1
|
Sharma S, Lee D, Maity S, Singh P, Chadokiya J, Mohaghegh N, Hassani A, Kim H, Gangarade A, Ljubimova JY, Kirane A, Holler E. Antibody-Free Immunopeptide Nano-Conjugates for Brain-Targeted Drug Delivery in Glioblastoma Multiforme. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.07.641755. [PMID: 40161747 PMCID: PMC11952356 DOI: 10.1101/2025.03.07.641755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Glioblastoma Multiforme (GBM) represents a significant clinical challenge amongst central nervous system (CNS) tumors, with a dismal mean survival rate of less than 8 months, a statistic that has remained largely unchanged for decades (National Brain Society, 2022). The specialized intricate anatomical features of the brain, notably the blood-brain barrier (BBB), pose significant challenges to effective therapeutic interventions, limiting the potential reach of modern advancements in immunotherapy to impact these types of tumors. This study introduces an innovative, actively targeted immunotherapeutic nanoconjugate (P12/AP-2/NCs) designed to serve as an immunotherapeutic agent capable of traversing the BBB via LRP-1 receptor-mediated transcytosis. P12/AP-2/NCs exert its immune-modulating effects by inhibiting the PD-1/PD-L1 axis through a small-size PD-L1/PD-L2 antagonist peptide Aurigene NP-12 (P12). P12/AP-2/NCs are synthesized from completely biodegradable, functionalized high molecular weight β-poly(L-malic acid) (PMLA) polymer, conjugated with P12 and Angiopep-2 (AP2) to yield P12/AP-2/NCs. Evaluating nanoconjugates for BBB permeability and 3-D tumor model efficacy using an in vitro BBB-Transwell spheroid based model demonstrating successful crossing of the BBB and internalization in brain 3D tumor environments. In addition, the nanoconjugate mediated T cell's cytotoxicity on 3D tumor region death in a U87 GBM 3-D spheroid model. AP2/P12/NCs is selectively inhibited in PD1/PDL1 interaction on T cells and tumor site, increasing inflammatory cytokine secretion and T cell proliferation. In an in-vivo murine brain environment, rhodamine fluorophore-labeled AP2/P12/NCs displayed significantly increased accumulation in the brain during 2-6 h time intervals post-injection with a prolonged bioavailability over unconjugated peptides. AP2/P12/NCs demonstrated a safety profile at both low and high doses based on major organ histopathology evaluations. Our findings introduce a novel, programmable nanoconjugate platform capable of penetrating the BBB for directed delivery of small peptides and significant immune environment modulation without utilizing antibodies, offering promise for treating challenging brain diseases like glioblastoma multiforme and beyond.
Collapse
Affiliation(s)
- Saurabh Sharma
- Department of Surgery, Division of Surgical Oncology, Stanford School of Medicine, Stanford University Medical Center, CA 94305, USA
| | - David Lee
- Department of Surgery, Division of Surgical Oncology, Stanford School of Medicine, Stanford University Medical Center, CA 94305, USA
| | - Surjendu Maity
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
- Department of Orthopedic Surgery, Duke University School of Medicine, Duke University, Durham, NC 27710, USA
| | - Prabhjeet Singh
- Department of Surgery, Division of Surgical Oncology, Stanford School of Medicine, Stanford University Medical Center, CA 94305, USA
| | - Jay Chadokiya
- Department of Surgery, Division of Surgical Oncology, Stanford School of Medicine, Stanford University Medical Center, CA 94305, USA
| | - Neda Mohaghegh
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Alireza Hassani
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Hanjun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Ankit Gangarade
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Julia Y. Ljubimova
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Amanda Kirane
- Department of Surgery, Division of Surgical Oncology, Stanford School of Medicine, Stanford University Medical Center, CA 94305, USA
| | - Eggehard Holler
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| |
Collapse
|
2
|
Chepurna O, Chatterjee A, Li Y, Ding H, Murali R, Black KL, Sun T. Nano-Polymers as Cas9 Inhibitors. Polymers (Basel) 2025; 17:417. [PMID: 39940619 PMCID: PMC11820846 DOI: 10.3390/polym17030417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Despite wide applications of CRISPR/Cas9 technology, effective approaches for CRISPR delivery with functional control are limited. In an attempt to develop a nanoscale CRSIPR/Cas9 delivery platform, we discovered that several biocompatible polymers, including polymalic acid (PMLA), polyglutamic acid (PGA), and polyaspartic acid (PLD), when conjugated with a trileucine (LLL) moiety, can effectively inhibit Cas9 nuclease function. The Cas9 inhibition by those polymers is dose-dependent, with varying efficiency to achieve 100% inhibition. Further biophysical studies revealed that PMLA-LLL directly binds the Cas9 protein, resulting in a substantial decrease in Cas9/sgRNA binding affinity. Transmission electron microscopy and molecular docking were performed to provide a possible binding mechanism for PMLA-LLL to interact with Cas9. This work identified a new class of Cas9 inhibitor in nano-polymer form. These biodegradable polymers may serve as novel Cas9 delivery vehicles with a potential to enhance the precision of Cas9-mediated gene editing.
Collapse
Affiliation(s)
- Oksana Chepurna
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Avradip Chatterjee
- Department of Biomedical Sciences, Research Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yuanqing Li
- Shanghai Institute of Material Medica, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200231, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hong Ding
- Shanghai Institute of Material Medica, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200231, China
| | - Ramachandran Murali
- Department of Biomedical Sciences, Research Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Keith L. Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Tao Sun
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
3
|
Israel LL, Sun T, Braubach O, Cox A, Shatalova ES, Rashid HM, Galstyan A, Grodzinski Z, Song XY, Chepurna O, Ljubimov VA, Chiechi A, Sharma S, Phebus C, Wang Y, Ljubimova JY, Black KL, Holler E. β-Amyloid targeting nanodrug for neuron-specific delivery of nucleic acids in Alzheimer's disease mouse models. J Control Release 2023; 361:636-658. [PMID: 37544515 DOI: 10.1016/j.jconrel.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/08/2023]
Abstract
Delivery of therapeutic substances into the brain poses a significant challenge in the treatment of neurological disorders. This is primarily due to the blood-brain barrier (BBB), which restricts access, alongside the limited stability and distribution of these agents within the brain tissue. Here we demonstrate an efficient delivery of microRNA (miRNA) and antisense RNA preferentially to neurons compared to astroglia in the brain of healthy and Alzheimer's disease mice, via disulfide-linked conjugation with poly(ß-L-malic acid-trileucine)-copolymer a biodegradable, amphiphilic, and multivalent platform. By conjugating a D-configured (D3)-peptide (vector) for specific targeting, highly efficient delivery across the BBB is achieved through the Low-Density Lipoprotein Receptor-Related Protein-1 (LRP-1) transcytosis pathway, amyloid beta (Aβ) peptides. Nanodrug distribution was determined by fluorescent labeling and analyzed by microscopy in neurons, astroglia, and in extracellular amyloid plaques typical for Alzheimer's disease. Whereas D-configured BBB-vectors can efficiently target neurons, L-configured (e.g., AP2-peptide) guided vector can only cross BBB but not seem to bind neurons. An analysis of post-injection fluorescence distribution, and RNA-seq followed by real-time PCR validation, confirmed a successful in vivo delivery of morpholino-miRNA-186 nanoconjugates into mouse brain. The size and fluorescence intensity of the intracellular nanodrug particulates were analyzed and verified by a competition with non-fluorescent conjugates. Differentially expressed genes (DEGs) from RNA-seq were identified in the nanodrug injected mice, and the changes of selected DEGs related to Alzheimer's disease were further validated by western blot and real-time PCR. Collectively, these results demonstrated that D3-peptide-conjugated nanopolymer drug is able to achieve neuron-selective delivery of miRNA and can serve as an efficient brain delivery vehicle in Alzheimer's disease (AD) mouse models.
Collapse
Affiliation(s)
- Liron L Israel
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles 90048, USA
| | - Tao Sun
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles 90048, USA
| | - Oliver Braubach
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles 90048, USA
| | - Alysia Cox
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles 90048, USA
| | | | | | - Anna Galstyan
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles 90048, USA
| | - Zachary Grodzinski
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles 90048, USA
| | - Xue Ying Song
- Cedars-Sinai Cancer Applied Genomics Shared Resource, Cedars-Sinai Medical Center, Los Angeles 90048, USA
| | - Oksana Chepurna
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles 90048, USA
| | - Vladimir A Ljubimov
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles 90048, USA
| | - Antonella Chiechi
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles 90048, USA
| | - Sachin Sharma
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles 90048, USA
| | - Connor Phebus
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles 90048, USA
| | - Yizhou Wang
- Cedars-Sinai Cancer Applied Genomics Shared Resource, Cedars-Sinai Medical Center, Los Angeles 90048, USA
| | - Julia Y Ljubimova
- Terasaki Institute of Biomedical Innovation, Los Angeles, 90024, USA..
| | - Keith L Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles 90048, USA.
| | - Eggehard Holler
- Terasaki Institute of Biomedical Innovation, Los Angeles, 90024, USA..
| |
Collapse
|
4
|
Novorolsky RJ, Kasheke GDS, Hakim A, Foldvari M, Dorighello GG, Sekler I, Vuligonda V, Sanders ME, Renden RB, Wilson JJ, Robertson GS. Preserving and enhancing mitochondrial function after stroke to protect and repair the neurovascular unit: novel opportunities for nanoparticle-based drug delivery. Front Cell Neurosci 2023; 17:1226630. [PMID: 37484823 PMCID: PMC10360135 DOI: 10.3389/fncel.2023.1226630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
The neurovascular unit (NVU) is composed of vascular cells, glia, and neurons that form the basic component of the blood brain barrier. This intricate structure rapidly adjusts cerebral blood flow to match the metabolic needs of brain activity. However, the NVU is exquisitely sensitive to damage and displays limited repair after a stroke. To effectively treat stroke, it is therefore considered crucial to both protect and repair the NVU. Mitochondrial calcium (Ca2+) uptake supports NVU function by buffering Ca2+ and stimulating energy production. However, excessive mitochondrial Ca2+ uptake causes toxic mitochondrial Ca2+ overloading that triggers numerous cell death pathways which destroy the NVU. Mitochondrial damage is one of the earliest pathological events in stroke. Drugs that preserve mitochondrial integrity and function should therefore confer profound NVU protection by blocking the initiation of numerous injury events. We have shown that mitochondrial Ca2+ uptake and efflux in the brain are mediated by the mitochondrial Ca2+ uniporter complex (MCUcx) and sodium/Ca2+/lithium exchanger (NCLX), respectively. Moreover, our recent pharmacological studies have demonstrated that MCUcx inhibition and NCLX activation suppress ischemic and excitotoxic neuronal cell death by blocking mitochondrial Ca2+ overloading. These findings suggest that combining MCUcx inhibition with NCLX activation should markedly protect the NVU. In terms of promoting NVU repair, nuclear hormone receptor activation is a promising approach. Retinoid X receptor (RXR) and thyroid hormone receptor (TR) agonists activate complementary transcriptional programs that stimulate mitochondrial biogenesis, suppress inflammation, and enhance the production of new vascular cells, glia, and neurons. RXR and TR agonism should thus further improve the clinical benefits of MCUcx inhibition and NCLX activation by increasing NVU repair. However, drugs that either inhibit the MCUcx, or stimulate the NCLX, or activate the RXR or TR, suffer from adverse effects caused by undesired actions on healthy tissues. To overcome this problem, we describe the use of nanoparticle drug formulations that preferentially target metabolically compromised and damaged NVUs after an ischemic or hemorrhagic stroke. These nanoparticle-based approaches have the potential to improve clinical safety and efficacy by maximizing drug delivery to diseased NVUs and minimizing drug exposure in healthy brain and peripheral tissues.
Collapse
Affiliation(s)
- Robyn J. Novorolsky
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Brain Repair Centre, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Gracious D. S. Kasheke
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Brain Repair Centre, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Antoine Hakim
- School of Pharmacy, Faculty of Science, University of Waterloo, Waterloo, ON, Canada
| | - Marianna Foldvari
- School of Pharmacy, Faculty of Science, University of Waterloo, Waterloo, ON, Canada
| | - Gabriel G. Dorighello
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Brain Repair Centre, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Israel Sekler
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben Gurion University, Beersheva, Israel
| | | | | | - Robert B. Renden
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, United States
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, College of Arts and Sciences, Cornell University, Ithaca, NY, United States
| | - George S. Robertson
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Brain Repair Centre, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Psychiatry, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
5
|
Wang G, Yin H, Zhao T, Yang D, Jia S, Qiao C. De novo transcriptome assembly of Aureobasidium melanogenum CGMCC18996 to analyze the β-poly(L-malic acid) biosynthesis pathway under the CaCO3 addition. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Israel LL, Galstyan A, Cox A, Shatalova ES, Sun T, Rashid MH, Grodzinski Z, Chiechi A, Fuchs DT, Patil R, Koronyo-Hamaoui M, Black KL, Ljubimova JY, Holler E. Signature Effects of Vector-Guided Systemic Nano Bioconjugate Delivery Across Blood-Brain Barrier of Normal, Alzheimer's, and Tumor Mouse Models. ACS NANO 2022; 16:11815-11832. [PMID: 35961653 PMCID: PMC9413444 DOI: 10.1021/acsnano.1c10034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The ability to cross the blood-brain barrier (BBB) is critical for targeted therapy of the central nerve system (CNS). Six peptide vectors were covalently attached to a 50 kDa poly(β-l-malic acid)-trileucine polymer forming P/LLL(40%)/vector conjugates. The vectors were Angiopep-2 (AP2), B6, Miniap-4 (M4), and d-configurated peptides D1, D3, and ACI-89, with specificity for transcytosis receptors low-density lipoprotein receptor-related protein-1 (LRP-1), transferrin receptor (TfR), bee venom-derived ion channel, and Aβ/LRP-1 related transcytosis complex, respectively. The BBB-permeation efficacies were substantially increased ("boosted") in vector conjugates of P/LLL(40%). We have found that the copolymer group binds at the endothelial membrane and, by an allosterically membrane rearrangement, exposes the sites for vector-receptor complex formation. The specificity of vectors is indicated by competition experiments with nonconjugated vectors. P/LLL(40%) does not function as an inhibitor, suggesting that the copolymer binding site is eliminated after binding of the vector-nanoconjugate. The two-step mechanism, binding to endothelial membrane and allosteric exposure of transcytosis receptors, is supposed to be an integral feature of nanoconjugate-transcytosis pathways. In vivo brain delivery signatures of the nanoconjugates were recapitulated in mouse brains of normal, tumor (glioblastoma), and Alzheimer's disease (AD) models. BBB permeation of the tumor was most efficient, followed by normal and then AD-like brain. In tumor-bearing and normal brains, AP2 was the top performing vector; however, in AD models, D3 and D1 peptides were superior ones. The TfR vector B6 was equally efficient in normal and AD-model brains. Cross-permeation efficacies are manifested through modulated vector coligation and dosage escalation such as supra-linear dose dependence and crossover transcytosis activities.
Collapse
Affiliation(s)
- Liron L. Israel
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Anna Galstyan
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Alysia Cox
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Ekaterina S. Shatalova
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Tao Sun
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Mohammad-Harun Rashid
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Zachary Grodzinski
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Antonella Chiechi
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Rameshwar Patil
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery and Department of Biomedical Sciences,
Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Keith L. Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Julia Y. Ljubimova
- Terasaki Institute for Biomedical Innovation
(TIBI), 1018 Westwood
Boulevard, Los Angeles, California 90024, United States
| | - Eggehard Holler
- Terasaki Institute for Biomedical Innovation
(TIBI), 1018 Westwood
Boulevard, Los Angeles, California 90024, United States
| |
Collapse
|
7
|
Huang X, Xu L, Qian H, Wang X, Tao Z. Polymalic acid for translational nanomedicine. J Nanobiotechnology 2022; 20:295. [PMID: 35729582 PMCID: PMC9210645 DOI: 10.1186/s12951-022-01497-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/07/2022] [Indexed: 11/10/2022] Open
Abstract
With rich carboxyl groups in the side chain, biodegradable polymalic acid (PMLA) is an ideal delivery platform for multifunctional purposes, including imaging diagnosis and targeting therapy. This polymeric material can be obtained via chemical synthesis, or biological production where L-malic acids are polymerized in the presence of PMLA synthetase inside a variety of microorganisms. Fermentative methods have been employed to produce PMLAs from biological sources, and analytical assessments have been established to characterize this natural biopolymer. Further functionalized, PMLA serves as a versatile carrier of pharmaceutically active molecules at nano scale. In this review, we first delineate biosynthesis of PMLA in different microorganisms and compare with its chemical synthesis. We then introduce the biodegradation mechanism PMLA, its upscaled bioproduction together with characterization. After discussing advantages and disadvantages of PMLA as a suitable delivery carrier, and strategies used to functionalize PMLA for disease diagnosis and therapy, we finally summarize the current challenges in the biomedical applications of PMLA and envisage the future role of PMLA in clinical nanomedicine. The biosynthesis of polymalic acid (PMLA) and its biotechnical high-grade production from microorganisms compared with the chemical synthesis of PMLA The physicochemical and biological characteristics of PMLA and its derivatives How PMLA’s general chemical characteristics can be used to generate various macromolecular compounds for pharmaceutical delivery The concepts of biological and clinical targeting exemplified by PMLA-based drugs and imaging agents and their biodistribution and biodegradability An evaluation of the mechanisms that generate preclinical antitumor efficacy and the translational potential for clinical imaging
Collapse
Affiliation(s)
- Xing Huang
- Center for Evidence-Based and Translational Medicine, Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Liusheng Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.,Zhenjiang Key Laboratory of High Technology Research On Exosomes Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xinghuan Wang
- Center for Evidence-Based and Translational Medicine, Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| | - Zhimin Tao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China. .,Zhenjiang Key Laboratory of High Technology Research On Exosomes Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
8
|
Small-Sized Co-Polymers for Targeted Delivery of Multiple Imaging and Therapeutic Agents. NANOMATERIALS 2021; 11:nano11112996. [PMID: 34835760 PMCID: PMC8625475 DOI: 10.3390/nano11112996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 12/22/2022]
Abstract
Research has increasingly focused on the delivery of high, often excessive amounts of drugs, neglecting negative aspects of the carrier's physical preconditions and biocompatibility. Among them, little attention has been paid to "small but beautiful" design of vehicle and multiple cargo to achieve effortless targeted delivery into deep tissue. The design of small biopolymers for deep tissue targeted delivery of multiple imaging agents and therapeutics (mini-nano carriers) emphasizes linear flexible polymer platforms with a hydrodynamic diameter of 4 nm to 10 nm, geometrically favoring dynamic juxtaposition of ligands to host receptors, and economic drug content. Platforms of biodegradable, non-toxic poly(β-l-malic acid) of this size carrying multiple chemically bound, optionally nature-derived or synthetic affinity peptides and drugs for a variety of purposes are described in this review with specific examples. The size, shape, and multiple attachments to membrane sites accelerate vascular escape and fast blood clearance, as well as the increase in medical treatment and contrasts for tissue imaging. High affinity antibodies routinely considered for targeting, such as the brain through the blood-brain barrier (BBB), are replaced by moderate affinity binding peptides (vectors), which penetrate at high influxes not achievable by antibodies.
Collapse
|
9
|
Multifunctional Nanopolymers for Blood-Brain Barrier Delivery and Inhibition of Glioblastoma Growth through EGFR/EGFRvIII, c-Myc, and PD-1. NANOMATERIALS 2021; 11:nano11112892. [PMID: 34835657 PMCID: PMC8621221 DOI: 10.3390/nano11112892] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022]
Abstract
Glioblastoma (GBM) is the most prevalent primary brain cancer in the pediatric and adult population. It is known as an untreatable tumor in urgent need of new therapeutic approaches. The objective of this work was to develop multifunctional nanomedicines to treat GBM in clinical practice using combination therapy for several targets. We developed multifunctional nanopolymers (MNPs) based on a naturally derived biopolymer, poly(β-L-malic) acid, which are suitable for central nervous system (CNS) treatment. These MNPs contain several anticancer functional moieties with the capacity of crossing the blood–brain barrier (BBB), targeting GBM cells and suppressing two important molecular markers, tyrosine kinase transmembrane receptors EGFR/EGFRvIII and c-Myc nuclear transcription factor. The reproducible syntheses of MNPs where monoclonal antibodies are replaced with AP-2 peptide for effective BBB delivery were presented. The active anticancer inhibitors of mRNA/protein syntheses were Morpholino antisense oligonucleotides (AONs). Two ways of covalent AON-polymer attachments with and without disulfide bonds were explored. These MNPs bearing AONs to EGFR/EGFRvIII and c-Myc, as well as in a combination with the polymer-attached checkpoint inhibitor anti-PD-1 antibody, orchestrated a multi-pronged attack on intracranial mouse GBM to successfully block tumor growth and significantly increase survival of brain tumor-bearing animals.
Collapse
|
10
|
Biosynthetic Polymalic Acid as a Delivery Nanoplatform for Translational Cancer Medicine. Trends Biochem Sci 2020; 46:213-224. [PMID: 33268216 PMCID: PMC7580597 DOI: 10.1016/j.tibs.2020.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/08/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022]
Abstract
Poly(β-L-malic acid) (PMLA) is a natural polyester produced by numerous microorganisms. Regarding its biosynthetic machinery, a nonribosomal peptide synthetase (NRPS) is proposed to direct polymerization of L-malic acid in vivo. Chemically versatile and biologically compatible, PMLA can be used as an ideal carrier for several molecules, including nucleotides, proteins, chemotherapeutic drugs, and imaging agents, and can deliver multimodal theranostics through biological barriers such as the blood–brain barrier. We focus on PMLA biosynthesis in microorganisms, summarize the physicochemical and physiochemical characteristics of PMLA as a naturally derived polymeric delivery platform at nanoscale, and highlight the attachment of functional groups to enhance cancer detection and treatment.
Collapse
|
11
|
Rueda-Gensini L, Cifuentes J, Castellanos MC, Puentes PR, Serna JA, Muñoz-Camargo C, Cruz JC. Tailoring Iron Oxide Nanoparticles for Efficient Cellular Internalization and Endosomal Escape. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1816. [PMID: 32932957 PMCID: PMC7559083 DOI: 10.3390/nano10091816] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022]
Abstract
Iron oxide nanoparticles (IONs) have been widely explored for biomedical applications due to their high biocompatibility, surface-coating versatility, and superparamagnetic properties. Upon exposure to an external magnetic field, IONs can be precisely directed to a region of interest and serve as exceptional delivery vehicles and cellular markers. However, the design of nanocarriers that achieve an efficient endocytic uptake, escape lysosomal degradation, and perform precise intracellular functions is still a challenge for their application in translational medicine. This review highlights several aspects that mediate the activation of the endosomal pathways, as well as the different properties that govern endosomal escape and nuclear transfection of magnetic IONs. In particular, we review a variety of ION surface modification alternatives that have emerged for facilitating their endocytic uptake and their timely escape from endosomes, with special emphasis on how these can be manipulated for the rational design of cell-penetrating vehicles. Moreover, additional modifications for enhancing nuclear transfection are also included in the design of therapeutic vehicles that must overcome this barrier. Understanding these mechanisms opens new perspectives in the strategic development of vehicles for cell tracking, cell imaging and the targeted intracellular delivery of drugs and gene therapy sequences and vectors.
Collapse
Affiliation(s)
- Laura Rueda-Gensini
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (L.R.-G.); (J.C.); (M.C.C.); (P.R.P.); (J.A.S.)
| | - Javier Cifuentes
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (L.R.-G.); (J.C.); (M.C.C.); (P.R.P.); (J.A.S.)
| | - Maria Claudia Castellanos
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (L.R.-G.); (J.C.); (M.C.C.); (P.R.P.); (J.A.S.)
| | - Paola Ruiz Puentes
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (L.R.-G.); (J.C.); (M.C.C.); (P.R.P.); (J.A.S.)
| | - Julian A. Serna
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (L.R.-G.); (J.C.); (M.C.C.); (P.R.P.); (J.A.S.)
| | - Carolina Muñoz-Camargo
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (L.R.-G.); (J.C.); (M.C.C.); (P.R.P.); (J.A.S.)
| | - Juan C. Cruz
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (L.R.-G.); (J.C.); (M.C.C.); (P.R.P.); (J.A.S.)
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
12
|
Kopeček J, Yang J. Polymer nanomedicines. Adv Drug Deliv Rev 2020; 156:40-64. [PMID: 32735811 PMCID: PMC7736172 DOI: 10.1016/j.addr.2020.07.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
Polymer nanomedicines (macromolecular therapeutics, polymer-drug conjugates, drug-free macromolecular therapeutics) are a group of biologically active compounds that are characterized by their large molecular weight. This review focuses on bioconjugates of water-soluble macromolecules with low molecular weight drugs and selected proteins. After analyzing the design principles, different structures of polymer carriers are discussed followed by the examination of the efficacy of the conjugates in animal models and challenges for their translation into the clinic. Two innovative directions in macromolecular therapeutics that depend on receptor crosslinking are highlighted: a) Combination chemotherapy of backbone degradable polymer-drug conjugates with immune checkpoint blockade by multivalent polymer peptide antagonists; and b) Drug-free macromolecular therapeutics, a new paradigm in drug delivery.
Collapse
Affiliation(s)
- Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
13
|
Ali I, Mukhtar SD, Ali HS, Scotti MT, Scotti L. Advances in Nanoparticles as Anticancer Drug Delivery Vector: Need of this Century. Curr Pharm Des 2020; 26:1637-1649. [DOI: 10.2174/1381612826666200203124330] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022]
Abstract
Background:
Nanotechnology has contributed a great deal to the field of medical science. Smart drugdelivery
vectors, combined with stimuli-based characteristics, are becoming increasingly important. The use of
external and internal stimulating factors can have enormous benefits and increase the targeting efficiency of
nanotechnology platforms. The pH values of tumor vascular tissues are acidic in nature, allowing the improved
targeting of anticancer drug payloads using drug-delivery vectors. Nanopolymers are smart drug-delivery vectors
that have recently been developed and recommended for use by scientists because of their potential targeting
capabilities, non-toxicity and biocompatibility, and make them ideal nanocarriers for personalized drug delivery.
Method:
The present review article provides an overview of current advances in the use of nanoparticles (NPs) as
anticancer drug-delivery vectors.
Results:
This article reviews the molecular basis for the use of NPs in medicine, including personalized medicine,
personalized therapy, emerging vistas in anticancer therapy, nanopolymer targeting, passive and active targeting
transports, pH-responsive drug carriers, biological barriers, computer-aided drug design, future challenges and
perspectives, biodegradability and safety.
Conclusions:
This article will benefit academia, researchers, clinicians, and government authorities by providing a
basis for further research advancements.
Collapse
Affiliation(s)
- Imran Ali
- Department of Chemistry, College of Sciences, Taibah University, Al-Medina Al-Munawara – 41477, Saudi Arabia
| | - Sofi D. Mukhtar
- Department of Chemistry, Jamia Millia Islamia (Central University) New Delhi-110025, India
| | - Heyam S. Ali
- Department of Pharmaceutics, University of Khartoum, Khartoum, Sudan
| | - Marcus T. Scotti
- Cheminformatics Laboratory- Postgraduate Program in Natural Products and Synthetic Bioactive, Federal University of Paraíba-Campus I 58051-970, João Pessoa, PB, Brazil
| | - Luciana Scotti
- Teaching and Research Management - University Hospital, Cheminformatics Laboratory- Postgraduate Program in Natural Products and Synthetic Bioactive, Federal University of Paraíba-Campus I, 58051-970, João Pessoa, PB, Brazil
| |
Collapse
|
14
|
Yin H, Gao C, Ye K, Zhao T, Sun A, Qiao C. Evaluation of surfactant effect on β-poly(L-malic acid) production by Aureobasidium pullulans. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1631718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Haisong Yin
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin, China
- School of Bioengineering, Tianjin Modern Vocational Technology College, Tianjin, China
- Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin, China
| | - Cui Gao
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Kai Ye
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Tingbin Zhao
- Tianjin Huizhi Biotrans Bioengineering Co. Ltd, Tianjin, China
| | - Aiyou Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Changsheng Qiao
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin, China
- School of Bioengineering, Tianjin Modern Vocational Technology College, Tianjin, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
15
|
Patil R, Galstyan A, Sun T, Shatalova ES, Butte P, Mamelak AN, Carico C, Kittle DS, Grodzinski ZB, Chiechi A, Ding H, Black KL, Ljubimova JY, Holler E. Polymalic acid chlorotoxin nanoconjugate for near-infrared fluorescence guided resection of glioblastoma multiforme. Biomaterials 2019; 206:146-159. [PMID: 30933776 PMCID: PMC6574176 DOI: 10.1016/j.biomaterials.2019.03.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 03/01/2019] [Accepted: 03/19/2019] [Indexed: 12/19/2022]
Abstract
Maximal surgical resection of glioma remains the single most effective treatment. Tools to guide the resection while avoiding removal of normal brain tissues can aid surgeons in achieving optimal results. One strategy to achieve this goal is to rely upon interoperative fluorescence staining of tumor cells in vivo, that can be visualized by the surgeon during resection. Towards this goal we have designed a biodegradable fluorescent mini nano imaging agent (NIA) with high specificity for U87MG glioma cells and previously unmet high light emission. The NIA is the conjugate of polymalic acid (PMLA) with chlorotoxin for tumor targeting, indocyanine green (ICG) for NIR fluorescence and the tri-leucin peptide as fluorescence enhancer. PMLA as a multivalent platform carries several molecules of ICG and the other ligands. The NIA recognizes multiple sites on glioma cell surface, demonstrated by the effects of single and combined competitors. Systemic IV injection into xenogeneic mouse model carrying human U87MG glioblastoma indicated vivid tumor cell binding and internalization of NIA resulting in intensive and long-lasting tumor fluorescence. The NIA is shown to greatly improve tumor removal supporting its utility in clinical applications.
Collapse
Affiliation(s)
- Rameshwar Patil
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Anna Galstyan
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Tao Sun
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Ekaterina S Shatalova
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Pramod Butte
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Adam N Mamelak
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Christine Carico
- The University of Alabama at Birmingham, Birmingham, AL, United States
| | - David S Kittle
- Blaze Bioscience, Inc. Seattle, Washington, United States
| | - Zachary B Grodzinski
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Antonella Chiechi
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Hui Ding
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Keith L Black
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Julia Y Ljubimova
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Eggehard Holler
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States.
| |
Collapse
|
16
|
Zou X, Li T, Zhang X, Li H, Wang B. Optimization of the status of cell growth guided by an on-line biomass sensor for polymalic acid fermentation. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.12.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Israel LL, Braubach O, Galstyan A, Chiechi A, Shatalova ES, Grodzinski Z, Ding H, Black KL, Ljubimova JY, Holler E. A Combination of Tri-Leucine and Angiopep-2 Drives a Polyanionic Polymalic Acid Nanodrug Platform Across the Blood-Brain Barrier. ACS NANO 2019; 13:1253-1271. [PMID: 30633492 PMCID: PMC7641102 DOI: 10.1021/acsnano.8b06437] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
One of the major problems facing the treatment of neurological disorders is the poor delivery of therapeutic agents into the brain. Our goal is to develop a multifunctional and biodegradable nanodrug delivery system that crosses the blood-brain barrier (BBB) to access brain tissues affected by neurological disease. In this study, we synthesized a biodegradable nontoxic β-poly(l-malic acid) (PMLA or P) as a scaffold to chemically bind the BBB crossing peptides Angiopep-2 (AP2), MiniAp-4 (M4), and the transferrin receptor ligands cTfRL and B6. In addition, a trileucine endosome escape unit (LLL) and a fluorescent marker (rhodamine or rh) were attached to the PMLA backbone. The pharmacokinetics, BBB penetration, and biodistribution of nanoconjugates were studied in different brain regions and at multiple time points via optical imaging. The optimal nanoconjugate, P/LLL/AP2/rh, produced significant fluorescence in the parenchyma of cortical layers II/III, the midbrain colliculi, and the hippocampal CA1-3 cellular layers 30 min after a single intravenous injection; clearance was observed after 4 h. The nanoconjugate variant P/LLL/rh lacking AP2, or the variant P/AP2/rh lacking LLL, showed significantly less BBB penetration. The LLL moiety appeared to stabilize the nanoconjugate, while AP2 enhanced BBB penetration. Finally, nanoconjugates containing the peptides M4, cTfRL, and B6 displayed comparably little and/or inconsistent infiltration of brain parenchyma, likely due to reduced trans-BBB movement. P/LLL/AP2/rh can now be functionalized with intra-brain targeting and drug treatment moieties that are aimed at molecular pathways implicated in neurological disorders.
Collapse
Affiliation(s)
- Liron L. Israel
- Nanomedicine Research Center, Department of Neurosurgery, Los Angeles, California 90048, United States
| | - Oliver Braubach
- Nanomedicine Research Center, Department of Neurosurgery, Los Angeles, California 90048, United States
| | - Anna Galstyan
- Nanomedicine Research Center, Department of Neurosurgery, Los Angeles, California 90048, United States
| | - Antonella Chiechi
- Nanomedicine Research Center, Department of Neurosurgery, Los Angeles, California 90048, United States
| | - Ekaterina S. Shatalova
- Nanomedicine Research Center, Department of Neurosurgery, Los Angeles, California 90048, United States
| | - Zachary Grodzinski
- Nanomedicine Research Center, Department of Neurosurgery, Los Angeles, California 90048, United States
| | - Hui Ding
- Nanomedicine Research Center, Department of Neurosurgery, Los Angeles, California 90048, United States
| | - Keith L. Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Julia Y. Ljubimova
- Nanomedicine Research Center, Department of Neurosurgery, Los Angeles, California 90048, United States
| | - Eggehard Holler
- Nanomedicine Research Center, Department of Neurosurgery, Los Angeles, California 90048, United States
| |
Collapse
|
18
|
Tang W, Fan W, Lau J, Deng L, Shen Z, Chen X. Emerging blood–brain-barrier-crossing nanotechnology for brain cancer theranostics. Chem Soc Rev 2019; 48:2967-3014. [DOI: 10.1039/c8cs00805a] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The advancements, perspectives, and challenges in blood–brain-barrier (BBB)-crossing nanotechnology for effective brain tumor delivery and highly efficient brain cancer theranostics.
Collapse
Affiliation(s)
- Wei Tang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN)
- National Institute of Biomedical Imaging and Bioengineering (NIBIB)
- National Institutes of Health (NIH)
- Bethesda
- USA
| | - Wenpei Fan
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN)
- National Institute of Biomedical Imaging and Bioengineering (NIBIB)
- National Institutes of Health (NIH)
- Bethesda
- USA
| | - Joseph Lau
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN)
- National Institute of Biomedical Imaging and Bioengineering (NIBIB)
- National Institutes of Health (NIH)
- Bethesda
- USA
| | - Liming Deng
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN)
- National Institute of Biomedical Imaging and Bioengineering (NIBIB)
- National Institutes of Health (NIH)
- Bethesda
- USA
| | - Zheyu Shen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN)
- National Institute of Biomedical Imaging and Bioengineering (NIBIB)
- National Institutes of Health (NIH)
- Bethesda
- USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN)
- National Institute of Biomedical Imaging and Bioengineering (NIBIB)
- National Institutes of Health (NIH)
- Bethesda
- USA
| |
Collapse
|
19
|
Cheng FR, Su T, Cao J, Luo XL, Li L, Pu Y, He B. Environment-stimulated nanocarriers enabling multi-active sites for high drug encapsulation as an "on demand" drug release system. J Mater Chem B 2018; 6:2258-2273. [PMID: 32254566 DOI: 10.1039/c8tb00132d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Limited active sites in polyesters hinder fabrication of multifunctional biodegradable nanocarriers for successful clinical applications. Herein, poly(malic acid) (PMA)-based biodegradable polyesters bearing large carboxyl groups in their side chains were grafted with intracellular reductive-sensitive polyethylene glycol and imidazole to construct bioreducible nanocarriers (PLM-g-ss-EGA). The uniform spherical shape and high stability of the PLM-g-ss-EGA nanocarriers were demonstrated by dynamic light scattering (DLS) and dissipative particle dynamics (DPD) simulations. Enhanced interaction between the monomers in this novel nanocarrier doubled its drug loading efficiency (15%) as compared to that of traditional polyester nanocarriers (5-7%). Moreover, stimulus-responsive assessment and in vitro drug release studies showed that these bioreducible nanocarriers can balance extracellular stability in blood circulation and intracellular "on demand" release. In vitro and in vivo assays have demonstrated that these bioreducible nanocarriers not only can substantially enhance antitumor efficacy as compared to insensitive micelles and even comparably to free DOX·HCl, but can also greatly reduce unwanted side effects in other organs. The encouraging anticancer efficiency of these poly(malic acid)-based nanocarriers opens a new avenue to design multifunctional biodegradable polyester drug-delivery systems.
Collapse
Affiliation(s)
- F R Cheng
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China.
| | | | | | | | | | | | | |
Collapse
|
20
|
Yang J, Yang W, Feng J, Chen J, Jiang M, Zou X. Enhanced polymalic acid production from the glyoxylate shunt pathway under exogenous alcohol stress. J Biotechnol 2018; 275:24-30. [PMID: 29621553 DOI: 10.1016/j.jbiotec.2018.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 02/25/2018] [Accepted: 04/01/2018] [Indexed: 01/14/2023]
Abstract
Polymalic acid (PMA) is a water-soluble biopolymer produced by the yeast-like fungus Aureobasidium pullulans. In this study, the physiological response of A. pullulans against exogenous alcohols stress was investigated. Interestingly, ethanol stress was an effective inducer of enhanced PMA yield, although cell growth was slightly inhibited. The stress-responsive gene malate synthase (mls), which is involved in the glyoxylate shunt, was identified and was found to be regulated by exogenous ethanol stress. Therefore, an engineered strain, YJ-MLS, was constructed by overexpressing the endogenous mls gene, which increased the PMA titer by 16.2% compared with the wild-type strain. Following addition of 1% (v/v) of ethanol, a high PMA titer of 40.0 ± 0.38 g/L was obtained using batch fermentation with the mutant YJ-MLS in a 5-L fermentor, with a strongest PMA productivity of 0.56 g/L h. This study was the interesting report to show strengthening of the carbon metabolic flow from the glyoxylate shunt for PMA synthesis, and also provided a new sight for re-recognizing the regulatory behavior of alcohol stress in eukaryotic microbes.
Collapse
Affiliation(s)
- Jing Yang
- College of Pharmaceutical Sciences, Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Southwest University, Chongqing 400715, PR China
| | - Wenwen Yang
- College of Pharmaceutical Sciences, Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Southwest University, Chongqing 400715, PR China
| | - Jun Feng
- College of Pharmaceutical Sciences, Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Southwest University, Chongqing 400715, PR China
| | - Jie Chen
- Wuhan Sunhy Biology Co., Ltd, Wuhan 430074, PR China; School of Chemical Engineering& Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Xiang Zou
- College of Pharmaceutical Sciences, Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
21
|
Ding H, Fox I, Patil R, Galstyan A, Black KL, Ljubimova JY, Holler E. Polymalic Acid Tritryptophan Copolymer Interacts with Lipid Membrane Resulting in Membrane Solubilization. JOURNAL OF NANOMATERIALS 2017; 2017:4238697. [PMID: 29081792 PMCID: PMC5656384 DOI: 10.1155/2017/4238697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Anionic polymers with membrane permeation functionalities are highly desirable for secure cytoplasmic drug delivery. We have developed tritryptophan containing copolymer (P/WWW) of polymalic acid (PMLA) that permeates membranes by a mechanism different from previously described PMLA copolymers of trileucine (P/LLL) and leucine ethyl ester (P/LOEt) that use the "barrel stave" and "carpet" mechanism, respectively. The novel mechanism leads to solubilization of membranes by forming copolymer "belts" around planar membrane "packages." The formation of such packages is supported by results obtained from studies including size-exclusion chromatography, confocal microscopy, and fluorescence energy transfer. According to this "belt" mechanism, it is hypothesized that P/WWW first attaches to the membrane surface. Subsequently the hydrophobic tryptophan side chains translocate into the periphery and insert into the lipid bilayer thereby cutting the membrane into packages. The reaction is driven by the high affinity between the tryptophan residues and lipid side chains resulting in a stable configuration. The formation of the membrane packages requires physical agitation suggesting that the success of the translocation depends on the fluidity of the membrane. It is emphasized that the "belt" mechanism could specifically function in the recognition of abnormal cells with high membrane fluidity and in response to hyperthermia.
Collapse
Affiliation(s)
- Hui Ding
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Irving Fox
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Rameshwar Patil
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anna Galstyan
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Keith L. Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Julia Y. Ljubimova
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Eggehard Holler
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Institut für Biophysik und Physikalische Biochemie der Universität Regensburg, Regensburg, Germany
| |
Collapse
|
22
|
Sun M, Li J, Zhang C, Xie Y, Qiao H, Su Z, Oupický D, Ping Q. Arginine-Modified Nanostructured Lipid Carriers with Charge-Reversal and pH-Sensitive Membranolytic Properties for Anticancer Drug Delivery. Adv Healthc Mater 2017; 6. [PMID: 28187243 DOI: 10.1002/adhm.201600693] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/27/2016] [Indexed: 12/12/2022]
Abstract
The ability to escape endo/lysosomal trafficking is critically important to prevent entrapment of nanomedicines in lysosomes and to achieve maximum therapeutic efficacy of drugs delivered to cells through endocytosis. In this study, a novel pH-sensitive chitosan carrier with the ability to reverse its charge during endo/lysosomal trafficking is developed as a way of improving lysosomal disruption. N-Arginine-N-octyl chitosan (AOCS) is synthesized by grafting l-arginine onto carboxymethyl chitosan. The AOCS is used to modify the surface of nanostructured lipid carriers (NLC) to prepare pH-sensitive charge-reversal lysosomolytic nanocarriers (ANLC). The ANLC is loaded with 10-hydroxycamptothecin (HCPT). The results show that ANLC is able to reverse surface zeta potential from negative to positive at lysosomal pH, which contributes to improved release of encapsulated drugs into cytoplasm. The lysosomolytic capability of ANLC is confirmed by confocal microscopy and transmission electron microscopy. In vitro studies demonstrate that the anticancer activity of HCPT-loaded ANLC is improved when compared with HCPT-NLC and free HCPT. In vivo pharmacokinetics and tissue distribution analysis show improved delivery of HCPT-ANLC to subcutaneous Heps mouse liver tumors and greatly improved antitumor activity. The results present ANLC as a promising drug delivery carrier for improved antitumor therapy.
Collapse
Affiliation(s)
- Minjie Sun
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics; China Pharmaceutical University; Nanjing 210009 China
| | - Jing Li
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics; China Pharmaceutical University; Nanjing 210009 China
| | - Cuiting Zhang
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics; China Pharmaceutical University; Nanjing 210009 China
| | - Ying Xie
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics; China Pharmaceutical University; Nanjing 210009 China
| | - Hongzhi Qiao
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics; China Pharmaceutical University; Nanjing 210009 China
| | - Zhigui Su
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics; China Pharmaceutical University; Nanjing 210009 China
| | - David Oupický
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics; China Pharmaceutical University; Nanjing 210009 China
- Center for Drug Delivery and Nanomedicine; Department of Pharmaceutical Sciences; University of Nebraska Medical Center; Omaha NE 68198 USA
| | - Qineng Ping
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics; China Pharmaceutical University; Nanjing 210009 China
| |
Collapse
|
23
|
Ljubimova JY, Sun T, Mashouf L, Ljubimov AV, Israel LL, Ljubimov VA, Falahatian V, Holler E. Covalent nano delivery systems for selective imaging and treatment of brain tumors. Adv Drug Deliv Rev 2017; 113:177-200. [PMID: 28606739 PMCID: PMC5578712 DOI: 10.1016/j.addr.2017.06.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 06/07/2017] [Indexed: 02/06/2023]
Abstract
Nanomedicine is a rapidly evolving form of therapy that holds a great promise for superior drug delivery efficiency and therapeutic efficacy than conventional cancer treatment. In this review, we attempt to cover the benefits and the limitations of current nanomedicines with special attention to covalent nano conjugates for imaging and drug delivery in the brain. The improvement in brain tumor treatment remains dismal despite decades of efforts in drug development and patient care. One of the major obstacles in brain cancer treatment is the poor drug delivery efficiency owing to the unique blood-brain barrier (BBB) in the CNS. Although various anti-cancer agents are available to treat tumors outside of the CNS, the majority fails to cross the BBB. In this regard, nanomedicines have increasingly drawn attention due to their multi-functionality and versatility. Nano drugs can penetrate BBB and other biological barriers, and selectively accumulate in tumor cells, while concurrently decreasing systemic toxicity.
Collapse
Affiliation(s)
- Julia Y Ljubimova
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, USA.
| | - Tao Sun
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, USA
| | - Leila Mashouf
- Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Alexander V Ljubimov
- Department of Biomedical Sciences, Board of Governors Regenerative Medicine Institute, Los Angeles, CA 90048, USA
| | - Liron L Israel
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, USA
| | - Vladimir A Ljubimov
- Department of Neurosurgery and Brain Repair, University of South Florida, 2 Tampa General Circle, Tampa, FL 33606, USA
| | - Vida Falahatian
- Duke University School of Medicine, Department of Biostatistics and Bioinformatics, Clinical Research Training Program (CRTP), 2424 Erwin Road, Suite 1102, Hock Plaza Box 2721, Durham, NC 27710, USA
| | - Eggehard Holler
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, USA; Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
24
|
Xia J, Xu J, Liu X, Xu J, Wang X, Li X. Economic co-production of poly(malic acid) and pullulan from Jerusalem artichoke tuber by Aureobasidium pullulans HA-4D. BMC Biotechnol 2017; 17:20. [PMID: 28231788 PMCID: PMC5324199 DOI: 10.1186/s12896-017-0340-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/17/2017] [Indexed: 11/23/2022] Open
Abstract
Background poly(L-malic acid) (PMA) is a water-soluble polyester with many attractive properties in medicine and food industries, but the high cost of PMA fermentation has restricted its further application for large-scale production. To overcome this problem, PMA production from Jerusalem artichoke tubers was successfully performed. Additionally, a valuable exopolysaccharide, pullulan, was co-produced with PMA by Aureobasidum pullulans HA-4D. Results The Jerusalem artichoke medium for PMA and pullulan co-production contained only 100 g/L hydrolysate sugar, 30 g/L CaCO3 and 1 g/L NaNO3. Compared with the glucose medium, the Jerusalem artichoke medium resulted in a higher PMA concentration (114.4 g/L) and a lower pullulan concentration (14.3 g/L) in a 5 L bioreactor. Meanwhile, the activity of pyruvate carboxylase and malate dehydrogenas was significantly increased, while the activity of α-phosphoglucose mutase, UDP-glucose pyrophosphorylase and glucosyltransferase was not affected. To assay the economic-feasibility, large-scale production in a 1 t fermentor was performed, yielding 117.5 g/L PMA and 15.2 g/L pullulan. Conclusions In this study, an economical co-production system for PMA and pullulan from Jerusalem artichoke was developed. The medium for PMA and pullulan co-production was significantly simplified when Jerusalem artichoke tubers were used. With the simplified medium, PMA production was obviously stimulated, which would be associated with the improved activity of pyruvate carboxylase and malate dehydrogenas. Electronic supplementary material The online version of this article (doi:10.1186/s12896-017-0340-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Xia
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, College of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, 223300, China.
| | - Jiaxing Xu
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, College of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, 223300, China
| | - Xiaoyan Liu
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, College of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, 223300, China
| | - Jiming Xu
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, College of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, 223300, China
| | - Xingfeng Wang
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, College of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, 223300, China
| | - Xiangqian Li
- Jiangsu Province Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huai'an, 223300, China
| |
Collapse
|
25
|
Feng J, Yang J, Li X, Guo M, Wang B, Yang ST, Zou X. Reconstruction of a genome-scale metabolic model and in silico analysis of the polymalic acid producer Aureobasidium pullulans CCTCC M2012223. Gene 2016; 607:1-8. [PMID: 28043922 DOI: 10.1016/j.gene.2016.12.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/27/2016] [Accepted: 12/29/2016] [Indexed: 01/08/2023]
Abstract
Aureobasidium pullulans is a yeast-like fungus used for producing biopolymers e.g. polymalic acid (PMA) and pullulan. A high PMA producing strain, A. pullulans CCTCC M2012223, was isolated and sequenced in our previous study. To understand its metabolic performance, a genome-scale metabolic model, iZX637, consisting of 637 genes, 1347 reactions and 1133 metabolites, was reconstructed based on genome annotation and literature mining studies. The iZX637 model was validated by simulating cell growth, utilization of carbon and nitrogen sources, and gene essentiality analysis in A. pullulans. We further validated our model, designed a simulation program for the prediction of PMA production using experimental data, and further analyzed the carbon flux distribution and change with increasing PMA synthesis rates. Through the calculated flux distribution, NADPH- and NADH-dependent methylenetetrahydrofolate dehydrogenase (MTHFD) were found to be associated with the transfer of reducing equivalents from NADPH to NADH for supplementing NADH in the metabolic network. Furthermore, under the high PMA synthesis rate, a large amount of carbon flux was through pyruvate into malic acid via the reductive TCA cycle. Thus, pyruvate carboxylase, which can convert pyruvate to oxaloacetate with CO2 fixation, may also be an important target for PMA synthesis. These results illustrated that the model iZX637 was a powerful tool for optimization of A. pullulans metabolism and identification of targets for guiding metabolic engineering.
Collapse
Affiliation(s)
- Jun Feng
- College of Pharmaceutical Sciences, Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Southwest University, Chongqing 400715, PR China
| | - Jing Yang
- College of Pharmaceutical Sciences, Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Southwest University, Chongqing 400715, PR China
| | - Xiaorong Li
- College of Pharmaceutical Sciences, Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Southwest University, Chongqing 400715, PR China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Shanghai 200237, PR China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing 400044, PR China
| | - Shang-Tian Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Xiang Zou
- College of Pharmaceutical Sciences, Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Southwest University, Chongqing 400715, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing 400044, PR China.
| |
Collapse
|
26
|
Munsell EV, Ross NL, Sullivan MO. Journey to the Center of the Cell: Current Nanocarrier Design Strategies Targeting Biopharmaceuticals to the Cytoplasm and Nucleus. Curr Pharm Des 2016; 22:1227-44. [PMID: 26675220 DOI: 10.2174/1381612822666151216151420] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/15/2015] [Indexed: 01/06/2023]
Abstract
New biopharmaceutical molecules, potentially able to provide more personalized and effective treatments, are being identified through the advent of advanced synthetic biology strategies, sophisticated chemical synthesis approaches, and new analytical methods to assess biological potency. However, translation of many of these structures has been significantly limited due to the need for more efficient strategies to deliver macromolecular therapeutics to desirable intracellular sites of action. Engineered nanocarriers that encapsulate peptides, proteins, or nucleic acids are generally internalized into target cells via one of several endocytic pathways. These nanostructures, entrapped within endosomes, must navigate the intracellular milieu to orchestrate delivery to the intended destination, typically the cytoplasm or nucleus. For therapeutics active in the cytoplasm, endosomal escape continues to represent a limiting step to effective treatment, since a majority of nanocarriers trapped within endosomes are ultimately marked for enzymatic degradation in lysosomes. Therapeutics active in the nucleus have the added challenges of reaching and penetrating the nuclear envelope, and nuclear delivery remains a preeminent challenge preventing clinical translation of gene therapy applications. Herein, we review cutting-edge peptide- and polymer-based design strategies with the potential to enable significant improvements in biopharmaceutical efficacy through improved intracellular targeting. These strategies often mimic the activities of pathogens, which have developed innate and highly effective mechanisms to penetrate plasma membranes and enter the nucleus of host cells. Understanding these mechanisms has enabled advances in synthetic peptide and polymer design that may ultimately improve intracellular trafficking and bioavailability, leading to increased access to new classes of biotherapeutics.
Collapse
Affiliation(s)
| | | | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, Delaware.
| |
Collapse
|
27
|
Ullah I, Chung K, Beloor J, Kim J, Cho M, Kim N, Lee KY, Kumar P, Lee SK. Trileucine residues in a ligand-CPP-based siRNA delivery platform improve endosomal escape of siRNA. J Drug Target 2016; 25:320-329. [PMID: 27820977 DOI: 10.1080/1061186x.2016.1258566] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
siRNA entrapment within endosomes is a significant problem encountered with siRNA delivery platforms that co-opt receptor-mediated entry pathways. Attachment of a cell-penetrating peptide (CPP), such as nona-arginine (9R) to a cell receptor-binding ligand like the Rabies virus glycoprotein, RVG, allows effective siRNA delivery to the cytoplasm by non-endocytic pathways, but a significant amount of siRNA complexes also enters the cell by ligand-induced receptor endocytosis and remain localized in endosomes. Here, we report that the incorporation of trileucine (3 Leu) residues as an endo-osmolytic moiety in the peptide improves endosomal escape and intracellular delivery of siRNA. The trileucine motif did not affect early non-endosomal mechanism of cytoplasmic siRNA delivery but enhanced target gene silencing by >20% only beyond 24 h of transfection when siRNA delivery is mostly through the endocytic route and siRNA trapped in the endosomes at later stages were subject to release into cytoplasm. The mechanism may involve endosomal membrane disruption as trileucine residues lysed RBCs selectively under endosomal pH conditions. Interestingly <3 Leu or >3 Leu residues were not as effective, suggesting that 3 Leu residues are useful for enhancing cytoplasmic delivery of siRNA routed through endosomes.
Collapse
Affiliation(s)
- Irfan Ullah
- a Department of Bioengineering and Institute of Nanoscience and Technology , Hanyang University , Seoul , South Korea
| | - Kunho Chung
- a Department of Bioengineering and Institute of Nanoscience and Technology , Hanyang University , Seoul , South Korea.,b Department of Internal Medicine, Section of Infectious Diseases , Yale University School of Medicine , New Haven , CT, USA
| | - Jagadish Beloor
- b Department of Internal Medicine, Section of Infectious Diseases , Yale University School of Medicine , New Haven , CT, USA
| | - Jongkil Kim
- a Department of Bioengineering and Institute of Nanoscience and Technology , Hanyang University , Seoul , South Korea
| | - Minyoung Cho
- a Department of Bioengineering and Institute of Nanoscience and Technology , Hanyang University , Seoul , South Korea
| | - Nahyun Kim
- a Department of Bioengineering and Institute of Nanoscience and Technology , Hanyang University , Seoul , South Korea
| | - Kuen Yong Lee
- a Department of Bioengineering and Institute of Nanoscience and Technology , Hanyang University , Seoul , South Korea
| | - Priti Kumar
- b Department of Internal Medicine, Section of Infectious Diseases , Yale University School of Medicine , New Haven , CT, USA
| | - Sang-Kyung Lee
- a Department of Bioengineering and Institute of Nanoscience and Technology , Hanyang University , Seoul , South Korea
| |
Collapse
|
28
|
Cao W, Chen X, Luo J, Yin J, Qiao C, Wan Y. High molecular weight β-poly(l-malic acid) produced by A. pullulans with Ca2+ added repeated batch culture. Int J Biol Macromol 2016; 85:192-9. [DOI: 10.1016/j.ijbiomac.2015.12.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/03/2015] [Accepted: 12/17/2015] [Indexed: 11/25/2022]
|
29
|
Tham WH, Wahit MU, Abdul Kadir MR, Wong TW, Hassan O. Polyol-based biodegradable polyesters: a short review. REV CHEM ENG 2016. [DOI: 10.1515/revce-2015-0035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AbstractCatalyst-free thermal polyesterification has recently emerged as a potential strategy for designing biodegradable thermoset polymers, particularly polyol-based polyesters for biomedical applications. These thermoset polyesters are synthesized through polycondensation of polyol and polyacid without the presence of catalyst or solvents. The mechanical properties, degradation rates, crystallinity, hydrophilicity, and biocompatibility can be controlled by adjusting the monomer feed ratios and curing conditions. These polyesters often degrade via surface erosion that allows the polymers to maintain structural integrity throughout hydrolysis. Additionally, polyol-based polyesters demonstrated good biocompatibility as non-toxic catalysts and/or solvents involved in the reaction, and the monomers used are endogenous to human metabolism which can be resorbed and metabolized in various physiological pathways. This review summarizes the polyol-based biodegradable polyesters that were synthesized by catalyst-free polyesterification.
Collapse
|
30
|
Ding H, Patil R, Portilla-Arias J, Black KL, Ljubimova JY, Holler E. Quantitative analysis of PMLA nanoconjugate components after backbone cleavage. Int J Mol Sci 2015; 16:8607-20. [PMID: 25894227 PMCID: PMC4425099 DOI: 10.3390/ijms16048607] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/03/2015] [Accepted: 04/13/2015] [Indexed: 11/16/2022] Open
Abstract
Multifunctional polymer nanoconjugates containing multiple components show great promise in cancer therapy, but in most cases complete analysis of each component is difficult. Polymalic acid (PMLA) based nanoconjugates have demonstrated successful brain and breast cancer treatment. They consist of multiple components including targeting antibodies, Morpholino antisense oligonucleotides (AONs), and endosome escape moieties. The component analysis of PMLA nanoconjugates is extremely difficult using conventional spectrometry and HPLC method. Taking advantage of the nature of polyester of PMLA, which can be cleaved by ammonium hydroxide, we describe a method to analyze the content of antibody and AON within nanoconjugates simultaneously using SEC-HPLC by selectively cleaving the PMLA backbone. The selected cleavage conditions only degrade PMLA without affecting the integrity and biological activity of the antibody. Although the amount of antibody could also be determined using the bicinchoninic acid (BCA) method, our selective cleavage method gives more reliable results and is more powerful. Our approach provides a new direction for the component analysis of polymer nanoconjugates and nanoparticles.
Collapse
Affiliation(s)
- Hui Ding
- Department of Neurosurgery, Cedars-Sinai Medical Center, 110 N. 127 S. San Vincente, Advanced Health Science Pavilion A8220, Los Angeles, CA 90048, USA.
| | - Rameshwar Patil
- Department of Neurosurgery, Cedars-Sinai Medical Center, 110 N. 127 S. San Vincente, Advanced Health Science Pavilion A8220, Los Angeles, CA 90048, USA.
| | - Jose Portilla-Arias
- Department of Neurosurgery, Cedars-Sinai Medical Center, 110 N. 127 S. San Vincente, Advanced Health Science Pavilion A8220, Los Angeles, CA 90048, USA.
| | - Keith L Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, 110 N. 127 S. San Vincente, Advanced Health Science Pavilion A8220, Los Angeles, CA 90048, USA.
| | - Julia Y Ljubimova
- Department of Neurosurgery, Cedars-Sinai Medical Center, 110 N. 127 S. San Vincente, Advanced Health Science Pavilion A8220, Los Angeles, CA 90048, USA.
| | - Eggehard Holler
- Department of Neurosurgery, Cedars-Sinai Medical Center, 110 N. 127 S. San Vincente, Advanced Health Science Pavilion A8220, Los Angeles, CA 90048, USA.
| |
Collapse
|
31
|
Loyer P, Cammas-Marion S. Natural and synthetic poly(malic acid)-based derivates: a family of versatile biopolymers for the design of drug nanocarriers. J Drug Target 2015; 22:556-75. [PMID: 25012064 DOI: 10.3109/1061186x.2014.936871] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The field of specific drug delivery is an expanding research domain. Besides the use of liposomes formed from various lipids, natural and synthetic polymers have been developed to prepare more efficient drug delivery systems either under macromolecular prodrugs or under particulate nanovectors. To ameliorate the biocompatibility of such nanocarriers, degradable natural or synthetic polymers have attracted the interest of many researchers. In this context, poly(malic acid) (PMLA) extracted from microorganisms or synthesized from malic or aspartic acid was used to prepare water-soluble drug carriers or nanoparticles. Within this review, both the preparation and the applications of PMLA derivatives are described emphasizing the in vitro and in vivo assays. The results obtained by several groups highlight the interest of such polyesters in the field of drug delivery.
Collapse
Affiliation(s)
- Pascal Loyer
- Inserm UMR S-991, Foie, Métabolismes et Cancer, Université de Rennes 1, Fédération de Recherche Biosit , CHU Rennes, Rennes , France and
| | | |
Collapse
|
32
|
Tu G, Wang Y, Ji Y, Zou X. The effect of Tween 80 on the polymalic acid and pullulan production by Aureobasidium pullulans CCTCC M2012223. World J Microbiol Biotechnol 2014; 31:219-26. [DOI: 10.1007/s11274-014-1779-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/14/2014] [Indexed: 01/05/2023]
|
33
|
Cofactor and CO2 donor regulation involved in reductive routes for polymalic acid production by Aureobasidium pullulans CCTCC M2012223. Bioprocess Biosyst Eng 2014; 37:2131-6. [DOI: 10.1007/s00449-014-1182-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 03/20/2014] [Indexed: 11/25/2022]
|
34
|
Protein nanoparticle electrostatic interaction: size dependent counterions induced conformational change of hen egg white lysozyme. Colloids Surf B Biointerfaces 2014; 118:1-6. [PMID: 24704636 DOI: 10.1016/j.colsurfb.2014.03.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/14/2014] [Accepted: 03/15/2014] [Indexed: 11/22/2022]
Abstract
In our earlier paper (Ghosh et al., 2013), we have shown that (i) the positively charged hen egg white lysozyme (HEWL), dispersed in water, binds electrostatically with the negatively functionalized iron oxide nanoparticles (IONPs), and (ii) the Na(+) counterions, associated with functionalized IONPs, diffuse into bound proteins and irreversibly unfold them. Having this information, we have extended our investigation and report here the effect of the size and the charge of alkaline metal counterions on the conformational modification of HEWL. In order to obtain a negative functional 'shell' on IONPs and the counterions of different size and charge we have functionalized IONPs with different derivatives of citrate, namely, tri-lithium citrate (TLC, Li3C6H5O7), tri-sodium citrate (TSC, Na3C6H5O7), tri-potassium citrate (TKC, K3C6H5O7) and tri-magnesium citrate (TMC, Mg3C12H10O14). The size of counterions varies as Mg(2+)<Li(+)<Na(+)<K(+). After interaction with the functionalized IONPs, the unfolding of HEWL was the maximum in presence of Li(+), and was decreasing with increasing size of counterions. The UV-vis absorption measurements indicated that the unfolding of HEWL was due to modification in the hydrophobic environment around the tryptophan regions. The unfolding of HEWL was associated with the change of folding conformation from the α-helix to the β-sheet. In absence of counterions, ligand-IONPs have no effect on the native conformation of HEWL. An effective use of counterions in order to modify protein conformation (and, the functionality) via protein-nanoparticle electrostatic interaction is a new finding, and be useful for an alternative medical therapy.
Collapse
|
35
|
Jaffredo CG, Guillaume SM. Benzyl β-malolactonate polymers: a long story with recent advances. Polym Chem 2014. [DOI: 10.1039/c4py00170b] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Benzyl β-malolactonate (MLABe) and its corresponding poly(benzyl β-malolactonate) (PMLABe) homopolymers and copolymers of the poly(hydroxyalkanoate) (PHA) family.
Collapse
Affiliation(s)
- Cédric G. Jaffredo
- Institut des Sciences Chimiques de Rennes
- UMR 6226 CNRS – Université de Rennes 1
- F-35042 Rennes Cedex, France
| | - Sophie M. Guillaume
- Institut des Sciences Chimiques de Rennes
- UMR 6226 CNRS – Université de Rennes 1
- F-35042 Rennes Cedex, France
| |
Collapse
|
36
|
Cao W, Luo J, Qi B, Zhao J, Qiao C, Ding L, Su Y, Wan Y. β-poly(l-malic acid) production by fed-batch culture ofAureobasidium pullulansipe-1 with mixed sugars. Eng Life Sci 2013. [DOI: 10.1002/elsc.201200189] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Weifeng Cao
- National Key Laboratory of Biochemical Engineering; Institute of Process Engineering, Chinese Academy of Sciences; Beijing P.R. China
| | - Jianquan Luo
- National Key Laboratory of Biochemical Engineering; Institute of Process Engineering, Chinese Academy of Sciences; Beijing P.R. China
- Biological Engineering Department; EA 4297 TIMR, Technological University of Compiegne; Compiegne France
| | - Benkun Qi
- National Key Laboratory of Biochemical Engineering; Institute of Process Engineering, Chinese Academy of Sciences; Beijing P.R. China
| | - Juan Zhao
- Research Center of Modern Analysis Technology; Tianjin University of Science & Technology; Tianjin P.R. China
| | - Changsheng Qiao
- Department of Bioengineering; Tianjin University of Science & Technology; Tianjin P.R. China
| | - Luhui Ding
- Biological Engineering Department; EA 4297 TIMR, Technological University of Compiegne; Compiegne France
| | - Yi Su
- National Key Laboratory of Biochemical Engineering; Institute of Process Engineering, Chinese Academy of Sciences; Beijing P.R. China
| | - Yinhua Wan
- National Key Laboratory of Biochemical Engineering; Institute of Process Engineering, Chinese Academy of Sciences; Beijing P.R. China
| |
Collapse
|
37
|
Ljubimova JY, Portilla-Arias J, Patil R, Ding H, Inoue S, Markman JL, Rekechenetskiy A, Konda B, Gangalum PR, Chesnokova A, Ljubimov AV, Black KL, Holler E. Toxicity and efficacy evaluation of multiple targeted polymalic acid conjugates for triple-negative breast cancer treatment. J Drug Target 2013; 21:956-967. [PMID: 24032759 DOI: 10.3109/1061186x.2013.837470] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Engineered nanoparticles are widely used for delivery of drugs but frequently lack proof of safety for cancer patient's treatment. All-in-one covalent nanodrugs of the third generation have been synthesized based on a poly(β-L-malic acid) (PMLA) platform, targeting human triple-negative breast cancer (TNBC). They significantly inhibited tumor growth in nude mice by blocking synthesis of epidermal growth factor receptor, and α4 and β1 chains of laminin-411, the tumor vascular wall protein and angiogenesis marker. PMLA and nanodrug biocompatibility and toxicity at low and high dosages were evaluated in vitro and in vivo. The dual-action nanodrug and single-action precursor nanoconjugates were assessed under in vitro conditions and in vivo with multiple treatment regimens (6 and 12 treatments). The monitoring of TNBC treatment in vivo with different drugs included blood hematologic and immunologic analysis after multiple intravenous administrations. The present study demonstrates that the dual-action nanoconjugate is highly effective in preclinical TNBC treatment without side effects, supported by hematologic and immunologic assays data. PMLA-based nanodrugs of the Polycefin™ family passed multiple toxicity and efficacy tests in vitro and in vivo on preclinical level and may prove to be optimized and efficacious for the treatment of cancer patients in the future.
Collapse
Affiliation(s)
- Julia Y Ljubimova
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Arrogene, Inc., Santa Monica, CA, USA
| | - Jose Portilla-Arias
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rameshwar Patil
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hui Ding
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Satoshi Inoue
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Janet L Markman
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Bindu Konda
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Pallavi R Gangalum
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Alexander V Ljubimov
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Arrogene, Inc., Santa Monica, CA, USA.,Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Keith L Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Arrogene, Inc., Santa Monica, CA, USA
| | - Eggehard Holler
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Arrogene, Inc., Santa Monica, CA, USA
| |
Collapse
|
38
|
Ding H, Helguera G, Rodríguez JA, Markman J, Luria-Pérez R, Gangalum P, Portilla-Arias J, Inoue S, Daniels-Wells TR, Black K, Holler E, Penichet ML, Ljubimova JY. Polymalic acid nanobioconjugate for simultaneous immunostimulation and inhibition of tumor growth in HER2/neu-positive breast cancer. J Control Release 2013; 171:322-9. [PMID: 23770212 DOI: 10.1016/j.jconrel.2013.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/02/2013] [Accepted: 06/03/2013] [Indexed: 12/17/2022]
Abstract
Breast cancer remains the second leading cause of cancer death among women in the United States. Breast cancer prognosis is particularly poor in case of tumors overexpressing the oncoprotein HER2/neu. A new nanobioconjugate of the Polycefin(TM) family of anti-cancer drugs based on biodegradable and non-toxic polymalic acid (PMLA) was engineered for a multi-pronged attack on HER2/neu-positive breast cancer cells. An antibody-cytokine fusion protein consisting of the immunostimulatory cytokine interleukin-2 (IL-2) genetically fused to an antibody specific for human HER2/neu [anti-HER2/neu IgG3-(IL-2)] was covalently attached to the PMLA backbone to target HER2/neu expressing tumors and ensure the delivery of IL-2 to the tumor microenvironment. Antisense oligonucleotides (AON) were conjugated to the nanodrug to inhibit the expression of vascular tumor protein laminin-411 in order to block tumor angiogenesis. It is shown that the nanobioconjugate was capable of specifically binding human HER2/neu and retained the biological activity of IL-2. We also showed the uptake of the nanobioconjugate into HER2/neu-positive breast cancer cells and enhanced tumor targeting in vivo. The nanobioconjugate exhibited marked anti-tumor activity manifested by significantly longer animal survival and significantly increased anti-HER2/neu immune response in immunocompetent mice bearing D2F2/E2 murine mammary tumors that express human HER2/neu. The combination of laminin-411 AON and antibody-cytokine fusion protein on a single polymeric platform results in a new nanobioconjugate that can act against cancer cells through inhibition of tumor growth and angiogenesis and the orchestration of an immune response against the tumor. The present Polycefin(TM) variant may be a promising agent for treating HER2/neu expressing tumors and demonstrates the versatility of the Polycefin(TM) nanobioconjugate platform.
Collapse
Affiliation(s)
- Hui Ding
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ljubimova JY, Holler E. Biocompatible nanopolymers: the next generation of breast cancer treatment? Nanomedicine (Lond) 2013; 7:1467-70. [PMID: 23148535 DOI: 10.2217/nnm.12.115] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
40
|
Gonzalez L, Loza RJ, Han KY, Sunoqrot S, Cunningham C, Purta P, Drake J, Jain S, Hong S, Chang JH. Nanotechnology in corneal neovascularization therapy--a review. J Ocul Pharmacol Ther 2013; 29:124-34. [PMID: 23425431 DOI: 10.1089/jop.2012.0158] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nanotechnology is an up-and-coming branch of science that studies and designs materials with at least one dimension sized from 1-100 nm. These nanomaterials have unique functions at the cellular, atomic, and molecular levels. The term "nanotechnology" was first coined in 1974. Since then, it has evolved dramatically and now consists of distinct and independent scientific fields. Nanotechnology is a highly studied topic of interest, as nanoparticles can be applied to various fields ranging from medicine and pharmacology, to chemistry and agriculture, to environmental science and consumer goods. The rapidly evolving field of nanomedicine incorporates nanotechnology with medical applications, seeking to give rise to new diagnostic means, treatments, and tools. Over the past two decades, numerous studies that underscore the successful fusion of nanotechnology with novel medical applications have emerged. This has given rise to promising new therapies for a variety of diseases, especially cancer. It is becoming abundantly clear that nanotechnology has found a place in the medical field by providing new and more efficient ways to deliver treatment. Ophthalmology can also stand to benefit significantly from the advances in nanotechnology research. As it relates to the eye, research in the nanomedicine field has been particularly focused on developing various treatments to prevent and/or reduce corneal neovascularization among other ophthalmologic disorders. This review article aims to provide an overview of corneal neovascularization, currently available treatments, and where nanotechnology comes into play.
Collapse
Affiliation(s)
- Lilian Gonzalez
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ding H, Portilla-Arias J, Patil R, Black KL, Ljubimova JY, Holler E. Distinct mechanisms of membrane permeation induced by two polymalic acid copolymers. Biomaterials 2013; 34:217-25. [PMID: 23063368 PMCID: PMC3487713 DOI: 10.1016/j.biomaterials.2012.08.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 08/09/2012] [Indexed: 11/20/2022]
Abstract
Anionic polymers are valuable components used in cosmetics and health sciences, especially in drug delivery, because of their chemical versatility and low toxicity. However, because of their highly negative charge they pose problems for penetration through hydrophobic barriers such as membranes. We have engineered anionic polymalic acid (PMLA) to penetrate biological membranes. PMLA copolymers of leucine ethyl ester (P/LOEt) or trileucine (P/LLL) show either pH-independent or pH-dependent activity for membrane penetration. We report here for the first time on the mechanisms which are different for those two copolymers. Formation of hydrophobic patches in either copolymer is detected by fluorescence techniques. The copolymers display distinctly different properties in solution and during membranolysis. P/LOEt copolymer binds to membrane as single molecules with high affinity, and induces leakage cooperatively through a mechanism known as "carpet" model, in which the polymer aligns at the surface throughout the entire process of membrane permeation. In contrast, P/LLL self-assembles to form an oligomer of 105 nm in a pH-dependent manner (pKa 5.5) and induces membrane leakage through a two-phase process: the concentration dependent first-phase of insertion of the oligomer into membrane followed by a concentration independent second-phase of rearrangement of the membrane-oligomer complex. The insertion of P/LLL is facilitated by hydrophobic interactions between trileucine side chains and lipids in the membrane core, resulting in transmembrane pores, through mechanism known as "barrel-stave" model. The understanding of the mechanism paves the way for future engineering of polymeric delivery systems with optimal cytoplasmic delivery efficiency and reduced systemic toxicity.
Collapse
Affiliation(s)
- Hui Ding
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Li S, Su Z, Sun M, Xiao Y, Cao F, Huang A, Li H, Ping Q, Zhang C. An arginine derivative contained nanostructure lipid carriers with pH-sensitive membranolytic capability for lysosomolytic anti-cancer drug delivery. Int J Pharm 2012; 436:248-57. [DOI: 10.1016/j.ijpharm.2012.06.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/01/2012] [Accepted: 06/15/2012] [Indexed: 12/16/2022]
|
43
|
Intensification of β-poly(L: -malic acid) production by Aureobasidium pullulans ipe-1 in the late exponential growth phase. J Ind Microbiol Biotechnol 2012; 39:1073-80. [PMID: 22395899 DOI: 10.1007/s10295-012-1111-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 02/15/2012] [Indexed: 10/28/2022]
Abstract
β-Poly(malic acid) (PMLA) has attracted industrial interest because this polyester can be used as a prodrug or for drug delivery systems. In PMLA production by Aureobasidium pullulans ipe-1, it was found that PLMA production was associated with cell growth in the early exponential growth phase and dissociated from cell growth in the late exponential growth phase. To enhance PMLA production in the late phase, different fermentation modes and strategies for controlling culture redox potential (CRP) were studied. The results showed that high concentrations of produced PMLA (above 40 g/l) not only inhibited PMLA production, but also was detrimental to cell growth. Moreover, when CRP increased from 57 to 100 mV in the late exponential growth phase, the lack of reducing power in the broth also decreased PMLA productivity. PMLA productivity could be enhanced by repeated-batch culture to maintain cell growth in the exponential growth phase, or by cell-recycle culture with membrane to remove the produced PMLA, or by maintaining CRP below 70 mV no matter which kind of fermentation mode was adopted. Repeated-batch culture afforded a high PMLA concentration (up to 63.2 g/l) with a productivity of 1.15 g l(-1) h(-1). Cell-recycle culture also confirmed that PMLA production by the strain ipe-1 was associated with cell growth.
Collapse
|
44
|
Vert M. Not any new functional polymer can be for medicine: what about artificial biopolymers? Macromol Biosci 2011; 11:1653-61. [PMID: 22052691 DOI: 10.1002/mabi.201100224] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 09/08/2011] [Indexed: 11/10/2022]
Abstract
Man-made artificial organic polymers are among the more recent sources of materials used by humans. In medicine, they contribute to applications in surgery, dentistry and pharmacology. Nowadays, innovations in the field of therapeutic polymers rely on novel polymers for specific applications such as guided tissue regeneration, tissue engineering, drug delivery systems, gene transfection, etc. Introducing reactive chemical functions within or along polymer backbones is an attractive route to generate functional polymers for medicine. However, any candidate to effective application must fulfil a number of requirements, grouped under the terms biocompatibility and biofunctionality, to be of real interest and have a future for effective application. Whenever the application requires a therapeutic aid for a limited period of time to help natural healing, bioresorbability is to be taken into account on top of biocompatibility and biofunctionality. This contribution presents the case of "artificial biopolymers" and discusses the potential of some members of the family with respect to temporary therapeutic applications that require functional polymers.
Collapse
Affiliation(s)
- Michel Vert
- Max Mousseron Institute for Biomolecules, UMR CNRS 5247, Group Research Center for Artificial Biopolymers, University Montpellier 1, CNRS, Faculty of Pharmacy, 15 Avenue Charles Flahault, BP 14491, 34093 Montpellier Cedex 5, France.
| |
Collapse
|
45
|
Ye SF, Tian MM, Wang TX, Ren L, Wang D, Shen LH, Shang T. Synergistic effects of cell-penetrating peptide Tat and fusogenic peptide HA2-enhanced cellular internalization and gene transduction of organosilica nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2011; 8:833-41. [PMID: 22033082 DOI: 10.1016/j.nano.2011.10.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/20/2011] [Accepted: 10/06/2011] [Indexed: 12/16/2022]
Abstract
The nonviral gene delivery system is an attractive alternative to cancer therapy. A new kind of gelatin-silica nanoparticles (GSNPs) was developed through a two-step sol-gel procedure. To improve the transfection efficacy, GSNPs modified with different fusion peptides (Tat, HA2, R8, Tat/HA2, and Tat/R8) were prepared for particle size, zeta potential, cellular uptake, hemolysis activity at physiological pH (7.0) or acidic pH (5.0), and condensation of plasmid DNA. The results suggest that the sizes and zeta potentials of GS-peptide conjugates were 147 - 161 nm and 19 - 33 mV, respectively; GS-peptide conjugates exhibited low cytotoxicity; the plasmid DNA was readily entrapped at a GS-peptide/pDNA weight ratio of 50 - 200. The in vitro and in vivo studies demonstrated that the synergistic effects of cell-penetrating peptide Tat and fusogenic peptide HA2 could promote the efficient cellular internalization, endosome escape, and nucleus targeting, hence delivering the therapeutic nucleic acid efficiently.
Collapse
Affiliation(s)
- She-fang Ye
- Research Center of Biomedical Engineering, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|