1
|
Iglesias V, Bárcenas O, Pintado‐Grima C, Burdukiewicz M, Ventura S. Structural information in therapeutic peptides: Emerging applications in biomedicine. FEBS Open Bio 2025; 15:254-268. [PMID: 38877295 PMCID: PMC11788753 DOI: 10.1002/2211-5463.13847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/08/2024] [Accepted: 05/27/2024] [Indexed: 06/16/2024] Open
Abstract
Peptides are attracting a growing interest as therapeutic agents. This trend stems from their cost-effectiveness and reduced immunogenicity, compared to antibodies or recombinant proteins, but also from their ability to dock and interfere with large protein-protein interaction surfaces, and their higher specificity and better biocompatibility relative to organic molecules. Many tools have been developed to understand, predict, and engineer peptide function. However, most state-of-the-art approaches treat peptides only as linear entities and disregard their structural arrangement. Yet, structural details are critical for peptide properties such as solubility, stability, or binding affinities. Recent advances in peptide structure prediction have successfully addressed the scarcity of confidently determined peptide structures. This review will explore different therapeutic and biotechnological applications of peptides and their assemblies, emphasizing the importance of integrating structural information to advance these endeavors effectively.
Collapse
Affiliation(s)
- Valentín Iglesias
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia MolecularUniversitat Autònoma de BarcelonaBarcelonaSpain
- Clinical Research CentreMedical University of BiałystokBiałystokPoland
| | - Oriol Bárcenas
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia MolecularUniversitat Autònoma de BarcelonaBarcelonaSpain
- Institute of Advanced Chemistry of Catalonia (IQAC), CSICBarcelonaSpain
| | - Carlos Pintado‐Grima
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia MolecularUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Michał Burdukiewicz
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia MolecularUniversitat Autònoma de BarcelonaBarcelonaSpain
- Clinical Research CentreMedical University of BiałystokBiałystokPoland
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia MolecularUniversitat Autònoma de BarcelonaBarcelonaSpain
| |
Collapse
|
2
|
Petropoulou K, Platania V, Chatzinikolaidou M, Mitraki A. A Doubly Fmoc-Protected Aspartic Acid Self-Assembles into Hydrogels Suitable for Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8928. [PMID: 36556733 PMCID: PMC9784766 DOI: 10.3390/ma15248928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Hydrogels have been used as scaffolds for biomineralization in tissue engineering and regenerative medicine for the repair and treatment of many tissue types. In the present work, we studied an amino acid-based material that is attached to protecting groups and self-assembles into biocompatible and stable nanostructures that are suitable for tissue engineering applications. Specifically, the doubly protected aspartic residue (Asp) with fluorenyl methoxycarbonyl (Fmoc) protecting groups have been shown to lead to the formation of well-ordered fibrous structures. Many amino acids and small peptides which are modified with protecting groups display relatively fast self-assembly and exhibit remarkable physicochemical properties leading to three-dimensional (3D) networks, the trapping of solvent molecules, and forming hydrogels. In this study, the self-assembling fibrous structures are targeted toward calcium binding and act as nucleation points for the binding of the available phosphate groups. The cell viability, proliferation, and osteogenic differentiation of pre-osteoblastic cells cultured on the formed hydrogel under various conditions demonstrate that hydrogel formation in CaCl2 and CaCl2-Na2HPO4 solutions lead to calcium ion binding onto the hydrogels and enrichment with phosphate groups, respectively, rendering these mechanically stable hydrogels osteoinductive scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
| | - Varvara Platania
- Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Greece
| | - Maria Chatzinikolaidou
- Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Greece
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FO.R.T.H), 70013 Heraklion, Greece
| | - Anna Mitraki
- Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Greece
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FO.R.T.H), 70013 Heraklion, Greece
| |
Collapse
|
3
|
Ender AM, Kaygisiz K, Räder HJ, Mayer FJ, Synatschke CV, Weil T. Cell-Instructive Surface Gradients of Photoresponsive Amyloid-like Fibrils. ACS Biomater Sci Eng 2021; 7:4798-4808. [PMID: 34515483 PMCID: PMC8512672 DOI: 10.1021/acsbiomaterials.1c00889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Gradients of bioactive molecules play a crucial role in various biological processes like vascularization, tissue regeneration, or cell migration. To study these complex biological systems, it is necessary to control the concentration of bioactive molecules on their substrates. Here, we created a photochemical strategy to generate gradients using amyloid-like fibrils as scaffolds functionalized with a model epitope, that is, the integrin-binding peptide RGD, to modulate cell adhesion. The self-assembling β-sheet forming peptide (CKFKFQF) was connected to the RGD epitope via a photosensitive nitrobenzyl linker and assembled into photoresponsive nanofibrils. The fibrils were spray-coated on glass substrates and macroscopic gradients were generated by UV-light over a centimeter-scale. We confirmed the gradient formation using matrix-assisted laser desorption ionization mass spectroscopy imaging (MALDI-MSI), which directly visualizes the molecular species on the surface. The RGD gradient was used to instruct cells. In consequence, A549 adapted their adhesion properties in dependence of the RGD-epitope density.
Collapse
Affiliation(s)
- Adriana Maria Ender
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kübra Kaygisiz
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Hans-Joachim Räder
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Franz J Mayer
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Christopher V Synatschke
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Tanja Weil
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
4
|
Levin A, Hakala TA, Schnaider L, Bernardes GJL, Gazit E, Knowles TPJ. Biomimetic peptide self-assembly for functional materials. Nat Rev Chem 2020; 4:615-634. [PMID: 39650726 PMCID: PMC7617017 DOI: 10.1038/s41570-020-0215-y] [Citation(s) in RCA: 387] [Impact Index Per Article: 77.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2020] [Indexed: 01/20/2023]
Abstract
Natural biomolecular systems have evolved to form a rich variety of supramolecular materials and machinery fundamental to cellular function. The assembly of these structures commonly involves interactions between specific molecular building blocks, a strategy that can also be replicated in an artificial setting to prepare functional materials. The self-assembly of synthetic biomimetic peptides thus allows the exploration of chemical and sequence space beyond that used routinely by biology. In this Review, we discuss recent conceptual and experimental advances in self-assembling artificial peptidic materials. In particular, we explore how naturally occurring structures and phenomena have inspired the development of functional biomimetic materials that we can harness for potential interactions with biological systems. As our fundamental understanding of peptide self-assembly evolves, increasingly sophisticated materials and applications emerge and lead to the development of a new set of building blocks and assembly principles relevant to materials science, molecular biology, nanotechnology and precision medicine.
Collapse
Affiliation(s)
- Aviad Levin
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Tuuli A Hakala
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Lee Schnaider
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gonçalo J L Bernardes
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Tuomas P J Knowles
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Ke PC, Zhou R, Serpell LC, Riek R, Knowles TPJ, Lashuel HA, Gazit E, Hamley IW, Davis TP, Fändrich M, Otzen DE, Chapman MR, Dobson CM, Eisenberg DS, Mezzenga R. Half a century of amyloids: past, present and future. Chem Soc Rev 2020; 49:5473-5509. [PMID: 32632432 PMCID: PMC7445747 DOI: 10.1039/c9cs00199a] [Citation(s) in RCA: 327] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Amyloid diseases are global epidemics with profound health, social and economic implications and yet remain without a cure. This dire situation calls for research into the origin and pathological manifestations of amyloidosis to stimulate continued development of new therapeutics. In basic science and engineering, the cross-β architecture has been a constant thread underlying the structural characteristics of pathological and functional amyloids, and realizing that amyloid structures can be both pathological and functional in nature has fuelled innovations in artificial amyloids, whose use today ranges from water purification to 3D printing. At the conclusion of a half century since Eanes and Glenner's seminal study of amyloids in humans, this review commemorates the occasion by documenting the major milestones in amyloid research to date, from the perspectives of structural biology, biophysics, medicine, microbiology, engineering and nanotechnology. We also discuss new challenges and opportunities to drive this interdisciplinary field moving forward.
Collapse
Affiliation(s)
- Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, China
| | - Ruhong Zhou
- Institute of Quantitative Biology, Zhejiang University, Hangzhou 310058, China; Department of Chemistry, Columbia University, New York, New York, 10027, USA
| | - Louise C. Serpell
- School of Life Sciences, University of Sussex, Falmer, East Sussex BN1 9QG, UK
| | - Roland Riek
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich, Switzerland
| | - Tuomas P. J. Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, CB3 0HE, Cambridge, UK
| | - Hilal A. Lashuel
- Laboratory of Molecular Neurobiology and Neuroproteomics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Ian W. Hamley
- School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Daniel Erik Otzen
- Department of Molecular Biology, Center for Insoluble Protein Structures (inSPIN), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Matthew R. Chapman
- Department of Molecular, Cellular and Developmental Biology, Centre for Microbial Research, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | - Christopher M. Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - David S. Eisenberg
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute and Howard Hughes Medical Institute, UCLA, Los Angeles, CA, USA
| | - Raffaele Mezzenga
- Department of Health Science & Technology, ETH Zurich, Schmelzbergstrasse 9, LFO, E23, 8092 Zurich, Switzerland
- Department of Materials, ETH Zurich, Wolfgang Pauli Strasse 10, 8093 Zurich, Switzerland
| |
Collapse
|
6
|
Amyloid-like peptide nanofibrils as scaffolds for tissue engineering: Progress and challenges (Review). Biointerphases 2019; 14:040801. [PMID: 31284721 DOI: 10.1116/1.5098332] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Networks of amyloid-like nanofibrils assembled from short peptide sequences have the ability to form scaffolds that can encapsulate clinically relevant stem cells encouraging their attachment, growth, and differentiation into various lineages which can be used in tissue engineering applications to treat a range of diseases and traumas. In this review, the author highlights a selection of important proof-of-principle papers that show how this class of self-assembled networks is highly suited to biomaterial scaffold development. The author highlights recent studies which have shown that these scaffolds can be used to promote cell and tissue regeneration both in vitro and in vivo. The author also presents some fundamental knowledge gaps which are preventing the widespread translation of such scaffolds. Finally, the author outlines a selection of studies that elucidate molecular assembly mechanisms and biophysical properties of amyloid-like peptide nanofibrils and suggests how studies like these might lead to the ability to generate nanofibril scaffolds with bespoke properties for tissue engineering.
Collapse
|
7
|
Bacterial Amyloids: Biogenesis and Biomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1174:113-159. [DOI: 10.1007/978-981-13-9791-2_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Al-Garawi ZS, Morris KL, Marshall KE, Eichler J, Serpell LC. The diversity and utility of amyloid fibrils formed by short amyloidogenic peptides. Interface Focus 2017; 7:20170027. [PMID: 29147557 DOI: 10.1098/rsfs.2017.0027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Amyloidogenic peptides are well known for their involvement in diseases such as type 2 diabetes and Alzheimer's disease. However, more recently, amyloid fibrils have been shown to provide scaffolding and protection as functional materials in a range of organisms from bacteria to humans. These roles highlight the incredible tensile strength of the cross-β amyloid architecture. Many amino acid sequences are able to self-assemble to form amyloid with a cross-β core. Here we describe our recent advances in understanding how sequence contributes to amyloidogenicity and structure. For example, we describe penta- and hexapeptides that assemble to form different morphologies; a 12mer peptide that forms fibrous crystals; and an eight-residue peptide originating from α-synuclein that has the ability to form nanotubes. This work provides a wide range of peptides that may be exploited as fibrous bionanomaterials. These fibrils provide a scaffold upon which functional groups may be added, or templated assembly may be performed.
Collapse
Affiliation(s)
- Zahraa S Al-Garawi
- School of Life Sciences, University of Sussex, Falmer, East Sussex BN1 9QG, UK.,Chemistry Department, College of Sciences, Al-Mustansyria University, Baghdad, Iraq
| | - Kyle L Morris
- School of Life Sciences, University of Sussex, Falmer, East Sussex BN1 9QG, UK
| | - Karen E Marshall
- School of Life Sciences, University of Sussex, Falmer, East Sussex BN1 9QG, UK
| | - Jutta Eichler
- Department of Chemistry and Pharmacy, University of Erlangen-Nurnberg, Erlangen, Germany
| | - Louise C Serpell
- School of Life Sciences, University of Sussex, Falmer, East Sussex BN1 9QG, UK
| |
Collapse
|
9
|
Dokouhaki M, Prime EL, Hung A, Qiao GG, Day L, Gras SL. Structure-Dependent Interfacial Properties of Chaplin F from Streptomyces coelicolor. Biomolecules 2017; 7:E68. [PMID: 28925983 PMCID: PMC5618249 DOI: 10.3390/biom7030068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/08/2017] [Accepted: 09/12/2017] [Indexed: 12/27/2022] Open
Abstract
Chaplin F (Chp F) is a secreted surface-active peptide involved in the aerial growth of Streptomyces. While Chp E demonstrates a pH-responsive surface activity, the relationship between Chp F structure, function and the effect of solution pH is unknown. Chp F peptides were found to self-assemble into amyloid fibrils at acidic pH (3.0 or the isoelectric point (pI) of 4.2), with ~99% of peptides converted into insoluble fibrils. In contrast, Chp F formed short assemblies containing a mixture of random coil and β-sheet structure at a basic pH of 10.0, where only 40% of the peptides converted to fibrils. The cysteine residues in Chp F did not appear to play a role in fibril assembly. The interfacial properties of Chp F at the air/water interface were altered by the structures adopted at different pH, with Chp F molecules forming a higher surface-active film at pH 10.0 with a lower area per molecule compared to Chp F fibrils at pH 3.0. These data show that the pH responsiveness of Chp F surface activity is the reverse of that observed for Chp E, which could prove useful in potential applications where surface activity is desired over a wide range of solution pH.
Collapse
Affiliation(s)
- Mina Dokouhaki
- Department of Chemical Engineering and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Emma L Prime
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia.
- Polymer Science Group, Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Andrew Hung
- School of Science, RMIT University, Melbourne, VIC 3001, Australia.
| | - Greg G Qiao
- Polymer Science Group, Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Li Day
- AgResearch Ltd, Grasslands Research Centre, Tennent Drive, Palmerston North 4442, New Zealand.
| | - Sally L Gras
- Department of Chemical Engineering and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia.
- The ARC Dairy Innovation Hub, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
10
|
Nyström G, Fong WK, Mezzenga R. Ice-Templated and Cross-Linked Amyloid Fibril Aerogel Scaffolds for Cell Growth. Biomacromolecules 2017; 18:2858-2865. [DOI: 10.1021/acs.biomac.7b00792] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gustav Nyström
- ETH Zurich, Department of Health Science & Technology, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Wye-Khay Fong
- ETH Zurich, Department of Health Science & Technology, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
- Drug
Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical
Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Raffaele Mezzenga
- ETH Zurich, Department of Health Science & Technology, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| |
Collapse
|
11
|
Dharmadana D, Reynolds NP, Conn CE, Valéry C. Molecular interactions of amyloid nanofibrils with biological aggregation modifiers: implications for cytotoxicity mechanisms and biomaterial design. Interface Focus 2017; 7:20160160. [PMID: 28630679 PMCID: PMC5474041 DOI: 10.1098/rsfs.2016.0160] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Amyloid nanofibrils are ubiquitous biological protein fibrous aggregates, with a wide range of either toxic or beneficial activities that are relevant to human disease and normal biology. Protein amyloid fibrillization occurs via nucleated polymerization, through non-covalent interactions. As such, protein nanofibril formation is based on a complex interplay between kinetic and thermodynamic factors. The process entails metastable oligomeric species and a highly thermodynamically favoured end state. The kinetics, and the reaction pathway itself, can be influenced by third party moieties, either molecules or surfaces. Specifically, in the biological context, different classes of biomolecules are known to act as catalysts, inhibitors or modifiers of the generic protein fibrillization process. The biological aggregation modifiers reviewed here include lipid membranes of varying composition, glycosaminoglycans and metal ions, with a final word on xenobiotic compounds. The corresponding molecular interactions are critically analysed and placed in the context of the mechanisms of cytotoxicity of the amyloids involved in diverse pathologies and the non-toxicity of functional amyloids (at least towards their biological host). Finally, the utilization of this knowledge towards the design of bio-inspired and biocompatible nanomaterials is explored.
Collapse
Affiliation(s)
- Durga Dharmadana
- School of Health and Biomedical Sciences, Discipline of Pharmaceutical Sciences, RMIT University, Bundoora, Melbourne, Victoria 3083, Australia
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria 3001, Australia
| | - Nicholas P. Reynolds
- ARC Training Centre for Biodevices, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
| | - Charlotte E. Conn
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria 3001, Australia
| | - Céline Valéry
- School of Health and Biomedical Sciences, Discipline of Pharmaceutical Sciences, RMIT University, Bundoora, Melbourne, Victoria 3083, Australia
| |
Collapse
|
12
|
Wei G, Su Z, Reynolds NP, Arosio P, Hamley IW, Gazit E, Mezzenga R. Self-assembling peptide and protein amyloids: from structure to tailored function in nanotechnology. Chem Soc Rev 2017; 46:4661-4708. [PMID: 28530745 PMCID: PMC6364806 DOI: 10.1039/c6cs00542j] [Citation(s) in RCA: 565] [Impact Index Per Article: 70.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Self-assembled peptide and protein amyloid nanostructures have traditionally been considered only as pathological aggregates implicated in human neurodegenerative diseases. In more recent times, these nanostructures have found interesting applications as advanced materials in biomedicine, tissue engineering, renewable energy, environmental science, nanotechnology and material science, to name only a few fields. In all these applications, the final function depends on: (i) the specific mechanisms of protein aggregation, (ii) the hierarchical structure of the protein and peptide amyloids from the atomistic to mesoscopic length scales and (iii) the physical properties of the amyloids in the context of their surrounding environment (biological or artificial). In this review, we will discuss recent progress made in the field of functional and artificial amyloids and highlight connections between protein/peptide folding, unfolding and aggregation mechanisms, with the resulting amyloid structure and functionality. We also highlight current advances in the design and synthesis of amyloid-based biological and functional materials and identify new potential fields in which amyloid-based structures promise new breakthroughs.
Collapse
Affiliation(s)
- Gang Wei
- Faculty of Production Engineering, University of Bremen, Bremen,
Germany
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing
University of Chemical Technology, China
| | - Nicholas P. Reynolds
- ARC Training Centre for Biodevices, Swinburne University of
Technology, Melbourne, Australia
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, ETH-Zurich,
Switzerland
| | | | - Ehud Gazit
- Faculty of Life Sciences, Tel Aviv University, Israel
| | - Raffaele Mezzenga
- Department of Health Science and Technology, ETH-Zurich,
Switzerland
| |
Collapse
|
13
|
Gilbert J, Reynolds NP, Russell SM, Haylock D, McArthur S, Charnley M, Jones OG. Chitosan-coated amyloid fibrils increase adipogenesis of mesenchymal stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [PMID: 28629029 DOI: 10.1016/j.msec.2017.05.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mesenchymal stem cells (MSCs) have the potential to revolutionize medicine due to their ability to differentiate into specific lineages for targeted tissue repair. Development of materials and cell culture platforms that improve differentiation of either autologous or allogenic stem cell sources into specific lineages would enhance clinical utilization of MCSs. In this study, nanoscale amyloid fibrils were evaluated as substrate materials to encourage viability, proliferation, multipotency, and differentiation of MSCs. Fibrils assembled from the proteins lysozyme or β-lactoglobulin, with and without chitosan coatings, were deposited on planar mica surfaces. MSCs were cultured and differentiated on fibril-covered surfaces, as well as on unstructured controls and tissue culture plastic. Expression of CD44 and CD90 proteins indicated that multipotency was maintained for all fibrils, and osteogenic differentiation was similarly comparable among all tested materials. MSCs grown for 7days on fibril-covered surfaces favored multicellular spheroid formation and demonstrated a >75% increase in adipogenesis compared to tissue culture plastic controls, although this benefit could only be achieved if MSCs were transferred to TCP for the final differentiation step. The largest spheroids and greatest tendency to undergo adipogenesis was evidenced among MSCs grown on fibrils coated with the positively-charged polysaccharide chitosan, suggesting that spheroid formation is prompted by both topography and cell-surface interactivity and that there is a connection between multicellular spheroid formation and adipogenesis.
Collapse
Affiliation(s)
- Jay Gilbert
- Purdue University, Department of Food Science, West Lafayette, IN 47907, USA
| | - Nicholas P Reynolds
- ARC Training Centre in Biodevices, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.
| | - Sarah M Russell
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia; Peter MacCallum Cancer Research Centre, Parkville, Melbourne, Victoria 3000, Australia; The University of Melbourne, Parkville, Victoria 3052, Australia
| | - David Haylock
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Manufacturing, Clayton, Victoria 3169, Australia
| | - Sally McArthur
- ARC Training Centre in Biodevices, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Mirren Charnley
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia; Peter MacCallum Cancer Research Centre, Parkville, Melbourne, Victoria 3000, Australia.
| | - Owen G Jones
- Purdue University, Department of Food Science, West Lafayette, IN 47907, USA.
| |
Collapse
|
14
|
The pH-dependent assembly of Chaplin E from Streptomyces coelicolor. J Struct Biol 2017; 198:82-91. [PMID: 28400129 DOI: 10.1016/j.jsb.2017.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/06/2017] [Accepted: 04/07/2017] [Indexed: 01/01/2023]
Abstract
Chaplin E, is one of five self-assembling peptides secreted by Streptomyces coelicolor that assist aerial growth by lowering the surface tension of water. Although the surface activity of a mixture of chaplin peptides has observed to depend on pH, it is unclear how the solvent environment (i.e. pH) influences the structure, assembly and subsequent functionality of these individual peptides. In this study, the conformation and fibril forming propensity of the Chaplin E peptide was assessed as a function of pH using a combination of experimental measurements and molecular dynamics simulations. At an acidic pH of 3.0, Chaplin E retained a random coil structure, whereas at the isoelectric point of 6.7 or a basic pH of 10.0, Chaplin E rapidly formed amyloid fibrils rich in β-sheet structure with high efficiency (>93%). Molecular dynamics simulations indicate the persistence of greater α-helical content at the N-terminus at high pH; this is likely partly due to the lack of electrostatic repulsion between residues His6 and Lys10. Since fibril formation was observed at high but not at low pH, we propose that the presence of an N-terminal α-helix in the monomeric form of Chaplin E is required for aggregation and conversion to β-amyloid fibrils. The pH sensitivity of Chaplin E peptide structure provides a route to control peptide assembly and may be important for the physiological function of this peptide, as a surface active agent in the transition from vegetative to aerial growth and could assist Streptomyces coelicolor in response to environmental fluctuations in pH.
Collapse
|
15
|
Jacob RS, Sen S, Maji SK. Adhesion of Human Mesenchymal Stem Cells and Differentiation of SH-SY5Y Cells on Amyloid Fibrils. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/masy.201600071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Reeba S. Jacob
- Department of Biosciences and Bioengineering; Indian Institute of Technology Bombay; Mumbai Maharashtra 400076 India
| | - Shamik Sen
- Department of Biosciences and Bioengineering; Indian Institute of Technology Bombay; Mumbai Maharashtra 400076 India
| | - Samir K. Maji
- Department of Biosciences and Bioengineering; Indian Institute of Technology Bombay; Mumbai Maharashtra 400076 India
| |
Collapse
|
16
|
Wineman-Fisher V, Miller Y. Effect of Zn2+ ions on the assembly of amylin oligomers: insight into the molecular mechanisms. Phys Chem Chem Phys 2016; 18:21590-9. [DOI: 10.1039/c6cp04105a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
High and low concentrations of Zn2+ ions decrease the polymorphism of amylin oligomers and do not affect their cross β-beta structures.
Collapse
Affiliation(s)
- Vered Wineman-Fisher
- Department of Chemistry
- Ben-Gurion University of the Negev
- Be'er Sheva 84105
- Israel
- Ilse Katz Institute for Nanoscale Science and Technology
| | - Yifat Miller
- Department of Chemistry
- Ben-Gurion University of the Negev
- Be'er Sheva 84105
- Israel
- Ilse Katz Institute for Nanoscale Science and Technology
| |
Collapse
|
17
|
Carr-Smith J, Pacheco-Gómez R, Little HA, Hicks MR, Sandhu S, Steinke N, Smith DJ, Rodger A, Goodchild SA, Lukaszewski RA, Tucker JHR, Dafforn TR. Polymerase Chain Reaction on a Viral Nanoparticle. ACS Synth Biol 2015; 4:1316-25. [PMID: 26046486 DOI: 10.1021/acssynbio.5b00034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The field of synthetic biology includes studies that aim to develop new materials and devices from biomolecules. In recent years, much work has been carried out using a range of biomolecular chassis including α-helical coiled coils, β-sheet amyloids and even viral particles. In this work, we show how hybrid bionanoparticles can be produced from a viral M13 bacteriophage scaffold through conjugation with DNA primers that can template a polymerase chain reaction (PCR). This unprecedented example of a PCR on a virus particle has been studied by flow aligned linear dichroism spectroscopy, which gives information on the structure of the product as well as a new protototype methodology for DNA detection. We propose that this demonstration of PCR on the surface of a bionanoparticle is a useful addition to ways in which hybrid assemblies may be constructed using synthetic biology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alison Rodger
- Department
of Chemistry, University of Warwick, Coventry, Warwickshire CV4 7AL, United Kingdom
| | - Sarah A. Goodchild
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, United Kingdom
| | - Roman A. Lukaszewski
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, United Kingdom
| | | | | |
Collapse
|
18
|
Jacob RS, Ghosh D, Singh PK, Basu SK, Jha NN, Das S, Sukul PK, Patil S, Sathaye S, Kumar A, Chowdhury A, Malik S, Sen S, Maji SK. Self healing hydrogels composed of amyloid nano fibrils for cell culture and stem cell differentiation. Biomaterials 2015; 54:97-105. [DOI: 10.1016/j.biomaterials.2015.03.002] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 01/08/2023]
|
19
|
Reynolds NP, Charnley M, Bongiovanni MN, Hartley PG, Gras SL. Biomimetic Topography and Chemistry Control Cell Attachment to Amyloid Fibrils. Biomacromolecules 2015; 16:1556-65. [DOI: 10.1021/acs.biomac.5b00114] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Nicholas P. Reynolds
- Manufacturing
Flagship, CSIRO, Bayview Avenue, Clayton, Victoria 3169, Australia
| | | | - Marie N. Bongiovanni
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Patrick G. Hartley
- Energy
Flagship, CSIRO, Private Bag 10, Bayview Avenue, Clayton, Victoria 3169, Australia
| | | |
Collapse
|
20
|
Takor GA, Higashiya S, Sikirzhytski VK, Seeley JP, Lednev IK, Welch JT. The role of proline-containing peptide triads in β-sheet formation: A kinetic study. Biopolymers 2015; 103:339-50. [DOI: 10.1002/bip.22622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 12/31/2014] [Accepted: 12/31/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Gaius A. Takor
- Department of Chemistry; University at Albany; State University of New York; Albany NY 12222
| | - Seiichiro Higashiya
- Department of Chemistry; University at Albany; State University of New York; Albany NY 12222
| | - Vitali K. Sikirzhytski
- Department of Chemistry; University at Albany; State University of New York; Albany NY 12222
| | - Jason P. Seeley
- Department of Chemistry; University at Albany; State University of New York; Albany NY 12222
| | - Igor K. Lednev
- Department of Chemistry; University at Albany; State University of New York; Albany NY 12222
| | - John T. Welch
- Department of Chemistry; University at Albany; State University of New York; Albany NY 12222
| |
Collapse
|
21
|
Bongiovanni MN, Gras SL. Bioactive TTR105-115-based amyloid fibrils reduce the viability of mammalian cells. Biomaterials 2015; 46:105-16. [PMID: 25678120 DOI: 10.1016/j.biomaterials.2014.12.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/09/2014] [Accepted: 12/20/2014] [Indexed: 12/29/2022]
Abstract
A growing number of protein-based fibrous biomaterials have been produced with a cross-β amyloid core yet the long-term effect of these materials on cell viability and the influence of core and non-core protein sequences on viability is not well understood. Here, synthetic bioactive TTR1-RGD and control TTR1-RAD or TTR1 fibrils were used to test the response of mammalian cells. At high fibril concentrations cell viability was reduced, as assessed by mitochondrial reduction assays, lactate dehydrogenase membrane integrity assays and apoptotic biomarkers. This reduction occurred despite the high density of RGD cell adhesion ligands and use of cells displaying integrin receptors. Cell viability was affected by fibril size, maturity and whether fibrils were added to the cell media or as a pre-coated surface layer. These findings show that while cells initially interact well with synthetic fibrils, cellular integrity can be compromised over longer periods of time, suggesting a better understanding of the role of core and non-core residues in determining cellular interactions is required before TTR1-based fibrils are used as biomaterials.
Collapse
Affiliation(s)
- Marie N Bongiovanni
- The ARC Dairy Innovation Hub, Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, VIC 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sally L Gras
- The ARC Dairy Innovation Hub, Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, VIC 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
22
|
Lara C, Reynolds NP, Berryman JT, Xu A, Zhang A, Mezzenga R. ILQINS Hexapeptide, Identified in Lysozyme Left-Handed Helical Ribbons and Nanotubes, Forms Right-Handed Helical Ribbons and Crystals. J Am Chem Soc 2014; 136:4732-9. [DOI: 10.1021/ja500445z] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Cecile Lara
- Food & Soft Materials, Department of Health Science & Technology, ETH Zurich, Schmelzbergstrasse 9, LFO, E23, 8092 Zürich, Switzerland
| | - Nicholas P. Reynolds
- Materials
Science and Engineering, CSIRO, Private Bag 10, Bayview Avenue, Clayton, Vic 3169, Australia
| | - Joshua T. Berryman
- Faculty
of Science Technology and Communication, University of Luxembourg, 162a Avenue de la Faïencerie, L-1511 Luxembourg
| | - Anqiu Xu
- Department
of Polymer Materials, Shanghai University, Nanchen Street 333, Shanghai 200444, China
| | - Afang Zhang
- Department
of Polymer Materials, Shanghai University, Nanchen Street 333, Shanghai 200444, China
| | - Raffaele Mezzenga
- Food & Soft Materials, Department of Health Science & Technology, ETH Zurich, Schmelzbergstrasse 9, LFO, E23, 8092 Zürich, Switzerland
| |
Collapse
|
23
|
Reynolds NP, Charnley M, Mezzenga R, Hartley PG. Engineered lysozyme amyloid fibril networks support cellular growth and spreading. Biomacromolecules 2014; 15:599-608. [PMID: 24432698 DOI: 10.1021/bm401646x] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fibrous networks assembled from synthetic peptides are promising candidates for biomimetic cell culture platforms and implantable biomaterials. The ability of the materials to reproduce physiological cell-matrix interactions is essential. However, the synthetic complexity of such systems limits their applications, thus alternative materials are desirable. Here, we design lysozyme derived amyloid fibril networks with controllable topographies, and perform a comprehensive study of the response of cultured fibroblast and epithelial cells. At high surface coverage a favorable increase in spreading and the generation of focal adhesions was observed, due to a combination of biomimetic chemistry and morphology. Their ease of synthesis, makes the nanoscale fibrils presented here ideal materials for future clinical applications whereby large volumes of biomimetic biomaterials are required. Furthermore, the surface chemistry of the fibrils is sufficient for the promotion of focal adhesions with cultured cells, eliminating the need for complex protocols for fibril decoration with bioactive moieties.
Collapse
Affiliation(s)
- Nicholas P Reynolds
- CSIRO, Materials Science and Engineering, Private Bag 10, Bayview Avenue, Clayton, Victoria 3169, Australia
| | | | | | | |
Collapse
|
24
|
Misra SK, Kondaiah P, Bhattacharya S, Boturyn D, Dumy P. Co-liposomes comprising a lipidated multivalent RGD-peptide and a cationic gemini cholesterol induce selective gene transfection in αvβ3 and αvβ5 integrin receptor-rich cancer cells. J Mater Chem B 2014; 2:5758-5767. [DOI: 10.1039/c4tb00701h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Palmitoylated-RGD4 mediated gene transfer and cell targeting using a cationic gemini cholesterol based liposome.
Collapse
Affiliation(s)
- Santosh K. Misra
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore 560 012, India
| | - Paturu Kondaiah
- Department of Molecular Reproduction
- Development and Genetics
- Indian Institute of Science
- Bangalore 560 012, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore 560 012, India
- JNCASR
- Bangalore 560 064, India
| | - Didier Boturyn
- Univ Grenoble Alpes
- Département de Chimie Moléculaire
- 38400 Grenoble, France
- CNRS
- UMR 5250
| | - Pascal Dumy
- CNRS
- UMR 5250
- , France
- IBMM-UMR-5247 Ecole Nationale Supérieure de Chimie de Montpellier
- 34296 Montpellier cedex 5, France
| |
Collapse
|
25
|
Reynolds NP, Styan KE, Easton CD, Li Y, Waddington L, Lara C, Forsythe JS, Mezzenga R, Hartley PG, Muir BW. Nanotopographic Surfaces with Defined Surface Chemistries from Amyloid Fibril Networks Can Control Cell Attachment. Biomacromolecules 2013; 14:2305-16. [DOI: 10.1021/bm400430t] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nicholas P. Reynolds
- Materials Science and Engineering, CSIRO, Private Bag 10, Bayview Avenue, Clayton, Vic
3169, Australia
| | - Katie E. Styan
- Materials Science and Engineering, CSIRO, Private Bag 10, Bayview Avenue, Clayton, Vic
3169, Australia
| | - Christopher D. Easton
- Materials Science and Engineering, CSIRO, Private Bag 10, Bayview Avenue, Clayton, Vic
3169, Australia
| | - Yali Li
- Materials Science and Engineering, CSIRO, Private Bag 10, Bayview Avenue, Clayton, Vic
3169, Australia
| | - Lynne Waddington
- Materials
Science and Engineering, CSIRO 343 Royal
Parade, Parkville, Vic 3052, Australia
| | - Cecile Lara
- Department of Health Science and Technology, Food & Soft Materials, ETH, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - John S. Forsythe
- Department of Materials Engineering, Monash University, Clayton, 3800, Vic 3800, Australia
| | - Raffaele Mezzenga
- Department of Health Science and Technology, Food & Soft Materials, ETH, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Patrick G. Hartley
- Materials Science and Engineering, CSIRO, Private Bag 10, Bayview Avenue, Clayton, Vic
3169, Australia
| | - Benjamin W. Muir
- Materials Science and Engineering, CSIRO, Private Bag 10, Bayview Avenue, Clayton, Vic
3169, Australia
| |
Collapse
|
26
|
Maude S, Ingham E, Aggeli A. Biomimetic self-assembling peptides as scaffolds for soft tissue engineering. Nanomedicine (Lond) 2013; 8:823-47. [DOI: 10.2217/nnm.13.65] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tissue engineered therapies are emerging as solutions to several of the medical challenges facing aging societies. To this end, a fundamental research goal is the development of novel biocompatible materials and scaffolds. Self-assembling peptides are materials that have undergone rapid development in the last two decades and they hold promise in meeting some of these challenges. Using amino acids as building blocks enables a great versatility to be incorporated into the structures that peptides form, their physical properties and their interactions with biological systems. This review discusses several classes of short self-assembling sequences, explaining the principles that drive their self-assembly into structures with nanoscale ordering, and highlighting in vitro and in vivo studies that demonstrate the potential of these materials as novel soft tissue engineering scaffolds.
Collapse
Affiliation(s)
- Steven Maude
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Eileen Ingham
- The Institute of Medical & Biological Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Amalia Aggeli
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
27
|
Bongiovanni MN, Puri D, Goldie KN, Gras SL. Noncore Residues Influence the Kinetics of Functional TTR105–115-Based Amyloid Fibril Assembly. J Mol Biol 2012; 421:256-69. [DOI: 10.1016/j.jmb.2011.12.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 12/07/2011] [Accepted: 12/08/2011] [Indexed: 11/25/2022]
|