1
|
Hong CW, Tsai HY, Chung CH, Wang JC, Hsu YJ, Lin CY, Hsu CW, Chien WC, Tsai SH. The associations among peptic ulcer disease, Helicobacter pylori infection, and abdominal aortic aneurysms: A nationwide population-based cohort study. J Cardiol 2024; 84:180-188. [PMID: 38382580 DOI: 10.1016/j.jjcc.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/11/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND There are overlapping risk factors and underlying molecular mechanisms for both peptic ulcer disease (PUD) and abdominal aortic aneurysm (AAA). Despite improvements in the early diagnosis and treatment of AAA, ruptured AAAs continue to cause a substantial number of deaths. Helicobacter pylori are Gram-negative, microaerophilic bacteria that are now recognized as the main cause of PUD. H. pylori infection (HPI) is associated with an increased risk of certain cardiovascular diseases. HPIs can be treated with at least two different antibiotics to prevent bacteria from developing resistance to one particular antibiotic. METHODS We conducted a population-based cohort study using the National Health Insurance Research Database to evaluate whether associations exist among PUD, HPI, and eradication therapy for HPI and AAA. The primary outcome of this study was the cumulative incidence of AAA among patients with or without PUD and HPI during the 14-year follow-up period. RESULTS Our analysis included 7003 patients with PUD/HPI, 7003 patients with only PUD, and another 7003 age-, sex-, and comorbidity-matched controls from the database. We found that patients with PUD/HPI had a significantly increased risk of AAA compared to those with PUD alone and matched controls. The patients who had PUD/HPI had a significantly higher cumulative risk of developing AAA than those with PUD and the comparison group (2.67 % vs. 1.41 % vs. 0.73 %, respectively, p < 0.001). Among those patients with PUD/HPI, patients who had eradication therapy had a lower incidence of AAA than those without eradication therapy (2.46 % vs. 3.88 %, p = 0.012). CONCLUSIONS We revealed an association among PUD, HPI, and AAA, even after adjusting for age, sex, comorbidities, and annual medical follow-up visits. Notably, we found that HPI eradication therapy reduced the incidence of AAA among patients with PUD.
Collapse
Affiliation(s)
- Chia-Wei Hong
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsiao-Ya Tsai
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Hsiang Chung
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; School of Public Health, National Defense Medical Center, Taipei, Taiwan; Taiwanese Injury Prevention and Safety Promotion Association, Taipei, Taiwan
| | - Jen-Chun Wang
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Yuan Lin
- Department of Surgery, Division of Cardiovascular Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chin-Wang Hsu
- Department of Emergency Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Emergency and Critical Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wu-Chien Chien
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; School of Public Health, National Defense Medical Center, Taipei, Taiwan; Taiwanese Injury Prevention and Safety Promotion Association, Taipei, Taiwan.
| | - Shih-Hung Tsai
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan; Taichung Armed Forces General Hospital, Taichung, Taiwan.
| |
Collapse
|
2
|
Chao CL, Applewhite B, Reddy NK, Matiuto N, Dang C, Jiang B. Advances and challenges in regenerative therapies for abdominal aortic aneurysm. Front Cardiovasc Med 2024; 11:1369785. [PMID: 38895536 PMCID: PMC11183335 DOI: 10.3389/fcvm.2024.1369785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is a significant source of mortality worldwide and carries a mortality of greater than 80% after rupture. Despite extensive efforts to develop pharmacological treatments, there is currently no effective agent to prevent aneurysm growth and rupture. Current treatment paradigms only rely on the identification and surveillance of small aneurysms, prior to ultimate open surgical or endovascular repair. Recently, regenerative therapies have emerged as promising avenues to address the degenerative changes observed in AAA. This review briefly outlines current clinical management principles, characteristics, and pharmaceutical targets of AAA. Subsequently, a thorough discussion of regenerative approaches is provided. These include cellular approaches (vascular smooth muscle cells, endothelial cells, and mesenchymal stem cells) as well as the delivery of therapeutic molecules, gene therapies, and regenerative biomaterials. Lastly, additional barriers and considerations for clinical translation are provided. In conclusion, regenerative approaches hold significant promise for in situ reversal of tissue damages in AAA, necessitating sustained research and innovation to achieve successful and translatable therapies in a new era in AAA management.
Collapse
Affiliation(s)
- Calvin L. Chao
- Division of Vascular Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Brandon Applewhite
- Department of Biomedical Engineering, Northwestern University McCormick School of Engineering, Chicago, IL, United States
| | - Nidhi K. Reddy
- Division of Vascular Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Natalia Matiuto
- Division of Vascular Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Caitlyn Dang
- Division of Vascular Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Bin Jiang
- Division of Vascular Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Biomedical Engineering, Northwestern University McCormick School of Engineering, Chicago, IL, United States
| |
Collapse
|
3
|
Martin V, Francisca Bettencourt A, Santos C, Sousa Gomes P. Reviewing particulate delivery systems loaded with repurposed tetracyclines - From micro to nanoparticles. Int J Pharm 2024; 649:123642. [PMID: 38029863 DOI: 10.1016/j.ijpharm.2023.123642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/07/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Abstract
Tetracyclines (TCs) are a class of broad-spectrum antibacterial agents recognized for their multifaceted properties, including anti-inflammatory, angiogenic and osteogenic effects. This versatility positions them as suitable candidates for drug repurposing, benefitting from well-characterized safety and pharmacological profiles. In the attempt to explore both their antibacterial and pleiotropic effects locally, innovative therapeutic strategies were set on engineering tetracycline-loaded micro and nanoparticles to tackle a vast number of clinical applications. Moreover, the conjoined drug carrier can function as an active component of the therapeutic approach, reducing off-target effects and accumulation, synergizing to an improvement of the therapeutic efficacy. In this comprehensive review we will critically evaluate recent advances involving the use of tetracyclines loaded onto micro- or nanoparticles, intended for biomedical applications, and discuss emerging approaches and current limitations associated with these drug carriers. Owing to their distinctive physical, chemical, and biological properties, these novel carriers have the potential to become a platform technology in personalized regenerative medicine and other therapeutic applications.
Collapse
Affiliation(s)
- Victor Martin
- BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal; LAQV/REQUIMTE, University of Porto, Praça Coronel Pacheco, 4050-453 Porto, Portugal.
| | - Ana Francisca Bettencourt
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Catarina Santos
- CQE Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; EST Setúbal, CDP2T, Instituto Politécnico de Setúbal, Campus IPS, 2910 Setúbal, Portugal
| | - Pedro Sousa Gomes
- BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal; LAQV/REQUIMTE, University of Porto, Praça Coronel Pacheco, 4050-453 Porto, Portugal
| |
Collapse
|
4
|
Du P, Hou Y, Su C, Gao J, Yang Y, Zhang J, Cui X, Tang J. The future for the therapeutics of abdominal aortic aneurysm: engineered nanoparticles drug delivery for abdominal aortic aneurysm. Front Bioeng Biotechnol 2024; 11:1324406. [PMID: 38249799 PMCID: PMC10796665 DOI: 10.3389/fbioe.2023.1324406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is a severe cardiovascular disease with a high mortality rate. Several screening and diagnostic methods have been developed for AAA early diagnosis. Open surgery and endovascular aortic repair (EVAR) are clinically available for patients who meet the indications for surgery. However, for non-surgical patients, limited drugs exist to inhibit or reverse the progression of aneurysms due to the complex pathogenesis and biological structure of AAA, failing to accumulate precisely on the lesion to achieve sufficient concentrations. The recently developed nanotechnology offers a new strategy to address this problem by developing drug-carrying nanoparticles with enhanced water solubility and targeting capacity, prolonged duration, and reduced side effects. Despite the rising popularity, limited literature is available to highlight the progression of the field. Herein, in this review, we first discuss the pathogenesis of AAA, the methods of diagnosis and treatment that have been applied clinically, followed by the review of research progressions of constructing different drug-loaded nanoparticles for AAA treatment using engineered nanoparticles. In addition, the feasibility of extracellular vesicles (EVs) and EVs-based nanotechnology for AAA treatment in recent years are highlighted, together with the future perspective. We hope this review will provide a clear picture for the scientists and clinicians to find a new solution for AAA clinical management.
Collapse
Affiliation(s)
- Pengchong Du
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Yachen Hou
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Chang Su
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Jiamin Gao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Yu Yang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Jinying Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Xiaolin Cui
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Junnan Tang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| |
Collapse
|
5
|
Preparation and Characterization of Doxycycline-Loaded Electrospun PLA/HAP Nanofibers as a Drug Delivery System. MATERIALS 2022; 15:ma15062105. [PMID: 35329557 PMCID: PMC8951507 DOI: 10.3390/ma15062105] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 02/05/2023]
Abstract
The present study aimed to prepare nanofibers by electrospinning in the system polylactic acid-hydroxyapatite-doxycycline (PLA-HAP-Doxy) to be used as a drug delivery vehicle. Two different routes were employed for the preparation of Doxy-containing nanofibers: Immobilization on the electrospun mat’s surface and encapsulation in the fiber structure. The nanofibers obtained by Doxy encapsulation were characterized using Fourier transform infrared (FTIR) spectroscopy, thermogravimetric (TG) and differential thermal analyses (DTA) and scanning electron microscopy (SEM). The adsorption properties of pure PLA and PLA-HAP nanofibers were investigated for solutions with different Doxy concentrations (3, 7 and 12 wt%). Moreover, the desorption properties of the active substance were tested in two different fluids, simulated body fluid (SBF) and phosphate buffer solution (PBS), to evidence the drug release properties. In vitro drug release studies were performed and different drug release kinetics were assessed to confirm the use of these nanofiber materials as efficient drug delivery vehicles. The obtained results indicate that the PLA-HAP-Doxy is a promising system for biomedical applications, the samples with 3 and 7 wt% of Doxy-loaded PLA-HAP nanofibers prepared by physical adsorption are the most acceptable membranes to provide prolonged release in PBS/SBF rather than an immediate release of Doxy.
Collapse
|
6
|
Yin L, Zhang K, Sun Y, Liu Z. Nanoparticle-Assisted Diagnosis and Treatment for Abdominal Aortic Aneurysm. Front Med (Lausanne) 2021; 8:665846. [PMID: 34307401 PMCID: PMC8292633 DOI: 10.3389/fmed.2021.665846] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022] Open
Abstract
An abdominal aortic aneurysm (AAA) is a localized dilatation of the aorta related to the regional weakening of the wall structure, resulting in substantial morbidity and mortality with the aortic ruptures as complications. Ruptured AAA is a dramatic catastrophe, and aortic emergencies constitute one of the leading causes of acute death in older adults. AAA management has been centered on surgical repair of larger aneurysms to mitigate the risks of rupture, and curative early diagnosis and effective pharmacological treatments for this condition are still lacking. Nanoscience provided a possibility of more targeted imaging and drug delivery system. Multifunctional nanoparticles (NPs) may be modified with ligands or biomembranes to target agents' delivery to the lesion site, thus reducing systemic toxicity. Furthermore, NPs can improve drug solubility, circulation time, bioavailability, and efficacy after systemic administration. The varied judiciously engineered nano-biomaterials can exist stably in the blood vessels for a long time without being taken up by cells. Here, in this review, we focused on the NP application in the imaging and treatment of AAA. We hope to make an overview of NP-assisted diagnoses and therapy in AAA and discussed the potential of NP-assisted treatment.
Collapse
Affiliation(s)
- Li Yin
- Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Kaijie Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yuting Sun
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenjie Liu
- Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
Yodsanit N, Wang B, Zhao Y, Guo LW, Kent KC, Gong S. Recent progress on nanoparticles for targeted aneurysm treatment and imaging. Biomaterials 2020; 265:120406. [PMID: 32979792 DOI: 10.1016/j.biomaterials.2020.120406] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023]
Abstract
An abdominal aortic aneurysm (AAA) is a localized dilatation of the aorta that plagues millions. Its rupture incurs high mortality rates (~80-90%), pressing an urgent need for therapeutic methods to prevent this deadly outcome. Judiciously designed nanoparticles (NPs) have displayed a unique potential to fulfill this need. Aneurysms feature excessive inflammation and extracellular matrix (ECM) degradation. As such, typically inflammatory cells and exposed ECM proteins have been targeted with NPs for therapeutic, diagnostic, or theranostic purposes in experimental models. NPs have been used not only for encapsulation and delivery of drugs and biomolecules in preclinical tests, but also for enhanced imaging to monitor aneurysm progression in patients. Moreover, they can be readily modified with various molecules to improve lesion targeting, detectability, biocompatibility, and circulation time. This review updates on the progress, limitations, and prospects of NP applications in the context of AAA.
Collapse
Affiliation(s)
- Nisakorn Yodsanit
- Department of Biomedical Engineering, And Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Bowen Wang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22903, USA
| | - Yi Zhao
- Department of Biomedical Engineering, And Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Lian-Wang Guo
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22903, USA.
| | - K Craig Kent
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22903, USA.
| | - Shaoqin Gong
- Department of Biomedical Engineering, And Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA; Department of Material Science and Engineering and Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53715, USA.
| |
Collapse
|
8
|
A Novel Hybrid Drug Delivery System for Treatment of Aortic Aneurysms. Int J Mol Sci 2020; 21:ijms21155538. [PMID: 32748844 PMCID: PMC7432022 DOI: 10.3390/ijms21155538] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
Ongoing aortic wall degeneration and subsequent aneurysm exclusion failure are major concerns after an endovascular aneurysm repair with a stent-graft. An ideal solution would be a drug therapy that targets the aortic wall and inhibits wall degeneration. Here, we described a novel drug delivery system, which allowed repetitively charging a graft with therapeutic drugs and releasing them to the aortic wall in vivo. The system was composed of a targeted graft, which was labeled with a small target molecule, and the target-recognizing nanocarrier, which contained suitable drugs. We developed the targeted graft by decorating a biotinylated polyester graft with neutravidin. We created the target-recognizing nanocarrier by conjugating drug-containing liposomes with biotinylated bio-nanocapsules. We successfully demonstrated that the target-recognizing nanocarriers could bind to the targeted graft, both in vitro and in blood vessels of live mice. Moreover, the drug released from our drug delivery system reduced the expression of matrix metalloproteinase-9 in mouse aortas. Thus, this hybrid system represents a first step toward an adjuvant therapy that might improve the long-term outcome of endovascular aneurysm repair.
Collapse
|
9
|
Dadashi S, Boddohi S, Soleimani N. Preparation, characterization, and antibacterial effect of doxycycline loaded kefiran nanofibers. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Cui S, Sun X, Li K, Gou D, Zhou Y, Hu J, Liu Y. Polylactide nanofibers delivering doxycycline for chronic wound treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109745. [PMID: 31499963 DOI: 10.1016/j.msec.2019.109745] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 05/08/2019] [Accepted: 05/12/2019] [Indexed: 01/13/2023]
Abstract
Chronic wounds are of high incidence, difficult to heal, and can cause serious consequences if not properly treated. Doxycycline (DCH) is a broad-spectrum antibiotic and matrix metalloproteinases inhibitor, which has prominent efficacy for chronic wound treatment. Topical DCH treatment is the common administration route for chronic wounds in clinic but may result in low therapeutic efficacy and cause skin irritation at high DCH concentration, since it is difficult to control local drug concentration in the wounds and maintain the effective DCH concentration for a long time. In this study, we prepared DCH-encapsulated polylactide (DCH/PLA) nanofibers by a simple electrospinning method. Imaging studies showed that smooth and continuous DCH/PLA nanofibers with homogeneous DCH distribution were obtained at varied DCH loading content in the range of 5-30%. Mechanical property, water vapour permeability and absorbency of these nanofibers could meet the requirement as wound dressings. By adjusting DCH loading content, the wettability of the nanofibers could be transferred from hydrophobic to hydrophilic, and the release rate of DCH could be controlled in a sustained manner from three days to two weeks. Results of cytotoxicity and antibacterial test indicated that DCH/PLA nanofibers showed good cytocompatibility to L929 mouse fibroblast cells and exhibited positive antibacterial activity against Escherichia coli, suggesting its ability to treat/prevent infectious wounds. For full-thickness wound treatment of diabetic rats, DCH/PLA nanofiber mats can speed up wound healing to a higher extent than topical DCH treatment, due to the sustained release of DCH with less side effects. Our results indicate that DCH/PLA nanofiber mats hold great potential as wound dressings for chronic wound treatment.
Collapse
Affiliation(s)
- Sisi Cui
- Key Laboratory of UV-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun, Jilin 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xue Sun
- Key Laboratory of UV-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun, Jilin 130024, China
| | - Ke Li
- Key Laboratory of UV-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun, Jilin 130024, China
| | - Dongxia Gou
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Yifa Zhou
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Junli Hu
- Key Laboratory of UV-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun, Jilin 130024, China.
| | - Yichun Liu
- Key Laboratory of UV-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun, Jilin 130024, China.
| |
Collapse
|
11
|
Montelukast, a Cysteinyl Leukotriene Receptor 1 Antagonist, Induces M2 Macrophage Polarization and Inhibits Murine Aortic Aneurysm Formation. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9104680. [PMID: 31263710 PMCID: PMC6556796 DOI: 10.1155/2019/9104680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/14/2019] [Accepted: 05/09/2019] [Indexed: 01/01/2023]
Abstract
Background The pathogenesis of abdominal aortic aneurysm (AAA) is characterized by atherosclerosis with chronic inflammation in the aortic wall. Montelukast is a selective cys-LT 1 receptor antagonist that can suppress atherosclerotic diseases. We evaluated the in vitro properties of montelukast and its in vivo activities in an angiotensin II–infused apolipoprotein E–deficient (apoE−/−) AAA mouse model. Methods The mouse monocyte/macrophage cell line J774A.1 was used in vitro. M1 macrophages were treated with montelukast, and gene expressions of inflammatory cytokines were measured. Macrophages were cultured with montelukast, then gene expressions of arginase-1 and IL (interleukin)-10 were assessed by quantitative polymerase chain reaction, arginase-1 was measured by fluorescence-activated cell sorting, and IL-10 concentration was analyzed by enzyme-linked immunosorbent assay. In vivo, one group (Mont, n=7) received oral montelukast (10 mg/kg/day) for 28 days, and the other group (Saline, n=7) was given normal Saline as a control for the same period. Aortic diameters, activities of matrix metalloproteinases (MMPs), cytokine concentrations, and the number of M2 macrophages were analyzed. Results Relative to control, montelukast significantly suppressed gene expressions of MMP-2, MMP-9, and IL-1β, induced gene expressions of arginase-1 and IL-10, enhanced the expression of the arginase-1 cell surface protein, and increased the protein concentration of IL-10. In vivo, montelukast significantly decreased aortic expansion (Saline vs Mont; 2.44 ± 0.15 mm vs 1.59 ± 0.20 mm, P<.01), reduced MMP-2 activity (Saline vs Mont; 1240 μM vs 755 μM, P<.05), and induced infiltration of M2 macrophages (Saline vs Mont; 7.51 % vs 14.7 %, P<.05). Conclusion Montelukast induces M2 macrophage polarization and prevents AAA formation in apoE−/− mice.
Collapse
|
12
|
The oral administration of clarithromycin prevents the progression and rupture of aortic aneurysm. J Vasc Surg 2018; 68:82S-92S.e2. [PMID: 29550174 DOI: 10.1016/j.jvs.2017.12.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The pathogenesis of aortic aneurysm (AA) is associated with chronic inflammation in the aortic wall with increased levels of matrix metalloproteinases (MMPs). Clarithromycin (CAM) has been reported to suppresses MMP activity. In this study, we investigated whether CAM could prevent the formation and rupture of AA. METHODS Male apolipoprotein E-deficient mice (28-30 weeks of age) were infused with angiotensin II for 28 days. CAM (100 mg/kg/d) or saline (as a control) was administered orally to the mice every day (CAM group, n = 13; control group, n = 13). After the administration period, the aortic diameter, elastin content, macrophage infiltration, MMP levels, and levels of inflammatory cytokines, including nuclear factor κB (NF-κB), were measured. RESULTS The aortic diameter was significantly suppressed in the CAM group (P < .001). No rupture death was observed in the CAM group in contrast to five deaths (38%) in the control group (P < .01). CAM significantly suppressed the degradation of aortic elastin (56.3% vs 16.5%; P < .001) and decreased the infiltration of inflammatory macrophages (0.05 vs 0.16; P < .01). Compared with the controls, the enzymatic activity of MMP-2 and MMP-9 was significantly reduced in the CAM group (MMP-2, 0.15 vs 0.56 [P < .01]; MMP-9, 0.12 vs 0.60 [P < .01]), and the levels of interleukin 1β (346.6 vs 1066.0; P < .05), interleukin 6 (128.4 vs 346.2; P < .05), and phosphorylation of NF-κB were also decreased (0.3 vs 2.0; P < .01). CONCLUSIONS CAM suppressed the progression and rupture of AA through the suppression of inflammatory macrophage infiltration, a reduction in MMP-2 and MMP-9 activity, and the inhibition of elastin degradation associated with the suppression of NF-κB phosphorylation.
Collapse
|
13
|
Hosoyama K, Saiki Y. Muse Cells and Aortic Aneurysm. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1103:273-291. [PMID: 30484235 DOI: 10.1007/978-4-431-56847-6_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The aorta is a well-organized, multilayered structure comprising several cell types, namely, endothelial cells (ECs), vascular smooth muscle cells (VSMCs), and fibroblasts, as well as an extracellular matrix (ECM), which includes elastic and collagen fibers. Aortic aneurysms (AAs) are defined as progressive enlargements of the aorta that carries an incremental risk of rupture as the diameter increases over time. The destruction of the aortic wall tissue is triggered by atherosclerosis, inflammation, and oxidative stress, leading to the activation of matrix metalloproteinases (MMPs), and inflammatory cytokines and chemokines, resulting in the loss of the structural back bone of VSMCs, ECM, and ECs. To date, cell-based therapy has been applied to animal models using several types of cells, such as VSMCs, ECs, and mesenchymal stem cells (MSCs). Although these cells indeed deliver beneficial outcomes for AAs, particularly by paracrine and immunomodulatory effects, the attenuation of aneurysmal dilation with a robust tissue repair is insufficient. Meanwhile, multilineage-differentiating stress-enduring (Muse) cells are known to be endogenous non-tumorigenic pluripotent-like stem cells that are included as several percent of MSCs. Since Muse cells are pluripotent-like, they have the ability to differentiate into cells representative of all three germ layers from a single cell and to self-renew. Moreover, Muse cells are able to home to the site of damage following simple intravenous injection and repair the tissue by replenishing new functional cells through spontaneous differentiation into tissue-compatible cells. Given these unique properties, Muse cells are expected to provide an efficient therapeutic efficacy for AA by simple intravenous injection. In this chapter, we summarize several studies on Muse cell therapy for AA including our recent data, in comparison with other kinds of cell therapies.
Collapse
Affiliation(s)
- Katsuhiro Hosoyama
- Division of Cardiovascular Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshikatsu Saiki
- Division of Cardiovascular Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
14
|
Yang J, Zou S, Liao M, Qu L. Transcriptome sequencing revealed candidate genes relevant to mesenchymal stem cells' role in aortic dissection patients. Mol Med Rep 2017; 17:273-283. [PMID: 29115411 PMCID: PMC5780137 DOI: 10.3892/mmr.2017.7851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 10/13/2017] [Indexed: 01/10/2023] Open
Abstract
Aortic dissection (AD) results from the imbalance between synthesis and degradation of extracellular matrices in aortic wall, which is characterized by chronic inflammation. Mesenchymal stem cells (MSCs) are known for anti-inflammatory and repairing effects and have therefore been studied for treatment for numerous diseases, including AD. However, it is unclear which genes or signaling pathways contribute to MSCs' role in AD. In the present study, RNA sequencing (RNA-seq) was conducted between MSCs from patients with AS (AD-MSCs) and those from age-matched healthy donors (HD-MSCs). RNA-seq revealed 201 differentially expressed genes (DEGs) under the filter of fold change>2 and P-value <0.05, in which 93 genes were upregulated and 108 downregulated. We selectively verified 9 out of 201 DEGs via reverse transcription-quantitative polymerase chain reaction (RT-qPCR) with an enlarged sample size. The trends of RT-qPCR results were consistent with RNA-seq data. Unsupervised hierarchical clustering of the 9-gene expression profiles enables the division of clinical samples into AD and HD groups. Kyoto Encyclopedia of Genes and Genomes analysis displayed a significant change in adhesion-related signaling pathways in AD-MSCs compared with HD-MSCs, whereas gene ontology analysis demonstrated DEGs were enriched in functions associated with development and morphogenesis, from a functional perspective. The present results indicate that gene expression profiles of AD-MSCs were significantly changed compared with HD-MSCs. These changes are probably associated with MSCs' adhesion capacity and development. These results may provide important insights into the role of MSCs in AD pathogenesis.
Collapse
Affiliation(s)
- Junlin Yang
- Department of Vascular Surgery, Changzheng Hospital, Shanghai 200003, P.R. China
| | - Sili Zou
- Department of Vascular Surgery, Changzheng Hospital, Shanghai 200003, P.R. China
| | - Mingfang Liao
- Department of Vascular Surgery, Changzheng Hospital, Shanghai 200003, P.R. China
| | - Lefeng Qu
- Department of Vascular Surgery, Changzheng Hospital, Shanghai 200003, P.R. China
| |
Collapse
|
15
|
Modeling the permeability of multiaxial electrospun poly(ε-caprolactone)-gelatin hybrid fibers for controlled doxycycline release. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:161-170. [DOI: 10.1016/j.msec.2017.03.093] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/06/2017] [Accepted: 03/12/2017] [Indexed: 12/13/2022]
|
16
|
Venkataraman L, Sivaraman B, Vaidya P, Ramamurthi A. Nanoparticulate delivery of agents for induced elastogenesis in three-dimensional collagenous matrices. J Tissue Eng Regen Med 2016; 10:1041-1056. [PMID: 24737693 PMCID: PMC4440849 DOI: 10.1002/term.1889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 12/04/2013] [Accepted: 02/24/2014] [Indexed: 12/27/2022]
Abstract
The degradation of elastic matrix in the infrarenal aortic wall is a critical parameter underlying the formation and progression of abdominal aortic aneurysms. It is mediated by the chronic overexpression of matrix metalloprotease (MMP)-2 and MMP-9, leading to a progressive loss of elasticity and weakening of the aortic wall. Delivery of therapeutic agents to inhibit MMPs, while concurrently coaxing cell-based regenerative repair of the elastic matrix represents a potential strategy for slowing or arresting abdominal aortic aneurysm growth. Previous studies have demonstrated elastogenic induction of healthy and aneurysmal aortic smooth muscle cells and inhibition of MMPs, following exogenous delivery of elastogenic factors such as transforming growth factor (TGF)-β1, as well as MMP-inhibitors such as doxycycline (DOX) in two-dimensional culture. Based on these findings, and others that demonstrated elastogenic benefits of nanoparticulate delivery of these agents in two-dimensional culture, poly(lactide-co-glycolide) nanoparticles were developed for localized, controlled and sustained delivery of DOX and TGF-β1 to human aortic smooth muscle cells within a three-dimensional gels of type I collagen, which closely simulate the arterial tissue microenvironment. DOX and TGF-β1 released from these nanoparticles influenced elastogenic outcomes positively within the collagen constructs over 21 days of culture, which were comparable to that induced by exogenous supplementation of DOX and TGF-β1 within the culture medium. However, this was accomplished at doses ~20-fold lower than the exogenous dosages of the agents, illustrating that their localized, controlled and sustained delivery from nanoparticles embedded within a three-dimensional scaffold is an efficient strategy for directed elastogenesis. Copyright © 2014 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lavanya Venkataraman
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH 44195
- Department of Bioengineering, Clemson University, Clemson, SC 29634
| | | | - Pratik Vaidya
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH 44115
| | - Anand Ramamurthi
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH 44195
- Department of Bioengineering, Clemson University, Clemson, SC 29634
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH 44115
| |
Collapse
|
17
|
Yang L, Shen L, Li G, Yuan H, Jin X, Wu X. Silencing of hypoxia inducible factor-1α gene attenuated angiotensin Ⅱ-induced abdominal aortic aneurysm in apolipoprotein E-deficient mice. Atherosclerosis 2016; 252:40-49. [PMID: 27497884 DOI: 10.1016/j.atherosclerosis.2016.07.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 07/02/2016] [Accepted: 07/07/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIMS We aimed to determine the effect of HIF-1α, the main regulatory subunit of the hypoxia inducible factor 1 (HIF-1), on the development of the abdominal aortic aneurysm (AAA). METHODS AAA was induced in ApoE(-/-) mice by angiotensinⅡ (AngⅡ) infusion. In vivo silencing of HIF-1α was achieved by transfection of lentivirus expressing HIF-1α shRNA. RESULTS Time course analysis of the AngⅡ infusion model revealed that HIF-1α was persistently upregulated during a 28-day period of AAA development. Silencing of the HIF-1α gene reduced the aneurysm size (2.84 ± 1.96 mm vs. 1.41 ± 0.85 mm respectively at day 28, p = 0.0002). Silencing of HIF-1α also alleviated infiltration of macrophages (38.8 ± 14.7 vs. 11.4 ± 4.4 macrophages/0.1 mm(2), p = 0.0006) and neovascularity (5.56 ± 2.14 vs. 1.27 ± 1.05 microvessels/0.1 mm(2), p = 0.0008) in the AngⅡ infusion model, at day 28. The activity of MMP-2 and MMP-9 was also decreased by knockdown of HIF-1α. The early increased expression of pro-inflammatory factors, angiogenic factors, and MMPs during AAA induction was alleviated by HIF-1α silencing. CONCLUSIONS Activation of HIF-1 signaling pathway participates in the Ang Ⅱ-induced AAA formation in mice.
Collapse
Affiliation(s)
- Le Yang
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Lin Shen
- Department of Ophthalmology, QiLu Hospital to Shandong University, Jinan, China
| | - Gang Li
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Hai Yuan
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xing Jin
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.
| | - Xuejun Wu
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.
| |
Collapse
|
18
|
Inhibition of hypoxia inducible factor-1α attenuates abdominal aortic aneurysm progression through the down-regulation of matrix metalloproteinases. Sci Rep 2016; 6:28612. [PMID: 27363580 PMCID: PMC4929442 DOI: 10.1038/srep28612] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 06/06/2016] [Indexed: 12/19/2022] Open
Abstract
Hypoxia inducible factor-1α (HIF-1α) pathway is associated with many vascular diseases, including atherosclerosis, arterial aneurysms, pulmonary hypertension and chronic venous diseases. Significant HIF-1α expression could be found at the rupture edge at human abdominal aortic aneurysm (AAA) tissues. While our initial in vitro experiments had shown that deferoxamine (DFO) could attenuate angiotensin II (AngII) induced endothelial activations; we unexpectedly found that DFO augmented the severity of AngII-induced AAA, at least partly through increased accumulation of HIF-1α. The findings promoted us to test whether aneurysmal prone factors could up-regulate the expression of MMP-2 and MMP-9 through aberrantly increased HIF-1α and promote AAA development. AngII induced AAA in hyperlipidemic mice model was used. DFO, as a prolyl hydroxylase inhibitor, stabilized HIF-1α and augmented MMPs activities. Aneurysmal-prone factors induced HIF-1α can cause overexpression of MMP-2 and MMP-9 and promote aneurysmal progression. Pharmacological HIF-1α inhibitors, digoxin and 2-ME could ameliorate AngII induced AAA in vivo. HIF-1α is pivotal for the development of AAA. Our study provides a rationale for using HIF-1α inhibitors as an adjunctive medical therapy in addition to current cardiovascular risk-reducing regimens.
Collapse
|
19
|
Mata KM, Tefé-Silva C, Floriano EM, Fernandes CR, Rizzi E, Gerlach RF, Mazzuca MQ, Ramos SG. Interference of doxycycline pretreatment in a model of abdominal aortic aneurysms. Cardiovasc Pathol 2014; 24:110-20. [PMID: 25466491 DOI: 10.1016/j.carpath.2014.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/28/2014] [Accepted: 10/29/2014] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is characterized by chronic inflammation and degradation of the extracellular matrix, mediated by matrix metalloproteinases (MMPs). Doxycycline has been reported to control the progression of AAA by regulation of MMP. We hypothesized that doxycycline pretreatment in a rat model of AAA would cause reduction in gelatinolytic activity of MMP-2 and -9 and the inflammatory response in the wall of an aneurysm, consequently decreasing the formation and development of AAAs. METHODS Male Wistar rats were divided into the following four groups: aneurysm (A); control (C); aneurysm+doxycycline (A+D) and control+doxycycline (C+D), with 24 animals per group subdivided into n=6 animals at different time points [1, 3, 7, and 15 days postsurgery (dps)]. The (A) and (A+D) groups simultaneously received the injury and extrinsic stenosis of the aortic wall. The (C) and (C+D) groups received sham operation. The treated animals received doxycycline via gavage (30 mg/kg/day) from 48 h before surgery until the end of experiment. At 1, 3, 7, and 15 dps, the animals were euthanized, and the aortas were collected for morphological analyses, immunohistochemistry, and zymography. RESULTS The animals from the (A) group developed AAAs. However, the animals treated with doxycycline showed a 85% decrease in AAA development, which was associated with a large reduction in gelatinolytic activity of MMP-2 and -9, and decreased inflammatory response (P<.05). CONCLUSIONS These results suggest that pretreatment with doxycycline before surgery inhibited the activity of MMP-2 and -9, as well as the inflammatory response, and may play an important role in the prevention of the development of AAAs.
Collapse
Affiliation(s)
- Karina M Mata
- Department of Pathology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Cristiane Tefé-Silva
- Department of Pathology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Elaine M Floriano
- Department of Pathology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Cleverson R Fernandes
- Department of Pathology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Elen Rizzi
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Raquel F Gerlach
- Department of Morphology and Physiology, Dental School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Marc Q Mazzuca
- Department of Pathology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Simone G Ramos
- Department of Pathology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
20
|
Adipose stem cells promote smooth muscle cells to secrete elastin in rat abdominal aortic aneurysm. PLoS One 2014; 9:e108105. [PMID: 25243605 PMCID: PMC4171524 DOI: 10.1371/journal.pone.0108105] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 08/18/2014] [Indexed: 01/14/2023] Open
Abstract
Background Abdominal aortic aneurysm (AAA) is a life-threatening disease and its prevalence rate increases with social aging. The degradation of elastic is an important factor in the formation of AAA. Methods Adipose derived stem cells (ADSCs) and bone marrow mesenchymal stem cells (BMSCs) were isolated from rats, and identified by Oil red O and alizarin red staining after adipogenesis and osteogenesis induction. In addition, ADSCs were also identified by flow cytometry with CD markers. AAA model in rats was established, and smooth muscle cells (SMCs) were isolated from AAA aortic wall and identified by immunohistochemistry. ADSCs or BMSCs were co-cultured with AAA aortic wall for in vitro experiment, and ADSCs were injected into AAA model for in vivo test. Then orcein staining was used for observing the morphology of elastic fiber, Western blot and real-time PCR were used respectively to detect the protein and gene expression of elastin, gelatinases spectrum analysis was used to detect the activity of matrix metalloproteinase-2 (MMP-2) and MMP-9. Results Lots of red lipid droplets were visible by Oil red O staining after adipogenesis induction, and black calcium nodules appeared by alizarin red staining after osteogenesis induction. The results of flow cytometry showed that ADSCs expressed CD44 and CD105, but exhibited negligible expression of CD31 and CD45. SMCs exhibited spindle-like morphology and α-actin protein was positive in cytoplasm. After co-cultured with ADSCs or BMSCs, the elastic fiber recovered normal winding shape, both the gene and protein expression of elastin increased, and the activity of MMP-2 decreased. The in vivo result was similar to that of in vitro. Conclusions ADSCs promote the expression of elastin in SMCs and contribute to the reconstruction of elastic fiber, which may provide new ideas for treating AAA.
Collapse
|
21
|
Yamawaki-Ogata A, Hashizume R, Fu XM, Usui A, Narita Y. Mesenchymal stem cells for treatment of aortic aneurysms. World J Stem Cells 2014; 6:278-287. [PMID: 25067996 PMCID: PMC4109132 DOI: 10.4252/wjsc.v6.i3.278] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/21/2014] [Accepted: 05/08/2014] [Indexed: 02/07/2023] Open
Abstract
An aortic aneurysm (AA) is a silent but life-threatening disease that involves rupture. It occurs mainly in aging and severe atherosclerotic damage of the aortic wall. Even though surgical intervention is effective to prevent rupture, surgery for the thoracic and thoraco-abdominal aorta is an invasive procedure with high mortality and morbidity. Therefore, an alternative strategy for treatment of AA is required. Recently, the molecular pathology of AA has been clarified. AA is caused by an imbalance between the synthesis and degradation of extracellular matrices in the aortic wall. Chronic inflammation enhances the degradation of matrices directly and indirectly, making control of the chronic inflammation crucial for aneurysmal development. Meanwhile, mesenchymal stem cells (MSCs) are known to be obtained from an adult population and to differentiate into various types of cells. In addition, MSCs have not only the potential anti-inflammatory and immunosuppressive properties but also can be recruited into damaged tissue. MSCs have been widely used as a source for cell therapy to treat various diseases involving graft-versus-host disease, stroke, myocardial infarction, and chronic inflammatory disease such as Crohn’s disease clinically. Therefore, administration of MSCs might be available to treat AA using anti-inflammatory and immnosuppressive properties. This review provides a summary of several studies on “Cell Therapy for Aortic Aneurysm” including our recent data, and we also discuss the possibility of this kind of treatment.
Collapse
|
22
|
Inadequate reinforcement of transmedial disruptions at branch points subtends aortic aneurysm formation in apolipoprotein-E-deficient mice. Cardiovasc Pathol 2014; 23:152-9. [DOI: 10.1016/j.carpath.2013.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 12/26/2013] [Accepted: 12/30/2013] [Indexed: 01/16/2023] Open
|
23
|
Hashizume R, Hong Y, Takanari K, Fujimoto KL, Tobita K, Wagner WR. The effect of polymer degradation time on functional outcomes of temporary elastic patch support in ischemic cardiomyopathy. Biomaterials 2013; 34:7353-63. [PMID: 23827185 PMCID: PMC3804157 DOI: 10.1016/j.biomaterials.2013.06.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/12/2013] [Indexed: 01/12/2023]
Abstract
Biodegradable polyurethane patches have been applied as temporary mechanical supports to positively alter the remodeling and functional loss following myocardial infarction. How long such materials need to remain in place is unclear. Our objective was to compare the efficacy of porous onlay support patches made from one of three types of biodegradable polyurethane with relatively fast (poly(ester urethane)urea; PEUU), moderate (poly(ester carbonate urethane)urea; PECUU), and slow (poly(carbonate urethane)urea; PCUU) degradation rates in a rat model of ischemic cardiomyopathy. Microporous PEUU, PECUU or PCUU (n = 10 each) patches were implanted over left ventricular lesions 2 wk following myocardial infarction in rat hearts. Infarcted rats without patching and age-matched healthy rats (n = 10 each) were controls. Echocardiography was performed every 4 wk up to 16 wk, at which time hemodynamic and histological assessments were performed. The end-diastolic area for the PEUU group at 12 and 16 wk was significantly larger than for the PECUU or PCUU groups. Histological analysis demonstrated greater vascular density in the infarct region for the PECUU or PCUU versus PEUU group at 16 wk. Improved left ventricular contractility and diastolic performance in the PECUU group was observed at 16 wk compared to infarction controls. The results indicate that the degradation rate of an applied elastic patch influences the functional benefits associated patch placement, with a moderately slow degrading PECUU patch providing improved outcomes.
Collapse
Affiliation(s)
- Ryotaro Hashizume
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA 15219, USA
| | - Yi Hong
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA 15219, USA
| | - Keisuke Takanari
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA 15219, USA
| | - Kazuro L. Fujimoto
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA 15219, USA
| | - Kimimasa Tobita
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA 15219, USA
- Univ. of Pittsburgh, Dept. of Developmental Biology, Pittsburgh, PA, USA
| | - William R. Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA 15219, USA
- Univ. of Pittsburgh, Dept. of Surgery, USA
- Univ. of Pittsburgh, Dept. of Bioengineering, USA
- Univ. of Pittsburgh, Dept. of Chemical Engineering, USA
| |
Collapse
|
24
|
Gertz SD, Mintz Y, Beeri R, Rubinstein C, Gilon D, Gavish L, Berlatzky Y, Appelbaum L, Gavish L. Lessons from Animal Models of Arterial Aneurysm. AORTA : OFFICIAL JOURNAL OF THE AORTIC INSTITUTE AT YALE-NEW HAVEN HOSPITAL 2013; 1:244-54. [PMID: 26798701 DOI: 10.12945/j.aorta.2013.13-052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 10/30/2013] [Indexed: 01/04/2023]
Abstract
We review the results from the most common animal models of arterial aneurysm, including recent findings from our novel, laparoscopy-based pig model of abdominal aortic aneurysm, that contribute important insights into early pathogenesis. We emphasize the relevance of these findings for evaluation of treatment protocols and novel device prototypes for mechanism-based prevention of progression and rupture.
Collapse
Affiliation(s)
- S David Gertz
- Institute for Medical Research (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem and Hadassah University Hospital, Jerusalem, Israel
| | - Yoav Mintz
- Institute for Medical Research (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem and Hadassah University Hospital, Jerusalem, Israel
| | - Ronen Beeri
- Institute for Medical Research (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem and Hadassah University Hospital, Jerusalem, Israel
| | - Chen Rubinstein
- Institute for Medical Research (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem and Hadassah University Hospital, Jerusalem, Israel
| | - Dan Gilon
- Institute for Medical Research (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem and Hadassah University Hospital, Jerusalem, Israel
| | - Leah Gavish
- Institute for Medical Research (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem and Hadassah University Hospital, Jerusalem, Israel
| | - Yacov Berlatzky
- Institute for Medical Research (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem and Hadassah University Hospital, Jerusalem, Israel
| | - Liat Appelbaum
- Institute for Medical Research (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem and Hadassah University Hospital, Jerusalem, Israel
| | - Lilach Gavish
- Institute for Medical Research (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem and Hadassah University Hospital, Jerusalem, Israel
| |
Collapse
|
25
|
Fu XM, Yamawaki-Ogata A, Oshima H, Ueda Y, Usui A, Narita Y. Intravenous administration of mesenchymal stem cells prevents angiotensin II-induced aortic aneurysm formation in apolipoprotein E-deficient mouse. J Transl Med 2013; 11:175. [PMID: 23875706 PMCID: PMC3726376 DOI: 10.1186/1479-5876-11-175] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 07/17/2013] [Indexed: 12/31/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) are known to be capable of suppressing inflammatory responses. We previously reported that intra-abdominal implantation of bone marrow-derived MSCs (BM-MSCs) sheet by laparotomy attenuated angiotensin II (AngII)-induced aortic aneurysm (AA) growth in apolipoprotein E-deficient (apoE−/−) mice through anti-inflammation effects. However, cell delivery by laparotomy is invasive; we here demonstrated the effects of multiple intravenous administrations of BM-MSCs on AngII-induced AA formation. Methods BM-MSCs were isolated from femurs and tibiae of male apoE−/− mice. Experimental AA was induced by AngII infusion for 28 days in apoE−/− mice. Mice received weekly intravenous administration of BM-MSCs (n=12) or saline (n=10). After 4 weeks, AA formation incidence, aortic diameter, macrophage accumulation, matrix metalloproteinase (MMP)’ activity, elastin content, and cytokines were evaluated. Results AngII induced AA formation in 100% of the mice in the saline group and 50% in the BM-MSCs treatment group (P < 0.05). A significant decrease of aortic diameter was observed in the BM-MSCs treatment group at ascending and infrarenal levels, which was associated with decreased macrophage infiltration and suppressed activities of MMP-2 and MMP-9 in aortic tissues, as well as a preservation of elastin content of aortic tissues. In addition, interleukin (IL)-1β, IL-6, and monocyte chemotactic protein-1 significantly decreased while insulin-like growth factor-1 and tissue inhibitor of metalloproteinases-2 increased in the aortic tissues of BM-MSCs treatment group. Conclusions Multiple intravenous administrations of BM-MSCs attenuated the development of AngII-induced AA in apoE−/− mice and may become a promising alternative therapeutic strategy for AA progression.
Collapse
Affiliation(s)
- Xian-ming Fu
- Department of Cardiothoracic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya Aichi 466-8550, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Yagami K, Yamawaki-Ogata A, Satake M, Kaneko H, Oshima H, Usui A, Ueda Y, Narita Y. Prevention of arterial graft spasm in rats using a vasodilator-eluting biodegradable nano-scaled fibre. Interact Cardiovasc Thorac Surg 2013; 17:16-22. [PMID: 23513005 DOI: 10.1093/icvts/ivt092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Arterial graft spasm occasionally causes circulatory collapse immediately following coronary artery bypass graft. The aim of this study is to evaluate the efficacy of our developed materials, which were composed of milrinone (phosphodiesterase III inhibitor) or diltiazem (calcium-channel blocker), with nano-scaled fibre made of biodegradable polymer to prevent arterial spasm. METHODS Milrinone- or diltiazem-releasing biodegradable nano-scaled fibres were fabricated by an electrospinning procedure. In vivo milrinone- or diltiazem-releasing tests were performed to confirm the sustained release of the drugs. An in vivo arterial spasm model was established by subcutaneous injection of noradrenalin around the rat femoral artery. Rats were randomly divided into four groups as follows: those that received 5 mg of milrinone-releasing biodegradable nano-scaled fibre (group M, n = 14); 5 mg of diltiazem-releasing biodegradable nano-scaled fibre (group D, n = 12); or those that received fibre without drugs (as a control; group C, n = 14) implanted into the rat femoral artery. In the fourth group, sham operation was performed (group S, n = 10). One day after the implantation, noradrenalin was injected in all groups. The femoral arterial blood flow was measured continuously before and after noradrenalin injection. The maximum blood flow before noradrenalin injection and minimum blood flow after noradrenalin injection were measured. RESULTS In vivo drug-releasing test revealed that milrinone-releasing biodegradable nano-scaled fibre released 78% of milrinone and diltiazem-releasing biodegradable nano-scaled fibre released 50% diltiazem on the first day. The ratios of rat femoral artery blood flow after/before noradrenalin injection in groups M (0.74 ± 0.16) and D (0.72 ± 0.05) were significantly higher than those of groups C (0.54 ± 0.09) and S (0.55 ± 0.16) (P < 0.05). CONCLUSION Noradrenalin-induced rat femoral artery spasm was inhibited by the implantation of milrinone-releasing biodegradable nano-scaled fibre or diltiazem-releasing biodegradable nano-scaled fibre. These results suggested that our materials might be effective for the prevention of arterial graft spasm after coronary artery bypass graft.
Collapse
Affiliation(s)
- Kei Yagami
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
The extracellular matrix (ECM) is a complex entity containing a large portfolio of structural proteins, signaling molecules, and proteases. Changes in the overall integrity and activational state of these ECM constituents can contribute to tissue structure and function, which is certainly true of the myocardium. Changes in the expression patterns and activational states of a family of ECM proteolytic enzymes, the matrix metalloproteinases (MMPs), have been identified in all forms of left ventricle remodeling and can be a contributory factor in the progression to heart failure. However, new clinical and basic research has identified some surprising and unpredicted changes in MMP profiles in left ventricle remodeling processes, such as with pressure or volume overload, as well as with myocardial infarction. From these studies, it has become recognized that proteolytic processing of signaling molecules by certain MMP types, particularly the transmembrane MMPs, actually may facilitate ECM accumulation and modulate fibroblast transdifferentiation; both are critical events in adverse left ventricle remodeling. Based on the ever-increasing substrates and diversity of biological actions of MMPs, it is likely that continued research about the relationship of left ventricle remodeling in this family of proteases will yield new insights into the ECM remodeling process and new therapeutic targets.
Collapse
Affiliation(s)
- Francis G Spinale
- Cardiovascular Translational Research Center, CBA, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, Columbia, SC, USA.
| | | | | |
Collapse
|
28
|
Mesenchymal stem cells attenuate angiotensin II-induced aortic aneurysm growth in apolipoprotein E-deficient mice. J Vasc Surg 2011; 54:1743-52. [DOI: 10.1016/j.jvs.2011.06.109] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/23/2011] [Accepted: 06/23/2011] [Indexed: 12/13/2022]
|
29
|
Wadagaki R, Mizuno D, Yamawaki-Ogata A, Satake M, Kaneko H, Hagiwara S, Yamamoto N, Narita Y, Hibi H, Ueda M. Osteogenic Induction of Bone Marrow-Derived Stromal Cells on Simvastatin-Releasing, Biodegradable, Nano- to Microscale Fiber Scaffolds. Ann Biomed Eng 2011; 39:1872-81. [PMID: 21590488 DOI: 10.1007/s10439-011-0327-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 02/23/2011] [Indexed: 11/29/2022]
Affiliation(s)
- Ryu Wadagaki
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Qi R, Shen M, Cao X, Guo R, Tian X, Yu J, Shi X. Exploring the dark side of MTT viability assay of cells cultured onto electrospun PLGA-based composite nanofibrous scaffolding materials. Analyst 2011; 136:2897-903. [DOI: 10.1039/c0an01026j] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|