1
|
Ramirez-Morales MA, De Luca E, Coricciati C, Rainer A, Gigli G, Mele G, Pompa PP, Malvindi MA. Dual-color core-shell silica nanosystems for advanced super-resolution biomedical imaging. NANOSCALE ADVANCES 2023; 5:5766-5773. [PMID: 37881714 PMCID: PMC10597559 DOI: 10.1039/d3na00310h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/21/2023] [Indexed: 10/27/2023]
Abstract
Fluorescent core-shell silica nanoparticles are largely employed in nanomedicine and life science thanks to the many advantages they offer. Among these, the enhancement of the stability of the fluorescent signal upon fluorophore encapsulation into the silica matrix and the possibility to combine in a single vehicle multiple functionalities, physically separated in different compartments. In this work, we present a new approach to the Stöber method as a two-cycle protocol for the tailored synthesis of dual-color fluorescent core-shell silicon dioxide nanoparticles (SiO2 NPs) using two commercial dyes as model. To facilitate the colloidal stability, the nanoparticle surface was functionalized with biotin by two approaches. The biotinylated nanosystems were characterized by several analytical and advanced microscopy techniques including Fourier transform infrared (FT-IR) spectroscopy, dynamic light scattering (DLS), UV-vis, transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). Moreover, advanced super-resolution based on structured illumination was used for the imaging of the double-fluorescent NPs, both on a substrate and in the cellular microenvironment, at nanometric resolution 100 nm, in view of their versatile potential employment in fluorescence optical nanoscopy as nanoscale calibration tools as well as in biomedical applications as biocompatible nanosystems for intracellular biosensing with high flexibility of use, being these nanoplatforms adaptable to the encapsulation of any couple of dyes with the desired function.
Collapse
Affiliation(s)
- Maria Antonieta Ramirez-Morales
- HiQ-Nano s.r.l. Via Barsanti 1, Arnesano Lecce 73010 Italy
- Department of Engineering of Innovation, Università del Salento Via Monteroni Lecce 73100 Italy
| | - Elisa De Luca
- Institute of Nanotechnology (NANOTEC)-National Research Council (CNR) Lecce 73100 Italy
- Center for Biomolecular Nanotechnology (CBN), Istituto Italiano di Tecnologia Via Eugenio Barsanti, 1, Arnesano 73010 Italy
| | - Chiara Coricciati
- Institute of Nanotechnology (NANOTEC)-National Research Council (CNR) Lecce 73100 Italy
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento Lecce 73100 Italy
| | - Alberto Rainer
- Institute of Nanotechnology (NANOTEC)-National Research Council (CNR) Lecce 73100 Italy
- Università Campus Bio-Medico di Roma Via Álvaro del Portillo 21 Roma 00128 Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology (NANOTEC)-National Research Council (CNR) Lecce 73100 Italy
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento Lecce 73100 Italy
| | - Giuseppe Mele
- Department of Engineering of Innovation, Università del Salento Via Monteroni Lecce 73100 Italy
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT) Via Morego 30 Genova 16163 Italy
| | | |
Collapse
|
2
|
Vorotnikov YA, Vorotnikova NA, Shestopalov MA. Silica-Based Materials Containing Inorganic Red/NIR Emitters and Their Application in Biomedicine. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5869. [PMID: 37687562 PMCID: PMC10488461 DOI: 10.3390/ma16175869] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
The low absorption of biological substances and living tissues in the red/near-infrared region (therapeutic window) makes luminophores emitting in the range of ~650-1350 nm favorable for in vitro and in vivo imaging. In contrast to commonly used organic dyes, inorganic red/NIR emitters, including ruthenium complexes, quantum dots, lanthanide compounds, and octahedral cluster complexes of molybdenum and tungsten, not only exhibit excellent emission in the desired region but also possess additional functional properties, such as photosensitization of the singlet oxygen generation process, upconversion luminescence, photoactivated effects, and so on. However, despite their outstanding functional applicability, they share the same drawback-instability in aqueous media under physiological conditions, especially without additional modifications. One of the most effective and thus widely used types of modification is incorporation into silica, which is (1) easy to obtain, (2) biocompatible, and (3) non-toxic. In addition, the variety of morphological characteristics, along with simple surface modification, provides room for creativity in the development of various multifunctional diagnostic/therapeutic platforms. In this review, we have highlighted biomedical applications of silica-based materials containing red/NIR-emitting compounds.
Collapse
Affiliation(s)
- Yuri A. Vorotnikov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev ave., 630090 Novosibirsk, Russia;
| | | | - Michael A. Shestopalov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev ave., 630090 Novosibirsk, Russia;
| |
Collapse
|
3
|
Allwin Mabes Raj AFP, Bauman M, Dimitrušev N, Ali LMA, Onofre M, Gary-Bobo M, Durand JO, Lobnik A, Košak A. Superparamagnetic Spinel-Ferrite Nano-Adsorbents Adapted for Hg 2+, Dy 3+, Tb 3+ Removal/Recycling: Synthesis, Characterization, and Assessment of Toxicity. Int J Mol Sci 2023; 24:10072. [PMID: 37373219 DOI: 10.3390/ijms241210072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
In the present work, superparamagnetic adsorbents based on 3-aminopropyltrimethoxy silane (APTMS)-coated maghemite (γFe2O3@SiO2-NH2) and cobalt ferrite (CoFe2O4@SiO2-NH2) nanoparticles were prepared and characterized using transmission-electron microscopy (TEM/HRTEM/EDXS), Fourier-transform infrared spectroscopy (FTIR), specific surface-area measurements (BET), zeta potential (ζ) measurements, thermogravimetric analysis (TGA), and magnetometry (VSM). The adsorption of Dy3+, Tb3+, and Hg2+ ions onto adsorbent surfaces in model salt solutions was tested. The adsorption was evaluated in terms of adsorption efficiency (%), adsorption capacity (mg/g), and desorption efficiency (%) based on the results of inductively coupled plasma optical emission spectrometry (ICP-OES). Both adsorbents, γFe2O3@SiO2-NH2 and CoFe2O4@SiO2-NH2, showed high adsorption efficiency toward Dy3+, Tb3+, and Hg2+ ions, ranging from 83% to 98%, while the adsorption capacity reached the following values of Dy3+, Tb3+, and Hg2+, in descending order: Tb (4.7 mg/g) > Dy (4.0 mg/g) > Hg (2.1 mg/g) for γFe2O3@SiO2-NH2; and Tb (6.2 mg/g) > Dy (4.7 mg/g) > Hg (1.2 mg/g) for CoFe2O4@SiO2-NH2. The results of the desorption with 100% of the desorbed Dy3+, Tb3+, and Hg2+ ions in an acidic medium indicated the reusability of both adsorbents. A cytotoxicity assessment of the adsorbents on human-skeletal-muscle derived cells (SKMDCs), human fibroblasts, murine macrophage cells (RAW264.7), and human-umbilical-vein endothelial cells (HUVECs) was conducted. The survival, mortality, and hatching percentages of zebrafish embryos were monitored. All the nanoparticles showed no toxicity in the zebrafish embryos until 96 hpf, even at a high concentration of 500 mg/L.
Collapse
Affiliation(s)
- A F P Allwin Mabes Raj
- Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
- Department of Environmental Science, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Institute for Environmental Protection and Sensors (IOS) Ltd., Beloruska 7, 2000 Maribor, Slovenia
| | - Maja Bauman
- Institute for Environmental Protection and Sensors (IOS) Ltd., Beloruska 7, 2000 Maribor, Slovenia
| | - Nena Dimitrušev
- Institute for Environmental Protection and Sensors (IOS) Ltd., Beloruska 7, 2000 Maribor, Slovenia
- Faculty for Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia
| | - Lamiaa M A Ali
- IBMM, Univ Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Mélanie Onofre
- IBMM, Univ Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | | | | | - Aleksandra Lobnik
- Institute for Environmental Protection and Sensors (IOS) Ltd., Beloruska 7, 2000 Maribor, Slovenia
- Faculty for Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia
| | - Aljoša Košak
- Faculty for Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia
| |
Collapse
|
4
|
Zhang Z, Zhou Y, Zhao S, Ding L, Chen B, Chen Y. Nanomedicine-Enabled/Augmented Cell Pyroptosis for Efficient Tumor Nanotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203583. [PMID: 36266982 PMCID: PMC9762308 DOI: 10.1002/advs.202203583] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/23/2022] [Indexed: 05/19/2023]
Abstract
The terrible morbidity and mortality of malignant tumors urgently require innovative therapeutics, especially for apoptosis-resistant tumors. Pyroptosis, a pro-inflammatory form of programmed cell death (PCD), is featured with pore formation in plasma membrane, cell swelling with giant bubbles, and leakage of cytoplasmic pro-inflammatory cytokines, which can remodel the tumor immune microenvironment by stimulating a "cold" tumor microenvironment to be an immunogenic "hot" tumor microenvironment, and consequently augment the therapeutic efficiency of malignant tumors. Benefiting from current advances in nanotechnology, nanomedicine is extensively applied to potentiate, enable, and augment pyroptosis for enhancing cancer-therapeutic efficacy and specificity. This review provides a concentrated summary and discussion of the most recent progress achieved in this emerging field, highlighting the nanomedicine-enabled/augmented specific pyroptosis strategy for favoring the construction of next-generation nanomedicines to efficiently induce PCD. It is highly expected that the further clinical translation of nanomedicine can be accelerated by inducing pyroptotic cell death based on bioactive nanomedicines.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of UltrasoundAffiliated Hospital of Jiangsu UniversityZhenjiang212000P. R. China
| | - Yajun Zhou
- Department of UltrasoundThe Fourth Affiliated HospitalNanjing Medical UniversityNanjing210029P. R. China
| | - Shuangshuang Zhao
- Department of UltrasoundAffiliated Hospital of Jiangsu UniversityZhenjiang212000P. R. China
| | - Li Ding
- Tongji University School of MedicineShanghai Tenth People's HospitalTongji University Cancer CenterShanghai Engineering Research Center of Ultrasound Diagnosis and TreatmentNational Clinical Research Center of Interventional MedicineShanghai200072P. R. China
| | - Baoding Chen
- Department of UltrasoundAffiliated Hospital of Jiangsu UniversityZhenjiang212000P. R. China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| |
Collapse
|
5
|
Tella JO, Adekoya JA, Ajanaku KO. Mesoporous silica nanocarriers as drug delivery systems for anti-tubercular agents: a review. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220013. [PMID: 35706676 PMCID: PMC9174711 DOI: 10.1098/rsos.220013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/27/2022] [Indexed: 05/03/2023]
Abstract
The treatment and management of tuberculosis using conventional drug delivery systems remain challenging due to the setbacks involved. The lengthy and costly treatment regime and patients' non-compliance have led to drug-resistant tuberculosis, which is more difficult to treat. Also, anti-tubercular drugs currently used are poor water-soluble drugs with low bioavailability and poor therapeutic efficiency except at higher doses which causes drug-related toxicity. Novel drug delivery carrier systems such as mesoporous silica nanoparticles (MSNs) have been identified as nanomedicines capable of addressing the challenges mentioned due to their biocompatibility. The review discusses the sol-gel synthesis and chemistry of MSNs as porous drug nanocarriers, surface functionalization techniques and the influence of their physico-chemical properties on drug solubility, loading and release kinetics. It outlines the physico-chemical characteristics of MSNs encapsulated with anti-tubercular drugs.
Collapse
Affiliation(s)
| | - Joseph Adeyemi Adekoya
- Department of Chemistry, College of Science and Technology, Covenant University, Ota 112212, Nigeria
| | - Kolawole Oluseyi Ajanaku
- Department of Chemistry, College of Science and Technology, Covenant University, Ota 112212, Nigeria
| |
Collapse
|
6
|
Pham XH, Park SM, Ham KM, Kyeong S, Son BS, Kim J, Hahm E, Kim YH, Bock S, Kim W, Jung S, Oh S, Lee SH, Hwang DW, Jun BH. Synthesis and Application of Silica-Coated Quantum Dots in Biomedicine. Int J Mol Sci 2021; 22:10116. [PMID: 34576279 PMCID: PMC8468474 DOI: 10.3390/ijms221810116] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022] Open
Abstract
Quantum dots (QDs) are semiconductor nanoparticles with outstanding optoelectronic properties. More specifically, QDs are highly bright and exhibit wide absorption spectra, narrow light bands, and excellent photovoltaic stability, which make them useful in bioscience and medicine, particularly for sensing, optical imaging, cell separation, and diagnosis. In general, QDs are stabilized using a hydrophobic ligand during synthesis, and thus their hydrophobic surfaces must undergo hydrophilic modification if the QDs are to be used in bioapplications. Silica-coating is one of the most effective methods for overcoming the disadvantages of QDs, owing to silica's physicochemical stability, nontoxicity, and excellent bioavailability. This review highlights recent progress in the design, preparation, and application of silica-coated QDs and presents an overview of the major challenges and prospects of their application.
Collapse
Affiliation(s)
- Xuan-Hung Pham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (K.-M.H.); (B.S.S.); (J.K.); (E.H.); (Y.-H.K.); (S.B.); (W.K.); (S.J.)
| | - Seung-Min Park
- Department of Urology, School of Medicine, Stanford University, Stanford, CA 94305, USA;
| | - Kyeong-Min Ham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (K.-M.H.); (B.S.S.); (J.K.); (E.H.); (Y.-H.K.); (S.B.); (W.K.); (S.J.)
| | - San Kyeong
- School of Chemical and Biological Engineering, Seoul National University, Seoul 03080, Korea;
| | - Byung Sung Son
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (K.-M.H.); (B.S.S.); (J.K.); (E.H.); (Y.-H.K.); (S.B.); (W.K.); (S.J.)
| | - Jaehi Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (K.-M.H.); (B.S.S.); (J.K.); (E.H.); (Y.-H.K.); (S.B.); (W.K.); (S.J.)
| | - Eunil Hahm
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (K.-M.H.); (B.S.S.); (J.K.); (E.H.); (Y.-H.K.); (S.B.); (W.K.); (S.J.)
| | - Yoon-Hee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (K.-M.H.); (B.S.S.); (J.K.); (E.H.); (Y.-H.K.); (S.B.); (W.K.); (S.J.)
| | - Sungje Bock
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (K.-M.H.); (B.S.S.); (J.K.); (E.H.); (Y.-H.K.); (S.B.); (W.K.); (S.J.)
| | - Wooyeon Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (K.-M.H.); (B.S.S.); (J.K.); (E.H.); (Y.-H.K.); (S.B.); (W.K.); (S.J.)
| | - Seunho Jung
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (K.-M.H.); (B.S.S.); (J.K.); (E.H.); (Y.-H.K.); (S.B.); (W.K.); (S.J.)
| | - Sangtaek Oh
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Korea;
| | - Sang Hun Lee
- Department of Chemical and Biological Engineering, Hanbat National University, Daejeon 34158, Korea
| | - Do Won Hwang
- Department of Nuclear Medicine, College of Medicine, Seoul National University, Seoul 03080, Korea
- THERABEST, Co., Ltd., Seocho-daero 40-gil, Seoul 06657, Korea
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (K.-M.H.); (B.S.S.); (J.K.); (E.H.); (Y.-H.K.); (S.B.); (W.K.); (S.J.)
| |
Collapse
|
7
|
Hashimoto T, Tagaya M, Kataoka T, Chatani S, Inui M, Higa Y, Motozuka S. Synthesis and photoluminescence properties of the Eu(III)-containing silica nanoparticles via a mechanochemical solid-state reaction between SiO2 and EuCl3·6H2O. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Cagliani R, Gatto F, Cibecchini G, Marotta R, Catalano F, Sanchez-Moreno P, Pompa PP, Bardi G. CXCL5 Modified Nanoparticle Surface Improves CXCR2 + Cell Selective Internalization. Cells 2019; 9:cells9010056. [PMID: 31878341 PMCID: PMC7016632 DOI: 10.3390/cells9010056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/17/2019] [Accepted: 12/24/2019] [Indexed: 12/15/2022] Open
Abstract
Driving nanomaterials to specific cell populations is still a major challenge for different biomedical applications. Several strategies to improve cell binding and uptake have been tried thus far by intrinsic material modifications or decoration with active molecules onto their surface. In the present work, we covalently bound the chemokine CXCL5 on fluorescently labeled amino-functionalized SiO2 nanoparticles to precisely targeting CXCR2+ immune cells. We synthesized and precisely characterized the physicochemical features of the modified particles. The presence of CXCL5 on the surface was detected by z-potential variation and CXCL5-specific electron microscopy immunogold labeling. CXCL5-amino SiO2 nanoparticle cell binding and internalization performances were analyzed in CXCR2+ THP-1 cells by flow cytometry and confocal microscopy. We showed improved internalization of the chemokine modified particles in the absence or the presence of serum. This internalization was reduced by cell pre-treatment with free CXCL5. Furthermore, we demonstrated CXCR2+ cell preferential targeting by comparing particle uptake in THP-1 vs. low-CXCR2 expressing HeLa cells. Our results provide the proof of principle that chemokine decorated nanomaterials enhance uptake and allow precise cell subset localization. The possibility to aim at selective chemokine receptor-expressing cells can be beneficial for the diverse pathological conditions involving immune reactions.
Collapse
Affiliation(s)
- Roberta Cagliani
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (R.C.); (F.G.); (G.C.); (P.S.-M.); (P.P.P.)
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Francesca Gatto
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (R.C.); (F.G.); (G.C.); (P.S.-M.); (P.P.P.)
| | - Giulia Cibecchini
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (R.C.); (F.G.); (G.C.); (P.S.-M.); (P.P.P.)
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Roberto Marotta
- Electron Microscopy Laboratory, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (R.M.); (F.C.)
| | - Federico Catalano
- Electron Microscopy Laboratory, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (R.M.); (F.C.)
| | - Paola Sanchez-Moreno
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (R.C.); (F.G.); (G.C.); (P.S.-M.); (P.P.P.)
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (R.C.); (F.G.); (G.C.); (P.S.-M.); (P.P.P.)
| | - Giuseppe Bardi
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (R.C.); (F.G.); (G.C.); (P.S.-M.); (P.P.P.)
- Correspondence: ; Tel.: +39-010-2896519
| |
Collapse
|
9
|
Hashemi E, Mahdavi H, Khezri J, Razi F, Shamsara M, Farmany A. Enhanced Gene Delivery in Bacterial and Mammalian Cells Using PEGylated Calcium Doped Magnetic Nanograin. Int J Nanomedicine 2019; 14:9879-9891. [PMID: 31908446 PMCID: PMC6928224 DOI: 10.2147/ijn.s228396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/03/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Beyond viral carriers which have been widely used in gene delivery, non-viral carriers can further improve the delivery process. However, the high cytotoxicity and low efficiency impedes the clinical application of non-viral systems. Therefore, in this work, we fabricated polyethylene glycol (PEG) coated, calcium doped magnetic nanograin (PEG/Ca(II)/Fe3O4) as a genome expression enhancer. METHODS Monodisperse magnetic nanograins (MNGs) with tunable size were synthesized by a solvothermal method. The citrate anions on the spherical surface of MNGs capture Ca2+ ions by an ion exchange process, which was followed by surface capping with PEG. The synthesized PEG/Ca(II)/Fe3O4 was characterized using Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS) spectra, vibrating sample magnetometer (VSM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). MTT test was utilized to assess the toxicity of PEG/Ca(II)/Fe3O4. Real time qPCR was applied for quantification of gene expression. RESULTS DLS spectra and TEM images confirmed a thin layer of PEG on the nanocarrier surface. Shifting the zeta potential in the biological pH window from -23.9 mV (for Fe3O4) to ≈ +11 mV (for PEG/Ca(II)/Fe3O4) confirms the MNGs surface protonation. Cytotoxicity results show that cell viability and proliferation were not hindered in a wide range of nanocarrier concentrations and different incubation times. CONCLUSION PEGylated calcium doped magnetic nanograin enhanced PUC19 plasmid expression into E. Coli and GFP protein expression in HEK-293 T cells compared to control. A polymerase chain reaction of the NeoR test shows that the transformed plasmids are of high quality.
Collapse
Affiliation(s)
- Ehsan Hashemi
- National Research Center for Transgenic Mouse & Animal Biotechnology Division, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Mahdavi
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Jafar Khezri
- National Research Center for Transgenic Mouse & Animal Biotechnology Division, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Farideh Razi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shamsara
- National Research Center for Transgenic Mouse & Animal Biotechnology Division, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Abbas Farmany
- Dental Implant Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
10
|
Li M, Cheng F, Xue C, Wang H, Chen C, Du Q, Ge D, Sun B. Surface Modification of Stöber Silica Nanoparticles with Controlled Moiety Densities Determines Their Cytotoxicity Profiles in Macrophages. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14688-14695. [PMID: 31635450 DOI: 10.1021/acs.langmuir.9b02578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Physicochemical properties of nanomaterials play important roles in determining their toxicological profiles during nano-biointeraction. Among them, surface modification is one of the most effective manners to tune the cytotoxicity induced by nanomaterials. However, currently, there is no consistency in surface modification including moiety types and quantities considering the conflicting toxicological profiles of particles across different studies. In this study, in order to systematically investigate how the moiety density affects cytotoxicity of NPs, we chose three different types of functional groups, that is, -NH2, -COOH, and -PEG, and further controlled their densities on modified Stöber silica nanoparticles (NPs). We demonstrated that densities of functional groups could significantly affect the cytotoxicities of Stöber silica NPs. Regardless of the types of functional groups, high grafting densities could ameliorate the cytotoxicities induced by Stöber silica NPs in macrophages, for example, J774A.1 and N9 cells. When equal amounts of functional groups were present, the cell viability increased in the order of -COOH < -NH2 < -PEG. Furthermore, it was shown that surface modification could significantly affect the quantities of the surface silanol, which is the determining factor that affects their cytotoxicity. These results show that it is critical to control the surface moiety both quantitatively and qualitatively, which can tune the interaction outcomes at the nano-bio interface. The results found in this article provide useful guidance to adjust nanomaterial cytotoxicity for safer biomedical applications.
Collapse
Affiliation(s)
| | | | - Changying Xue
- School of Bioengineering , Dalian University of Technology , 116024 Dalian , China
| | | | - Chen Chen
- School of Bioengineering , Dalian University of Technology , 116024 Dalian , China
| | | | | | | |
Collapse
|
11
|
Du Q, Ge D, Mirshafiee V, Chen C, Li M, Xue C, Ma X, Sun B. Assessment of neurotoxicity induced by different-sized Stöber silica nanoparticles: induction of pyroptosis in microglia. NANOSCALE 2019; 11:12965-12972. [PMID: 31259344 DOI: 10.1039/c9nr03756j] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
With the wide application of Stöber silica nanoparticles and their ability to access the brain, it is crucial to evaluate their neurotoxicity. In this study, we used three in vitro model cells, i.e., N9, bEnd.3 and HT22 cells, representing microglia, microendothelial cells and neurons, respectively, to assess the neurotoxicity of Stöber silica nanoparticles with different sizes. We found that Stöber silica nanoparticles almost had no effect on the viability of bEnd.3 and HT22 cells. In contrast, they induced size-dependent toxicity in N9 cells, which represent the residential macrophages of the central nervous system. Further mechanistic study demonstrated that the toxicity in N9 cells was related to their surface silanol display. In addition, we demonstrated that Stöber silica nanoparticles induced the production of mitochondrial ROS, release of IL-1β, cleavage of GSDMD, and occurrence of pyroptosis in N9 cells. Features of pyroptosis were also observed in primary microglia and macrophage J774A.1. In conclusion, these findings were helpful for the safety consideration of Stöber silica nanoparticles considering their wide applications in our daily life.
Collapse
Affiliation(s)
- Qiqi Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China. and School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Dan Ge
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China. and School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Vahid Mirshafiee
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, USA
| | - Chen Chen
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China. and School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Min Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China. and School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Changying Xue
- School of Life Science and Biotechnology, Dalian University of Technology, 116024, Dalian, China
| | - Xuehu Ma
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China. and School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China. and School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| |
Collapse
|
12
|
Královec K, Havelek R, Kročová E, Kučírková L, Hauschke M, Bartáček J, Palarčík J, Sedlák M. Silica coated iron oxide nanoparticles-induced cytotoxicity, genotoxicity and its underlying mechanism in human HK-2 renal proximal tubule epithelial cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 844:35-45. [PMID: 31326033 DOI: 10.1016/j.mrgentox.2019.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 05/20/2019] [Accepted: 05/29/2019] [Indexed: 10/26/2022]
Abstract
Iron oxide nanoparticles (IONPs) have a great potential with regard to cell labelling, cell tracking, cell separation, magnetic resonance imaging, magnetic hyperthermia, targeted drug and gene delivery. However, a growing body of research has raised concerns about the possible unwanted adverse cytotoxic effects of IONPs. In the present study, the in vitro cellular uptake, antiproliferative activity, cytotoxicity, genotoxicity, prooxidant, microtubule-disrupting and apoptosis-inducing effect of Fe3O4@SiO2 and passivated Fe3O4@SiO2-NH2 nanoparticles on human renal proximal tubule epithelial cells (HK-2) have been studied. Both investigated silica coated IONPs were found to have cell growth-inhibitory activity in a time- and dose-dependent manner. Determination of cell cycle phase distribution by flow cytometry demonstrated a G1 and G2/M phase accumulation of HK-2 cells. A tetrazolium salt cytotoxicity assay at 24 h following treatment demonstrated that cell viability was reduced in a dose-dependent manner. Microscopy observations showed that both Fe3O4@SiO2 and Fe3O4@SiO2-NH2 nanoparticles accumulated in cells and appeared to have microtubule-disrupting activity. Our study also revealed that short term 1 h exposure to 25 and 100 μg/mL of silica coated IONPs causes genotoxicity. Compared with vehicle control cells, a significantly higher amount of γH2AX foci correlating with an increase in DNA double-strand breaks was observed in Fe3O4@SiO2 and Fe3O4@SiO2-NH2-treated and immunestained HK-2 cells. The investigated nanoparticles did not trigger significant ROS generation and apoptosis-mediated cell death. In conclusion, these findings provide new insights into the cytotoxicity of silica coated IONPs that may support their further safer use.
Collapse
Affiliation(s)
- Karel Královec
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic.
| | - Radim Havelek
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, Hradec Králové 500 03, Czech Republic
| | - Eliška Kročová
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| | - Lucie Kučírková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| | - Martina Hauschke
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| | - Jan Bartáček
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Jiří Palarčík
- Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Miloš Sedlák
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| |
Collapse
|
13
|
Panebianco F, Climent M, Malvindi MA, Pompa PP, Bonetti P, Nicassio F. Delivery of biologically active miR-34a in normal and cancer mammary epithelial cells by synthetic nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 19:95-105. [PMID: 31028887 DOI: 10.1016/j.nano.2019.03.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/20/2019] [Indexed: 02/06/2023]
Abstract
Functional RNAs, such as microRNAs, are emerging as innovative tools in the treatment of aggressive and incurable cancers. In this study, we explore the potential of silica dioxide nanoparticles (SiO2NPs) in the delivery of biologically active miRNAs. Focusing on the tumor-suppressor miR-34a, we evaluated miRNAs delivery by SiO2NPs into the mammary gland, using in vitro as well as in vivo model systems. We showed that silica nanoparticles can efficiently deliver miR-34a into normal and cancer epithelial cells grown in culture without major signs of toxicity. Delivered miRNA retained the ability to silence artificial as well endogenous targets and can reduce the growth of mammospheres in 3D culture. Finally, miR-34a delivery through intra-tumor administration of SiO2NPs leads to a reduced mammary tumor growth. In conclusion, our studies suggest that silica nanoparticles can mediate the delivery of miR-34a directly into mammary tumors while preserving its molecular and biological activity.
Collapse
Affiliation(s)
- Fabiana Panebianco
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Montserrat Climent
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Mari Ada Malvindi
- Nanobiointeractions & Nanodiagnostics, Center for Biomolecular Nanotechnologies@UniLe, Istituto Italiano di Tecnologia, Arnesano (Lecce), Italy
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Center for Biomolecular Nanotechnologies@UniLe, Istituto Italiano di Tecnologia, Arnesano (Lecce), Italy; Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Paola Bonetti
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy.
| | - Francesco Nicassio
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy.
| |
Collapse
|
14
|
Tagaya M, Abe S, Motozuka S, Shiba K, Takemura T, Hayashi I, Sakaguchi Y. Surface-engineered mesoporous silica particles with luminescent, cytocompatible and targeting properties for cancer cell imaging. RSC Adv 2017. [DOI: 10.1039/c7ra00535k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mechanochemically-treated europium(iii)-doped mesoporous silica particles were prepared, and a targeting ligand for cancer cells was immobilized. The surface-engineered particles exhibited the clear imaging along with all the cellular shapes.
Collapse
Affiliation(s)
- Motohiro Tagaya
- Department of Materials Science and Technology
- Nagaoka University of Technology
- Nagaoka
- Japan
| | - Shigeaki Abe
- Graduate School of Dental Medicine
- Hokkaido University
- Sapporo 060-8586
- Japan
| | - Satoshi Motozuka
- Department of Mechanical Engineering
- Gifu National College of Technology
- Motosu
- Japan
| | - Kota Shiba
- World Premier International Research Center Initiative (WPI)
- International Center for Materials Nanoarchitectonics (MANA)
- National Institute for Materials Science (NIMS)
- Tsukuba
- Japan
| | - Taro Takemura
- Nanotechnology Innovation Station
- National Institute for Materials Science (NIMS)
- Tsukuba
- Japan
| | - Ikuo Hayashi
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | | |
Collapse
|
15
|
Cheng J, Wen S, Wang S, Hao P, Cheng Z, Liu Y, Zhao P, Liu J. gp85 protein vaccine adjuvanted with silica nanoparticles against ALV-J in chickens. Vaccine 2016; 35:293-298. [PMID: 27912987 DOI: 10.1016/j.vaccine.2016.11.077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 11/27/2022]
Abstract
This study focused on the effect of silica nanoparticles as adjuvant for vaccine applications comprised of gp85, a dominating structural protein of J Subgroup Avian Leukosis Virus (ALV-J), and which was evaluated by comparing with the responsiveness induced by that emulsified in Freund adjuvant. Thirty-six chickens were inoculated twice with gp85 adjuvanted with the silica nanoparticles or Freund's adjuvant at the 2nd and 3rd week old. Two weeks later, the inoculated chickens were challenged with a 102.2 50% tissue culture infective dose (TCID50) of ALV-J. The blood samples were collected weekly to detect the serum antibodies and viremia. Results showed that positive serum antibodies (S/P value>0.6) against gp85 emerged at the third week in the inoculated chickens, while the antibodies level persisted longer in silica nanoparticles adjuvanted-group to Freund's adjuvanted-group. Furthermore, viremia in silica nanoparticles adjuvanted-group was recovered more quickly compared with Freund's adjuvanted-group. Hence our study revealed that silica nanoparticles can effectively improve the protection of gp85 vaccine against ALV-J and present a better performance than Freund's adjuvant.
Collapse
Affiliation(s)
- Jia Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Shiyong Wen
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot 011018, China; Dezhou Municipal Finance Bureau, Dezhou 253014, China
| | - Shenghua Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Pan Hao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Yongxia Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Peng Zhao
- Research Center for Animal Disease Control Engineering Shandong Province, Shandong Agricultural University, Tai'an 271018, China.
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
16
|
Oh E, Liu R, Nel A, Gemill KB, Bilal M, Cohen Y, Medintz IL. Meta-analysis of cellular toxicity for cadmium-containing quantum dots. NATURE NANOTECHNOLOGY 2016; 11:479-86. [PMID: 26925827 DOI: 10.1038/nnano.2015.338] [Citation(s) in RCA: 281] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/16/2015] [Indexed: 04/14/2023]
Abstract
Understanding the relationships between the physicochemical properties of engineered nanomaterials and their toxicity is critical for environmental and health risk analysis. However, this task is confounded by material diversity, heterogeneity of published data and limited sampling within individual studies. Here, we present an approach for analysing and extracting pertinent knowledge from published studies focusing on the cellular toxicity of cadmium-containing semiconductor quantum dots. From 307 publications, we obtain 1,741 cell viability-related data samples, each with 24 qualitative and quantitative attributes describing the material properties and experimental conditions. Using random forest regression models to analyse the data, we show that toxicity is closely correlated with quantum dot surface properties (including shell, ligand and surface modifications), diameter, assay type and exposure time. Our approach of integrating quantitative and categorical data provides a roadmap for interrogating the wide-ranging toxicity data in the literature and suggests that meta-analysis can help develop methods for predicting the toxicity of engineered nanomaterials.
Collapse
Affiliation(s)
- Eunkeu Oh
- Optical Sciences Division, Code 5611, US Naval Research Laboratory, Washington, Washington DC 20375, USA
- Sotera Defense Solutions, Columbia, Maryland 21046, USA
| | - Rong Liu
- Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095-1496, USA
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles, California 90095-7227, USA
| | - Andre Nel
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles, California 90095-7227, USA
- Department of Medicine, Division of NanoMedicine, University of California, Los Angeles, California 90095, USA
| | - Kelly Boeneman Gemill
- Center for Bio/Molecular Science and Engineering, Code 6900, US Naval Research Laboratory, SW Washington, Washington DC 20375, USA
| | - Muhammad Bilal
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles, California 90095-7227, USA
| | - Yoram Cohen
- Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095-1496, USA
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles, California 90095-7227, USA
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095-1592, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, US Naval Research Laboratory, SW Washington, Washington DC 20375, USA
| |
Collapse
|
17
|
Antony EJ, Shibu A, Ramasamy S, Paulraj MS, Enoch IVMV. Loading of atorvastatin and linezolid in β-cyclodextrin-conjugated cadmium selenide/silica nanoparticles: A spectroscopic study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 65:194-8. [PMID: 27157743 DOI: 10.1016/j.msec.2016.04.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/12/2016] [Accepted: 04/11/2016] [Indexed: 11/25/2022]
Abstract
The preparation of β-cyclodextrin-conjugated cadmium selenide-silica nanoparticles, the loading of two drugs viz., Atorvastatin and linezolid in the cyclodextrin cavity, and the fluorescence energy transfer between CdSe/SiO2 nanoparticles and the drugs encapsulated in the cyclodextrin cavity are reported in this paper. IR spectroscopy, X-ray diffractometry, transmission electron microscopy, and particle size analysis by light-scattering experiment were used as the tools of characterizing the size and the crystal system of the nanoparticles. The nanoparticles fall under hexagonal system. The silica-shell containing CdSe nanoparticles were functionalized by reaction with aminoethylamino-β-cyclodextrin. Fluorescence spectra of the nanoparticles in their free and drug-encapsulated forms were studied. The FÖrster distances between the encapsulated drugs and the CdSe nanoparticles are below 3nm. The change in the FÖrster resonance energy parameters under physiological conditions may aid in tracking the release of drugs from the cavity of the cyclodextrin.
Collapse
Affiliation(s)
- Eva Janet Antony
- Department of Nanosciences & Technology, Karunya University, Coimbatore 641114, Tamil Nadu, India
| | - Abhishek Shibu
- Department of Nanosciences & Technology, Karunya University, Coimbatore 641114, Tamil Nadu, India
| | - Sivaraj Ramasamy
- Department of Chemistry, Karunya University, Coimbatore 641114, Tamil Nadu, India
| | | | - Israel V M V Enoch
- Department of Nanosciences & Technology, Karunya University, Coimbatore 641114, Tamil Nadu, India; Department of Chemistry, Karunya University, Coimbatore 641114, Tamil Nadu, India.
| |
Collapse
|
18
|
Ajetunmobi A, Prina-Mello A, Volkov Y, Corvin A, Tropea D. Nanotechnologies for the study of the central nervous system. Prog Neurobiol 2014; 123:18-36. [PMID: 25291406 DOI: 10.1016/j.pneurobio.2014.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 09/29/2014] [Accepted: 09/29/2014] [Indexed: 12/16/2022]
Abstract
The impact of central nervous system (CNS) disorders on the human population is significant, contributing almost €800 billion in annual European healthcare costs. These disorders not only have a disabling social impact but also a crippling economic drain on resources. Developing novel therapeutic strategies for these disorders requires a better understanding of events that underlie mechanisms of neural circuit physiology. Studying the relationship between genetic expression, synapse development and circuit physiology in CNS function is a challenging task, involving simultaneous analysis of multiple parameters and the convergence of several disciplines and technological approaches. However, current gold-standard techniques used to study the CNS have limitations that pose unique challenges to furthering our understanding of functional CNS development. The recent advancement in nanotechnologies for biomedical applications has seen the emergence of nanoscience as a key enabling technology for delivering a translational bridge between basic and clinical research. In particular, the development of neuroimaging and electrophysiology tools to identify the aetiology and progression of CNS disorders have led to new insights in our understanding of CNS physiology and the development of novel diagnostic modalities for therapeutic intervention. This review focuses on the latest applications of these nanotechnologies for investigating CNS function and the improved diagnosis of CNS disorders.
Collapse
Affiliation(s)
- A Ajetunmobi
- Department of Clinical Medicine, Institute of Molecular Medicine, St. James' Hospital, Trinity College Dublin, Ireland; Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Ireland
| | - A Prina-Mello
- Department of Clinical Medicine, Institute of Molecular Medicine, St. James' Hospital, Trinity College Dublin, Ireland; Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Ireland.
| | - Y Volkov
- Department of Clinical Medicine, Institute of Molecular Medicine, St. James' Hospital, Trinity College Dublin, Ireland; Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Ireland
| | - A Corvin
- Department of Psychiatry, Institute of Molecular Medicine, St. James' Hospital, Trinity College Dublin, Ireland
| | - D Tropea
- Department of Psychiatry, Institute of Molecular Medicine, St. James' Hospital, Trinity College Dublin, Ireland.
| |
Collapse
|
19
|
Wang Y, Cui H, Li K, Sun C, Du W, Cui J, Zhao X, Chen W. A magnetic nanoparticle-based multiple-gene delivery system for transfection of porcine kidney cells. PLoS One 2014; 9:e102886. [PMID: 25048709 PMCID: PMC4105564 DOI: 10.1371/journal.pone.0102886] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 06/24/2014] [Indexed: 01/13/2023] Open
Abstract
Superparamagnetic nanoparticles are promising candidates for gene delivery into mammalian somatic cells and may be useful for reproductive cloning using the somatic cell nuclear transfer technique. However, limited investigations of their potential applications in animal genetics and breeding, particularly multiple-gene delivery by magnetofection, have been performed. Here, we developed a stable, targetable and convenient system for delivering multiple genes into the nuclei of porcine somatic cells using magnetic Fe3O4 nanoparticles as gene carriers. After surface modification by polyethylenimine, the spherical magnetic Fe3O4 nanoparticles showed strong binding affinity for DNA plasmids expressing the genes encoding a green (DNAGFP) or red (DNADsRed) fluorescent protein. At weight ratios of DNAGFP or DNADsRed to magnetic nanoparticles lower than or equal to 10∶1 or 5∶1, respectively, the DNA molecules were completely bound by the magnetic nanoparticles. Atomic force microscopy analyses confirmed binding of the spherical magnetic nanoparticles to stretched DNA strands up to several hundred nanometers in length. As a result, stable and efficient co-expression of GFP and DsRed in porcine kidney PK-15 cells was achieved by magnetofection. The results presented here demonstrate the potential application of magnetic nanoparticles as an attractive delivery system for animal genetics and breeding studies.
Collapse
Affiliation(s)
- Yan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Zhongguancun Haidian District, Beijing, China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Zhongguancun Haidian District, Beijing, China
- * E-mail:
| | - Kui Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, China
| | - Changjiao Sun
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Zhongguancun Haidian District, Beijing, China
| | - Wei Du
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Zhongguancun Haidian District, Beijing, China
| | - Jinhui Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Zhongguancun Haidian District, Beijing, China
| | - Xiang Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Zhongguancun Haidian District, Beijing, China
| | - Wenjie Chen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Zhongguancun Haidian District, Beijing, China
| |
Collapse
|
20
|
Tagaya M, Ikoma T, Xu Z, Tanaka J. Synthesis of Luminescent Nanoporous Silica Spheres Functionalized with Folic Acid for Targeting to Cancer Cells. Inorg Chem 2014; 53:6817-27. [DOI: 10.1021/ic500609g] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Motohiro Tagaya
- Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Toshiyuki Ikoma
- Department of Metallurgy
and Ceramics Science, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Zhefeng Xu
- Department of Mechanical
Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Junzo Tanaka
- Department of Metallurgy
and Ceramics Science, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
21
|
Sosnik A, Carcaboso AM. Nanomedicines in the future of pediatric therapy. Adv Drug Deliv Rev 2014; 73:140-61. [PMID: 24819219 DOI: 10.1016/j.addr.2014.05.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 04/16/2014] [Accepted: 05/01/2014] [Indexed: 01/02/2023]
Abstract
Nanotechnology has become a key tool to overcome the main (bio)pharmaceutical drawbacks of drugs and to enable their passive or active targeting to specific cells and tissues. Pediatric therapies usually rely on the previous clinical experience in adults. However, there exists scientific evidence that drug pharmacokinetics and pharmacodynamics in children differ from those in adults. For example, the interaction of specific drugs with their target receptors undergoes changes over the maturation of the different organs and systems. A similar phenomenon is observed for toxicity and adverse effects. Thus, it is clear that the treatment of disease in children cannot be simplified to the direct adjustment of the dose to the body weight/surface. In this context, the implementation of innovative technologies (e.g., nanotechnology) in the pediatric population becomes extremely challenging. The present article overviews the different attempts to use nanotechnology to treat diseases in the pediatric population. Due to the relevance, though limited available literature on the matter, we initially describe from preliminary in vitro studies to preclinical and clinical trials aiming to treat pediatric infectious diseases and pediatric solid tumors by means of nanotechnology. Then, the perspectives of pediatric nanomedicine are discussed.
Collapse
Affiliation(s)
- Alejandro Sosnik
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| | - Angel M Carcaboso
- Preclinical Therapeutics and Drug Delivery Research Program, Department of Oncology, Hospital Sant Joan de Déu Barcelona, Esplugues de Llobregat, Barcelona 08950, Spain
| |
Collapse
|
22
|
Shiba K, Tagaya M, Hanagata N. Synthesis of cytocompatible luminescent titania/fluorescein hybrid nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2014; 6:6825-6834. [PMID: 24731289 DOI: 10.1021/am500636d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Luminescent titania-fluorescein (FS) hybrid nanoparticles (NPs) were successfully synthesized by a sol-gel reaction of titanium alkoxide in the presence of octadecylamine using a fluidic reactor with a Y-type channel. The molar ratio of FS/Ti ratio was varied in the range from 1/1000 to 1/100 in order to obtain the hybrid NPs with the different luminescent behavior. The shape of the NPs is spherical and their sizes are 400 nm which is almost the same irrespective of the FS content, suggesting the different FS molecular states in one NP. We also demonstrated that the hybrid NPs exhibited a characteristic luminescence; the NPs with the higher and lower FS contents exhibited an enhanced luminescence in PBS and air, respectively, indicating that the FS states responded to the molecular environment. Through cytocompatible experiments using the NPs, it turned out that they had a high compatibility for fibroblasts. Therefore, the preparation of a series of the luminescent NPs with a tunable luminescence property was achieved. The results will lead to a guideline to determine a proper combination between material composition and an environment where they are used, being useful for biomedical applications.
Collapse
Affiliation(s)
- Kota Shiba
- World Premier International (WPI) Research Center, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | | | | |
Collapse
|
23
|
Gamucci O, Bertero A, Malvindi MA, Sabella S, Pompa PP, Mazzolai B, Bardi G. Detection of fluorescent nanoparticle interactions with primary immune cell subpopulations by flow cytometry. J Vis Exp 2014. [PMID: 24747480 PMCID: PMC4159100 DOI: 10.3791/51345] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Engineered nanoparticles are endowed with very promising properties for therapeutic and diagnostic purposes. This work describes a fast and reliable method of analysis by flow cytometry to study nanoparticle interaction with immune cells. Primary immune cells can be easily purified from human or mouse tissues by antibody-mediated magnetic isolation. In the first instance, the different cell populations running in a flow cytometer can be distinguished by the forward-scattered light (FSC), which is proportional to cell size, and the side-scattered light (SSC), related to cell internal complexity. Furthermore, fluorescently labeled antibodies against specific cell surface receptors permit the identification of several subpopulations within the same sample. Often, all these features vary when cells are boosted by external stimuli that change their physiological and morphological state. Here, 50 nm FITC-SiO2 nanoparticles are used as a model to identify the internalization of nanostructured materials in human blood immune cells. The cell fluorescence and side-scattered light increase after incubation with nanoparticles allowed us to define time and concentration dependence of nanoparticle-cell interaction. Moreover, such protocol can be extended to investigate Rhodamine-SiO2 nanoparticle interaction with primary microglia, the central nervous system resident immune cells, isolated from mutant mice that specifically express the Green Fluorescent Protein (GFP) in the monocyte/macrophage lineage. Finally, flow cytometry data related to nanoparticle internalization into the cells have been confirmed by confocal microscopy.
Collapse
Affiliation(s)
- Olimpia Gamucci
- Center for Micro-BioRobotics @SSSA, Istituto Italiano di Tecnologia
| | - Alice Bertero
- Center for Micro-BioRobotics @SSSA, Istituto Italiano di Tecnologia; Department of Biology, University of Pisa
| | - Maria Ada Malvindi
- Center for Biomolecular Nanotechnologies @UniLe, Istituto Italiano di Tecnologia
| | - Stefania Sabella
- Center for Biomolecular Nanotechnologies @UniLe, Istituto Italiano di Tecnologia
| | - Pier Paolo Pompa
- Center for Biomolecular Nanotechnologies @UniLe, Istituto Italiano di Tecnologia
| | - Barbara Mazzolai
- Center for Micro-BioRobotics @SSSA, Istituto Italiano di Tecnologia
| | - Giuseppe Bardi
- Center for Micro-BioRobotics @SSSA, Istituto Italiano di Tecnologia;
| |
Collapse
|
24
|
|
25
|
|
26
|
Malvindi MA, De Matteis V, Galeone A, Brunetti V, Anyfantis GC, Athanassiou A, Cingolani R, Pompa PP. Toxicity assessment of silica coated iron oxide nanoparticles and biocompatibility improvement by surface engineering. PLoS One 2014; 9:e85835. [PMID: 24465736 PMCID: PMC3897540 DOI: 10.1371/journal.pone.0085835] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/02/2013] [Indexed: 01/01/2023] Open
Abstract
We have studied in vitro toxicity of iron oxide nanoparticles (NPs) coated with a thin silica shell (Fe3O4/SiO2 NPs) on A549 and HeLa cells. We compared bare and surface passivated Fe3O4/SiO2 NPs to evaluate the effects of the coating on the particle stability and toxicity. NPs cytotoxicity was investigated by cell viability, membrane integrity, mitochondrial membrane potential (MMP), reactive oxygen species (ROS) assays, and their genotoxicity by comet assay. Our results show that NPs surface passivation reduces the oxidative stress and alteration of iron homeostasis and, consequently, the overall toxicity, despite bare and passivated NPs show similar cell internalization efficiency. We found that the higher toxicity of bare NPs is due to their stronger in-situ degradation, with larger intracellular release of iron ions, as compared to surface passivated NPs. Our results indicate that surface engineering of Fe3O4/SiO2 NPs plays a key role in improving particles stability in biological environments reducing both cytotoxic and genotoxic effects.
Collapse
Affiliation(s)
- Maria Ada Malvindi
- Center for Biomolecular Nanotechnologies@UNILE, Istituto Italiano di Tecnologia, Arnesano, Italy
| | - Valeria De Matteis
- Center for Biomolecular Nanotechnologies@UNILE, Istituto Italiano di Tecnologia, Arnesano, Italy
| | - Antonio Galeone
- Center for Biomolecular Nanotechnologies@UNILE, Istituto Italiano di Tecnologia, Arnesano, Italy
| | - Virgilio Brunetti
- Center for Biomolecular Nanotechnologies@UNILE, Istituto Italiano di Tecnologia, Arnesano, Italy
| | | | | | | | - Pier Paolo Pompa
- Center for Biomolecular Nanotechnologies@UNILE, Istituto Italiano di Tecnologia, Arnesano, Italy
- * E-mail:
| |
Collapse
|
27
|
Ebara M, Kotsuchibashi Y, Uto K, Aoyagi T, Kim YJ, Narain R, Idota N, Hoffman JM. Smart Nanoassemblies and Nanoparticles. NIMS MONOGRAPHS 2014. [DOI: 10.1007/978-4-431-54400-5_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
28
|
Kotsuchibashi Y, Wang Y, Kim YJ, Ebara M, Aoyagi T, Narain R. Simple coating with pH-responsive polymer-functionalized silica nanoparticles of mixed sizes for controlled surface properties. ACS APPLIED MATERIALS & INTERFACES 2013; 5:10004-10010. [PMID: 24059283 DOI: 10.1021/am403007f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Different-sized silica nanoparticles (SiNPs) were functionalized by pH-responsive poly(2-(diisopropylamino)ethyl methacrylate) (PDP) via surface-initiated atom transfer radical polymerization (ATRP). The functionalized PDP-SiNPs were used to coat glass surfaces, polymeric nanofibers, and paper via simple coating methods such as dip, cast, and spray coating. A PDP-SiNPs mixture having different sizes was found to change the surface properties of the substrates remarkably, compared to one containing PDP-SiNPs with uniform sizes. High surface roughness was achieved with very little coating materials, which is beneficial from an economical point of view. Moreover, adsorption/desorption of PDP-SiNPs onto/from the substrates could be controlled by changing solution pH due to the protonation/deprotonation of the PDP. The surface properties of the coated substrates were analyzed by contact angle (CA) measurement, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). This inexpensive system provides a simple, quick, and effective approach to changing the surface properties of substrates that could be exploited for large-scale surface modification.
Collapse
Affiliation(s)
- Yohei Kotsuchibashi
- Department of Chemical and Materials Engineering, University of Alberta , Edmonton, Alberta, T6G 2V4, Canada
| | | | | | | | | | | |
Collapse
|
29
|
Li B, Klekachev AV, Cantoro M, Huyghebaert C, Stesmans A, Asselberghs I, De Gendt S, De Feyter S. Toward tunable doping in graphene FETs by molecular self-assembled monolayers. NANOSCALE 2013; 5:9640-9644. [PMID: 23827941 DOI: 10.1039/c3nr01255g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this paper, we report the formation of self-assembled monolayers (SAMs) of oleylamine (OA) on highly oriented pyrolytic graphite (HOPG) and graphene surfaces and demonstrate the potential of using such organic SAMs to tailor the electronic properties of graphene. Molecular resolution Atomic Force Microscopy (AFM) and Scanning Tunneling Microscopy (STM) images reveal the detailed molecular ordering. The electrical measurements show that OA strongly interacts with graphene leading to n-doping effects in graphene devices. The doping levels are tunable by varying the OA deposition conditions. Importantly, neither hole nor electron mobilities are decreased by the OA modification. As a benefit from this noncovalent modification strategy, the pristine characteristics of the device are recoverable upon OA removal. From this study, one can envision the possibility to correlate the graphene-based device performance with the molecular structure and supramolecular ordering of the organic dopant.
Collapse
Affiliation(s)
- Bing Li
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Charkhkar H, Frewin C, Nezafati M, Knaack GL, Peixoto N, Saddow SE, Pancrazio JJ. Use of cortical neuronal networks for in vitro material biocompatibility testing. Biosens Bioelectron 2013; 53:316-23. [PMID: 24176966 DOI: 10.1016/j.bios.2013.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 10/03/2013] [Accepted: 10/03/2013] [Indexed: 11/18/2022]
Abstract
Neural interfaces aim to restore neurological function lost during disease or injury. Novel implantable neural interfaces increasingly capitalize on novel materials to achieve microscale coupling with the nervous system. Like any biomedical device, neural interfaces should consist of materials that exhibit biocompatibility in accordance with the international standard ISO10993-5, which describes in vitro testing involving fibroblasts where cytotoxicity serves as the main endpoint. In the present study, we examine the utility of living neuronal networks as functional assays for in vitro material biocompatibility, particularly for materials that comprise implantable neural interfaces. Embryonic mouse cortical tissue was cultured to form functional networks where spontaneous action potentials, or spikes, can be monitored non-invasively using a substrate-integrated microelectrode array. Taking advantage of such a platform, we exposed established positive and negative control materials to the neuronal networks in a consistent method with ISO 10993-5 guidance. Exposure to the negative controls, gold and polyethylene, did not significantly change the neuronal activity whereas the positive controls, copper and polyvinyl chloride (PVC), resulted in reduction of network spike rate. We also compared the functional assay with an established cytotoxicity measure using L929 fibroblast cells. Our findings indicate that neuronal networks exhibit enhanced sensitivity to positive control materials. In addition, we assessed functional neurotoxicity of tungsten, a common microelectrode material, and two conducting polymer formulations that have been used to modify microelectrode properties for in vivo recording and stimulation. These data suggest that cultured neuronal networks are a useful platform for evaluating the functional toxicity of materials intended for implantation in the nervous system.
Collapse
Affiliation(s)
- Hamid Charkhkar
- Electrical and Computer Engineering Department, George Mason University, 4400 University Dr. MSN 1G5, Fairfax, VA 22030, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Efficient gene transfection in the neurotypic cells by star-shaped polymer consisting of β-cyclodextrin core and poly(amidoamine) dendron arms. Carbohydr Polym 2013; 94:185-92. [DOI: 10.1016/j.carbpol.2012.12.070] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 12/06/2012] [Accepted: 12/31/2012] [Indexed: 11/16/2022]
|
32
|
Bertero A, Boni A, Gemmi M, Gagliardi M, Bifone A, Bardi G. Surface functionalisation regulates polyamidoamine dendrimer toxicity on blood–brain barrier cells and the modulation of key inflammatory receptors on microglia. Nanotoxicology 2013; 8:158-68. [DOI: 10.3109/17435390.2013.765054] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
Albertazzi L, Gherardini L, Brondi M, Sulis Sato S, Bifone A, Pizzorusso T, Ratto GM, Bardi G. In Vivo Distribution and Toxicity of PAMAM Dendrimers in the Central Nervous System Depend on Their Surface Chemistry. Mol Pharm 2012; 10:249-60. [DOI: 10.1021/mp300391v] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lorenzo Albertazzi
- Center for Nanotechnology Innovation
@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127
Pisa, Italy
- Laboratorio
NEST, Scuola Normale
Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Lisa Gherardini
- Institute of Neuroscience—CNR,
Via Moruzzi 1, 56124 Pisa, Italy
- Institute of Clinical Physiology—CNR,
Via Fiorentina 1, 53100 Siena, Italy
| | - Marco Brondi
- Center for Nanotechnology Innovation
@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127
Pisa, Italy
- Laboratorio
NEST, Scuola Normale
Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Sebastian Sulis Sato
- Center for Nanotechnology Innovation
@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127
Pisa, Italy
- Laboratorio
NEST, Scuola Normale
Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Angelo Bifone
- Center for Nanotechnology Innovation
@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127
Pisa, Italy
| | - Tommaso Pizzorusso
- Institute of Neuroscience—CNR,
Via Moruzzi 1, 56124 Pisa, Italy
- Department of Psychology, University
of Florence, Via di San Niccolò, 89a-95 50125 Florence, Italy
| | - Gian Michele Ratto
- Laboratorio
NEST, Scuola Normale
Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
- Institute of Nanoscience—CNR,
Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Giuseppe Bardi
- Center for Nanotechnology Innovation
@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127
Pisa, Italy
| |
Collapse
|
34
|
Fluorescent nanoparticles for intracellular sensing: A review. Anal Chim Acta 2012; 751:1-23. [DOI: 10.1016/j.aca.2012.09.025] [Citation(s) in RCA: 237] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 09/13/2012] [Accepted: 09/16/2012] [Indexed: 12/31/2022]
|
35
|
Recent advances in the rational design of silica-based nanoparticles for gene therapy. Ther Deliv 2012. [DOI: 10.4155/tde.12.98] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gene therapy has attracted much attention in modern society and provides a promising approach for treating genetic disorders, diseases and cancers. Safe and effective vectors are vital tools to deliver genetic molecules to cells. This review summarizes recent advances in the rational design of silica-based nanoparticles and their applications in gene therapy. An overview of different types of genetic agents available for gene therapy is provided. The engineering of various silica nanoparticles is described, which can be used as versatile complexation tools for genetic agents and advanced gene therapy. Several challenges are raised and future research directions in the area of gene therapy using silica-based nanoparticles are proposed.
Collapse
|
36
|
Liu C, Zhang P, Zhai X, Tian F, Li W, Yang J, Liu Y, Wang H, Wang W, Liu W. Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials 2012; 33:3604-13. [DOI: 10.1016/j.biomaterials.2012.01.052] [Citation(s) in RCA: 585] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 01/29/2012] [Indexed: 11/26/2022]
|
37
|
Turyanska L, Bradshaw TD, Li M, Bardelang P, Drewe WC, Fay MW, Mann S, Patanè A, Thomas NR. The differential effect of apoferritin-PbS nanocomposites on cell cycle progression in normal and cancerous cells. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c1jm13563e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Functionalized Nanoparticles and Chitosan-Based Functional Nanomaterials. MULTIFACETED DEVELOPMENT AND APPLICATION OF BIOPOLYMERS FOR BIOLOGY, BIOMEDICINE AND NANOTECHNOLOGY 2012. [DOI: 10.1007/12_2012_200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
39
|
Zhou D, Li C, Hu Y, Zhou H, Chen J, Zhang Z, Guo T. PLL/pDNA/P(His-co-DMAEL) ternary complexes: assembly, stability and gene delivery. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm30850a] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
40
|
Gosso S, Gavello D, Giachello CN, Franchino C, Carbone E, Carabelli V. The effect of CdSe–ZnS quantum dots on calcium currents and catecholamine secretion in mouse chromaffin cells. Biomaterials 2011; 32:9040-50. [DOI: 10.1016/j.biomaterials.2011.08.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 08/10/2011] [Indexed: 01/10/2023]
|
41
|
Tanne J, Schäfer D, Khalid W, Parak WJ, Lisdat F. Light-Controlled Bioelectrochemical Sensor Based on CdSe/ZnS Quantum Dots. Anal Chem 2011; 83:7778-85. [DOI: 10.1021/ac201329u] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- J. Tanne
- Biosystems Technology, Technical University Wildau, 15745 Wildau, Germany
| | - D. Schäfer
- Biosystems Technology, Technical University Wildau, 15745 Wildau, Germany
| | - W. Khalid
- Philips University Marburg, Marburg, Germany
| | - W. J. Parak
- Philips University Marburg, Marburg, Germany
| | - F. Lisdat
- Biosystems Technology, Technical University Wildau, 15745 Wildau, Germany
| |
Collapse
|
42
|
Thakur G, Micic M, Yang Y, Li W, Movia D, Giordani S, Zhang H, Leblanc RM. Conjugated Quantum Dots Inhibit the Amyloid β (1-42) Fibrillation Process. Int J Alzheimers Dis 2011; 2011:502386. [PMID: 21423556 PMCID: PMC3056432 DOI: 10.4061/2011/502386] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 12/15/2010] [Indexed: 11/20/2022] Open
Abstract
Nanoparticles have
enormous potential in diagnostic and therapeutic
studies. We have demonstrated that the amyloid
beta mixed with and conjugated to dihydrolipoic
acid- (DHLA) capped CdSe/ZnS quantum dots (QDs)
of size approximately 2.5 nm can be used
to reduce the fibrillation process. Transmission
electron microscopy (TEM) and atomic force
microscopy (AFM) were used as tools for analysis
of fibrillation. There is a significant change
in morphology of fibrils when amyloid β (1–42) (Aβ (1–42)) is mixed or conjugated to the QDs. The length and the width of the fibrils vary under modified conditions. Thioflavin T (ThT) fluorescence supports the decrease in fibril formation in presence of DHLA-capped QDs.
Collapse
Affiliation(s)
- Garima Thakur
- 1301 Memorial Drive, Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Smith D, Holley AC, McCormick CL. RAFT-synthesized copolymers and conjugates designed for therapeutic delivery of siRNA. Polym Chem 2011. [DOI: 10.1039/c1py00038a] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Scaffaro R, Botta L, Lo Re G, Bertani R, Milani R, Sassi A. Surface modification of poly(ethylene-co-acrylic acid) with amino-functionalized silica nanoparticles. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm03310c] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|