan Gong
- Oncology Department, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, China
| | - Fei Yang
- Oncology Department, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, China
| | - Yongqiang Li
- Oncology Department, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, China
| | - Fangfang Chen
- Oncology Department, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, China
| | - Guiting Zhu
- Oncology Department, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, China
| | - Wei Ni
- Oncology Department, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, China
| | - Cheng Zhang
- Oncology Department, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, China
| | - Yuming Cheng
- Oncology Department, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, China
| | - Yan Luo
- Oncology Department, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, China
| | - Junping Shi
- Oncology Department, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, China
| | - Mengsheng Qiu
- Life Sciences Research Institute, College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, China
| | - Shixiu Wu
- Cancer Research Institute, Hangzhou Cancer Hospital, Zhejiang, China
| | - Zhou Tan
- Life Sciences Research Institute, College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, China
| | - Kaifeng Wang
- Cancer Research Institute, Hangzhou Cancer Hospital, Zhejiang, China.,State Key Laboratory for Oncogenes and Related Genes, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai Cancer Institute, Shanghai, China
| |
Collapse
|
9
|
Lartigue L, Coupeau M, Lesault M. Luminophore and Magnetic Multicore Nanoassemblies for Dual-Mode MRI and Fluorescence Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 10:E28. [PMID: 31861876 PMCID: PMC7023187 DOI: 10.3390/nano10010028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023]
Abstract
Nanoassemblies encompass a large variety of systems (organic, crystalline, amorphous and porous). The nanometric size enables these systems to interact with biological entities and cellular organelles of similar dimensions (proteins, cells, …). Over the past 20 years, the exploitation of their singular properties as contrast agents has led to the improvement of medical imaging. The use of nanoprobes also allows the combination of several active units within the same nanostructure, paving the way to multi-imaging. Thus, the nano-object provides various additional information which helps simplify the number of clinical procedures required. In this review, we are interested in the combination between fluorescent units and magnetic nanoparticles to perform dual-mode magnetic resonance imaging (MRI) and fluorescent imaging. The effect of magnetic interaction in multicore iron oxide nanoparticles on the MRI contrast agent properties is highlighted.
Collapse
Affiliation(s)
- Lénaïc Lartigue
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France; (M.C.); (M.L.)
| | | | | |
Collapse
|
10
|
Palanisamy S, Wang YM. Superparamagnetic iron oxide nanoparticulate system: synthesis, targeting, drug delivery and therapy in cancer. Dalton Trans 2019; 48:9490-9515. [PMID: 31211303 DOI: 10.1039/c9dt00459a] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer is a global epidemic and is considered a leading cause of death. Various cancer treatments such as chemotherapy, surgery, and radiotherapy are available for the cure but those are generally associated with poor long-term survival rates. Consequently, more advanced and selective methods that have better outcomes, fewer side effects, and high efficacies are highly in demand. Among these is the use of superparamagnetic iron oxide nanoparticles (SPIONs) which act as an innovative kit for battling cancer. Low cost, magnetic properties and toxicity properties enable SPIONs to be widely utilized in biomedical applications. For example, magnetite and maghemite (Fe3O4 and γ-Fe2O3) exhibit superparamagnetic properties and are widely used in drug delivery, diagnosis, and therapy. These materials are termed SPIONs when their size is smaller than 20 nm. This review article aims to provide a brief introduction on SPIONs, focusing on their fundamental magnetism and biological applications. The quality and surface chemistry of SPIONs are crucial in biomedical applications; therefore an in-depth survey of synthetic approaches and surface modifications of SPIONs is provided along with their biological applications such as targeting, site-specific drug delivery and therapy.
Collapse
Affiliation(s)
- Sathyadevi Palanisamy
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, 75 Bo-Ai Street, Hsinchu 300, Taiwan.
| | | |
Collapse
|
11
|
Liu H, Di Valentin C. Shaping Magnetite Nanoparticles from First Principles. PHYSICAL REVIEW LETTERS 2019; 123:186101. [PMID: 31763909 DOI: 10.1103/physrevlett.123.186101] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/12/2019] [Indexed: 06/10/2023]
Abstract
Iron oxide magnetic nanoparticles (NPs) are stimuli-responsive materials at the forefront of nanomedicine. Their realistic finite temperature simulations are a formidable challenge for first-principles methods. Here, we use density functional tight binding to open up the required time and length scales and obtain global minimum structures of Fe_{3}O_{4} NPs of realistic size (1400 atoms, 2.5 nm) and of different shapes, which we then refine with hybrid density functional theory methods to accomplish proper electronic and magnetic properties, which have never been accurately described in simulations. On this basis, we develop a general empirical formula and prove its predictive power for the evaluation of the total magnetic moment of Fe_{3}O_{4} NPs. By converting the total magnetic moment into the macroscopic saturation magnetization, we rationalize the experimentally observed dependence with shape. We also reveal interesting reconstruction mechanisms and unexpected patterns of charge ordering.
Collapse
Affiliation(s)
- Hongsheng Liu
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via Roberto Cozzi 55, I-20125 Milano, Italy
| | - Cristiana Di Valentin
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via Roberto Cozzi 55, I-20125 Milano, Italy
| |
Collapse
|
12
|
Llenas M, Sandoval S, Costa PM, Oró-Solé J, Lope-Piedrafita S, Ballesteros B, Al-Jamal KT, Tobias G. Microwave-Assisted Synthesis of SPION-Reduced Graphene Oxide Hybrids for Magnetic Resonance Imaging (MRI). NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1364. [PMID: 31554159 PMCID: PMC6835838 DOI: 10.3390/nano9101364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/11/2022]
Abstract
Magnetic resonance imaging (MRI) is a useful tool for disease diagnosis and treatment monitoring. Superparamagnetic iron oxide nanoparticles (SPION) show good performance as transverse relaxation (T2) contrast agents, thus facilitating the interpretation of the acquired images. Attachment of SPION onto nanocarriers prevents their agglomeration, improving the circulation time and efficiency. Graphene derivatives, such as graphene oxide (GO) and reduced graphene oxide (RGO), are appealing nanocarriers since they have both high surface area and functional moieties that make them ideal substrates for the attachment of nanoparticles. We have employed a fast, simple and environmentally friendly microwave-assisted approach for the synthesis of SPION-RGO hybrids. Different iron precursor/GO ratios were used leading to SPION, with a median diameter of 7.1 nm, homogeneously distributed along the RGO surface. Good relaxivity (r2*) values were obtained in MRI studies and no significant toxicity was detected within in vitro tests following GL261 glioma and J774 macrophage-like cells for 24 h with SPION-RGO, demonstrating the applicability of the hybrids as T2-weighted MRI contrast agents.
Collapse
Affiliation(s)
- Marina Llenas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra (Barcelona), Spain.
| | - Stefania Sandoval
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra (Barcelona), Spain.
| | - Pedro M Costa
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, UK.
| | - Judith Oró-Solé
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra (Barcelona), Spain.
| | - Silvia Lope-Piedrafita
- Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, Campus UAB, 08193 Bellaterra (Barcelona), Spain.
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Universitat Autònoma de Barcelona, Campus UAB, 08193 Bellaterra (Barcelona), Spain.
| | - Belén Ballesteros
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra (Barcelona), Spain.
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, UK.
| | - Gerard Tobias
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra (Barcelona), Spain.
| |
Collapse
|
13
|
Awada H, Al Samad A, Laurencin D, Gilbert R, Dumail X, El Jundi A, Bethry A, Pomrenke R, Johnson C, Lemaire L, Franconi F, Félix G, Larionova J, Guari Y, Nottelet B. Controlled Anchoring of Iron Oxide Nanoparticles on Polymeric Nanofibers: Easy Access to Core@Shell Organic-Inorganic Nanocomposites for Magneto-Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9519-9529. [PMID: 30729776 DOI: 10.1021/acsami.8b19099] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Composites combining superparamagnetic iron oxide nanoparticles (SPIONs) and polymers are largely present in modern (bio)materials. However, although SPIONs embedded in polymer matrices are classically reported, the mechanical and degradation properties of the polymer scaffold are impacted by the SPIONs. Therefore, the controlled anchoring of SPIONs onto polymer surfaces is still a major challenge. Herein, we propose an efficient strategy for the direct and uniform anchoring of SPIONs on the surface of functionalized-polylactide (PLA) nanofibers via a simple free ligand exchange procedure to design PLA@SPIONs core@shell nanocomposites. The resulting PLA@SPIONs hybrid biomaterials are characterized by electron microscopy (scanning electron microscopy and transmission electron microscopy) and energy-dispersive X-ray spectroscopy analysis to probe the morphology and detect elements present at the organic-inorganic interface, respectively. A monolayer of SPIONs with a complete and homogeneous coverage is observed on the surface of PLA nanofibers. Magnetization experiments show that magnetic properties of the nanoparticles are well preserved after their grafting on the PLA fibers and that the size of the nanoparticles does not change. The absence of cytotoxicity, combined with a high sensitivity of detection in magnetic resonance imaging both in vitro and in vivo, makes these hybrid nanocomposites attractive for the development of magnetic biomaterials for biomedical applications.
Collapse
Affiliation(s)
- Hussein Awada
- IBMM, Université de Montpellier, CNRS, ENSCM , Montpellier , France
- ICGM, Université de Montpellier, CNRS, ENSCM , Montpellier , France
| | - Assala Al Samad
- IBMM, Université de Montpellier, CNRS, ENSCM , Montpellier , France
| | | | - Ryan Gilbert
- Department of Biomedical Engineering, Center for Biotechnology & Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Xavier Dumail
- ICGM, Université de Montpellier, CNRS, ENSCM , Montpellier , France
| | - Ayman El Jundi
- IBMM, Université de Montpellier, CNRS, ENSCM , Montpellier , France
| | - Audrey Bethry
- IBMM, Université de Montpellier, CNRS, ENSCM , Montpellier , France
| | - Rebecca Pomrenke
- Department of Biomedical Engineering, Center for Biotechnology & Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Christopher Johnson
- Department of Biomedical Engineering, Center for Biotechnology & Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Laurent Lemaire
- Micro & Nanomédecines Translationnelles-MINT, UNIV Angers, INSERM U1066, CNRS UMR 6021 , Angers , France
- PRISM Plate-Forme de Recherche en Imagerie et Spectroscopie Multi-Modales, PRISM-Icat , Angers , France
| | - Florence Franconi
- Micro & Nanomédecines Translationnelles-MINT, UNIV Angers, INSERM U1066, CNRS UMR 6021 , Angers , France
- PRISM Plate-Forme de Recherche en Imagerie et Spectroscopie Multi-Modales, PRISM-Icat , Angers , France
| | - Gautier Félix
- ICGM, Université de Montpellier, CNRS, ENSCM , Montpellier , France
| | - Joulia Larionova
- ICGM, Université de Montpellier, CNRS, ENSCM , Montpellier , France
| | - Yannick Guari
- ICGM, Université de Montpellier, CNRS, ENSCM , Montpellier , France
| | | |
Collapse
|
14
|
Maity D, Kandasamy G, Sudame A. Superparamagnetic Iron Oxide Nanoparticles for Cancer Theranostic Applications. Nanotheranostics 2019. [DOI: 10.1007/978-3-030-29768-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
15
|
Avitabile E, Bedognetti D, Ciofani G, Bianco A, Delogu LG. How can nanotechnology help the fight against breast cancer? NANOSCALE 2018; 10:11719-11731. [PMID: 29917035 DOI: 10.1039/c8nr02796j] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this review we provide a broad overview on the use of nanotechnology for the fight against breast cancer (BC). Nowadays, detection, diagnosis, treatment, and prevention may be possible thanks to the application of nanotechnology to clinical practice. Taking into consideration the different forms of BC and the disease status, nanomaterials can be designed to meet the most forefront objectives of modern therapy and diagnosis. We have analyzed in detail three main groups of nanomaterial applications for BC treatment and diagnosis. We have identified several types of drugs successfully conjugated with nanomaterials. We have analyzed the main important imaging techniques and all nanomaterials used to help the non-invasive, early detection of the lesions. Moreover, we have examined theranostic nanomaterials as unique tools, combining imaging, detection, and therapy for BC. This state of the art review provides a useful guide depicting how nanotechnology can be used to overcome the current barriers in BC clinical practice, and how it will shape the future scenario of treatments, prevention, and diagnosis, revolutionizing the current approaches, e.g., reducing the suffering related to chemotherapy.
Collapse
Affiliation(s)
- Elisabetta Avitabile
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy.
| | | | | | | | | |
Collapse
|
16
|
Han SM, Baek JS, Kim MS, Hwang SJ, Cho CW. Surface modification of paclitaxel-loaded liposomes using d-α-tocopheryl polyethylene glycol 1000 succinate: Enhanced cellular uptake and cytotoxicity in multidrug resistant breast cancer cells. Chem Phys Lipids 2018; 213:39-47. [DOI: 10.1016/j.chemphyslip.2018.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/20/2018] [Accepted: 03/13/2018] [Indexed: 11/28/2022]
|
17
|
Kim EH, Kim W. An Insight into Ginsenoside Metabolite Compound K as a Potential Tool for Skin Disorder. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:8075870. [PMID: 30046346 PMCID: PMC6036801 DOI: 10.1155/2018/8075870] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/02/2018] [Indexed: 02/06/2023]
Abstract
Ginsenosides are the major bioactive natural compounds derived from Panax ginseng. Several studies report the pharmaceutical benefits of several ginsenosides, including antidementia, antitumor, and anti-inflammatory activity. Biotransformations by gut microbiome contribute to the biological function of these ginsenosides. After ingestion ginsenosides are hydrolyzed to Rg2, Rg3, compound K, and others by human gut flora. Compound K is considered the representative active metabolite after oral administration of ginseng or ginsenosides. Various studies report the diverse biological functions of compound K, such as antitumor, antidiabetic, antiallergic, and anti-inflammatory activity. Recent clinical trial and in vitro studies demonstrate the antiaging activities of ginsenosides in human skin. Ginsenosides have been considered as an important natural dermatological agent. In this review, we will cover the modern tools and techniques to understand biotransformation and delivery of compound K. Also the biological function of compound K on skin disorder and its potential dermatological application will be discussed.
Collapse
Affiliation(s)
- En Hyung Kim
- Department of Dermatology, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Wonnam Kim
- Division of Pharmacology, College of Korean Medicine, Semyung University, Jecheon, Republic of Korea
| |
Collapse
|
18
|
Nanoparticulate delivery systems for alkyl gallates: Influence of the elaboration process on particle characteristics, drug encapsulation and in-vitro release. Colloids Surf B Biointerfaces 2018; 162:351-361. [DOI: 10.1016/j.colsurfb.2017.11.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/18/2017] [Accepted: 11/20/2017] [Indexed: 01/03/2023]
|
19
|
Mosayebi J, Kiyasatfar M, Laurent S. Synthesis, Functionalization, and Design of Magnetic Nanoparticles for Theranostic Applications. Adv Healthc Mater 2017; 6. [PMID: 28990364 DOI: 10.1002/adhm.201700306] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/14/2017] [Indexed: 12/13/2022]
Abstract
In order to translate nanotechnology into medical practice, magnetic nanoparticles (MNPs) have been presented as a class of non-invasive nanomaterials for numerous biomedical applications. In particular, MNPs have opened a door for simultaneous diagnosis and brisk treatment of diseases in the form of theranostic agents. This review highlights the recent advances in preparation and utilization of MNPs from the synthesis and functionalization steps to the final design consideration in evading the body immune system for therapeutic and diagnostic applications with addressing the most recent examples of the literature in each section. This study provides a conceptual framework of a wide range of synthetic routes classified mainly as wet chemistry, state-of-the-art microfluidic reactors, and biogenic routes, along with the most popular coating materials to stabilize resultant MNPs. Additionally, key aspects of prolonging the half-life of MNPs via overcoming the sequential biological barriers are covered through unraveling the biophysical interactions at the bio-nano interface and giving a set of criteria to efficiently modulate MNPs' physicochemical properties. Furthermore, concepts of passive and active targeting for successful cell internalization, by respectively exploiting the unique properties of cancers and novel targeting ligands are described in detail. Finally, this study extensively covers the recent developments in magnetic drug targeting and hyperthermia as therapeutic applications of MNPs. In addition, multi-modal imaging via fusion of magnetic resonance imaging, and also innovative magnetic particle imaging with other imaging techniques for early diagnosis of diseases are extensively provided.
Collapse
Affiliation(s)
- Jalal Mosayebi
- Department of Mechanical Engineering; Urmia University; Urmia 5756151818 Iran
| | - Mehdi Kiyasatfar
- Department of Mechanical Engineering; Urmia University; Urmia 5756151818 Iran
| | - Sophie Laurent
- Laboratory of NMR and Molecular Imaging; University of Mons; Mons Belgium
| |
Collapse
|
20
|
Abstract
Nanoparticle drug formulations have been extensively investigated, developed, and in some cases, approved by the Food and Drug Administration (FDA). Synergistic combinations of drugs having distinct tumor-inhibiting mechanisms and non-overlapping toxicity can circumvent the issue of treatment resistance and may be essential for effective anti-cancer therapy. At the same time, co-delivery of a combined regimen by a single nanocarrier presents a challenge due to differences in solubility, molecular weight, functional groups and encapsulation conditions between the two drugs. This review discusses cellular and microenvironment mechanisms behind treatment resistance and nanotechnology-based solutions for effective anti-cancer therapy. Co-loading or cascade delivery of multiple drugs using of polymeric nanoparticles, polymer-drug conjugates and lipid nanoparticles will be discussed along with lipid-coated drug nanoparticles developed by our lab and perspectives on combination therapy.
Collapse
Affiliation(s)
- Lei Miao
- Division of Pharmacoengineering and Molecular Pharmaceutics, and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shutao Guo
- Division of Pharmacoengineering and Molecular Pharmaceutics, and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - C Michael Lin
- Division of Pharmacoengineering and Molecular Pharmaceutics, and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Qi Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics, and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
21
|
Song W, Luo Y, Zhao Y, Liu X, Zhao J, Luo J, Zhang Q, Ran H, Wang Z, Guo D. Magnetic nanobubbles with potential for targeted drug delivery and trimodal imaging in breast cancer: an in vitro study. Nanomedicine (Lond) 2017; 12:991-1009. [PMID: 28327075 DOI: 10.2217/nnm-2017-0027] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Aim: The aim of this study was to improve tumor-targeted therapy for breast cancer by designing magnetic nanobubbles with the potential for targeted drug delivery and multimodal imaging. Materials & methods: Herceptin-decorated and ultrasmall superparamagnetic iron oxide (USPIO)/paclitaxel (PTX)-embedded nanobubbles (PTX-USPIO-HER-NBs) were manufactured by combining a modified double-emulsion evaporation process with carbodiimide technique. PTX-USPIO-HER-NBs were examined for characterization, specific cell-targeting ability and multimodal imaging. Results: PTX-USPIO-HER-NBs exhibited excellent entrapment efficiency of Herceptin/PTX/USPIO and showed greater cytotoxic effects than other delivery platforms. Low-frequency ultrasound triggered accelerated PTX release. Moreover, the magnetic nanobubbles were able to enhance ultrasound, magnetic resonance and photoacoustics trimodal imaging. Conclusion: These results suggest that PTX-USPIO-HER-NBs have potential as a multimodal contrast agent and as a system for ultrasound-triggered drug release in breast cancer.
Collapse
Affiliation(s)
- Weixiang Song
- Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Rd, Yuzhong District, 400010 Chongqing, China
| | - Yindeng Luo
- Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Rd, Yuzhong District, 400010 Chongqing, China
| | - Yajing Zhao
- Department of Ultrasound, the First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Rd, Yuzhong District, 400016 Chongqing, China
| | - Xinjie Liu
- Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Rd, Yuzhong District, 400010 Chongqing, China
| | - Jiannong Zhao
- Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Rd, Yuzhong District, 400010 Chongqing, China
| | - Jie Luo
- Department of Ultrasound, the First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Rd, Yuzhong District, 400016 Chongqing, China
| | - Qunxia Zhang
- Department of Ultrasound, Institute of Ultrasound Imaging, the Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Rd, Yuzhong District, 400010 Chongqing, China
| | - Haitao Ran
- Department of Ultrasound, Institute of Ultrasound Imaging, the Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Rd, Yuzhong District, 400010 Chongqing, China
| | - Zhigang Wang
- Department of Ultrasound, Institute of Ultrasound Imaging, the Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Rd, Yuzhong District, 400010 Chongqing, China
| | - Dajing Guo
- Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Rd, Yuzhong District, 400010 Chongqing, China
| |
Collapse
|
22
|
Tabasum S, Noreen A, Kanwal A, Zuber M, Anjum MN, Zia KM. Glycoproteins functionalized natural and synthetic polymers for prospective biomedical applications: A review. Int J Biol Macromol 2017; 98:748-776. [PMID: 28111295 DOI: 10.1016/j.ijbiomac.2017.01.078] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/05/2017] [Accepted: 01/16/2017] [Indexed: 02/06/2023]
Abstract
Glycoproteins have multidimensional properties such as biodegradability, biocompatibility, non-toxicity, antimicrobial and adsorption properties; therefore, they have wide range of applications. They are blended with different polymers such as chitosan, carboxymethyl cellulose (CMC), polyvinyl pyrrolidone (PVP), polycaprolactone (PCL), heparin, polystyrene fluorescent nanoparticles (PS-NPs) and carboxyl pullulan (PC) to improve their properties like thermal stability, mechanical properties, resistance to pH, chemical stability and toughness. Considering the versatile charateristics of glycoprotein based polymers, this review sheds light on synthesis and characterization of blends and composites of glycoproteins, with natural and synthetic polymers and their potential applications in biomedical field such as drug delivery system, insulin delivery, antimicrobial wound dressing uses, targeting of cancer cells, development of anticancer vaccines, development of new biopolymers, glycoproteome research, food product and detection of dengue glycoproteins. All the technical scientific issues have been addressed; highlighting the recent advancement.
Collapse
Affiliation(s)
- Shazia Tabasum
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Aqdas Noreen
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Arooj Kanwal
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Mohammad Zuber
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | | | - Khalid Mahmood Zia
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan.
| |
Collapse
|
23
|
Sobczak-Kupiec A, Venkatesan J, Alhathal AlAnezi A, Walczyk D, Farooqi A, Malina D, Hosseini SH, Tyliszczak B. Magnetic nanomaterials and sensors for biological detection. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:2459-2473. [DOI: 10.1016/j.nano.2016.07.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 12/31/2022]
|
24
|
Yang L, Xin J, Zhang Z, Yan H, Wang J, Sun E, Hou J, Jia X, Lv H. TPGS-modified liposomes for the delivery of ginsenoside compound K against non-small cell lung cancer: formulation design and its evaluation in vitro and in vivo. J Pharm Pharmacol 2016; 68:1109-18. [DOI: 10.1111/jphp.12590] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 05/29/2016] [Indexed: 01/09/2023]
Abstract
Abstract
Objective
This work aimed at preparing ginsenoside compound K (GCK)-loaded liposomes modified with TPGS (GCKT-liposomes) to enhance solubility and targeting capability of GCK, as well as inhibit the efflux of GCK from tumour cells.
Methods
GCKT-liposomes were prepared by the thin-film hydration method and characterized by particle size, polydispersity, zeta potential and drug encapsulation efficiency. A549 cells were used as antitumour cell model to access the cellular uptake of the GCK and perform its antitumour function. The enhancement of in vivo antitumour efficacy of GCKT-liposomes was evaluated by nude mice bearing tumour model.
Key findings
The results showed that GCKT-liposomes achieved a comparatively high drug loading efficiency and reasonable particle size at the ratio of 7 : 3 (phospholipid: TPGS). The in vitro release demonstrated that the dissolution of GCK was remarkably improved by entrapping it into liposomes. In addition, GCKT-liposomes exhibited a great hypersensitizing effect on A549 cells, and the cellular uptake was enhanced. Compared with free GCK, the IC50 of GCKT-liposomes was significantly reduced (16.3 ± 0.8 vs 24.9 ± 1.0 μg/ml). In vivo antitumour assay also indicated that GCKT-liposomes achieved higher antitumour efficacy (67.5 ± 0.5 vs 40.8 ± 0.7%).
Conclusion
The novel GCKT-liposomes significantly improved the antitumour efficacy of GCK.
Collapse
Affiliation(s)
- Lei Yang
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu, China
- College of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jin Xin
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhenhai Zhang
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu, China
| | - Hongmei Yan
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jing Wang
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu, China
| | - E Sun
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jian Hou
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu, China
- College of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaobin Jia
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu, China
- College of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Huixia Lv
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
25
|
Wang YJ, Shi Y, Wang Z, Zhu Z, Zhao X, Nie H, Qian J, Qin A, Sun JZ, Tang BZ. A Red to Near‐IR Fluorogen: Aggregation‐Induced Emission, Large Stokes Shift, High Solid Efficiency and Application in Cell‐Imaging. Chemistry 2016; 22:9784-91. [DOI: 10.1002/chem.201600125] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Yi Jia Wang
- MoE Key Laboratory of Macromolecule Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Yang Shi
- MoE Key Laboratory of Macromolecule Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Zhaoyang Wang
- MoE Key Laboratory of Macromolecule Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Zhenfeng Zhu
- State Key Laboratory of Modern Optical Instrumentation Centre for Optical and Electromagnetic Research Zhejiang Provincial Key Laboratory for Sensing Technologies JORCEP (Sino-Swedish Joint Research Centre of Photonics) Zhejiang University Hangzhou 310058 China
| | - Xinyuan Zhao
- Institute of Environmental Health Zhejiang University Hangzhou 310058 China
| | - Han Nie
- Guangdong Innovative Research Team State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentation Centre for Optical and Electromagnetic Research Zhejiang Provincial Key Laboratory for Sensing Technologies JORCEP (Sino-Swedish Joint Research Centre of Photonics) Zhejiang University Hangzhou 310058 China
| | - Anjun Qin
- Guangdong Innovative Research Team State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Jing Zhi Sun
- MoE Key Laboratory of Macromolecule Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Ben Zhong Tang
- MoE Key Laboratory of Macromolecule Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
- Guangdong Innovative Research Team State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
- Department of Chemistry Institute for Advanced Study State Key Laboratory of Molecular NeuroScience and Division of Biomedical Engineering Institution The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| |
Collapse
|
26
|
Molina M, Asadian-Birjand M, Balach J, Bergueiro J, Miceli E, Calderón M. Stimuli-responsive nanogel composites and their application in nanomedicine. Chem Soc Rev 2016; 44:6161-86. [PMID: 26505057 DOI: 10.1039/c5cs00199d] [Citation(s) in RCA: 347] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nanogels are nanosized crosslinked polymer networks capable of absorbing large quantities of water. Specifically, smart nanogels are interesting because of their ability to respond to biomedically relevant changes like pH, temperature, etc. In the last few decades, hybrid nanogels or composites have been developed to overcome the ever increasing demand for new materials in this field. In this context, a hybrid refers to nanogels combined with different polymers and/or with nanoparticles such as plasmonic, magnetic, and carbonaceous nanoparticles, among others. Research activities are focused nowadays on using multifunctional hybrid nanogels in nanomedicine, not only as drug carriers but also as imaging and theranostic agents. In this review, we will describe nanogels, particularly in the form of composites or hybrids applied in nanomedicine.
Collapse
|
27
|
Shabestari Khiabani S, Farshbaf M, Akbarzadeh A, Davaran S. Magnetic nanoparticles: preparation methods, applications in cancer diagnosis and cancer therapy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:6-17. [DOI: 10.3109/21691401.2016.1167704] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
| | - Masoud Farshbaf
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Faculty of Medicine, Islamic Azad University Tabriz Branch, Tabriz, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soodabeh Davaran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
28
|
Singh RP, Sharma G, Sonali, Agrawal P, Pandey BL, Koch B, Muthu MS. Transferrin receptor targeted PLA-TPGS micelles improved efficacy and safety in docetaxel delivery. Int J Biol Macromol 2016; 83:335-44. [DOI: 10.1016/j.ijbiomac.2015.11.081] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 11/26/2015] [Accepted: 11/27/2015] [Indexed: 12/19/2022]
|
29
|
Chan M, Almutairi A. Nanogels as imaging agents for modalities spanning the electromagnetic spectrum. MATERIALS HORIZONS 2016; 3:21-40. [PMID: 27398218 PMCID: PMC4906372 DOI: 10.1039/c5mh00161g] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/25/2015] [Indexed: 05/05/2023]
Abstract
In the past few decades, advances in imaging equipment and protocols have expanded the role of imaging in in vivo diagnosis and disease management, especially in cancer. Traditional imaging agents have rapid clearance and low specificity for disease detection. To improve accuracy in disease identification, localization and assessment, novel nanomaterials are frequently explored as imaging agents to achieve high detection specificity and sensitivity. A promising material for this purpose are hydrogel nanoparticles, whose high hydrophilicity, biocompatibility, and tunable size in the nanometer range make them ideal for imaging. These nanogels (10 to 200 nm) can circumvent uptake by the reticuloendothelial system, allowing longer circulation times than small molecules. In addition, their size/surface properties can be further tailored to optimize their pharmacokinetics for imaging of a particular disease. Herein, we provide a comprehensive review of nanogels as imaging agents in various modalities with sources of signal spanning the electromagnetic spectrum, including MRI, NIR, UV-vis, and PET. Many materials and formulation methods will be reviewed to highlight the versatility of nanogels as imaging agents.
Collapse
Affiliation(s)
- Minnie Chan
- Department of Chemistry and Biochemistry , University of California , San Diego , La Jolla , CA 92093-0600 , USA
| | - Adah Almutairi
- Skaggs School of Pharmacy and Pharmaceutical Sciences , KACST-UCSD Center of Excellence in Nanomedicine , Laboratory of Bioresponsive Materials , University of California , 9500 Gilman Dr., 0600 , PSB 2270 , La Jolla , San Diego , CA 92093-0600 , USA . ; Tel: +1 (858) 246 0871
| |
Collapse
|
30
|
Kandasamy G, Surendran S, Chakrabarty A, Kale SN, Maity D. Facile synthesis of novel hydrophilic and carboxyl-amine functionalized superparamagnetic iron oxide nanoparticles for biomedical applications. RSC Adv 2016. [DOI: 10.1039/c6ra18567c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We report a one-step facile synthesis of novel water-soluble and functionalized SPIONs, which could be promising candidates for cancer theranostics.
Collapse
Affiliation(s)
| | | | | | - S. N. Kale
- Department of Applied Physics
- Defence Institute of Advanced Technology
- Pune 411025
- India
| | - Dipak Maity
- Department of Mechanical Engineering
- Shiv Nadar University
- India
| |
Collapse
|
31
|
Nottelet B, Darcos V, Coudane J. Aliphatic polyesters for medical imaging and theranostic applications. Eur J Pharm Biopharm 2015; 97:350-70. [DOI: 10.1016/j.ejpb.2015.06.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/12/2015] [Accepted: 06/13/2015] [Indexed: 01/04/2023]
|
32
|
Kandasamy G, Maity D. Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int J Pharm 2015; 496:191-218. [PMID: 26520409 DOI: 10.1016/j.ijpharm.2015.10.058] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 12/15/2022]
Abstract
Recently superparamagnetic iron oxide nanoparticles (SPIONs) have been extensively used in cancer therapy and diagnosis (theranostics) via magnetic targeting, magnetic resonance imaging, etc. due to their remarkable magnetic properties, chemical stability, and biocompatibility. However, the magnetic properties of SPIONs are influenced by various physicochemical and synthesis parameters. So, this review mainly focuses on the influence of spin canting effects, introduced by the variations in size, shape, and organic/inorganic surface coatings, on the magnetic properties of SPIONs. This review also describes the several predominant chemical synthesis procedures and role of the synthesis parameters for monitoring the size, shape, crystallinity and composition of the SPIONs. Moreover, this review discusses about the latest developments of the inorganic materials and organic polymers for encapsulation of the SPIONs. Finally, the most recent advancements of the SPIONs and their nanopackages in combination with other imaging/therapeutic agents have been comprehensively discussed for their effective usage as in vitro and in vivo theranostic agents in cancer treatments.
Collapse
Affiliation(s)
- Ganeshlenin Kandasamy
- Nanomaterials Lab, Department of Mechanical Engineering, Shiv Nadar University, Uttar Pradesh 201314, India
| | - Dipak Maity
- Nanomaterials Lab, Department of Mechanical Engineering, Shiv Nadar University, Uttar Pradesh 201314, India.
| |
Collapse
|
33
|
Lima-Tenório MK, Gómez Pineda EA, Ahmad NM, Fessi H, Elaissari A. Magnetic nanoparticles: In vivo cancer diagnosis and therapy. Int J Pharm 2015; 493:313-27. [DOI: 10.1016/j.ijpharm.2015.07.059] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/06/2015] [Accepted: 07/21/2015] [Indexed: 10/23/2022]
|
34
|
Pinkerton NM, Gindy ME, Calero-DdelC VL, Wolfson T, Pagels RF, Adler D, Gao D, Li S, Wang R, Zevon M, Yao N, Pacheco C, Therien MJ, Rinaldi C, Sinko PJ, Prud'homme RK. Single-Step Assembly of Multimodal Imaging Nanocarriers: MRI and Long-Wavelength Fluorescence Imaging. Adv Healthc Mater 2015; 4:1376-85. [PMID: 25925128 PMCID: PMC4617688 DOI: 10.1002/adhm.201400766] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 03/23/2015] [Indexed: 11/08/2022]
Abstract
Magnetic resonance imaging (MRI)- and near-infrared (NIR)-active, multimodal composite nanocarriers (CNCs) are prepared using a simple one-step process, flash nanoprecipitation (FNP). The FNP process allows for the independent control of the hydrodynamic diameter, co-core excipient and NIR dye loading, and iron oxide-based nanocrystal (IONC) content of the CNCs. In the controlled precipitation process, 10 nm IONCs are encapsulated into poly(ethylene glycol) (PEG) stabilized CNCs to make biocompatible T2 contrast agents. By adjusting the formulation, CNC size is tuned between 80 and 360 nm. Holding the CNC size constant at an intensity weighted average diameter of 99 ± 3 nm (PDI width 28 nm), the particle relaxivity varies linearly with encapsulated IONC content ranging from 66 to 533 × 10(-3) m(-1) s(-1) for CNCs formulated with 4-16 wt% IONC. To demonstrate the use of CNCs as in vivo MRI contrast agents, CNCs are surface functionalized with liver-targeting hydroxyl groups. The CNCs enable the detection of 0.8 mm(3) non-small cell lung cancer metastases in mice livers via MRI. Incorporating the hydrophobic, NIR dye tris-(porphyrinato)zinc(II) into CNCs enables complementary visualization with long-wavelength fluorescence at 800 nm. In vivo imaging demonstrates the ability of CNCs to act both as MRI and fluorescent imaging agents.
Collapse
Affiliation(s)
- Nathalie M. Pinkerton
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Marian E. Gindy
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | | | - Theodore Wolfson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Robert F. Pagels
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Derek Adler
- College of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Dayuan Gao
- College of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Shike Li
- College of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Ruobing Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Margot Zevon
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Nan Yao
- Princeton Materials Institute, Princeton University, Princeton, New Jersey 08540, United States
| | - Carlos Pacheco
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Michael J. Therien
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Carlos Rinaldi
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32605, United States
| | - Patrick J. Sinko
- College of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Robert K. Prud'homme
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32605, United States
| |
Collapse
|
35
|
Liu J, Li K, Liu B. Far-Red/Near-Infrared Conjugated Polymer Nanoparticles for Long-Term In Situ Monitoring of Liver Tumor Growth. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2015; 2:1500008. [PMID: 27980934 PMCID: PMC5115368 DOI: 10.1002/advs.201500008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/21/2015] [Indexed: 05/21/2023]
Abstract
The design and synthesis is reported for a fluorescent conjugated polymer (CP), poly{[4,4,9,9-tetrakis(4-(octyloxy)phenyl-4,9-dihydro-s-indaceno[1,2-b:5,6-b']dithiophene)]-alt-co-[4,7-di(thiophen-2-yl)-2,1,3-benzothiadiazole]} (PIDT-DBT), with absorption and emission profiles fallen within far-red/near infrared (FR/NIR) region and further demonstrate its application in long-term in vitro cell tracing and in vivo imaging of liver tumor growth. PIDT-DBT-Tat nanoparticles (NPs) have an absorption maximum at ≈600 nm with an emission maximum at ≈720 nm in water. In vitro cell tracing studies reveal that PIDT-DBT-Tat NPs can trace HepG2 liver cancer cells over 8 d. In vivo imaging results indicate that PIDT-DBT-Tat NPs can monitor liver tumor growth for more than 27 d in a real-time manner. Both in vitro and in vivo studies demonstrate that PIDT-DBT-Tat NPs are superior to commercial Qtracker 705 as fluorescent probes. This study demonstrates for the first time the feasibility for long-term in vivo imaging of tumor growth by utilizing CP-based fluorescent probes, which will encourage the development of NIR fluorescent CPs for in vivo bioimaging.
Collapse
Affiliation(s)
- Jie Liu
- Department of Chemical and Biomolecular Engineering 4 Engineering Drive 4 National University of Singapore 117585 Singapore
| | - Kai Li
- Institute of Materials Research and Engineering 3 Research Link 117602 Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering 4 Engineering Drive 4 National University of Singapore 117585 Singapore; Institute of Materials Research and Engineering 3 Research Link 117602 Singapore
| |
Collapse
|
36
|
Wu W, Wu Z, Yu T, Jiang C, Kim WS. Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2015; 16:023501. [PMID: 27877761 PMCID: PMC5036481 DOI: 10.1088/1468-6996/16/2/023501] [Citation(s) in RCA: 644] [Impact Index Per Article: 71.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 02/22/2015] [Accepted: 02/23/2015] [Indexed: 05/17/2023]
Abstract
This review focuses on the recent development and various strategies in the preparation, microstructure, and magnetic properties of bare and surface functionalized iron oxide nanoparticles (IONPs); their corresponding biological application was also discussed. In order to implement the practical in vivo or in vitro applications, the IONPs must have combined properties of high magnetic saturation, stability, biocompatibility, and interactive functions at the surface. Moreover, the surface of IONPs could be modified by organic materials or inorganic materials, such as polymers, biomolecules, silica, metals, etc. The new functionalized strategies, problems and major challenges, along with the current directions for the synthesis, surface functionalization and bioapplication of IONPs, are considered. Finally, some future trends and the prospects in these research areas are also discussed.
Collapse
Affiliation(s)
| | - Zhaohui Wu
- Department of Chemical Engineering, Kyung Hee University, Korea
| | - Taekyung Yu
- Department of Chemical Engineering, Kyung Hee University, Korea
| | - Changzhong Jiang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Woo-Sik Kim
- Department of Chemical Engineering, Kyung Hee University, Korea
| |
Collapse
|
37
|
Polydopamine - A Versatile Coating for Surface-Initiated Ring-Opening Polymerization of Lactide to Polylactide. MACROMOL CHEM PHYS 2014. [DOI: 10.1002/macp.201400380] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Enhanced effect of pH-sensitive mixed copolymer micelles for overcoming multidrug resistance of doxorubicin. Biomaterials 2014; 35:9877-9887. [PMID: 25201738 DOI: 10.1016/j.biomaterials.2014.08.008] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 08/01/2014] [Indexed: 11/21/2022]
Abstract
P-glycoprotein (P-gp) mediated drug efflux has been recognized as a key factor contributing to the multidrug resistance (MDR) in tumor cells. To address this issue, a new pH-sensitive mixed copolymer micelles system composed of hyaluronic acid-g-poly(l-histidine) (HA-PHis) and d-α-tocopheryl polyethylene glycol 2000 (TPGS2k) copolymers was developed to co-deliver doxorubicin (DOX) and TPGS2k into drug-resistant breast cancer MCF-7 cells (MCF-7/ADR). The DOX-loaded HA-PHis/TPGS2k mixed micelles (HPHM/TPGS2k) were characterized to have a unimodal size distribution, high DOX loading content and a pH dependent drug release profile due to the protonation of poly(l-histidine). As compared to HA-PHis micelles (HPHM), the HPHM/TPGS2k showed higher and comparable cytotoxicity against MCF-7/ADR cells and MCF-7 cells, respectively. The enhanced MDR reversal effect was attributed to the higher amount of cellular uptake of HPHM/TPGS2k in MCF-7/ADR cells than HPHM, arising from the inhibition of P-gp mediated drug efflux by TPGS2k. The measurements of P-gp expression level and mitochondrial membrane potential indicate that the blank HPHM/TPGS2k inhibited P-gp activity by reducing mitochondrial membrane potential and depletion of ATP but without inhibition of P-gp expression. In vivo study of micelles in tumor-bearing mice indicate that HPHM/TPGS2k could reach the tumor site more effectively than HPHM. The pH-sensitive mixed micelles system has been demonstrated to be a promising approach for overcoming the MDR.
Collapse
|
39
|
Momtazi L, Bagherifam S, Singh G, Hofgaard A, Hakkarainen M, Glomm WR, Roos N, Mælandsmo GM, Griffiths G, Nyström B. Synthesis, characterization, and cellular uptake of magnetic nanocarriers for cancer drug delivery. J Colloid Interface Sci 2014; 433:76-85. [PMID: 25112915 DOI: 10.1016/j.jcis.2014.07.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 01/22/2023]
Abstract
HYPOTHESIS The absence of targetability is the primary inadequacy of conventional chemotherapy. Targeted drug delivery systems are conceptualized to overcome this challenge. We have designed a targetable magnetic nanocarrier consisting of a superparamagnetic iron oxide (SPIO) core and biocompatible and biodegradable poly(sebacic anhydride)-block-methyl ether poly(ethylene glycol) (PSA-mPEG) polymer shell. The idea is that this type of carriers should facilitate the targeting of cancer cells. EXPERIMENTS PSA-mPEG was synthesized with poly-condensation and the in vitro degradation rate of the polymer was monitored by gel permeation chromatography (GPC). The magnetic nanocarriers were fabricated devoid of any surfactants and were capable of carrying high payload of hydrophobic dye. The successful encapsulation of SPIO within the polymer shell was confirmed by TEM. The results we obtained from measuring the size of SPIO loaded in polymeric NPs (SPIO-PNP) by dynamic light scattering (DLS) and iron content measurement of these particles by ICP-MS, indicate that SPIO is the most suitable carrier for cancer drug delivery applications. FINDINGS Measuring the hydrodynamic radii of SPIO-PNPs by DLS over one month revealed the high stability of these particles at both body and room temperature. We further investigated the cell viability and cellular uptake of SPIO-PNPs in vitro with MDA-MB-231 breast cancer cells. We found that SPIO-PNPs induce negligible toxicity within a concentration range of 1-2μg/ml. The TEM micrographs of thin cross-sectioned MDA-MBA-231 cells showed internalization of SPIO-PNPs within size range of 150-200nm after 24h. This study has provided a foundation for eventually loading these nanoparticles with anti-cancer drugs for targeted cancer therapy using an external magnetic field.
Collapse
Affiliation(s)
- Leva Momtazi
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway.
| | - Shahla Bagherifam
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway; Department of Biology, University of Oslo, Blindernveien 31, 0316 Oslo, Norway.
| | - Gurvinder Singh
- Department of Chemical Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway.
| | - Antje Hofgaard
- Department of Biology, University of Oslo, Blindernveien 31, 0316 Oslo, Norway.
| | - Minna Hakkarainen
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, 10044 Stockholm, Sweden.
| | - Wilhelm R Glomm
- Biotechnology and Nanomedicine Sector, SINTEF Materials and Chemistry, Sem Sælands vei 2A, N-7034 Trondheim, Norway.
| | - Norbert Roos
- Department of Biology, University of Oslo, Blindernveien 31, 0316 Oslo, Norway.
| | - Gunhild M Mælandsmo
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
| | - Gareth Griffiths
- Department of Biology, University of Oslo, Blindernveien 31, 0316 Oslo, Norway.
| | - Bo Nyström
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway.
| |
Collapse
|
40
|
Laurent S, Saei AA, Behzadi S, Panahifar A, Mahmoudi M. Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges. Expert Opin Drug Deliv 2014; 11:1449-70. [PMID: 24870351 DOI: 10.1517/17425247.2014.924501] [Citation(s) in RCA: 258] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Bearing in mind that many promising drug candidates have the problem of reaching their target site, the concept of advanced drug delivery can play a significant complementary role in shaping modern medicine. Among other nanoscale drug carriers, superparamagnetic iron oxide nanoparticles (SPIONs) have shown great potential in nanomedicine. The intrinsic properties of SPIONs, such as inherent magnetism, broad safety margin and the availability of methods for fabrication and surface engineering, pave the way for diverse biomedical applications. SPIONs can achieve the highest drug targeting efficiency among carriers, since an external magnetic field locally applied to the target organ enhances the accumulation of magnetic nanoparticles in the drug site of action. Moreover, theranostic multifunctional SPIONs make simultaneous delivery and imaging possible. In spite of these favorable qualities, there are some toxicological concerns, such as oxidative stress, unpredictable cellular responses and induction of signaling pathways, alteration in gene expression profiles and potential disturbance in iron homeostasis, that need to be carefully considered. Besides, the protein corona at the surface of the SPIONs may induce few shortcomings such as reduction of SPIONs targeting efficacy. AREAS COVERED In this review, we will present recent developments of SPIONs as theranostic agents. The article will further address some barriers on drug delivery using SPIONs. EXPERT OPINION One of the major success determinants in targeted in vivo drug delivery using SPIONs is the adequacy of magnetic gradient. This can be partially achieved by using superconducting magnets, local implantation of magnets and application of magnetic stents. Other issues that must be considered include the pharmacokinetics and in vivo fate of SPIONs, their biodegradability, biocompatibility, potential side effects and the crucial impact of protein corona on either drug release profile or mistargeting. Surface modification of SPIONs can open up the possibility of drug delivery to intracellular organelles, drug delivery across the blood-brain barrier, modifying metabolic diseases and a variety of other multimodal and/or theranostic applications.
Collapse
Affiliation(s)
- Sophie Laurent
- University of Mons, Avenue Maistriau, NMR and Molecular Imaging Laboratory, Department of General, Organic, and Biomedical Chemistry , 19, B-7000 Mons , Belgium
| | | | | | | | | |
Collapse
|
41
|
Shapiro EM. Biodegradable, polymer encapsulated, metal oxide particles for MRI-based cell tracking. Magn Reson Med 2014; 73:376-89. [PMID: 24753150 DOI: 10.1002/mrm.25263] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 03/31/2014] [Accepted: 04/01/2014] [Indexed: 12/26/2022]
Abstract
Metallic particles have shaped the use of magnetic resonance imaging (MRI) for molecular and cellular imaging. Although these particles have generally been developed for extracellular residence, either as blood pool contrast agents or targeted contrast agents, the coopted use of these particles for intracellular labeling has grown over the last 20 years. Coincident with this growth has been the development of metal oxide particles specifically intended for intracellular residence, and innovations in the nature of the metallic core. One promising nanoparticle construct for MRI-based cell tracking is polymer encapsulated metal oxide nanoparticles. Rather than a polymer coated metal oxide nanocrystal of the core: shell type, polymer encapsulated metal oxide nanoparticles cluster many nanocrystals within a polymer matrix. This nanoparticle composite more efficiently packages inorganic nanocrystals, affording the ability to label cells with more inorganic material. Further, for magnetic nanocrystals, the clustering of multiple magnetic nanocrystals within a single nanoparticle enhances r2 and r2* relaxivity. Methods for fabricating polymer encapsulated metal oxide nanoparticles are facile, yielding both varied compositions and synthetic approaches. This review presents a brief history into the use of metal oxide particles for MRI-based cell tracking and details the development and use of biodegradable, polymer encapsulated, metal oxide nanoparticles and microparticles for MRI-based cell tracking.
Collapse
Affiliation(s)
- Erik M Shapiro
- Department of Radiology, Michigan State University, East Lansing, Michigan, USA.,Department of Physiology, Michigan State University, East Lansing, Michigan, USA.,Department of Chemical Engineering, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
42
|
Tan GR, Feng SS, Leong DT. The reduction of anti-cancer drug antagonism by the spatial protection of drugs with PLA–TPGS nanoparticles. Biomaterials 2014; 35:3044-51. [DOI: 10.1016/j.biomaterials.2013.12.033] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 12/13/2013] [Indexed: 12/14/2022]
|
43
|
Crawley N, Thompson M, Romaschin A. Theranostics in the Growing Field of Personalized Medicine: An Analytical Chemistry Perspective. Anal Chem 2013; 86:130-60. [DOI: 10.1021/ac4038812] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Niall Crawley
- Department
of Chemistry and
Institute for Biomaterials and Biomedical Engineering, University of Toronto, 80 St. George Street, Toronto, Ontario M5 S 3H6, Canada
| | - Michael Thompson
- Department
of Chemistry and
Institute for Biomaterials and Biomedical Engineering, University of Toronto, 80 St. George Street, Toronto, Ontario M5 S 3H6, Canada
| | - Alexander Romaschin
- Keenan Research Centre and
Clinical Biochemistry, St. Michael’s Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada
| |
Collapse
|
44
|
Optimization of parameters for preparation of docetaxel-loaded PLGA nanoparticles by nanoprecipitation method. ACTA ACUST UNITED AC 2013; 33:754-758. [PMID: 24142732 DOI: 10.1007/s11596-013-1192-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/15/2013] [Indexed: 02/01/2023]
Abstract
The purpose of this study was to develop docetaxel-poly (lactide-co-glycolide) (PLGA) loaded nanoparticles by using nanoprecipitation method and optimize the relative parameters to obtain nanoparticles with higher encapsulation efficiency and smaller size. The physicochemical characteristics of nanoparticles were studied. The optimized parameters were as follows: the oil phase was mixture of acetone and ethanol, concentration of tocopheryl polyethylene glycol succinate (TPGS) was 0.2%, the ratio of oil phase to water phase was 1:5, and the theoretical drug concentration was 5%. The optimized nanoparticles were spherical with size between 130 and 150 nm. The encapsulation efficiency was (40.83±2.1)%. The in vitro release exhibited biphasic pattern. The results indicate that docetaxel-PLGA nanoparticles were successfully fabricated and may be used as the novel vehicles for docetaxel, which would replace Taxotere® and play great roles in future.
Collapse
|
45
|
Mi Y, Zhao J, Feng SS. Prodrug micelle-based nanomedicine for cancer treatment. Nanomedicine (Lond) 2013; 8:1559-62. [DOI: 10.2217/nnm.13.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Yu Mi
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore
| | - Jing Zhao
- Department of Bioengineering, National University of Singapore, Singapore
| | - Si-Shen Feng
- Department of Chemical & Biomolecular Engineering, Department of Bioengineering, & Nanoscience & Nanotechnology Initiative (NUSNNI/NanoCore), National University of Singapore, Block E3, 05–29, 2 Engineering Drive 3, Singapore 117576, Singapore
| |
Collapse
|
46
|
Feng Y, Cui X, He S, Dong G, Chen M, Wang J, Lin X. The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:9496-504. [PMID: 23869579 DOI: 10.1021/es402109n] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A knowledge gap still remains concerning the in situ influences of nanoparticles on plant systems, partly due to the absence of soil microorganisms. Arbuscular mycorrhizal fungi (AMF) can form a mutualistic symbiosis with the roots of over 90% of land plants. This investigation sought to reveal the responses of mycorrhizal clover (Trifolium repens) to silver nanoparticles (AgNPs) and iron oxide nanoparticles (FeONPs) along a concentration gradient of each. FeONPs at 3.2 mg/kg significantly reduced mycorrhizal clover biomass by 34% by significantly reducing the glomalin content and root nutrient acquisition of AMF. In contrast, no negative effects of AgNPs at concentrations over 0.1 mg/kg were observed; however, AgNPs at 0.01 mg/kg inhibited mycorrhizal clover growth. In response to the elevated AgNPs content, the ability of AMF to alleviate AgNPs stress (via increased growth and ecological behaviors) was enhanced, which decreased Ag content and the activities of antioxidant enzymes in plants. These results were further supported by X-ray microcomputed tomography. Our findings suggest that in soil ecosystem, the influence of nanometals on plant systems would be more complicated than expected, and more attention should be focused on plant responses in combination with those of soil microorganisms.
Collapse
Affiliation(s)
- Youzhi Feng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu Province, PR China
| | | | | | | | | | | | | |
Collapse
|
47
|
Mi Y, Zhao J, Feng SS. Targeted co-delivery of docetaxel, cisplatin and herceptin by vitamin E TPGS-cisplatin prodrug nanoparticles for multimodality treatment of cancer. J Control Release 2013; 169:185-92. [DOI: 10.1016/j.jconrel.2013.01.035] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/03/2013] [Accepted: 01/31/2013] [Indexed: 11/27/2022]
|
48
|
Biocompatible organic dots with aggregation-induced emission for in vitro and in vivo fluorescence imaging. Sci China Chem 2013. [DOI: 10.1007/s11426-013-4936-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
49
|
Aschenbrenner E, Bley K, Koynov K, Makowski M, Kappl M, Landfester K, Weiss CK. Using the polymeric ouzo effect for the preparation of polysaccharide-based nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:8845-8855. [PMID: 23777243 DOI: 10.1021/la4017867] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The polymeric ouzo effect, a nanoprecipitation process, is used for the preparation of polysaccharide-based nanoparticles. Dextran, pullulan, and starch were esterified with hydrophobic carboxylic acid anhydrides to obtain hydrophobic polysaccharides, which are insoluble in water. The additional introduction of methacroyl residues offers the possibility to cross-link the generated nanostructures, which become insoluble in organic solvents. To make use of the ouzo effect for the formation of nanoparticles, the polymer has to be soluble in an organic solvent, which is miscible with water. Here, acetone and THF were used. Immediately after the organic polymer solution is added to water, nanoparticles are generated. The size of the nanoparticles can be adjusted between 50 and 200 nm by changing the concentration of the initial polysaccharide solution. The degree of hydrophobic substitution was shown to have a very minor effect on the particle size. Dispersions with solids contents of up to 2% were obtained. Furthermore, the mechanical properties of the nanoparticles were investigated with force microscopy, and it was shown by fluorescence correlation spectroscopy that a fluorescent dye could be encapsulated in the nanoparticles by the applied nanoprecipitation procedure.
Collapse
|
50
|
The role of magnetic nanoparticles in the localization and treatment of breast cancer. BIOMED RESEARCH INTERNATIONAL 2013; 2013:281230. [PMID: 23936784 PMCID: PMC3722907 DOI: 10.1155/2013/281230] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 06/17/2013] [Indexed: 02/06/2023]
Abstract
The role of magnetic nanoparticles (MNPs) in medical applications is rapidly developing. Advances in nanotechnology are bringing us closer to the development of dual and multifunctional nanoparticles that are challenging the traditional distinction between diagnostic and treatment agents. The current use of MNPs in breast cancer falls into four main groups: (1) imaging of primary and metastatic disease, (2) sentinel lymph node biopsy (SLNB), (3) drug delivery systems, and (4) magnetic hyperthermia. The current evidence for the use of MNPs in these fields is mounting, and potential cutting-edge clinical applications, particularly with relevance to the fields of breast oncological surgery, are emerging.
Collapse
|