1
|
Witzdam L, White T, Rodriguez-Emmenegger C. Steps Toward Recapitulating Endothelium: A Perspective on the Next Generation of Hemocompatible Coatings. Macromol Biosci 2024; 24:e2400152. [PMID: 39072925 DOI: 10.1002/mabi.202400152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Endothelium, the lining in this blood vessel, orchestrates three main critical functions such as protecting blood components, modulating of hemostasis by secreting various inhibitors, and directing clot digestion (fibrinolysis) by activating tissue plasminogen activator. No other surface can perform these tasks; thus, the contact of blood and blood-contacting medical devices inevitably leads to the activation of coagulation, often causing device failure, and thromboembolic complications. This perspective, first, discusses the biological mechanisms of activation of coagulation and highlights the efforts of advanced coatings to recapitulate one characteristic of endothelium, hereafter single functions of endothelium and noting necessity of the synergistic integration of its three main functions. Subsequently, it is emphasized that to overcome the challenges of blood compatibility an endothelium-mimicking system is needed, proposing a synergy of bottom-up synthetic biology, particularly synthetic cells, with passive- and bioactive surface coatings. Such integration holds promise for developing advanced biomaterials capable of recapitulating endothelial functions, thereby enhancing the hemocompatibility and performance of blood-contacting medical devices.
Collapse
Affiliation(s)
- Lena Witzdam
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Tom White
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
| | - Cesar Rodriguez-Emmenegger
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain
- Biomedical Research Networking, Center in Bioengineering, Biomaterials and Nanomedicine, The Institute of Health Carlos III, Madrid, 28029, Spain
| |
Collapse
|
2
|
Gerasimovich E, Kriukova I, Shishkov VV, Efremov YM, Timashev PS, Karaulov A, Nabiev I, Sukhanova A. Interaction of Serum and Plasma Proteins with Polyelectrolyte Microparticles with Core/Shell and Shell-Only Structures. ACS OMEGA 2024; 9:29739-29750. [PMID: 39005812 PMCID: PMC11238302 DOI: 10.1021/acsomega.4c03307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/29/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Polyelectrolyte microparticles (MPs) synthesized on calcium carbonate cores are considered a promising basis for new drug delivery systems. It is known that microparticles entering a physiological environment absorb proteins on their surface, which can change the properties of the microparticles and alter their functional activity. This study aimed to compare the compositions of the adsorbed protein layer formed on microparticles with the core/shell and shell structures obtained by layer-by-layer deposition. The difference in the microparticle structure was associated with changes in their surface topography and ζ-potential. These microparticles were incubated with human serum or plasma at 37°C for 24 h. The adsorbed proteins were eluted and analyzed by means of SDS-PAGE. The protein composition of the eluates was determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS); a total of 357 proteins were identified, and 183 of them were detected in all samples. Our results demonstrate that the relative abundance of proteins of different functional groups (immunoglobulins, complement proteins, and apolipoproteins) varied depending on the structure and surface characteristics of the polyelectrolyte microparticles and the incubation medium. Our findings expand the understanding of the influence of the physicochemical properties of the microparticles on their interaction with proteins, which can help to improve the design of microparticles for drug delivery.
Collapse
Affiliation(s)
- Evgeniia Gerasimovich
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russian Federation
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115522 Moscow, Russian Federation
| | - Irina Kriukova
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russian Federation
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115522 Moscow, Russian Federation
| | - Vsevolod V Shishkov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russian Federation
| | - Yuri M Efremov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russian Federation
| | - Peter S Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russian Federation
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russian Federation
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russian Federation
| | - Igor Nabiev
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russian Federation
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115522 Moscow, Russian Federation
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russian Federation
- Université de Reims Champagne-Ardenne, BIOSPECT, 51100 Reims, France
| | - Alyona Sukhanova
- Université de Reims Champagne-Ardenne, BIOSPECT, 51100 Reims, France
| |
Collapse
|
3
|
Zhou Y, Xu L, Jin P, Li N, Chen X, Yang A, Qi H. NET-targeted nanoparticles for antithrombotic therapy in pregnancy. iScience 2024; 27:109823. [PMID: 38756418 PMCID: PMC11097077 DOI: 10.1016/j.isci.2024.109823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/20/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024] Open
Abstract
Pulmonary embolism caused by deep vein thrombosis (DVT) is a major contributor to maternal morbidity and mortality. There is still an unmet need for safe and effective treatment options for DVT during pregnancy. Recent research has shown that neutrophil extracellular trap (NET) formation plays a very vital role in thrombosis. We created nanoparticles surface-modified by neutrophil elastase (NE)-binding peptide that can target activated neutrophils specifically in vitro and in vivo. Prussian blue nanoparticles (PB NPs) designed in the core scavenges abnormally elevated reactive oxygen species (ROS) in the vascular microenvironment and acts as a photothermal agent to mediate photothermal therapy (PTT) to damage fibrin network structure. Based on the data we have included, this noninvasive therapeutic approach is considered safe for both mothers and the fetus. Furthermore, our findings indicate that this therapeutic approach has a significant alleviation effect on intrauterine growth restriction caused by maternal thrombosis.
Collapse
Affiliation(s)
- Yijie Zhou
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China
- Department of Department of Reproductive Medicine, Guiyang Maternal and Child Health Care Hospital, Guiyang 550003, China
- Institute of Ultrasound Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Lin Xu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China
- Department of Department of Reproductive Medicine, Guiyang Maternal and Child Health Care Hospital, Guiyang 550003, China
- Institute of Ultrasound Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Pingsong Jin
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Na Li
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China
- Institute of Ultrasound Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xuehai Chen
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Anyu Yang
- Institute of Ultrasound Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Hongbo Qi
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
4
|
He G, Dong T, Yang Z, Stokke BT, Jiang Z. Surface Oxygen Deficiency Enabled Spontaneous Antiprotein Fouling in WO 3 Nanosheets for Biosensing in Biological Fluids. Anal Chem 2024; 96:839-846. [PMID: 38174654 PMCID: PMC10794997 DOI: 10.1021/acs.analchem.3c04414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
Biofouling deteriorates the performance of sensors operated in biofluids. Protein adsorption is believed to be the first step of biofouling, which also reduces biocompatibility by further inducing cell adhesion, platelet activation, and even inflammation. Current studies of antifouling coatings are focused on polymers and hydrogels, which have succeeded in remaining resistant to protein adsorption, but their application on sensor electrodes is limited due to low conductivity and biocompatibility. Here, we report a spontaneous antibiofouling strategy for sensor electrodes by controlling oxygen vacancies in WO3 nanosheets. Irreversible adsorption of proteins was reduced by 76% in unprocessed human plasma when electrodes were coated with WO3 rich in surface oxygen vacancy. These electrodes maintained 91% of the initial current density after 1 month of incubation in human plasma.
Collapse
Affiliation(s)
- Guozhen He
- Chongqing
Key Laboratory of Micro-Nano Systems and Smart Transduction, Chongqing
Key Laboratory of Colleges and Universities on Micro-Nano Systems
Technology and Smart Transducing, Collaborative Innovation Center
on Micro-Nano Transduction and Intelligent Eco-Internet of Things,
Chongqing Academician and Expert Workstation, Chongqing Technology and Business University, Nan’an District, Chongqing 400067, China
- Department
of Microsystems (IMS), Faculty of Technology, Natural Sciences and
Maritime Sciences, University of South-Eastern
Norway, Postboks 235, Kongsberg 3603, Norway
- Sensovann
AS, Raveien 215, Borre 3184, Norway
| | - Tao Dong
- Chongqing
Key Laboratory of Micro-Nano Systems and Smart Transduction, Chongqing
Key Laboratory of Colleges and Universities on Micro-Nano Systems
Technology and Smart Transducing, Collaborative Innovation Center
on Micro-Nano Transduction and Intelligent Eco-Internet of Things,
Chongqing Academician and Expert Workstation, Chongqing Technology and Business University, Nan’an District, Chongqing 400067, China
- Department
of Microsystems (IMS), Faculty of Technology, Natural Sciences and
Maritime Sciences, University of South-Eastern
Norway, Postboks 235, Kongsberg 3603, Norway
| | - Zhaochu Yang
- Chongqing
Key Laboratory of Micro-Nano Systems and Smart Transduction, Chongqing
Key Laboratory of Colleges and Universities on Micro-Nano Systems
Technology and Smart Transducing, Collaborative Innovation Center
on Micro-Nano Transduction and Intelligent Eco-Internet of Things,
Chongqing Academician and Expert Workstation, Chongqing Technology and Business University, Nan’an District, Chongqing 400067, China
- Sensovann
AS, Raveien 215, Borre 3184, Norway
| | - Bjo̷rn Torger Stokke
- Department
of Microsystems (IMS), Faculty of Technology, Natural Sciences and
Maritime Sciences, University of South-Eastern
Norway, Postboks 235, Kongsberg 3603, Norway
- Biophysics
and Medical Technology, Department of Physics, Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| | - Zhuangde Jiang
- Chongqing
Key Laboratory of Micro-Nano Systems and Smart Transduction, Chongqing
Key Laboratory of Colleges and Universities on Micro-Nano Systems
Technology and Smart Transducing, Collaborative Innovation Center
on Micro-Nano Transduction and Intelligent Eco-Internet of Things,
Chongqing Academician and Expert Workstation, Chongqing Technology and Business University, Nan’an District, Chongqing 400067, China
- Xi’an
Jiaotong University, Xi’an 710049, China
| |
Collapse
|
5
|
Hashemzadeh M, Haseefa F, Peyton L, Shadmehr M, Niyas AM, Patel A, Krdi G, Movahed MR. A comprehensive review of the ten main platelet receptors involved in platelet activity and cardiovascular disease. AMERICAN JOURNAL OF BLOOD RESEARCH 2023; 13:168-188. [PMID: 38223314 PMCID: PMC10784121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/10/2023] [Indexed: 01/16/2024]
Abstract
Cardiovascular disease (CVD) is a major cause of death worldwide. Although there are many variables that contribute to the development of this disease, it is predominantly the activity of platelets that provides the mechanisms by which this disease prevails. While there are numerous platelet receptors expressed on the surface of platelets, it is largely the consensus that there are 10 main platelet receptors that contribute to a majority of platelet function. Understanding these key platelet receptors is vitally important for patients suffering from myocardial infarction, CVD, and many other diseases that arise due to overactivation or mutations of these receptors. The goal of this manuscript is to review the main platelet receptors that contribute most to platelet activity.
Collapse
Affiliation(s)
- Mehrnoosh Hashemzadeh
- University of Arizona College of MedicinePhoenix, AZ, USA
- Pima CollegeTucson, AZ, USA
| | | | - Lee Peyton
- Pima CollegeTucson, AZ, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and ScienceRochester, MN, USA
| | | | | | - Aamir Patel
- University of Arizona College of MedicinePhoenix, AZ, USA
| | - Ghena Krdi
- University of Arizona College of MedicinePhoenix, AZ, USA
| | - Mohammad Reza Movahed
- University of Arizona College of MedicinePhoenix, AZ, USA
- University of ArizonaTucson, AZ, USA
| |
Collapse
|
6
|
Sperling C, Maitz MF, Körber V, Hänsel S, Werner C. Advanced in vitro hemocompatibility assessment of biomaterials using a new flow incubation system. BIOMATERIALS ADVANCES 2023; 153:213555. [PMID: 37478769 DOI: 10.1016/j.bioadv.2023.213555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 07/23/2023]
Abstract
Physiologically relevant in vitro hemocompatibility assessment of biomaterials remains challenging. We present a new setup that enables standardized whole blood incubation of biomedical materials under flow. A blood volume of 2 mL is recirculated over test surfaces in a custom-made parallel plate incubation system to determine the activation of hemostasis and inflammation. Controlled physiological shear rates between 125 s-1 and 1250 s-1 and minimized contact to air are combined with a natural-like pumping process. A unique feature of this setup allows tracing adhesion of blood cells to test surfaces microscopically in situ. Validation testing was performed in comparison to previously applied whole blood incubation methodologies. Experiments with the newly developed setup showed that even small obstacles to blood flow activate blood (independent of materials-induced blood activation levels); that adhesion of blood cells to biomaterials equilibrates within 5 to 10 min; that high shear rates (1250 compared to 375 s-1) induce platelet activation; and that hemolysis, platelet factor 4 (PF4) release and platelet loss - but not thrombin formation - depend on shear rate (within the range investigated, 125 to 1250 s-1).
Collapse
Affiliation(s)
- Claudia Sperling
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany.
| | - Manfred F Maitz
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany.
| | - Vincent Körber
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany
| | - Stefanie Hänsel
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany
| | - Carsten Werner
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany
| |
Collapse
|
7
|
Struczyńska M, Firkowska‐Boden I, Levandovsky N, Henschler R, Kassir N, Jandt KD. How Crystallographic Orientation-Induced Fibrinogen Conformation Affects Platelet Adhesion and Activation on TiO 2. Adv Healthc Mater 2023; 12:e2202508. [PMID: 36691300 PMCID: PMC11469089 DOI: 10.1002/adhm.202202508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/18/2023] [Indexed: 01/25/2023]
Abstract
Control of protein adsorption is essential for successful integration of healthcare materials into the body. Human plasma fibrinogen (HPF), especially its conformation is a key upstream regulator for platelet behavior and thus pathological clot formation at the blood-biomaterial interface. A previous study by the authors revealed that the conformation of adsorbed HPF can be controlled by rutile surface crystallographic orientation. Therefore, it is hypothesized that pre-adsorbed HPF on specific rutile orientation can regulate platelets adhesion and activation. Here, it is shown that platelets exposed to the four low index (110), (100), (101), (001) facets of TiO2 (rutile) exhibit surface-specific behavior. Scanning electron microscopy (SEM) observations of platelets morphology and P-selectin expression measurement revealed that on (110) facets, platelets adhesion and activation are suppressed. In contrast, extensive surface coverage by fully activated platelets is observed on (001) facets. Platelets' behavior has been linked to the HPF conformation and thereby availability of platelet-binding sequences. Atomic force microscopy (AFM) imaging supported by immunochemical analysis shows that on (110) facets, HPF is adsorbed in trinodular conformation rendering the γ400-411 platelet-binding sequence inaccessible. This research has potential implications on the bioactivity of different materials crystal facets, reducing the risk of pathological clot formation and thromboembolic complications.
Collapse
Affiliation(s)
- Maja Struczyńska
- Chair of Materials Science (CMS)Otto Schott Institute of Materials Research (OSIM)Friedrich Schiller University JenaLöbdergraben 3207743JenaGermany
- Jena School for Microbial Communication (JSMC)Neugasse 2307743JenaGermany
| | - Izabela Firkowska‐Boden
- Chair of Materials Science (CMS)Otto Schott Institute of Materials Research (OSIM)Friedrich Schiller University JenaLöbdergraben 3207743JenaGermany
| | - Nathan Levandovsky
- Applied Research InstituteUniversity of Illinois Urbana‐Champaign2100 S Oak StChampaignIL61820USA
| | - Reinhard Henschler
- Institute for Transfusion MedicineUniversity Medical CenterUniversity of LeipzigJohannisallee 3204103LeipzigGermany
| | - Nour Kassir
- Institute for Transfusion MedicineUniversity Medical CenterUniversity of LeipzigJohannisallee 3204103LeipzigGermany
| | - Klaus D. Jandt
- Chair of Materials Science (CMS)Otto Schott Institute of Materials Research (OSIM)Friedrich Schiller University JenaLöbdergraben 3207743JenaGermany
- Jena School for Microbial Communication (JSMC)Neugasse 2307743JenaGermany
| |
Collapse
|
8
|
Zhao Y, Bai L, Yao X, Hang R, Xiao Y. Understanding LncRNAs in Biomaterials Development for Osteointegration. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
9
|
Li L, Wei L, Wang H, Zeng Z, Tan J, Liu S, Hao G, Weng Y, Chen J. Proactive Hemocompatibility Platform Initiated by PAMAM Dendrimer Adapting to Key Components in Coagulation System. Mol Pharm 2022; 19:4685-4695. [PMID: 36278815 DOI: 10.1021/acs.molpharmaceut.2c00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Surface modification manipulates the application performance of materials, and thrombosis caused by material contact is a key risk factor of biomaterials failure in blood-contacting/implanting devices. Therefore, building a safe and effective hemocompatibility platform is still urgent. Owing to the unique properties of polyamidoamine (PAMAM) dendrimers, in this study, modified surfaces with varying dendrimer densities were interacted with elements maintaining blood homeostasis. These included the plasma proteins bovine serum albumin and fibrinogen, cells in blood (platelets and erythrocyte), as well as endothelial cells (ECs), and the objective was to evaluate the blood compatibility of the chosen materials. Whole blood test and dynamic blood circulation experiment by the arteriovenous shunt mode of rabbit were also conducted, based on the complexity and fluidity of blood. The PAMAM-modified substrates, particularly that with a high density of PAMAM (N1.0), adsorbed proteins with lessened fibrinogen adsorption, reduced platelet activation and aggregation, and suppressed clotting in whole blood and dynamic blood testing. Furthermore, the designed PAMAM dendrimer densities were safe and showed negligible erythrocyte lysis. Concurrently, PAMAM modification could maintain EC growth and did not trigger the release of procoagulant factors. These results suggest that the PAMAM-modified materials are compatible for maintaining blood homeostasis. Thus, PAMAM dendrimers can work as excellent surface modifiers for constructing a hemocompatibility platform and even a primer layer for desired functional design, promoting the service performance of blood-contacting devices.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Lai Wei
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Huanran Wang
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Zheng Zeng
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Jianying Tan
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Sainan Liu
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Gangtong Hao
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Yajun Weng
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Junying Chen
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China
| |
Collapse
|
10
|
Haag SL, Martinez-Alvarez J, Schiele NR, Bernards MT. Delivery of Bioactive Albumin from Multi-Functional Polyampholyte Hydrogels. J Appl Polym Sci 2022; 139:e52846. [PMID: 36404914 PMCID: PMC9673991 DOI: 10.1002/app.52846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/02/2022] [Indexed: 12/27/2022]
Abstract
Tissue engineered scaffolds are currently being explored to aid in healing and regeneration of non-union fractures in bone. Additionally, albumin has been demonstrated to provide benefits to healing when applied to injury sites. This paper focuses on delivery of calcium modified, bioactive bovine serum albumin (BSA) from a multi-functional polyampholyte polymer scaffold. First, the inherent nonfouling and conjugation properties of the polyampholyte hydrogel were verified to determine the impact of calcium exposure. The polyampholyte hydrogel delivery platform was then assessed with calcium titrations and osteoblast-like cell (MC3T3-E1) adhesion, proliferation, and viability evaluations. Finally, integrin inhibitors were used to identify the binding mechanisms that mediate cell adhesion to the calcium-modified BSA-conjugated hydrogels. An increase in cell adhesion was observed following calcium exposure up to 0.075 M, although this and higher calcium concentrations affected hydrogel stability and cell growth. BSA exposed to 0.05 M calcium and delivered from polyampholyte hydrogels promoted the most promising viable cell adhesion over 7 days. Cell adhesion to the calcium-modified BSA-conjugated hydrogels appeared to be regulated by arginine-glycine-aspartic acid (RGD) and collagen specific integrins. These results demonstrate that the delivery of calcium modified BSA from an implantable polymer scaffold is promising for bone tissue engineering applications.
Collapse
Affiliation(s)
- Stephanie L. Haag
- Department of Chemical & Biological Engineering, University of Idaho, Moscow, ID 83844
| | | | - Nathan R. Schiele
- Department of Chemical & Biological Engineering, University of Idaho, Moscow, ID 83844
| | - Matthew T. Bernards
- Department of Chemical & Biological Engineering, University of Idaho, Moscow, ID 83844
| |
Collapse
|
11
|
Hemocompatibility challenge of membrane oxygenator for artificial lung technology. Acta Biomater 2022; 152:19-46. [PMID: 36089235 DOI: 10.1016/j.actbio.2022.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/25/2022] [Accepted: 09/04/2022] [Indexed: 11/24/2022]
Abstract
The artificial lung (AL) technology is one of the membrane-based artificial organs that partly augments lung functions, i.e. blood oxygenation and CO2 removal. It is generally employed as an extracorporeal membrane oxygenation (ECMO) device to treat acute and chronic lung-failure patients, and the recent outbreak of the COVID-19 pandemic has re-emphasized the importance of this technology. The principal component in AL is the polymeric membrane oxygenator that facilitates the O2/CO2 exchange with the blood. Despite the considerable improvement in anti-thrombogenic biomaterials in other applications (e.g., stents), AL research has not advanced at the same rate. This is partly because AL research requires interdisciplinary knowledge in biomaterials and membrane technology. Some of the promising biomaterials with reasonable hemocompatibility - such as emerging fluoropolymers of extremely low surface energy - must first be fabricated into membranes to exhibit effective gas exchange performance. As AL membranes must also demonstrate high hemocompatibility in tandem, it is essential to test the membranes using in-vitro hemocompatibility experiments before in-vivo test. Hence, it is vital to have a reliable in-vitro experimental protocol that can be reasonably correlated with the in-vivo results. However, current in-vitro AL studies are unsystematic to allow a consistent comparison with in-vivo results. More specifically, current literature on AL biomaterial in-vitro hemocompatibility data are not quantitatively comparable due to the use of unstandardized and unreliable protocols. Such a wide gap has been the main bottleneck in the improvement of AL research, preventing promising biomaterials from reaching clinical trials. This review summarizes the current state-of-the-art and status of AL technology from membrane researcher perspectives. Particularly, most of the reported in-vitro experiments to assess AL membrane hemocompatibility are compiled and critically compared to suggest the most reliable method suitable for AL biomaterial research. Also, a brief review of current approaches to improve AL hemocompatibility is summarized. STATEMENT OF SIGNIFICANCE: The importance of Artificial Lung (AL) technology has been re-emphasized in the time of the COVID-19 pandemic. The utmost bottleneck in the current AL technology is the poor hemocompatibility of the polymer membrane used for O2/CO2 gas exchange, limiting its use in the long-term. Unfortunately, most of the in-vitro AL experiments are unsystematic, irreproducible, and unreliable. There are no standardized in-vitro hemocompatibility characterization protocols for quantitative comparison between AL biomaterials. In this review, we tackled this bottleneck by compiling the scattered in-vitro data and suggesting the most suitable experimental protocol to obtain reliable and comparable hemocompatibility results. To the best of our knowledge, this is the first review paper focusing on the hemocompatibility challenge of AL technology.
Collapse
|
12
|
Zhang Y, Zhang M, Xu X, Chan CHH, Peng H, Hill DJT, Fu C, Fraser J, Whittaker AK. Anti-Fouling Surfaces for Extracorporeal Membrane Oxygenation by Surface Grafting of Hydrophilic Sulfoxide Polymers. Biomacromolecules 2022; 23:4318-4326. [PMID: 36048616 DOI: 10.1021/acs.biomac.2c00775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Non-thrombogenic surfaces for extracorporeal membrane oxygenation (ECMO) devices are important to increase their duration of usage and to enable long-term life support. However, the contact of blood with the hydrophobic synthetic ECMO membrane materials such as poly(4-methyl-1-pentene) (PMP) can activate the coagulation cascade, causing thrombosis and a series of consequent complications during ECMO operation. Targeting this problem, we proposed to graft highly hydrophilic sulfoxide polymer brushes onto the PMP surfaces via gamma ray irradiation-initiated polymerization to improve the hemocompatibility of the membrane. Through this chemical modification, the surface of the PMP film is altered from hydrophobic to hydrophilic. The extent of plasma protein adsorption and platelet adhesion, the prerequisite mediators of the coagulation cascade and thrombus formation, are drastically reduced compared with those of the unmodified PMP film. Therefore, the method provides a facile approach to modify PMP materials with excellent antifouling properties and improved hemocompatibility demanded by the applications in ECMO and other blood-contacting medical devices.
Collapse
Affiliation(s)
- Yuhao Zhang
- Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Meili Zhang
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Queensland, Australia.,School of Mechanical and Mining Engineering, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Xin Xu
- Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Chris H H Chan
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Queensland, Australia.,School of Engineering and Built Environment, Griffith University, Southport 4222, Queensland, Australia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - David J T Hill
- Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - John Fraser
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Queensland, Australia.,Faculty of Medicine, The University of Queensland, St Lucia 4072, Queensland, Australia.,School of Medicine, Griffith University, Southport 4215, Queensland, Australia
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
13
|
Struczyńska M, Firkowska-Boden I, Scheuer K, Jandt KD. Rutile facet-dependent fibrinogen conformation: Why crystallographic orientation matters. Colloids Surf B Biointerfaces 2022; 215:112506. [PMID: 35487071 DOI: 10.1016/j.colsurfb.2022.112506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022]
Abstract
Previous studies implied that single crystalline rutile surfaces have the ability to guide the functionality of adsorbed blood plasma proteins. However, a clear relation between the rutile crystallographic orientation and conformation of adsorbed proteins is still missing. Here, we examine the adsorption characteristics of human plasma fibrinogen (HPF) on atomically flat single rutile crystals with (110), (100), (101) and (001) facets. By direct visualization of individual protein molecules through atomic force microscopy (AFM) imaging, the distinct conformations of HPF were determined depending on rutile surface crystallographic orientation. In particular, dominant trinodular and globular conformation was found on (110) and (001) facets, respectively. The observed variations of HPF conformation were reasoned from the surface water contact angle and surface energy point of view. By analyzing AFM-based force measurements, statistically significant changes in surface energies of rutile surfaces covered with HPF were determined and linked to HPF conformation. Furthermore, the facet-dependent structural rearrangement of HPF was indirectly confirmed through deconvolution of high-resolution X-ray photoelectron spectroscopy (XPS) carbon and nitrogen spectra. The globular, and thus native-like HPF conformation observed on (001) facet, was reflected in the lowest level of amino group formation. We propose that the mechanism behind the crystallographic orientation-induced HPF conformation is driven by the facet-specific surface hydrophilicity and energy. From the biomedical material perspective, our results demonstrate that the conformation of HPF can be guided by controlling the crystallographic orientation of the underlying material surface. This might be beneficial to the field of titanium-based biomaterials design and development.
Collapse
Affiliation(s)
- Maja Struczyńska
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
| | - Izabela Firkowska-Boden
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany.
| | - Karl Scheuer
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
| | - Klaus D Jandt
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany; Jena School for Microbial Communication (JSMC), Neugasse 23, 07743 Jena, Germany.
| |
Collapse
|
14
|
Guo M, Wang X, Liu Y, Yu H, Dong J, Cui Z, Bai Z, Li K, Li Q. Hierarchical Shish-Kebab Structures Functionalizing Nanofibers for Controlled Drug Release and Improved Antithrombogenicity. Biomacromolecules 2022; 23:1337-1349. [PMID: 35235295 DOI: 10.1021/acs.biomac.1c01572] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The functionalization of the fibrous scaffolds including drug loading and release is of significance in tissue engineering and regenerative medicine. Our previous results have shown that the shish-kebab structure-modified fibrous scaffold shows a completely different microenvironment that mimics the topography of the collagen fibers, which interestingly facilitates the cell adhesion and migration. However, the functionalization of the unique structure needs to be further investigated. In this study, we modified the heparin-loaded fiber with a shish-kebab structure and tuned the kebab structure as the barrier for the sustained release of heparin. The introduction of the kebab structure increases the diffusion energy barrier by extending the diffusion distance. Moreover, the discontinued surface topography of the shish-kebab structure altered the surface chemistry from hydrophobic for the original poly(ε-caprolactone) (PCL) nanofibers to hydrophilic for the PCL nanofibers with the shish-kebab structure, which might have inhibited the activation of fibrinogen and thus improved the anticoagulant ability. This synergistic effect of heparin and the kebab structure significantly promotes the endothelial cell affinity and antithrombogenicity. This method might be a viable and versatile drug delivery strategy in vascular tissue engineering.
Collapse
Affiliation(s)
- Meng Guo
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China.,National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaofeng Wang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China.,National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Yajing Liu
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China.,National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Haichang Yu
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jiahui Dong
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China.,School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhixiang Cui
- Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350118, China
| | - Zhiyuan Bai
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China.,National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Kecheng Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China.,National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Qian Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China.,National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
15
|
Patel D, Haag SL, Patel JS, Ytreberg FM, Bernards MT. Paired Simulations and Experimental Investigations into the Calcium-Dependent Conformation of Albumin. J Chem Inf Model 2022; 62:1282-1293. [PMID: 35194993 DOI: 10.1021/acs.jcim.1c01104] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Serum albumin is the most abundant protein in blood plasma, and it is involved in multiple biological processes. Serum albumin has recently been adapted for improving biomaterial integration with bone tissue, and studies have shown the importance of this protein in bone repair and regeneration. However, the mechanism of action is not yet clear. In stark contrast, other studies have demonstrated that albumin blocks cell adhesion to surfaces, which is seen as a limitation to its bone healing role. These apparent contradictions suggest that the conformation of albumin facilitates its bioactivity, leading to enhanced bone repair. Serum albumin is known to play a major role in maintaining the calcium ion concentration in blood plasma. Due to the prevalence of calcium at bone repair and regeneration sites, it has been hypothesized that calcium binding to serum albumin triggers a conformational change, leading to bioactivity. In the current study, molecular modeling approaches including molecular docking, atomic molecular dynamics (MD) simulation, and coarse-grained MD simulation were used to test this hypothesis by investigating the conformational changes induced in bovine serum albumin by interaction with calcium ions. The computational results were qualitatively validated with experimental Fourier-transform infrared spectroscopy analysis. We find that free calcium ions in solution transiently bind with the three major loops in albumin, triggering a conformational change where N-terminal and C-terminal domains separate from each other in a partial unfolding process. The separation distance between these domains was found to correlate with the calcium ion concentration. The experimental data support the simulation results showing that albumin has enhanced conformational heterogeneity upon exposure to intermediate levels of calcium, without any significant secondary structure changes.
Collapse
Affiliation(s)
- Dharmeshkumar Patel
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow 83844, Idaho, United States.,Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta 30322, Georgia, United States
| | - Stephanie L Haag
- Department of Chemical and Biological Engineering, University of Idaho, Moscow 83844, Idaho, United States
| | - Jagdish Suresh Patel
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow 83844, Idaho, United States.,Department of Biological Sciences, University of Idaho, Moscow 83844, Idaho, United States
| | - F Marty Ytreberg
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow 83844, Idaho, United States.,Department of Physics, University of Idaho, Moscow 83844, Idaho, United States
| | - Matthew T Bernards
- Department of Chemical and Biological Engineering, University of Idaho, Moscow 83844, Idaho, United States
| |
Collapse
|
16
|
Yuan Q, Yu L, Wang F. Efficacy of using thromboelastography to detect coagulation function and platelet function in patients with acute cerebral infarction. Acta Neurol Belg 2021; 121:1661-1667. [PMID: 32757100 DOI: 10.1007/s13760-020-01456-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/23/2020] [Indexed: 10/23/2022]
Abstract
Thromboelastography (TEG) is commonly used to predict coagulation state in patients with active bleeding. However, the correlation between TEG parameters and conventional tests in patients with cerebrovascular disease (CVD) remains unexplored. Here, we assessed the TEG values and their correlation with conventional tests in patients with acute cerebral infarction. Eighty-eight patients with acute cerebral infarction were enrolled from the Department of Neurology of Suzhou Medical School. Thirty healthy controls were enrolled from the preventive care department in the same hospital who were taking a physical examination. TEG 5000 thromboelastogram system was used to obtain TEG parameters. The automatic blood coagulation analyzer was used to measure the activated partial thromboplastin time (APTT), prothrombin time (PT), D-Dimer (DD) and fibrinogen (FIB) and platelet function. Among five TEG parameters, the R and K value decreased while MA value, alpha angle and CI value increased in patient group when compared with the healthy controls. The correlation between TEG parameters and conventional tests including DD, FIB, and platelet function are consistent with the high coagulation state in the patient group. Our results demonstrate that TEG parameters are sensitive indicators of high coagulation state in patients with acute cerebral infarction.
Collapse
|
17
|
Chen X, Chen J, Huang N. The structure, formation, and effect of plasma protein layer on the blood contact materials: A review. BIOSURFACE AND BIOTRIBOLOGY 2021. [DOI: 10.1049/bsb2.12029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Xiao Chen
- Institute of Biomaterials and Surface Engineering Key Lab. for Advanced Technologies of Materials Ministry of Education Southwest Jiaotong University Chengdu China
| | - Jiang Chen
- Institute of Biomaterials and Surface Engineering Key Lab. for Advanced Technologies of Materials Ministry of Education Southwest Jiaotong University Chengdu China
| | - Nan Huang
- Institute of Biomaterials and Surface Engineering Key Lab. for Advanced Technologies of Materials Ministry of Education Southwest Jiaotong University Chengdu China
| |
Collapse
|
18
|
Braune S, Bäckemo J, Lau S, Heuchel M, Kratz K, Jung F, Reinthaler M, Lendlein A. The influence of different rewetting procedures on the thrombogenicity of nanoporous poly(ether imide) microparticles. Clin Hemorheol Microcirc 2021; 77:367-380. [PMID: 33337356 DOI: 10.3233/ch-201029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanoporous microparticles prepared from poly(ether imide) (PEI) are discussed as candidate adsorber materials for the removal of uremic toxins during apheresis. Polymers exhibiting such porosity can induce the formation of micro-gas/air pockets when exposed to fluids. Such air presenting material surfaces are reported to induce platelet activation and thrombus formation. Physical or chemical treatments prior to implantation are discussed to reduce the formation of such gas nuclei. Here, we report about the influence of different rewetting procedures - as chemical treatments with solvents - on the thrombogenicity of hydrophobic PEI microparticles and PEI microparticles hydrophilized by covalent attachment of poly(vinyl pyrrolidone) (PVP) of two different chain lengths.Autoclaved dry PEI particles of all types with a diameter range of 200 - 250 μm and a porosity of about 84% ±2% were either rewetted directly with phosphate buffered saline (24 h) or after immersion in an ethanol-series. Thrombogenicity of the particles was studied in vitro upon contact with human sodium citrated whole blood for 60 min at 5 rpm vertical rotation. Numbers of non-adherent platelets were quantified, and adhesion of blood cells was qualitatively analyzed by bright field microscopy. Platelet activation (percentage of CD62P positive platelets and amounts of soluble P-Selectin) and platelet function (PFA100 closure times) were analysed.Retention of blood platelets on the particles was similar for all particle types and both rewetting procedures. Non-adherent platelets were less activated after contact with ethanol-treated particles of all types compared to those rewetted with phosphate buffered saline as assessed by a reduced number of CD62P-positive platelets and reduced amounts of secreted P-Selectin (P < 0.05 each). Interestingly, the hydrophilic surfaces significantly increased the number of activated platelets compared to hydrophobic PEI regardless of the rewetting agent. This suggests that, apart from wettability, other material properties might be more important to regulate platelet activation. PFA100 closure times were reduced and within the reference ranges in the ethanol group, however, significantly increased in the saline group. No substantial difference was detected between the tested surface modifications. In summary, rewetting with ethanol resulted in a reduced thrombogenicity of all studied microparticles regardless of their wettability, most likely resulting from the evacuation of air from the nanoporous particles.
Collapse
Affiliation(s)
- S Braune
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - J Bäckemo
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - S Lau
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - M Heuchel
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - K Kratz
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - F Jung
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - M Reinthaler
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Department for Cardiology, Charité Universitätsmedizin, Berlin, Germany
| | - A Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry, University of Potsdam, Potsdam, Germany
| |
Collapse
|
19
|
Bozzi S, Roka-Moiia Y, Mencarini T, Vercellino F, Epifani I, Ammann KR, Consolo F, Slepian MJ, Redaelli A. Characterization of the competing role of surface-contact and shear stress on platelet activation in the setting of blood contacting devices. Int J Artif Organs 2021; 44:1013-1020. [PMID: 33845625 DOI: 10.1177/03913988211009909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Supraphysiological shear stress and surface-contact are recognized as driving mechanisms of platelet activation (PA) in blood contacting devices (BCDs). However, the competing role of these mechanisms in triggering thrombogenic events is poorly understood. Here, we characterized the dynamics of PA in response to the combined effect of shear stress and material exposure. Human platelets were stimulated with different levels of shear stress (500, 750, 1000 dynes/cm2) over a range of exposure times (10, 20, and 30 min) within capillary tubes made of various polymeric materials. Polyethylene (PE), polytetrafluoroethylene (PTFE), ethylene tetrafluoroethylene (ETFE), and polyether ether ketone (PEEK), used for BCDs fabrication, were investigated as compared to glass and thromboresistant Sigma™-coated glass. PA was quantified using the Platelet Activity State assay. Our results indicate that mechanical stimulation and polymer surface-contact both significantly contribute to PA. Notably, the contribution of the mechanical stimulus ranges between +36% and +43%, while that associated with polymer surface-contact ranges from +48% to +59%, depending on the exposure time. In more detail, our results indicate that: (i) PA increases with increasing shear stress magnitude; (ii) PA has a non-linear, time-dependent relationship to exposure time; (iii) PA is largely influenced by biomaterials, with PE and PEEK having respectively the lowest and highest prothrombotic potential; (iv) the effects of polymer surface-contact and shear stress are not correlated and can be studied separately. Our results suggest the importance of incorporating the evaluation of platelet activation driven by the combined effect of shear stress and polymer surface-contact for the comprehensive assessment, and eventually minimization, of BCDs thrombogenic potential.
Collapse
Affiliation(s)
- Silvia Bozzi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Yana Roka-Moiia
- Department of Medicine and Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, AZ, USA
| | - Tatiana Mencarini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Federica Vercellino
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Ilenia Epifani
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Kaitlyn R Ammann
- Department of Medicine and Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, AZ, USA
| | - Filippo Consolo
- Università Vita-Salute San Raffaele, Facoltà di Medicina e Chirurgia, Milano, Italy
| | - Marvin J Slepian
- Department of Medicine and Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, AZ, USA
| | - Alberto Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| |
Collapse
|
20
|
Haag SL, Schiele NR, Bernards MT. Enhancement and mechanisms of MC3T3-E1 osteoblast-like cell adhesion to albumin through calcium exposure. Biotechnol Appl Biochem 2021; 69:492-502. [PMID: 33586804 DOI: 10.1002/bab.2126] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/09/2021] [Indexed: 01/06/2023]
Abstract
Serum albumin is the most prominent protein in blood, and it aids in bone fracture healing, though the manner through which enhanced healing occurs is not well understood. This study investigates the influence of calcium on the bioactivity of albumin due to the prevalence of calcium at bone injury sites. Bovine serum albumin (BSA) was exposed to varying concentrations of calcium, adsorbed to tissue culture polystyrene, and the subsequent BSA-coated surfaces were evaluated with calcium titration, and cell adhesion, viability, and binding inhibition studies. Calcium-modified BSA improved overall MC3T3-E1 osteoblast-like cell adhesion, although high calcium concentrations induced cell death. Inhibiting specific integrins revealed that without calcium exposure, cell binding to BSA was primarily mediated by integrins that typically bind to the GFOGER sequence of collagen. As calcium exposure increases, the primary binding interaction transitioned to integrins known to bind RGD. However, cell binding to calcium-modified BSA was not completely eliminated during the inhibition studies indicating additional unidentified binding interactions occur. Overall, these results suggest that the exposure to calcium induces conformational changes that affect the cell-binding bioactivity of BSA, which may explain the beneficial impact of albumin in bone tissue.
Collapse
Affiliation(s)
- Stephanie L Haag
- Department of Chemical & Biological Engineering, University of Idaho, Moscow, ID, USA
| | - Nathan R Schiele
- Department of Chemical & Biological Engineering, University of Idaho, Moscow, ID, USA
| | - Matthew T Bernards
- Department of Chemical & Biological Engineering, University of Idaho, Moscow, ID, USA
| |
Collapse
|
21
|
Bai L, Zhao Y, Chen P, Zhang X, Huang X, Du Z, Crawford R, Yao X, Tang B, Hang R, Xiao Y. Targeting Early Healing Phase with Titania Nanotube Arrays on Tunable Diameters to Accelerate Bone Regeneration and Osseointegration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006287. [PMID: 33377275 DOI: 10.1002/smll.202006287] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Blood coagulation and inflammation are the earliest biological responses to implant surfaces. Implant nano-surfaces can significantly impact the osseointegration through the influence on the early phase of bone regeneration. However, the interplay between blood clot property and inflammatory reaction on nanosurfaces is rarely understood. Herein, titania nanotube arrays (TNAs) with different diameters are fabricated on titanium. In vitro evaluation with the whole blood indicates that TNA with a diameter of 15 nm (TNA 15) enables noteworthy platelet activation resulting in distinct clot features compared with that of pure Ti and TNA with a diameter of 120 nm (TNA 120). Further co-culture with macrophages on the clot or in the clot-conditioned medium shows that the clot on TNA 15 downregulates the inflammation and manipulates a favorable osteoimmunomodulatory environment for osteogenesis. In vivo studies further demonstrate that TNA 15 could downregulate the inflammation-related genes while upregulating growth metabolism-related genes in an early healing hematoma. Additionally, TNA 15 promotes de novo bone formation with improved extending of osteocyte dendrites, demonstrating the desired osseointegration. These findings indicate that surface nano-dimensions can significantly influence clot formation and appropriate clot features can manipulate a favorable osteoimmunomodulatory environment for bone regeneration and osseointegration.
Collapse
Affiliation(s)
- Long Bai
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan, 10112, China
- Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, 4059, Australia
| | - Ya Zhao
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan, 10112, China
| | - Peiru Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, 102206, China
| | - Xiangyu Zhang
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan, 10112, China
| | - Xiaobo Huang
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan, 10112, China
| | - Zhibin Du
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, 4059, Australia
| | - Ross Crawford
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, 4059, Australia
| | - Xiaohong Yao
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan, 10112, China
| | - Bin Tang
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan, 10112, China
| | - Ruiqiang Hang
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan, 10112, China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, 4059, Australia
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China
| |
Collapse
|
22
|
Tong DL, Kempsell KE, Szakmany T, Ball G. Development of a Bioinformatics Framework for Identification and Validation of Genomic Biomarkers and Key Immunopathology Processes and Controllers in Infectious and Non-infectious Severe Inflammatory Response Syndrome. Front Immunol 2020; 11:380. [PMID: 32318053 PMCID: PMC7147506 DOI: 10.3389/fimmu.2020.00380] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
Sepsis is defined as dysregulated host response caused by systemic infection, leading to organ failure. It is a life-threatening condition, often requiring admission to an intensive care unit (ICU). The causative agents and processes involved are multifactorial but are characterized by an overarching inflammatory response, sharing elements in common with severe inflammatory response syndrome (SIRS) of non-infectious origin. Sepsis presents with a range of pathophysiological and genetic features which make clinical differentiation from SIRS very challenging. This may reflect a poor understanding of the key gene inter-activities and/or pathway associations underlying these disease processes. Improved understanding is critical for early differential recognition of sepsis and SIRS and to improve patient management and clinical outcomes. Judicious selection of gene biomarkers suitable for development of diagnostic tests/testing could make differentiation of sepsis and SIRS feasible. Here we describe a methodologic framework for the identification and validation of biomarkers in SIRS, sepsis and septic shock patients, using a 2-tier gene screening, artificial neural network (ANN) data mining technique, using previously published gene expression datasets. Eight key hub markers have been identified which may delineate distinct, core disease processes and which show potential for informing underlying immunological and pathological processes and thus patient stratification and treatment. These do not show sufficient fold change differences between the different disease states to be useful as primary diagnostic biomarkers, but are instrumental in identifying candidate pathways and other associated biomarkers for further exploration.
Collapse
Affiliation(s)
- Dong Ling Tong
- Artificial Intelligence Laboratory, Faculty of Engineering and Computing, First City University College, Petaling Jaya, Malaysia.,School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Karen E Kempsell
- Public Health England, National Infection Service, Porton Down, Salisbury, United Kingdom
| | - Tamas Szakmany
- Department of Anaesthesia Intensive Care and Pain Medicine, Division of Population Medicine, Cardiff University, Cardiff, United Kingdom
| | - Graham Ball
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
23
|
Abstract
Von Willebrand factor (VWF) and coagulation factor VIII (FVIII) circulate as a complex in plasma and have a major role in the hemostatic system. VWF has a dual role in hemostasis. It promotes platelet adhesion by anchoring the platelets to the subendothelial matrix of damaged vessels and it protects FVIII from proteolytic degradation. Moreover, VWF is an acute phase protein that has multiple roles in vascular inflammation and is massively secreted from Weibel-Palade bodies upon endothelial cell activation. Activated FVIII on the other hand, together with coagulation factor IX forms the tenase complex, an essential feature of the propagation phase of coagulation on the surface of activated platelets. VWF deficiency, either quantitative or qualitative, results in von Willebrand disease (VWD), the most common bleeding disorder. The deficiency of FVIII is responsible for Hemophilia A, an X-linked bleeding disorder. Here, we provide an overview on the role of the VWF-FVIII interaction in vascular physiology.
Collapse
Affiliation(s)
- Klytaimnistra Kiouptsi
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Langenbeckstrasse 1, Building 708, 55131, Mainz, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Langenbeckstrasse 1, Building 708, 55131, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Mainz, Germany.
| |
Collapse
|
24
|
Hanson SR, Tucker EI, Latour RA. Blood Coagulation and Blood–Material Interactions. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00052-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Brash JL, Horbett TA, Latour RA, Tengvall P. The blood compatibility challenge. Part 2: Protein adsorption phenomena governing blood reactivity. Acta Biomater 2019; 94:11-24. [PMID: 31226477 PMCID: PMC6642842 DOI: 10.1016/j.actbio.2019.06.022] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022]
Abstract
The adsorption of proteins is the initiating event in the processes occurring when blood contacts a "foreign" surface in a medical device, leading inevitably to thrombus formation. Knowledge of protein adsorption in this context has accumulated over many years but remains fragmentary and incomplete. Moreover, the significance and relevance of the information for blood compatibility are not entirely agreed upon in the biomaterials research community. In this review, protein adsorption from blood is discussed under the headings "agreed upon" and "not agreed upon or not known" with respect to: protein layer composition, effects on coagulation and complement activation, effects on platelet adhesion and activation, protein conformational change and denaturation, prevention of nonspecific protein adsorption, and controlling/tailoring the protein layer composition. STATEMENT OF SIGNIFICANCE: This paper is part 2 of a series of 4 reviews discussing the problem of biomaterial associated thrombogenicity. The objective was to highlight features of broad agreement and provide commentary on those aspects of the problem that were subject to dispute. We hope that future investigators will update these reviews as new scholarship resolves the uncertainties of today.
Collapse
|
26
|
Koga Y, Fujieda H, Meguro H, Ueno Y, Aoki T, Miwa K, Kainoh M. Biocompatibility of Polysulfone Hemodialysis Membranes and Its Mechanisms: Involvement of Fibrinogen and Its Integrin Receptors in Activation of Platelets and Neutrophils. Artif Organs 2018; 42:E246-E258. [PMID: 30239013 PMCID: PMC6220809 DOI: 10.1111/aor.13268] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/28/2018] [Accepted: 04/05/2018] [Indexed: 12/15/2022]
Abstract
Activation of blood cells during hemodialysis is considered to be a significant determinant of biocompatibility of the hemodialysis membrane because it may affect patient health adversely through microvascular inflammation and oxidative stress. This study found very different cell activation among various polysulfone (PSf) hemodialysis membranes. For example, CX-U, a conventional PSf membrane, induced marked adhesion of platelets to its surface and increased surface expression of activated CD11b and production of reactive oxygen species (ROS) by neutrophils; while NV-U, a hydrophilic polymer-immobilized PSf membrane, caused little platelet adhesion and slight CD11b expression and ROS production by neutrophils. Analysis of the molecular mechanisms of the above phenomena on CX-U and NV-U indicated that anti-integrin GPIIb/IIIa antibody blocked platelet adhesion, and that the combination of anti-CD11b (integrin α subunit of Mac-1) and anti-integrin αvβ3 antibodies blocked ROS production by neutrophils. Plasma-derived fibrinogen, a major ligand of GPIIb/IIIa, Mac-1, and αvβ3 on membranes, was thus analyzed and found to be more adsorbed to CX-U than to NV-U. Moreover, comparison between five PSf membranes showed that the number of adherent platelets and neutrophil ROS production increased with increasing fibrinogen adsorption. These results suggested that fibrinogen, adsorbed on membranes, induced GPIIb/IIIa-mediated platelet activation and Mac-1/αvβ3-mediated neutrophil activation, depending on the amount of adsorption. In conclusion, the use of biocompatible membranes like NV-U, which show lower adsorption of fibrinogen, is expected to reduce hemodialysis-induced inflammation and oxidative stress by minimizing cell activation.
Collapse
Affiliation(s)
- Yoko Koga
- Department of Pharmacology Laboratory, Pharmaceutical Research LaboratoriesToray Industries, Inc.KamakuraKanagawa
| | - Hiroaki Fujieda
- Department of Medical Devices and Materials Research Laboratory, Advanced Material Research LaboratoriesToray Industries, Inc.OtsuSigaJapan
| | - Hiroyuki Meguro
- Department of Pharmacology Laboratory, Pharmaceutical Research LaboratoriesToray Industries, Inc.KamakuraKanagawa
| | - Yoshiyuki Ueno
- Department of Medical Devices and Materials Research Laboratory, Advanced Material Research LaboratoriesToray Industries, Inc.OtsuSigaJapan
| | - Takao Aoki
- Department of Medical Devices and Materials Research Laboratory, Advanced Material Research LaboratoriesToray Industries, Inc.OtsuSigaJapan
| | - Keishi Miwa
- Department of Medical Devices and Materials Research Laboratory, Advanced Material Research LaboratoriesToray Industries, Inc.OtsuSigaJapan
| | - Mie Kainoh
- Department of Pharmacology Laboratory, Pharmaceutical Research LaboratoriesToray Industries, Inc.KamakuraKanagawa
| |
Collapse
|
27
|
Yu K, Andruschak P, Yeh HH, Grecov D, Kizhakkedathu JN. Influence of dynamic flow conditions on adsorbed plasma protein corona and surface-induced thrombus generation on antifouling brushes. Biomaterials 2018; 166:79-95. [PMID: 29549767 DOI: 10.1016/j.biomaterials.2018.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/27/2018] [Accepted: 03/05/2018] [Indexed: 12/28/2022]
Abstract
The information regarding the nature of protein corona (and its changes) and cell binding on biomaterial surface under dynamic conditions is critical to dissect the mechanism of surface-induced thrombosis. In this manuscript, we investigated the nature of protein corona and blood cell binding in heparinized recalcified human plasma, platelet rich plasma and whole blood on three highly hydrophilic antifouling polymer brushes, (poly(N, N-dimethylacrylamide) (PDMA), poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) and poly[N-(2-hydroxypropyl) methacrylamide] (PHPMA) using an in vitro blood loop model at comparable arterial and venous flow, and static conditions. A fluid dynamics model was used initially to better understand the resulting flow patterns in a vertical channel containing the substrates to arrive at the placement of the substrates within the blood loop. The protein binding on the brush modified substrates was determined using ellipsometry, fluorescence microscopy and the nature of the protein corona was investigated using mass spectrometry based proteomics. The flow elevated fouling on brush coated surface from blood. The extent of plasma protein adsorption and platelet adhesion onto PDMA brush was lower than other surfaces in both static and flow conditions. The profiles of adsorbed protein corona showed strong dependence on the test conditions (static vs. flow), and the chemistry of the polymer brushes. Specially, the PDMA brush under flow conditions was more enriched with coagulation proteins, complement proteins, vitronectin and fibronectin but was less enriched with serum albumin. Apolipoprotein B-100 and complement proteins were the most abundant proteins seen on PMPC and PHPMA surfaces under both flow and static conditions, respectively. Unlike PDMA brush, the flow conditions did not affect the composition of protein corona on PMPC and PHPMA brushes. The nature of the protein corona formed in flow conditions influenced the platelet and red blood cell binding. The dependence of shear stress on platelet adhesion from platelet rich plasma and whole blood highlights the contribution of red blood cells in enhancing platelet adhesion on the surface under high shear condition.
Collapse
Affiliation(s)
- Kai Yu
- Centre for Blood Research and Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Paula Andruschak
- Centre for Blood Research and Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Materials Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Han Hung Yeh
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Mechanical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Dana Grecov
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Mechanical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research and Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
28
|
Obstals F, Vorobii M, Riedel T, de los Santos Pereira A, Bruns M, Singh S, Rodriguez-Emmenegger C. Improving Hemocompatibility of Membranes for Extracorporeal Membrane Oxygenators by Grafting Nonthrombogenic Polymer Brushes. Macromol Biosci 2018; 18. [DOI: 10.1002/mabi.201700359] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/18/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Fabian Obstals
- DWI−Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry; RWTH Aachen University; Forckenbeckstraße 50 52074 Aachen Germany
| | - Mariia Vorobii
- DWI−Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry; RWTH Aachen University; Forckenbeckstraße 50 52074 Aachen Germany
| | - Tomáš Riedel
- Department of Chemistry and Physics of Surfaces and Biointerfaces; Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic; v.v.i., Heyrovsky Square 2 162 06 Prague Czech Republic
| | - Andres de los Santos Pereira
- Department of Chemistry and Physics of Surfaces and Biointerfaces; Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic; v.v.i., Heyrovsky Square 2 162 06 Prague Czech Republic
| | - Michael Bruns
- Institute for Applied Materials (IAM) and Karlsruhe Nano Micro Facility (KNMF); Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Smriti Singh
- DWI−Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry; RWTH Aachen University; Forckenbeckstraße 50 52074 Aachen Germany
| | - Cesar Rodriguez-Emmenegger
- DWI−Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry; RWTH Aachen University; Forckenbeckstraße 50 52074 Aachen Germany
| |
Collapse
|
29
|
Braune S, Latour RA, Lendlein A, Jung F. Comment on: "Hemocompatibility of Superhemophobic Titania Surfaces". Adv Healthc Mater 2017; 6. [PMID: 28692207 DOI: 10.1002/adhm.201700294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Steffen Braune
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies (BCRT); Helmholtz-Zentrum Geesthacht; Kantstrasse 55 14513 Teltow Germany
| | - Robert A. Latour
- Rhodes Engineering Research Center; Department of Bioengineering; Clemson University; Clemson SC 29634 USA
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies (BCRT); Helmholtz-Zentrum Geesthacht; Kantstrasse 55 14513 Teltow Germany
| | - Friedrich Jung
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies (BCRT); Helmholtz-Zentrum Geesthacht; Kantstrasse 55 14513 Teltow Germany
| |
Collapse
|
30
|
Braune S, Sperling C, Maitz MF, Steinseifer U, Clauser J, Hiebl B, Krajewski S, Wendel HP, Jung F. Evaluation of platelet adhesion and activation on polymers: Round-robin study to assess inter-center variability. Colloids Surf B Biointerfaces 2017; 158:416-422. [PMID: 28719863 DOI: 10.1016/j.colsurfb.2017.06.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 11/19/2022]
Abstract
The regulatory agencies provide recommendations rather than protocols or standard operation procedures for the hemocompatibility evaluation of novel materials e.g. for cardiovascular applications. Thus, there is a lack of specifications with regard to test setups and procedures. As a consequence, laboratories worldwide perform in vitro assays under substantially different test conditions, so that inter-laboratory and inter-study comparisons are impossible. Here, we report about a prospective, randomized and double-blind multicenter trial which demonstrates that standardization of in vitro test protocols allows a reproducible assessment of platelet adhesion and activation from fresh human platelet rich plasma as possible indicators of the thrombogenicity of cardiovascular implants. Standardization of the reported static in vitro setup resulted in a laboratory independent scoring of the following materials: poly(dimethyl siloxane) (PDMS), poly(ethylene terephthalate) (PET) and poly(tetrafluoro ethylene) (PTFE). The results of this in vitro study provide evidence that inter-laboratory and inter-study comparisons can be achieved for the evaluation of the adhesion and activation of platelets on blood-contacting biomaterials by stringent standardization of test protocols.
Collapse
Affiliation(s)
- S Braune
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - C Sperling
- Max Bergmann Center of Biomaterials Dresden, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - M F Maitz
- Max Bergmann Center of Biomaterials Dresden, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - U Steinseifer
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering Helmholtz-Institute, RWTH Aachen University, Aachen, Germany
| | - J Clauser
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering Helmholtz-Institute, RWTH Aachen University, Aachen, Germany
| | - B Hiebl
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - S Krajewski
- Department of Thoracic and Cardiovascular Surgery, University Medical Center Tübingen, Tübingen, Germany
| | - H P Wendel
- Department of Thoracic and Cardiovascular Surgery, University Medical Center Tübingen, Tübingen, Germany
| | - F Jung
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Teltow, Germany.
| |
Collapse
|
31
|
Zhang L, Casey B, Galanakis DK, Marmorat C, Skoog S, Vorvolakos K, Simon M, Rafailovich MH. The influence of surface chemistry on adsorbed fibrinogen conformation, orientation, fiber formation and platelet adhesion. Acta Biomater 2017; 54:164-174. [PMID: 28263863 DOI: 10.1016/j.actbio.2017.03.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 02/15/2017] [Accepted: 03/01/2017] [Indexed: 10/20/2022]
Abstract
Thrombosis is a clear risk when any foreign material is in contact with the bloodstream. Here we propose an immunohistological stain-based model for non-enzymatic clot formation that enables a facile screen for the thrombogenicity of blood-contacting materials. We exposed polymers with different surface chemistries to protease-free human fibrinogen. We observed that on hydrophilic surfaces, fibrinogen is adsorbed via αC regions, while the γ400-411 platelet-binding dodecapeptide on the D region becomes exposed, and fibrinogen fibers do not form. In contrast, fibrinogen is adsorbed on hydrophobic surfaces via the relatively hydrophobic D and E regions, exposing the αC regions while rendering the γ400-411 inaccessible. Fibrinogen adsorbed on hydrophobic surfaces is thus able to recruit other fibrinogen molecules through αC regions and polymerize into large fibrinogen fibers, similar to those formed in vivo in the presence of thrombin. Moreover, the γ400-411 is available only on the large fibers not elsewhere throughout the hydrophobic surface after fibrinogen fiber formation. When these surfaces were exposed to gel-sieved platelets or platelet rich plasma, a uniform monolayer of platelets, which appeared to be activated, was observed on the hydrophilic surfaces. In contrast, large agglomerates of platelets were clustered on fibers on the hydrophobic surfaces, resembling small nucleating thrombi. Endothelial cells were also able to adhere to the monomeric coating of fibrinogen on hydrophobic surfaces. These observations reveal that the extent and type of fibrinogen adsorption, as well as the propensity of adsorbed fibrinogen to bind platelets, may be modulated by careful selection of surface chemistry. STATEMENTS OF SIGNIFICANCE Thrombosis is a well-known side effect of the introduction of foreign materials into the bloodstream, as might exist in medical devices including but not limited to stents, valves, and intravascular catheters. Despite many reported studies, the body's response to foreign materials in contact with the blood remains poorly understood. Current preventive methods consist of drug eluting coatings on the devices or the systemic administration of standard anticoagulants. Here we present a potential mechanism by which surface chemistry can affects fibrinogen conformation and thus affects platelet adhesion and consequently thrombus formation. Our findings suggest a possible coating which enables endothelial cell adhesion while preventing platelet adhesion.
Collapse
|
32
|
Soto RJ, Hall JR, Brown MD, Taylor JB, Schoenfisch MH. In Vivo Chemical Sensors: Role of Biocompatibility on Performance and Utility. Anal Chem 2017; 89:276-299. [PMID: 28105839 PMCID: PMC6773264 DOI: 10.1021/acs.analchem.6b04251] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Robert J. Soto
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC 27599
| | - Jackson R. Hall
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC 27599
| | - Micah D. Brown
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC 27599
| | - James B. Taylor
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC 27599
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC 27599
| |
Collapse
|
33
|
Bioinspired Polyethersulfone Membrane Design via Blending with Functional Polyurethane. INT J POLYM SCI 2017. [DOI: 10.1155/2017/2158124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Polyurethanes (PUs) are currently considered to be biocompatible materials but limited by a low resistance to thrombus. We therefore design a heparin-like PU (HLPU) to modify polyethersulfone (PES) membranes approaching integrated antifouling and antithrombotic properties by bioinspiration of heparin structure. Poly(vinyl pyrrolidone)-HLPU (PVP-HLPU) was synthesized via reversible addition-fragmentation chain transfer polymerization of VP using PU as a macroinitiator and then sulfonated by concentrated H2SO4. FTIR and NMR results demonstrated the successful synthesis of PVP-HLPU. By incorporation of PVP-HLPU, the cross-sectional structure of PES composite membranes altered from finger-like structure to sponge-like structure resulting in tunable permeability. The increased hydrophilicity verified by water contact angles benefited both the permeability and antifouling property. As a consequence, the composite membranes showed good blood compatibility, including decreased protein adsorption, suppressed platelet adhesion, lowered thrombin-antithrombin III generation, reduced complement activation, and prolonged clotting times. Interestingly, the PVP-capped HLPU showed better blood compatibility compared to polyethyleneglycol-capped and citric acid-capped HLPUs. The results demonstrated the enhanced antifouling and antithrombotic properties of PES hemodialysis membranes by the introduction of functional HLPUs. Also, the proposed method may forward the fabrication of hemocompatible membranes via bioinspired surface design.
Collapse
|
34
|
Fernández-Montes Moraleda B, San Román J, Rodríguez-Lorenzo LM. Adsorption and conformational modification of fibronectin and fibrinogen adsorbed on hydroxyapatite. A QCM-D study. J Biomed Mater Res A 2016; 104:2585-94. [PMID: 27254464 DOI: 10.1002/jbm.a.35802] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 03/11/2016] [Accepted: 03/16/2016] [Indexed: 01/06/2023]
Abstract
Hydroxyapatite is a bioactive ceramic frequently used for bone engineering/replacement. One of the parameters that influence the biological response to implanted materials is the conformation of the first adsorbed protein layer. In this work, the adsorption and conformational changes of two fibroid serum proteins; fibronectin and fibrinogen adsorbed onto four different hydroxyapatite powders are studied with a Quartz Crystal Microbalance with Dissipation (QCM-D). Each of the calcined apatites adsorbs less protein than their corresponding synthesized samples. Adsorption on synthesized samples yields always an extended conformation whereas a reorganization of the layer is observed for the calcined samples. Fg acquires a "Side on" conformation in all the samples at the beginning of the experiment except for one of the synthesized samples where an "End-on" conformation is obtained during the whole experiment. The Extended conformation is the active conformation for Fn. This conformation is favored by apatites with large specific surface area (SSA) and on highly concentrated media. Apatite surface features should be considered in the selection or design of materials for bone regeneration, since it is possible to control the conformation mode of attachment of Fn and Fg by an appropriate selection of them. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2585-2594, 2016.
Collapse
Affiliation(s)
- Belén Fernández-Montes Moraleda
- Biomaterials Group, ICTP-CSIC, Juan De La Cierva, 3, Madrid, 28006, Spain.,Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Zaragoza, Spain
| | - Julio San Román
- Biomaterials Group, ICTP-CSIC, Juan De La Cierva, 3, Madrid, 28006, Spain.,Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Zaragoza, Spain
| | - Luís M Rodríguez-Lorenzo
- Biomaterials Group, ICTP-CSIC, Juan De La Cierva, 3, Madrid, 28006, Spain.,Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Zaragoza, Spain
| |
Collapse
|
35
|
Goudie MJ, Brisbois EJ, Pant J, Thompson A, Potkay JA, Handa H. Characterization of an S-nitroso-N-acetylpenicillamine-based nitric oxide releasing polymer from a translational perspective. INT J POLYM MATER PO 2016; 65:769-778. [PMID: 27493297 DOI: 10.1080/00914037.2016.1163570] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Due to the role of nitric oxide (NO) in regulating a variety of biological functions in humans, numerous studies on different NO releasing/generating materials have been published over the past two decades. Although NO has been demonstrated to be a strong antimicrobial and potent antithrombotic agent, NO-releasing (NOrel) polymers have not reached the clinical setting. While increasing the concentration of the NO donor in the polymer is a common method to prolong the NO-release, this should not be at the cost of mechanical strength or biocompatibility of the original material. In this work, it was shown that the incorporation of S-nitroso-penicillamine (SNAP), an NO donor molecule, into Elast-eon E2As (a copolymer of mixed soft segments of polydimethylsiloxane and poly(hexamethylene oxide)), does not adversely impact the physical and biological attributes of the base polymer. Incorporating 10 wt % of SNAP into E2As reduces the ultimate tensile strength by only 20%. The inclusion of SNAP did not significantly affect the surface chemistry or roughness of E2As polymer. Ultraviolet radiation, ethylene oxide, and hydrogen peroxide vapor sterilization techniques retained approximately 90% of the active SNAP content, where sterilization of these materials did not affect the NO-release profile over an 18 day period. Furthermore, these NOrel materials were shown to be biocompatible with the host tissues as observed through hemocompatibility and cytotoxicity analysis. In addition, the stability of SNAP in E2As was studied under a variety of storage conditions, as they pertain to translational potential of these materials. SNAP-incorporated E2As stored at room temperature for over 6 months retained 87% of its initial SNAP content. Stored and fresh films exhibited similar NO release kinetics over an 18 day period. Combined, the results from this study suggest that SNAP-doped E2As polymer is suitable for commercial biomedical applications due to the reported physical and biological characteristics that are important for commercial and clinical success.
Collapse
Affiliation(s)
- Marcus J Goudie
- Department of Biological Engineering, University of Georgia, Athens, GA, USA
| | | | - Jitendra Pant
- Department of Biological Engineering, University of Georgia, Athens, GA, USA
| | | | | | - Hitesh Handa
- Department of Biological Engineering, University of Georgia, Athens, GA, USA
| |
Collapse
|
36
|
Hu Y, Jin J, Liang H, Ji X, Yin J, Jiang W. pH Dependence of Adsorbed Fibrinogen Conformation and Its Effect on Platelet Adhesion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:4086-4094. [PMID: 27035056 DOI: 10.1021/acs.langmuir.5b04238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Quartz crystal microbalance with dissipation (QCM-D) and dual polarization interferometry (DPI) were used to investigate fibrinogen (Fib) adsorption behavior on different surfaces by changing the pH value. Moreover, integrin adhesion to the adsorbed Fibs was studied using DPI. Qualitative and quantitative studies of platelet adhesion to the adsorbed Fibs were performed using scanning electron microscopy (SEM), confocal laser scanning microscope (CLSM), and released lactate dehydrogenase (LDH) assay. Experimental results indicated that the conformation and orientation of the absorbed Fibs depended on surface property and pH cycling. For the hydrophilic surface, Fibs adsorbed at pH 7.4 and presented a αC-hidden orientation. As a result, no integrin adhesion was observed, and a small number of platelets were adhered because the αC-domains were hidden under the Fib molecule. By changing the rinsing solution pH from 7.4 to 3.2 and then back to 7.4, the adsorbed Fib orientation became αC-exposed via the transformation of Fib conformation during pH cycling. Therefore, integrin adhesion was more likely to occur, and more platelets were adhered and activated. For the hydrophobic surface, the adsorbed Fibs became more spread and stretched due to the strong interaction between the Fibs and surface. αC-exposed orientation remained unchanged when the rinsing solution pH changed from 7.4 to 3.2 and then back to 7.4. Therefore, a large number of integrins and platelets were adhered to the adsorbed Fibs, and almost all of the adhered platelets were activated.
Collapse
Affiliation(s)
- Yu Hu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jing Jin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Haojun Liang
- Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei, Anhui 230026, P. R. China
| | - Xiangling Ji
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Jinghua Yin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Wei Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| |
Collapse
|
37
|
Experimental characterization of adsorbed protein orientation, conformation, and bioactivity. Biointerphases 2015; 10:019002. [PMID: 25708632 DOI: 10.1116/1.4906485] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Protein adsorption on material surfaces is a common phenomenon that is of critical importance in many biotechnological applications. The structure and function of adsorbed proteins are tightly interrelated and play a key role in the communication and interaction of the adsorbed proteins with the surrounding environment. Because the bioactive state of a protein on a surface is a function of the orientation, conformation, and accessibility of its bioactive site(s), the isolated determination of just one or two of these factors will typically not be sufficient to understand the structure-function relationships of the adsorbed layer. Rather a combination of methods is needed to address each of these factors in a synergistic manner to provide a complementary dataset to characterize and understand the bioactive state of adsorbed protein. Over the past several years, the authors have focused on the development of such a set of complementary methods to address this need. These methods include adsorbed-state circular dichroism spectropolarimetry to determine adsorption-induced changes in protein secondary structure, amino-acid labeling/mass spectrometry to assess adsorbed protein orientation and tertiary structure by monitoring adsorption-induced changes in residue solvent accessibility, and bioactivity assays to assess adsorption-induced changes in protein bioactivity. In this paper, the authors describe the methods that they have developed and/or adapted for each of these assays. The authors then provide an example of their application to characterize how adsorption-induced changes in protein structure influence the enzymatic activity of hen egg-white lysozyme on fused silica glass, high density polyethylene, and poly(methyl-methacrylate) as a set of model systems.
Collapse
|
38
|
Toward highly blood compatible hemodialysis membranes via blending with heparin-mimicking polyurethane: Study in vitro and in vivo. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2014.07.030] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Deng J, Sun M, Wang S, Han L, Mao Z, Li D, Chen H, Gao C. Adsorption of Fibronectin on Salt-Etched Polyelectrolyte Multilayers and its Roles in Mediating the Adhesion and Migration of Vascular Smooth Muscle Cells. Macromol Biosci 2014; 15:241-52. [DOI: 10.1002/mabi.201400344] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 09/06/2014] [Indexed: 01/20/2023]
Affiliation(s)
- Jun Deng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Mingcong Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Shasha Wang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Department of Polymer Science and Engineering; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Lulu Han
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Dan Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Department of Polymer Science and Engineering; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Hong Chen
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Department of Polymer Science and Engineering; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
40
|
Shiu HT, Goss B, Lutton C, Crawford R, Xiao Y. Formation of blood clot on biomaterial implants influences bone healing. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:697-712. [PMID: 24906469 DOI: 10.1089/ten.teb.2013.0709] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The first step in bone healing is forming a blood clot at injured bones. During bone implantation, biomaterials unavoidably come into direct contact with blood, leading to a blood clot formation on its surface prior to bone regeneration. Despite both situations being similar in forming a blood clot at the defect site, most research in bone tissue engineering virtually ignores the important role of a blood clot in supporting healing. Dental implantology has long demonstrated that the fibrin structure and cellular content of a peri-implant clot can greatly affect osteoconduction and de novo bone formation on implant surfaces. This article reviews the formation of a blood clot during bone healing in relation to the use of platelet-rich plasma (PRP) gels. It is implicated that PRP gels are dramatically altered from a normal clot in healing, resulting in conflicting effect on bone regeneration. These results indicate that the effect of clots on bone regeneration depends on how the clots are formed. Factors that influence blood clot structure and properties in relation to bone healing are also highlighted. Such knowledge is essential for developing strategies to optimally control blood clot formation, which ultimately alter the healing microenvironment of bone. Of particular interest are modification of surface chemistry of biomaterials, which displays functional groups at varied composition for the purpose of tailoring blood coagulation activation, resultant clot fibrin architecture, rigidity, susceptibility to lysis, and growth factor release. This opens new scope of in situ blood clot modification as a promising approach in accelerating and controlling bone regeneration.
Collapse
Affiliation(s)
- Hoi Ting Shiu
- 1 Science and Engineering Faculty, Institute of Health and Biomedical Innovation, Queensland University of Technology , Brisbane, Australia
| | | | | | | | | |
Collapse
|
41
|
Weiss R, Spittler A, Schmitz G, Fischer MB, Weber V. Thrombocyte adhesion and release of extracellular microvesicles correlate with surface morphology of adsorbent polymers for lipid apheresis. Biomacromolecules 2014; 15:2648-55. [PMID: 24844344 DOI: 10.1021/bm500492r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Whole blood lipid apheresis is clinically applied to reduce low density lipoprotein cholesterol in patients with homozygous familial hypercholesterolemia. Here, we studied the correlation between physicochemical parameters, in particular, surface roughness and blood compatibility, of two polyacrylate-based and a dextran sulfate-based polymer for lipid apheresis. The adsorbent surface roughness was assessed by atomic force microscopy. Freshly isolated human thrombocytes were circulated over adsorbent columns downscaled equivalent to clinical use to study thrombocyte adhesion and microvesicle generation. Quantification of thrombocytes and microvesicles in the flow-through of the columns revealed that both thrombocyte adhesion and microvesicle generation increased with increasing adsorbent surface roughness. Activation of thrombocytes with thrombin receptor-activating peptide-6 favored their adhesion to the adsorbents, as demonstrated by preferential depletion of CD62(+) and PAC-1(+) thrombocytes. Taken together, enhanced polymer surface roughness fostered cell adhesion and microvesicle release, underscoring the role of extracellular microvesicles as markers of cellular activation and of blood compatibility.
Collapse
Affiliation(s)
- René Weiss
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Department for Health Sciences and Biomedicine, Danube University Krems , Austria
| | | | | | | | | |
Collapse
|
42
|
Zaveri TD, Lewis JS, Dolgova NV, Clare-Salzler MJ, Keselowsky BG. Integrin-directed modulation of macrophage responses to biomaterials. Biomaterials 2014; 35:3504-15. [PMID: 24462356 PMCID: PMC3970928 DOI: 10.1016/j.biomaterials.2014.01.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 01/07/2014] [Indexed: 01/08/2023]
Abstract
Macrophages are the primary mediator of chronic inflammatory responses to implanted biomaterials, in cases when the material is either in particulate or bulk form. Chronic inflammation limits the performance and functional life of numerous implanted medical devices, and modulating macrophage interactions with biomaterials to mitigate this response would be beneficial. The integrin family of cell surface receptors mediates cell adhesion through binding to adhesive proteins nonspecifically adsorbed onto biomaterial surfaces. In this work, the roles of integrin Mac-1 (αMβ2) and RGD-binding integrins were investigated using model systems for both particulate and bulk biomaterials. Specifically, the macrophage functions of phagocytosis and inflammatory cytokine secretion in response to a model particulate material, polystyrene microparticles were investigated. Opsonizing proteins modulated microparticle uptake, and integrin Mac-1 and RGD-binding integrins were found to control microparticle uptake in an opsonin-dependent manner. The presence of adsorbed endotoxin did not affect microparticle uptake levels, but was required for the production of inflammatory cytokines in response to microparticles. Furthermore, it was demonstrated that integrin Mac-1 and RGD-binding integrins influence the in vivo foreign body response to a bulk biomaterial, subcutaneously implanted polyethylene terephthalate. A thinner foreign body capsule was formed when integrin Mac-1 was absent (~30% thinner) or when RGD-binding integrins were blocked by controlled release of a blocking peptide (~45% thinner). These findings indicate integrin Mac-1 and RGD-binding integrins are involved and may serve as therapeutic targets to mitigate macrophage inflammatory responses to both particulate and bulk biomaterials.
Collapse
Affiliation(s)
- Toral D Zaveri
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Jamal S Lewis
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Natalia V Dolgova
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Michael J Clare-Salzler
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Benjamin G Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
43
|
Handa H, Major TC, Brisbois EJ, Amoako KA, Meyerhoff ME, Bartlett RH. Hemocompatibility Comparison of Biomedical Grade Polymers Using Rabbit Thrombogenicity Model for Preparing Nonthrombogenic Nitric Oxide Releasing Surfaces. J Mater Chem B 2014; 2:1059-1067. [PMID: 24634777 DOI: 10.1039/c3tb21771j] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitric oxide (NO) is an endogenous vasodilator as well as natural inhibitor of platelet adhesion/activation. Nitric oxide releasing (NOrel) materials can be prepared by doping an NO donor species, such as diazeniumdiolated dibutylhexanediamine (DBHD/N2O2), within a polymer coating. The inherent hemocompatibility properties of the base polymer can also influence the efficiency of such NO release coatings. In this study, four biomedical grade polymers were evaluated in a 4 h rabbit model of thrombogenicity for their effects on extracorporeal circuit thrombus formation and circulating platelet count. At the end of 4 h, Elast-Eon E2As was found to preserve 58% of baseline platelets versus 48, 40, and 47% for PVC/DOS, Tecophilic SP-60D-60, and Tecoflex SG80A, respectively. Elast-Eon also had significantly lower clot area of 5.2 cm2 compared to 6.7, 6.1, and 6.9 cm2 for PVC/DOS, SP-60D-60, and SG80A, respectively. Based on the results obtained for the base polymer comparison study, DBHD/N2O2-doped E2As was evaluated in short-term (4 h) rabbit studies to observe the NO effects on prevention of clotting and preservation of platelet function. Platelet preservation for this optimal NO release formulation was 97% of baseline after 4 h, and clot area was 0.9 cm2 compared to 5.2 cm2 for controls, demonstrating that combining E2As with NO release provides a truly advanced hemocompatible polymer coating for extracorporeal circuits and potentially other blood contacting applications.
Collapse
Affiliation(s)
- Hitesh Handa
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI USA
| | - Terry C Major
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI USA
| | | | - Kagya A Amoako
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI USA
| | - Mark E Meyerhoff
- Department of Chemistry, University of Michigan, Ann Arbor, MI USA
| | - Robert H Bartlett
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI USA
| |
Collapse
|
44
|
van Oeveren W. Obstacles in haemocompatibility testing. SCIENTIFICA 2013; 2013:392584. [PMID: 24278774 PMCID: PMC3820147 DOI: 10.1155/2013/392584] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/03/2013] [Indexed: 06/02/2023]
Abstract
ISO 10993-4 is an international standard describing the methods of testing of medical devices for interactions with blood for regulatory purpose. The complexity of blood responses to biomaterial surfaces and the variability of blood functions in different individuals and species pose difficulties in standardisation. Moreover, in vivo or in vitro testing, as well as the clinical relevance of certain findings, is still matter of debate. This review deals with the major remaining problems, including a brief explanation of surface interactions with blood, the current ISO 10993 requirements for testing, and the role of in vitro test models. The literature is reviewed on anticoagulation, shear rate, blood-air interfaces, incubation time, and the importance of evaluation of the surface area after blood contact. Two test categories deserve further attention: complement and platelet function, including the effects on platelets from adhesion proteins, venipuncture, and animal derived- blood. The material properties, hydrophilicity, and roughness, as well as reference materials, are discussed. Finally this review calls for completing the acceptance criteria in the ISO standard based on a panel of test results.
Collapse
Affiliation(s)
- W. van Oeveren
- HaemoScan and Department of Cardiothoracic Surgery, UMCG Groningen, The Netherlands
| |
Collapse
|
45
|
Jin S, Xu D, Zhou N, Yuan J, Shen J. Antibacterial and anticoagulation properties of polyethylene/geneO-MPC nanocomposites. J Appl Polym Sci 2013. [DOI: 10.1002/app.38708] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
46
|
Gupta S, Reviakine I. Platelet Activation Profiles on TiO2: Effect of Ca2+Binding to the Surface. Biointerphases 2012; 7:28. [DOI: 10.1007/s13758-012-0028-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 03/15/2012] [Indexed: 10/28/2022] Open
|
47
|
HIRANO Y, INAI K, OKA M. Design and Structure Activity Correlation of RGDS Cell-Attachment Peptide Containing Molecules. KOBUNSHI RONBUNSHU 2012. [DOI: 10.1295/koron.69.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Ji X, Hou M. Novel agents for anti-platelet therapy. J Hematol Oncol 2011; 4:44. [PMID: 22053759 PMCID: PMC3224753 DOI: 10.1186/1756-8722-4-44] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 11/04/2011] [Indexed: 11/22/2022] Open
Abstract
Anti-platelet therapy plays an important role in the treatment of patients with thrombotic diseases. The most commonly used anti-platelet drugs, namely, aspirin, ticlopidine, and clopidogrel, are effective in the prevention and treatment of cardio-cerebrovascular diseases. Glycoprotein IIb/IIIa antagonists (e.g., abciximab, eptifibatide and tirofiban) have demonstrated good clinical benefits and safety profiles in decreasing ischemic events in acute coronary syndrome. However, adverse events related to thrombosis or bleeding have been reported in cases of therapy with glycoprotein IIb/IIIa antagonists. Cilostazol is an anti-platelet agent used in the treatment of patients with peripheral ischemia, such as intermittent claudication. Presently, platelet adenosine diphosphate P2Y(12) receptor antagonists (e.g., clopidogrel, prasugrel, cangrelor, and ticagrelor) are being used in clinical settings for their pronounced protective effects. The new protease-activated receptor antagonists, vorapaxar and atopaxar, potentially decrease the risk of ischemic events without significantly increasing the rate of bleeding. Some other new anti-platelet drugs undergoing clinical trials have also been introduced. Indeed, the number of new anti-platelet drugs is increasing. Consequently, the efficacy of these anti-platelet agents in actual patients warrants scrutiny, especially in terms of the hemorrhagic risks. Hopefully, new selective platelet inhibitors with high anti-thrombotic efficiencies and low hemorrhagic side effects can be developed.
Collapse
Affiliation(s)
- Xuebin Ji
- Department of Hematology, QiLu Hospital of Shandong University, Jinan, China PR.
| | | |
Collapse
|
49
|
Soman P, Siedlecki CA. Effects of protein solution composition on the time-dependent functional activity of fibrinogen on surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:10814-10819. [PMID: 21766803 DOI: 10.1021/la201111r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Protein function affects subsequent biological processes such as cell adhesion and thrombus formation. We have developed tools to detect the biological activity of fibrinogen using AFM techniques. In this work, we measure the effects of solution concentration, residence time, and protein competition with BSA on the time-dependent functional changes in adsorbed fibrinogen on mica surface. AFM probes were functionalized with monoclonal antibodies recognizing fibrinogen gamma 392-411, which includes the platelet binding dodecapeptide region. Results show good correlation between changes in biological activity of adsorbed fibrinogen at the molecular scale measured by AFM and platelet adhesion measured at a macroscale. Furthermore, the results show that inclusion of BSA into the solution moves the peak biological activity of fibrinogen to earlier time points. These results illustrate a complex and dynamic biological interface and offer new opportunities for improved insights into the molecular basis for the biological response to biomaterials.
Collapse
Affiliation(s)
- Pranav Soman
- Department of Bioengineering, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | |
Collapse
|