1
|
Zhang ZJ, Ding LY, Zuo XL, Feng H, Xia Q. A new paradigm in transplant immunology: At the crossroad of synthetic biology and biomaterials. MED 2023:S2666-6340(23)00142-3. [PMID: 37244257 DOI: 10.1016/j.medj.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/04/2023] [Accepted: 05/02/2023] [Indexed: 05/29/2023]
Abstract
Solid organ transplant (SOT) recipients require meticulously tailored immunosuppressive regimens to minimize graft loss and mortality. Traditional approaches focus on inhibiting effector T cells, while the intricate and dynamic immune responses mediated by other components remain unsolved. Emerging advances in synthetic biology and material science have provided novel treatment modalities with increased diversity and precision to the transplantation community. This review investigates the active interface between these two fields, highlights how living and non-living structures can be engineered and integrated for immunomodulation, and discusses their potential application in addressing the challenges in SOT clinical practice.
Collapse
Affiliation(s)
- Zi-Jie Zhang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai 200127, China
| | - Lu-Yue Ding
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiao-Lei Zuo
- Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai 200127, China; School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Feng
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai 200127, China; Shanghai Institute of Transplantation, Shanghai 200127, China; Punan Branch (Shanghai Punan Hospital), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai 200127, China; Shanghai Institute of Transplantation, Shanghai 200127, China.
| |
Collapse
|
2
|
Purich K, Cai H, Yang B, Xu Z, Tessier AG, Black A, Hung RW, Boivin E, Xu B, Wu P, Zhang B, Xin D, Fallone BG, Rajotte RV, Wu Y, Rayat GR. MRI monitoring of transplanted neonatal porcine islets labeled with polyvinylpyrrolidone-coated superparamagnetic iron oxide nanoparticles in a mouse model. Xenotransplantation 2021; 29:e12720. [PMID: 34850455 DOI: 10.1111/xen.12720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/25/2021] [Accepted: 10/22/2021] [Indexed: 11/27/2022]
Abstract
Islet transplantation is a potential treatment option for certain patients with type 1 diabetes; however, it still faces barriers to widespread use, including the lack of tools to monitor islet grafts post-transplantation. This study investigates whether labeling neonatal porcine islets (NPI) with polyvinylpyrrolidone-coated superparamagnetic iron oxide nanoparticles (PVP-SPIO) affects their function, and whether this nanoparticle can be utilized to monitor NPI xenografts with magnetic resonance imaging (MRI) in a mouse model. In vitro, PVP-SPIO-labeled NPI in an agarose gel was visualized clearly by MRI. PVP-SPIO-labeled islets were then transplanted under the kidney capsules of immunodeficient nondiabetic and diabetic mice. All diabetic mice that received transplantation of PVP-SPIO-labeled islets reached normoglycemia. Grafts appeared as hypo-intense areas on MRI and were distinguishable from the surrounding tissues. Following injection of spleen cells from immunocompetent mice, normoglycemic recipient mice became diabetic and islet grafts showed an increase in volume, accompanied by a mixed signal on MRI. Overall, this study demonstrates that PVP-SPIO did not affect the function of NPI that PVP-SPIO-labeled islets were easily seen on MRI, and changes in MRI signals following rejection suggest a potential use of PVP-SPIO-labeled islets to monitor graft viability.
Collapse
Affiliation(s)
- Kieran Purich
- Department of Surgery, Ray Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Haolei Cai
- Department of Surgery, 2nd Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, China
| | - Bin Yang
- Department of Surgery, 2nd Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, China
| | - Zhihao Xu
- Department of Surgery, Ray Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Anthony G Tessier
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.,Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Adnan Black
- Department of Surgery, Ray Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ryan W Hung
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada
| | - Eric Boivin
- Department of Surgery, Ray Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Baoyou Xu
- Department of Surgery, Ray Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ping Wu
- Department of Surgery, Ray Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Bo Zhang
- Department of Surgery, 2nd Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, China
| | - Dong Xin
- Department of Surgery, 2nd Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, China
| | - Biagio Gino Fallone
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.,Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Ray V Rajotte
- Department of Surgery, Ray Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Yulian Wu
- Department of Surgery, 2nd Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, China
| | - Gina R Rayat
- Department of Surgery, Ray Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Hepatic and renal cellular cytotoxic effects of heparin-coated superparamagnetic Iron oxide nanoparticles. Biomater Res 2021; 25:36. [PMID: 34736539 PMCID: PMC8567628 DOI: 10.1186/s40824-021-00241-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/25/2021] [Indexed: 11/30/2022] Open
Abstract
Background Superparamagnetic iron oxide (SPIO) nanoparticles have been widely used in several biomedical engineering in vivo. Although various surface modifications have been made to these non-biodegradable nanoparticles to make them more biocompatible, their toxic potential still remains a major concern. Method In this study, we newly developed unfractionated heparin (UFH)-coated and low molecular weight heparin (LMWH)-coated SPIO nanoparticles through surface modification engineering, which was compared with commercially available dextran-coated SPIO nanoparticles. Their toxicity such as cytotoxicity, single cell gel electrophoresis (SCGE) comet assay, intracellular reactive oxygen species (ROS) content and cellular apoptosis was evaluated to hepatic HepG2 and renal HK-2 cells. Results When UFH-, LMWH- or dextran-coated SPIO nanoparticles were applied, they did not affect the viability of HepG2 cell. However, HK-2 cells were more sensitive to dextran-coated SPIO nanoparticles than others. In genotoxicity assay using SCGE comet, DNA tail moment values in the groups treated with dextran- and LMWH-coated SPIO nanoparticles significantly increased. However, UFH-coated SPIO nanoparticles was only significantly lowing DNA tail moment value. In addition, UFH-coated SPIO nanoparticles had lower cytotoxicity in HepG2 and HK-2 cells compared to dextran-coated SPIO nanoparticles, especially in terms of apoptosis and intracellular ROS production. Conclusions Collectively, it is possible that UFH- coated SPIO nanoparticles can be used as alternative negative contrast agents.
Collapse
|
4
|
Arifin DR, Bulte JWM. In Vivo Imaging of Pancreatic Islet Grafts in Diabetes Treatment. Front Endocrinol (Lausanne) 2021; 12:640117. [PMID: 33737913 PMCID: PMC7961081 DOI: 10.3389/fendo.2021.640117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/25/2021] [Indexed: 12/22/2022] Open
Abstract
Transplantation of pancreatic islets has potential to offer life-long blood glucose management in type I diabetes and severe type II diabetes without the need of exogenous insulin administration. However, islet cell therapy suffers from autoimmune and allogeneic rejection as well as non-immune related factors. Non-invasive techniques to monitor and evaluate the fate of cell implants in vivo are essential to understand the underlying causes of graft failure, and hence to improve the precision and efficacy of islet therapy. This review describes how imaging technology has been employed to interrogate the distribution, number or volume, viability, and function of islet implants in vivo. To date, fluorescence imaging, PET, SPECT, BLI, MRI, MPI, and ultrasonography are the many imaging modalities being developed to fulfill this endeavor. We outline here the advantages, limitations, and clinical utility of each particular imaging approach.
Collapse
Affiliation(s)
- Dian R. Arifin
- Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Jeff W. M. Bulte
- Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Jeff W. M. Bulte,
| |
Collapse
|
5
|
Kazemi M, Emami J, Hasanzadeh F, Minaiyan M, Mirian M, Lavasanifar A, Mokhtari M. In Vitro and In Vivo Evaluation of Novel DTX-Loaded Multifunctional Heparin-Based Polymeric Micelles Targeting Folate Receptors and Endosomes. Recent Pat Anticancer Drug Discov 2020; 15:341-359. [PMID: 33023456 DOI: 10.2174/1574892815666201006124604] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/23/2020] [Accepted: 09/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The development of biocompatible tumor-targeting delivery systems for anticancer agents is essential for efficacious cancer chemotherapy. Nanoparticles, as drug delivery cargoes for cancer therapy, are rapidly improving to overcome the limitations of conventional chemotherapeutic agents. Heparin-modified nanoparticles are currently being considered as one of the favorable carriers for the delivery of chemotherapeutics to cancer tissues. OBJECTIVE This study was aimed at evaluating the in vitro and in vivo antitumor activity of a novel targeted, pH-sensitive, heparin-based polymeric micelle loaded with the poorly water-soluble anticancer drug, docetaxel (DTX). The micelles could overcome the limited water solubility, non-specific distribution, and insufficient drug concentration in tumor tissues. METHODS DTX-loaded folate targeted micelles were prepared and evaluated for physicochemical properties, drug release, in vitro cellular uptake and cytotoxicity in folate receptor-positive and folate receptor-negative cells. Furthermore, the antitumor activity of DTX-loaded micelles was evaluated in the tumor-bearing mice. Some related patents were also studied in this research. RESULTS The heparin-based targeted micelles exhibited higher in vitro cellular uptake and cytotoxicity against folate receptor over-expressed cells due to the specific receptor-mediated endocytosis. DTX-loaded micelles displayed greater antitumor activity, higher anti-angiogenesis effects, and lower systemic toxicity compared with free DTX in a tumor-induced mice model as confirmed by tumor growth monitoring, immunohistochemical evaluation, and body weight shift. DTX-loaded targeting micelles demonstrated no considerable toxicity on major organs of tumor-bearing mice compared with free DTX. CONCLUSION Our results indicated that DTX-loaded multifunctional heparin-based micelles with desirable antitumor activity and low toxicity possess great potential as a targeted drug delivery system in the treatment of cancer.
Collapse
Affiliation(s)
- Moloud Kazemi
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaber Emami
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farshid Hasanzadeh
- Department of Medical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Minaiyan
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Mirian
- Department of Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Mojgan Mokhtari
- Department of Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
Zheng L, Wang Y, Yang B, Zhang B, Wu Y. Islet Transplantation Imaging in vivo. Diabetes Metab Syndr Obes 2020; 13:3301-3311. [PMID: 33061492 PMCID: PMC7520574 DOI: 10.2147/dmso.s263253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/29/2020] [Indexed: 12/31/2022] Open
Abstract
Although islet transplantation plays an effective and powerful role in the treatment of diabetes, a large amount of islet grafts are lost at an early stage due to instant blood-mediated inflammatory reactions, immune rejection, and β-cell toxicity resulting from immunosuppressive agents. Timely intervention based on the viability and function of the transplanted islets at an early stage is crucial. Various islet transplantation imaging techniques are available for monitoring the conditions of post-transplanted islets. Due to the development of various imaging modalities and the continuous study of contrast agents, non-invasive islet transplantation imaging in vivo has made great progress. The tracing and functional evaluation of transplanted islets in vivo have thus become possible. However, most studies on contrast agent and imaging modalities are limited to animal experiments, and long-term toxicity and stability need further evaluation. Accordingly, the clinical application of the current achievements still requires a large amount of effort. In this review, we discuss the contrast agents for MRI, SPECT/PET, BLI/FI, US, MPI, PAI, and multimodal imaging. We further summarize the advantages and limitations of various molecular imaging methods.
Collapse
Affiliation(s)
- Lei Zheng
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310000, People’s Republic of China
| | - Yinghao Wang
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310000, People’s Republic of China
| | - Bin Yang
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310000, People’s Republic of China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310000, People’s Republic of China
| | - Bo Zhang
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310000, People’s Republic of China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310000, People’s Republic of China
- Correspondence: Bo Zhang; Yulian Wu Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310000, People’s Republic of China Tel/Fax +86 571 87783563 Email ;
| | - Yulian Wu
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310000, People’s Republic of China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310000, People’s Republic of China
| |
Collapse
|
7
|
Pathak S, Pham TT, Jeong JH, Byun Y. Immunoisolation of pancreatic islets via thin-layer surface modification. J Control Release 2019; 305:176-193. [DOI: 10.1016/j.jconrel.2019.04.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/15/2019] [Accepted: 04/22/2019] [Indexed: 12/13/2022]
|
8
|
Jin SM, Lee HS, Haque MR, Kim HN, Kim HJ, Oh BJ, Lee KW, Kim G, Kim HS, Lee DY, Park JB, Kim SJ, Byun Y, Kim JH. Multi-layer surface modification of pancreatic islets for magnetic resonance imaging using ferumoxytol. Biomaterials 2019; 214:119224. [PMID: 31153093 DOI: 10.1016/j.biomaterials.2019.119224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 12/18/2022]
Abstract
Ferumoxytol is the only clinically available ultrasmall superparamagnetic iron oxide. However, the labeling efficacy of islet magnetic resonance imaging (MRI) using ferumoxytol is not suitable for use in clinical pancreatic islet transplantation (PIT). We evaluated the feasibility of pancreatic islet MRI using ferumoxytol through multi-layer surface modification. A four-layer nanoshield with poly (ethylene) glycol (PEG, 2 layers), ferumoxytol, and heparin was formed on the pancreatic islets. We compared pancreatic islet function, viability, and labeling efficacy of control, ferumoxytol alone-labeled, heparin-PEGylated, and ferumoxytol-heparin-PEGylated islets. With optimization of the ferumoxytol concentration during the ferumoxytol-heparin-PEGylation process, the labeling contrast in ex vivo MRI of ferumoxytol-heparin-PEGylated pancreatic islets was stronger than that of pancreatic islets labeled with ferumoxytol alone, without decreasing ex vivo islet viability or function. In a syngeneic mouse renal subcapsular PIT model, heparin-PEGylation and ferumoxytol-heparin-PEGylation delayed the revascularization of pancreatic islet grafts but did not impair glucose tolerance or revascularization of pancreatic islet grafts four weeks post-transplantation. Pancreatic islet visibility after labeling was also confirmed in a syngeneic mouse intraportal PIT model and in preliminary analysis of a non-human primate intraportal PIT model. In conclusion, multi-layer islet surface modification is a promising option for pancreatic islet MRI in intraportal PIT.
Collapse
Affiliation(s)
- Sang-Man Jin
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Han Sin Lee
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea; Medical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Muhammad R Haque
- Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Hun Nyun Kim
- Animal Research and Molecular Imaging Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Hyun Jin Kim
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Bae Jun Oh
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea; New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, Republic of Korea
| | - Kyo Won Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, Republic of Korea
| | - Gyuri Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyung Shik Kim
- Department of Bioengineering, College of Engineering, and BK21 PLUS Team, and Institute of Nano Science & Technology (INST), Hanyang University, Seoul, 04763, Republic of Korea
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, and BK21 PLUS Team, and Institute of Nano Science & Technology (INST), Hanyang University, Seoul, 04763, Republic of Korea
| | - Jae Berm Park
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, Republic of Korea
| | - Sung Joo Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, Republic of Korea
| | - Youngro Byun
- Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
| | - Jae Hyeon Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea; Department of Health Science and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Garcia Ribeiro RS, Gysemans C, da Cunha JPMCM, Manshian BB, Jirak D, Kriz J, Gallo J, Bañobre-López M, Struys T, De Cuyper M, Mathieu C, Soenen SJ, Gsell W, Himmelreich U. Magnetoliposomes as Contrast Agents for Longitudinal in vivo Assessment of Transplanted Pancreatic Islets in a Diabetic Rat Model. Sci Rep 2018; 8:11487. [PMID: 30065302 PMCID: PMC6068133 DOI: 10.1038/s41598-018-29136-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/12/2018] [Indexed: 01/07/2023] Open
Abstract
Magnetoliposomes (MLs) were synthesized and tested for longitudinal monitoring of transplanted pancreatic islets using magnetic resonance imaging (MRI) in rat models. The rat insulinoma cell line INS-1E and isolated pancreatic islets from outbred and inbred rats were used to optimize labeling conditions in vitro. Strong MRI contrast was generated by islets exposed to 50 µg Fe/ml for 24 hours without any increased cell death, loss of function or other signs of toxicity. In vivo experiments showed that pancreatic islets (50-1000 units) labeled with MLs were detectable for up to 6 weeks post-transplantation in the kidney subcapsular space. Islets were also monitored for two weeks following transplantation through the portal vein of the liver. Hereby, islets labeled with MLs and transplanted under the left kidney capsule were able to correct hyperglycemia and had stable MRI signals until nephrectomy. Interestingly, in vivo MRI of streptozotocin induced diabetic rats transplanted with allogeneic islets demonstrated loss of MRI contrast between 7-16 days, indicative of loss of islet structure. MLs used in this study were not only beneficial for monitoring the location of transplanted islets in vivo with high sensitivity but also reported on islet integrity and hereby indirectly on islet function and rejection.
Collapse
Affiliation(s)
- Rita Sofia Garcia Ribeiro
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Biomedical Sciences Group, KU LEUVEN, Herestraat 49, 3000, Leuven, Belgium
| | - Conny Gysemans
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, KU LEUVEN, Herestraat 49, 3000, Leuven, Belgium
| | | | - Bella B Manshian
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Biomedical Sciences Group, KU LEUVEN, Herestraat 49, 3000, Leuven, Belgium
| | - Daniel Jirak
- MR Spectroscopy Unit, Institute for Clinical and Experimental Medicine (IKEM), Videnska 1958/9, 140 21, Prague, Czech Republic
- Department of Biophysics, Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Salmovska 1, 120 00, Prague 2, Czech Republic
| | - Jan Kriz
- Diabetes Center, Institute for Clinical and Experimental Medicine (IKEM), Videnska 1958/9, 140 21, Prague, Czech Republic
| | - Juan Gallo
- Diagnostic Tools & Methods/Advanced (magnetic) Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Manuel Bañobre-López
- Diagnostic Tools & Methods/Advanced (magnetic) Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Tom Struys
- Lab of Histology, Biomedical Research Institute, Hasselt University, Campus Diepenbeek, Agoralaan, B3590, Diepenbeek, Belgium
| | - Marcel De Cuyper
- Laboratory of BioNanoColloids, Interdisciplinary Research Centre, KULAK/KU LEUVEN, Etienne Sabbelaan 53, 8500, Kortrijk, Belgium
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, KU LEUVEN, Herestraat 49, 3000, Leuven, Belgium
| | - Stefaan J Soenen
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Biomedical Sciences Group, KU LEUVEN, Herestraat 49, 3000, Leuven, Belgium
| | - Willy Gsell
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Biomedical Sciences Group, KU LEUVEN, Herestraat 49, 3000, Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Biomedical Sciences Group, KU LEUVEN, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
10
|
Kim J, Kwon JH, Jang J, Lee H, Kim S, Hahn YK, Kim SK, Lee KH, Lee S, Pyo H, Song CS, Lee J. Rapid and background-free detection of avian influenza virus in opaque sample using NIR-to-NIR upconversion nanoparticle-based lateral flow immunoassay platform. Biosens Bioelectron 2018; 112:209-215. [DOI: 10.1016/j.bios.2018.04.047] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/04/2018] [Accepted: 04/18/2018] [Indexed: 12/18/2022]
|
11
|
Abstract
Pancreatic islets (PIs) transplantation is an alternative approach for the treatment of severe forms of type 1 diabetes (T1D). To monitor the success of transplantation, it is desirable to follow the location of engrafted PIs non-invasively. In vivo magnetic resonance imaging (MRI) of transplanted PIs is a feasible cell tracking method; however, this requires labeling with a suitable contrast agent prior to transplantation. We have tested the feasibility of cationic magnetoliposomes (MLs), compared to commercial contrast agents (Endorem and Resovist), by labeling insulinoma cells and freshly isolated rat PIs. It was possible to incorporate Magnetic Ressonance (MR)-detectable amounts of MLs in a shorter time (4 h) when compared to Endorem and Resovist. MLs did not show negative effects on the PIs' viability and functional parameters in vitro. Labeled islets were transplanted in the renal sub-capsular region of healthy mice. Hypointense contrast in MR images due to the labeled PIs was detected in vivo upon transplantation, while MR detection of PIs labeled with Endorem and Resovist was only possible after the addition of transfection agents. These findings indicate that MLs are suitable to image PIs, without affecting their function, which is promising for future longitudinal pre-clinical and clinical studies involving the assessment of PI transplantation.
Collapse
|
12
|
Hwang YH, Jeong MJ, Kim MJ, Kim JK, Lee DY. Enhancement of T 2 -weighted MR contrast using heparin for cell tracking in vivo. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.06.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Herynek V, Gálisová A, Srinivas M, van Dinther EAW, Kosinová L, Ruzicka J, Jirátová M, Kriz J, Jirák D. Pre-Microporation Improves Outcome of Pancreatic Islet Labelling for Optical and 19F MR Imaging. Biol Proced Online 2017; 19:6. [PMID: 28674481 PMCID: PMC5488379 DOI: 10.1186/s12575-017-0055-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/01/2017] [Indexed: 01/02/2023] Open
Abstract
Background In vitro labelling of cells and small cell structures is a necessary step before in vivo monitoring of grafts. We modified and optimised a procedure for pancreatic islet labelling using bimodal positively charged poly(lactic-co-glycolic acid) nanoparticles with encapsulated perfluoro crown ethers and indocyanine green dye via microporation and compared the method with passive endocytosis. Results Pancreatic islets were microporated using two pulses at various voltages. We tested a standard procedure (poration in the presence of nanoparticles) and a modified protocol (pre-microporation in a buffer only, and subsequent islet incubation with nanoparticles on ice for 10 min). We compared islet labelling by microporation with labelling by endocytosis, i.e. pancreatic islets were incubated for 24 h in a medium with suspended nanoparticles. In order to verify the efficiency of the labelling procedures, we used 19F magnetic resonance imaging, optical fluorescence imaging and confocal microscopy. The experiment confirmed that microporation, albeit fast and effective, is invasive and may cause substantial harm to islets. To achieve sufficient poration and to minimise the reduction of viability, the electric field should be set at 20 kV/m (two pulses, 20 ms each). Poration in the presence of nanoparticles was found to be unsuitable for the nanoparticles used. The water suspension of nanoparticles (which served as a surfactant) was slightly foamy and microbubbles in the suspension were responsible for sparks causing the destruction of islets during poration. However, pre-microporation (poration of islets in a buffer only) followed by 10-min incubation with nanoparticles was safer. Conclusions For labelling of pancreatic islets using poly(lactic-co-glycolic acid) nanoparticles, the modified microporation procedure with low voltage was found to be safer than the standard microporation procedure. The modified procedure was fast, however, efficiency was lower compared to endocytosis.
Collapse
Affiliation(s)
- Vít Herynek
- MR Unit, Radiodiagnostic and Interventional Radiology Department, Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, Prague, Czech Republic
| | - Andrea Gálisová
- MR Unit, Radiodiagnostic and Interventional Radiology Department, Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, Prague, Czech Republic
| | - Mangala Srinivas
- Department of Tumor Immunology, Radboud University Medical Centre, Route 278, Geert Grooteplein 28, Nijmegen, Netherlands
| | - Eric A W van Dinther
- Department of Tumor Immunology, Radboud University Medical Centre, Route 278, Geert Grooteplein 28, Nijmegen, Netherlands
| | - Lucie Kosinová
- Centre of Experimental Medicine, Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, Prague, Czech Republic
| | - Jiri Ruzicka
- MR Unit, Radiodiagnostic and Interventional Radiology Department, Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, Prague, Czech Republic.,Department of Tissue Culture and Stem Cells, Institute of Experimental Medicine AS CR, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Markéta Jirátová
- MR Unit, Radiodiagnostic and Interventional Radiology Department, Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, Prague, Czech Republic
| | - Jan Kriz
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, Prague, Czech Republic
| | - Daniel Jirák
- MR Unit, Radiodiagnostic and Interventional Radiology Department, Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, Prague, Czech Republic
| |
Collapse
|
14
|
MRI-sensitive contrast agent with anticoagulant activity for surface camouflage of transplanted pancreatic islets. Biomaterials 2017; 138:121-130. [PMID: 28558297 DOI: 10.1016/j.biomaterials.2017.05.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/08/2017] [Accepted: 05/21/2017] [Indexed: 02/07/2023]
Abstract
Pancreatic islet implantation in the liver is a promising approach for diabetes therapy. However, 70% of the islet mass fails to be engrafted in the liver due to the instant blood-mediated inflammatory reactions (IBMIR) resulting from direct contact between islet cells and the bloodstream. To overcome this issue, direct monitoring is very important for establishing prognosis after islet cell therapy. Here we established a new type of MR contrast agent with anticoagulant activity via heparin-immobilized superparamagnetic iron oxide (HSPIO). The HSPIO was chemically conjugated onto islet surface ex vivo without damage of their viability and functionality. The conjugated HSPIO nanoparticles onto islet surface could attenuate IBMIR in vitro and in vivo. The HSPIO-conjugated islets could cure the blood glucose levels of diabetes animals after implantation. In addition, the HSPIO nanoparticles were well maintained on the transplanted islets for a long time during modulation of inflammation. Also, they allowed for stable visualization of the implanted islet cells for more than 150 days without reduction of the MRI signal. Furthermore, when HSPIO itself was intraportally injected, it was rapidly eliminated without accumulation in the liver, suggesting that HSPIO nanoparticles could only track the immobilized islet. Collectively, this HSPIO nanoparticle having MRI sensitivity and anticoagulant activity could be utilized for successful islet implantation.
Collapse
|
15
|
Yang G, Ma W, Zhang B, Xie Q. The labeling of stem cells by superparamagnetic iron oxide nanoparticles modified with PEG/PVP or PEG/PEI. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:384-90. [PMID: 26952437 DOI: 10.1016/j.msec.2016.01.090] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/22/2016] [Accepted: 01/29/2016] [Indexed: 02/03/2023]
|
16
|
Ternent L, Mayoh DA, Lees MR, Davies GL. Heparin-stabilised iron oxide for MR applications: a relaxometric study. J Mater Chem B 2016; 4:3065-3074. [PMID: 32263045 DOI: 10.1039/c6tb00832a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Superparamagnetic nanoparticles have strong potential in biomedicine and have seen application as clinical magnetic resonance imaging (MRI) contrast agents, though their popularity has plummeted in recent years, due to low efficacy and safety concerns, including haemagglutination. Using an in situ procedure, we have prepared colloids of magnetite nanoparticles, exploiting the clinically approved anti-coagulant, heparin, as a templating stabiliser. These colloids, stable over several days, produce exceptionally strong MRI contrast capabilities particularly at low fields, as demonstrated by relaxometric investigations using nuclear magnetic resonance dispersion (NMRD) techniques and single field r1 and r2 relaxation measurements. This behaviour is due to interparticle interactions, enhanced by the templating effect of heparin, resulting in strong magnetic anisotropic behaviour which closely maps particle size. The nanocomposites have also reliably prevented protein-adsorption triggered thrombosis typical of non-stabilised nanoparticles, showing great potential for in vivo MRI diagnostics.
Collapse
Affiliation(s)
- Lucy Ternent
- Molecular Organisation and Assembly in Cells Doctoral Training Centre, Coventry House, University of Warwick, Coventry CV4 7AL, UK
| | | | | | | |
Collapse
|
17
|
|
18
|
Jang E, Jeong M, Kim S, Jang K, Kang BK, Lee DY, Bae SC, Kim KS, Youn J. Infusion of Human Bone Marrow-Derived Mesenchymal Stem Cells Alleviates Autoimmune Nephritis in a Lupus Model by Suppressing Follicular Helper T-Cell Development. Cell Transplant 2015; 25:1-15. [PMID: 25975931 DOI: 10.3727/096368915x688173] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the production of autoantibodies to components of the cell nucleus. These autoantibodies are predominantly produced with the help of follicular helper T (Tfh) cells and form immune complexes that trigger widespread inflammatory damage, including nephritis. In recent studies, mesenchymal stem cells (MSCs) elicited diverse, even opposing, effects in experimental and clinical SLE. Here we investigated the effect of human bone marrow-derived MSCs (hBM-MSCs) in a murine model of SLE, the F1 hybrid between New Zealand Black and New Zealand White strains (NZB/W). We found that infusion of female NZB/W mice with hBM-MSCs attenuated glomerulonephritis; it also decreased levels of autoantibodies and the incidence of proteinuria and improved survival. These effects coincided with a decrease in Tfh cells and downstream components. Infiltration of long-lived plasma cells into the inflamed kidney was also reduced in the hBM-MSC-treated mice. Importantly, hBM-MSCs directly suppressed the in vitro differentiation of naive CD4(+) T cells toward Tfh cells in a contact-dependent manner. These results suggest that MSCs attenuate lupus nephritis by suppressing the development of Tfh cells and the subsequent activation of humoral immune components. They thus reveal a novel mechanism by which MSCs regulate humoral autoimmune diseases such as SLE.
Collapse
Affiliation(s)
- Eunkyeong Jang
- Department of Anatomy and Cell Biology, Hanyang University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Feasibility of islet magnetic resonance imaging using ferumoxytol in intraportal islet transplantation. Biomaterials 2015; 52:272-80. [PMID: 25818433 DOI: 10.1016/j.biomaterials.2015.02.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 02/09/2015] [Accepted: 02/13/2015] [Indexed: 02/07/2023]
Abstract
There is a clinical need for an alternative labeling agent for magnetic resonance imaging (MRI) in islet transplantation. We aimed to evaluate the feasibility of islet MRI using ferumoxytol, which is the only clinically-available ultrasmall superparamagnetic iron oxide. We compared islet function and viability of control islets and islets labeled with ferumoxytol and/or a heparin-protamine complex (HPF). Efficacy of ferumoxytol labeling was assessed in both ex vivo and in vivo models. Labeling for 48 h with HPF, but not up to 800 μg/mL ferumoxytol, deranged ex vivo islet viability and function. The T2∗ relaxation time was optimal when islets were labeled with 800 μg/mL of ferumoxytol for 48 h. Prussian blue stain, iron content assay, transmission electron microscopy (TEM) supported internalization of ferumoxytol particles. However, the labeling intensity in the ex vivo MRI of islets labeled with ferumoxytol was much weaker than that of islets labeled with ferucarbotran. In syngeneic intraportal islet transplantation, there was a correlation between the total area of visualized islets and the transplanted islet mass. In conclusion, islet MRI using ferumoxytol was feasible in terms of in vitro and in vivo efficacy and safety. However, the weak labeling efficacy is still a hurdle for the clinical application.
Collapse
|
20
|
Jin R, Lin B, Li D, Ai H. Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: design considerations and clinical applications. Curr Opin Pharmacol 2014; 18:18-27. [DOI: 10.1016/j.coph.2014.08.002] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/30/2014] [Accepted: 08/08/2014] [Indexed: 11/25/2022]
|
21
|
Wang X, Wei F, Yan S, Zhang H, Tan X, Zhang L, Zhou G, Cui L, Li C, Wang L, Li Y. Innovative fluorescent magnetic albumin microbead-assisted cell labeling and intracellular imaging of glioblastoma cells. Biosens Bioelectron 2014; 54:55-63. [DOI: 10.1016/j.bios.2013.10.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/22/2013] [Accepted: 10/22/2013] [Indexed: 12/17/2022]
|
22
|
Javid A, Ahmadian S, Saboury AA, Kalantar SM, Rezaei-Zarchi S. Novel biodegradable heparin-coated nanocomposite system for targeted drug delivery. RSC Adv 2014. [DOI: 10.1039/c3ra43967d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
HP–SPIO NPs (42 nm) were formulated by co-precipitation. Doxorubicin and paclitaxel were loaded into the SPIO NP core. HP–SPIO NPs had sustained release of DOX (87%) and PTX (75%) at pH 6.0. Drug loaded HP–SPIO NPs caused 95 and 84%, and 85 and 77% apoptosis in A2780 and OVCAR-3 cells, respectively. DOX–HP–SPIO NPs and PTX–HP–SPIO NPs caused a sharp decrease in bcl-2 and survivin proteins.
Collapse
Affiliation(s)
- Amaneh Javid
- Institute of Biochemistry and Biophysics
- University of Tehran
- Tehran, Iran
| | - Shahin Ahmadian
- Institute of Biochemistry and Biophysics
- University of Tehran
- Tehran, Iran
- Center of Excellence of Nano-Biomedicine
- Nano-Science and Nano-Technology Research Center
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics
- University of Tehran
- Tehran, Iran
| | - Seyed Mehdi Kalantar
- Research and Clinical Center of Infertility
- Shahid Sadoughi University Medical Sciences
- Yazd, Iran
| | | |
Collapse
|
23
|
Jin SM, Oh SH, Oh BJ, Suh S, Bae JC, Lee JH, Lee MS, Lee MK, Kim KW, Kim JH. Benefits of PEGylation in the early post-transplant period of intraportal islet transplantation as assessed by magnetic resonance imaging of labeled islets. Islets 2014; 6:e27827. [PMID: 25483878 PMCID: PMC4593568 DOI: 10.4161/isl.27827] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
While a few studies have demonstrated the benefit of PEGylation in islet transplantation, most have employed renal subcapsular models and none have performed direct comparisons of islet mass in intraportal islet transplantation using islet magnetic resonance imaging (MRI). In this study, our aim was to demonstrate the benefit of PEGylation in the early post-transplant period of intraportal islet transplantation with a novel algorithm for islet MRI. Islets were PEGylated after ferucarbotran labeling in a rat syngeneic intraportal islet transplantation model followed by comparisons of post-transplant glycemic levels in recipient rats infused with PEGylated (n = 12) and non-PEGylated (n = 13) islets. The total area of hypointense spots and the number of hypointense spots larger than 1.758 mm(2) of PEGylated and non-PEGylated islets were quantitatively compared. The total area of hypointense spots (P < 0.05) and the number of hypointense spots larger than 1.758 mm(2) (P < 0.05) were higher in the PEGylated islet group 7 and 14 days post translation (DPT). These results translated into better post-transplant outcomes in the PEGylated islet group 28 DPT. In validation experiments, MRI parameters obtained 1, 7, and 14 DPT predicted normoglycemia 4 wk post-transplantation. We directly demonstrated the benefit of islet PEGylation in protection against nonspecific islet destruction in the early post-transplant period of intraportal islet transplantation using a novel algorithm for islet MRI. This novel algorithm could serve as a useful tool to demonstrate such benefit in future clinical trials of islet transplantation using PEGylated islets.
Collapse
Affiliation(s)
- Sang-Man Jin
- Division of Endocrinology and Metabolism; Department of Medicine; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul, Republic of Korea
| | - Seung-Hoon Oh
- Samsung Biomedical Research Institute; Samsung Medical Center; Seoul, Republic of Korea
| | - Bae Jun Oh
- Samsung Biomedical Research Institute; Samsung Medical Center; Seoul, Republic of Korea
| | - Sunghwan Suh
- Division of Endocrinology and Metabolism; Department of Medicine; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul, Republic of Korea
| | - Ji Cheol Bae
- Division of Endocrinology and Metabolism; Department of Medicine; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul, Republic of Korea
| | - Jung Hee Lee
- Department of Radiology and Center for Imaging Science; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul, Republic of Korea
| | - Myung-Shik Lee
- Division of Endocrinology and Metabolism; Department of Medicine; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul, Republic of Korea
| | - Moon-Kyu Lee
- Division of Endocrinology and Metabolism; Department of Medicine; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul, Republic of Korea
| | - Kwang-Won Kim
- Division of Endocrinology and Metabolism; Department of Medicine; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul, Republic of Korea
- Correspondence to: Kwang-Won Kim, and Jae Hyeon Kim,
| | - Jae Hyeon Kim
- Division of Endocrinology and Metabolism; Department of Medicine; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul, Republic of Korea
- Correspondence to: Kwang-Won Kim, and Jae Hyeon Kim,
| |
Collapse
|
24
|
Zhang HW, Wang LQ, Xiang QF, Zhong Q, Chen LM, Xu CX, Xiang XH, Xu B, Meng F, Wan YQ, Deng DYB. Specific lipase-responsive polymer-coated gadolinium nanoparticles for MR imaging of early acute pancreatitis. Biomaterials 2013; 35:356-67. [PMID: 24103651 DOI: 10.1016/j.biomaterials.2013.09.046] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 09/13/2013] [Indexed: 12/13/2022]
Abstract
Currently, available methods for diagnosis of acute pancreatitis (AP) are mainly dependent on serum enzyme analysis and imaging techniques that are too low in sensitivity and specificity to accurately and promptly diagnose AP. The lack of early diagnostic tools highlights the need to search for a highly effective and specific diagnostic method. In this study, we synthesized a conditionally activated, gadolinium-containing, nanoparticle-based MRI nanoprobe as a diagnostic tool for the early identification of AP. Gadolinium diethylenetriaminepentaacetic fatty acid (Gd-DTPA-FA) nanoparticles were synthesized by conjugation of DTPA-FA ligand and gadolinium acetate. Gd-DTPA-FA exhibited low cytotoxicity and excellent biocompatibility when characterized in vitro and in vivo studies. L-arginine induced a gradual increase in the intensity of the T1-weighted MRI signal from 1 h to 36 h in AP rat models. The increase in signal intensity was most significant at 1 h, 6 h and 12 h. These results suggest that the Gd-DTPA-FA as an MRI contrast agent is highly efficient and specific to detect early AP.
Collapse
Affiliation(s)
- Hong-Wu Zhang
- Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, 58# Zhongshan 2nd Road, Guangzhou 510080, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kitamura N, Nakai R, Kohda H, Furuta-Okamoto K, Iwata H. Labeling of islet cells with iron oxide nanoparticles through DNA hybridization for highly sensitive detection by MRI. Bioorg Med Chem 2013; 21:7175-81. [PMID: 24084295 DOI: 10.1016/j.bmc.2013.08.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 10/26/2022]
Abstract
A labeling method for islet cells with superparamagnetic iron oxide nanoparticles (SPIOs) based on DNA hybridization is proposed for monitoring of transplanted islets by magnetic resonance imaging (MRI). The surfaces of SPIOs were modified by via Michael reaction by reacting oligo-(deoxyadenylic acid)-bearing a terminal thiol group at the 5'-end ((dA)20-SH) with maleic acid functional groups on the SPIOs. The SPIOs were immobilized on islet cells which had been pretreated with oligo-(thymidylic acid)-poly(ethylene glycol)-phospholipid conjugates ((dT)20-PEG-DPPE) through DNA hybridization. Transmission electron microscopy observations revealed that SPIOs were initially anchored on the islet cell surfaces and subsequently transferred to endosomes or exfoliated with time. The SPIO-labeled islet cells could be clearly detected as dark spots by T2(*)-weighted MR image, whereas non-labeled islet cells could not be detected.
Collapse
Affiliation(s)
- Narufumi Kitamura
- Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | |
Collapse
|
26
|
Sakata N, Yoshimatsu G, Tsuchiya H, Aoki T, Mizuma M, Motoi F, Katayose Y, Kodama T, Egawa S, Unno M. Imaging of transplanted islets by positron emission tomography, magnetic resonance imaging, and ultrasonography. Islets 2013; 5:179-87. [PMID: 24231367 PMCID: PMC4010569 DOI: 10.4161/isl.26980] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
While islet transplantation is considered a useful therapeutic option for severe diabetes mellitus (DM), the outcome of this treatment remains unsatisfactory. This is largely due to the damage and loss of islets in the early transplant stage. Thus, it is important to monitor the condition of the transplanted islets, so that a treatment can be selected to rescue the islets from damage if needed. Recently, numerous trials have been performed to investigate the efficacy of different imaging modalities for visualizing transplanted islets. Positron emission tomography (PET) and magnetic resonance imaging (MRI) are the most commonly used imaging modalities for this purpose. Some groups, including ours, have also tried to visualize transplanted islets by ultrasonography (US). In this review article, we discuss the recent progress in islet imaging.
Collapse
Affiliation(s)
- Naoaki Sakata
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
- Correspondence to: Naoaki Sakata,
| | - Gumpei Yoshimatsu
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
| | - Haruyuki Tsuchiya
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
| | - Takeshi Aoki
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
| | - Masamichi Mizuma
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
| | - Fuyuhiko Motoi
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
| | - Yu Katayose
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
- Division of Integrated Surgery and Oncology; Tohoku University Graduate School of Medicine; Sendai, Japan
| | - Tetsuya Kodama
- Department of Biomedical Engineering; Graduate School of Biomedical Engineering; Tohoku University; Sendai, Japan
| | - Shinichi Egawa
- Division of International Cooperation for Disaster Medicine; International Research Institute of Disaster Science; Tohoku University; Sendai, Japan
| | - Michiaki Unno
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
| |
Collapse
|
27
|
Vismara E, Valerio A, Coletti A, Torri G, Bertini S, Eisele G, Gornati R, Bernardini G. Non-covalent synthesis of metal oxide nanoparticle-heparin hybrid systems: a new approach to bioactive nanoparticles. Int J Mol Sci 2013; 14:13463-81. [PMID: 23807505 PMCID: PMC3742197 DOI: 10.3390/ijms140713463] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/24/2013] [Accepted: 06/14/2013] [Indexed: 12/21/2022] Open
Abstract
Heparin has been conjugated to Fe3O4, Co3O4, and NiO nanoparticles (NPs) through electrostatic interactions, producing colloidal suspensions of hybrid metal oxide heparin NPs that are stable in water. Negative zeta potentials and retention of heparin's ability to capture toluidine blue indicate that heparin's negative charges are exposed on the surface of the coated NPs. IR results confirmed the formation of nanohybrids as did NMR experiments, which were also interpreted on the basis of toluidine blue tests. Transmission electron microscopy results revealed that the heparin coating does not modify the shape or dimension of the NPs. Dynamic light scattering and negative zeta potential measurements confirmed that heparin surface functionalisation is an effective strategy to prevent NP aggregation.
Collapse
Affiliation(s)
- Elena Vismara
- Department of Chemistry, Materials and Chemical Engineering “G. Natta” Polytechnic, 7 Mancinelli Street, 20131 Milan, Italy; E-Mails: (A.V.); (A.C.)
- Interuniversity Center “The Protein Factory,” Polytechnic of Milan, ICRM-CNR Milan and Insubria University, 21100 Varese, Italy
| | - Antonio Valerio
- Department of Chemistry, Materials and Chemical Engineering “G. Natta” Polytechnic, 7 Mancinelli Street, 20131 Milan, Italy; E-Mails: (A.V.); (A.C.)
| | - Alessia Coletti
- Department of Chemistry, Materials and Chemical Engineering “G. Natta” Polytechnic, 7 Mancinelli Street, 20131 Milan, Italy; E-Mails: (A.V.); (A.C.)
| | - Giangiacomo Torri
- Ronzoni Institute for Chemical and Biochemical Research, 81 G. Colombo Street, 20133 Milan, Italy; E-Mails: (G.T.); (S.B.); (G.E.)
| | - Sabrina Bertini
- Ronzoni Institute for Chemical and Biochemical Research, 81 G. Colombo Street, 20133 Milan, Italy; E-Mails: (G.T.); (S.B.); (G.E.)
| | - Giorgio Eisele
- Ronzoni Institute for Chemical and Biochemical Research, 81 G. Colombo Street, 20133 Milan, Italy; E-Mails: (G.T.); (S.B.); (G.E.)
| | - Rosalba Gornati
- Interuniversity Center “The Protein Factory,” Polytechnic of Milan, ICRM-CNR Milan and Insubria University, 21100 Varese, Italy
- Department of Biotechnology and Molecular Sciences, University of Insubria, 3 Dunant Street, 21100 Varese, Italy; E-Mails: (R.G.); (G.B.)
| | - Giovanni Bernardini
- Interuniversity Center “The Protein Factory,” Polytechnic of Milan, ICRM-CNR Milan and Insubria University, 21100 Varese, Italy
- Department of Biotechnology and Molecular Sciences, University of Insubria, 3 Dunant Street, 21100 Varese, Italy; E-Mails: (R.G.); (G.B.)
| |
Collapse
|
28
|
Mettler E, Trenkler A, Feilen PJ, Wiegand F, Fottner C, Ehrhart F, Zimmermann H, Hwang YH, Lee DY, Fischer S, Schreiber LM, Weber MM. Magnetic separation of encapsulated islet cells labeled with superparamagnetic iron oxide nano particles. Xenotransplantation 2013; 20:219-26. [PMID: 23789985 DOI: 10.1111/xen.12042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 05/18/2013] [Indexed: 11/28/2022]
Abstract
Islet cell transplantation is a promising option for the restoration of normal glucose homeostasis in patients with type 1 diabetes. Because graft volume is a crucial issue in islet transplantations for patients with diabetes, we evaluated a new method for increasing functional tissue yield in xenogeneic grafts of encapsulated islets. Islets were labeled with three different superparamagnetic iron oxide nano particles (SPIONs; dextran-coated SPION, siloxane-coated SPION, and heparin-coated SPION). Magnetic separation was performed to separate encapsulated islets from the empty capsules, and cell viability and function were tested. Islets labeled with 1000 μg Fe/ml dextran-coated SPIONs experienced a 69.9% reduction in graft volume, with a 33.2% loss of islet-containing capsules. Islets labeled with 100 μg Fe/ml heparin-coated SPIONs showed a 46.4% reduction in graft volume, with a 4.5% loss of capsules containing islets. No purification could be achieved using siloxane-coated SPIONs due to its toxicity to the primary islets. SPION labeling of islets is useful for transplant purification during islet separation as well as in vivo imaging after transplantation. Furthermore, purification of encapsulated islets can also reduce the volume of the encapsulated islets without impairing their function by removing empty capsules.
Collapse
Affiliation(s)
- Esther Mettler
- Endocrinology and Metabolic Diseases, University Medical Center, Johannes Gutenberg University Mainz, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wang Y, Blanco-Andujar C, Zhi ZL, So PW, Thanh NTK, Pickup JC. Multilayered nanocoatings incorporating superparamagnetic nanoparticles for tracking of pancreatic islet transplants with magnetic resonance imaging. Chem Commun (Camb) 2013; 49:7255-7. [DOI: 10.1039/c3cc43512a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
30
|
Zeng L, Xiang L, Ren W, Zheng J, Li T, Chen B, Zhang J, Mao C, Li A, Wu A. Multifunctional photosensitizer-conjugated core–shell Fe3O4@NaYF4:Yb/Er nanocomplexes and their applications in T2-weighted magnetic resonance/upconversion luminescence imaging and photodynamic therapy of cancer cells. RSC Adv 2013. [DOI: 10.1039/c3ra41916a] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
31
|
Wang YXJ, Xuan S, Port M, Idee JM. Recent advances in superparamagnetic iron oxide nanoparticles for cellular imaging and targeted therapy research. Curr Pharm Des 2013; 19:6575-93. [PMID: 23621536 PMCID: PMC4082310 DOI: 10.2174/1381612811319370003] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/22/2013] [Indexed: 12/15/2022]
Abstract
Advances of nanotechnology have led to the development of nanomaterials with both potential diagnostic and therapeutic applications. Among them, superparamagnetic iron oxide (SPIO) nanoparticles have received particular attention. Over the past decade, various SPIOs with unique physicochemical and biological properties have been designed by modifying the particle structure, size and coating. This article reviews the recent advances in preparing SPIOs with novel properties, the way these physicochemical properties of SPIOs influence their interaction with cells, and the development of SPIOs in liver and lymph nodes magnetic resonance imaging (MRI) contrast. Cellular uptake of SPIO can be exploited in a variety of potential clinical applications, including stem cell and inflammation cell tracking and intra-cellular drug delivery to cancerous cells which offers higher intra-cellular concentration. When SPIOs are used as carrier vehicle, additional advantages can be achieved including magnetic targeting and hyperthermia options, as well as monitoring with MRI. Other potential applications of SPIO include magnetofection and gene delivery, targeted retention of labeled stem cells, sentinel lymph nodes mapping, and magnetic force targeting and cell orientation for tissue engineering.
Collapse
Affiliation(s)
- Yi-Xiang J Wang
- Department of Imaging and Interventional Radiology, The Chinese university of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China.
| | | | | | | |
Collapse
|
32
|
Hwang YH, Lee DY. Magnetic resonance imaging using heparin-coated superparamagnetic iron oxide nanoparticles for cell tracking in vivo. Quant Imaging Med Surg 2012; 2:118-23. [PMID: 23256069 DOI: 10.3978/j.issn.2223-4292.2012.06.03] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 06/11/2012] [Indexed: 12/13/2022]
Abstract
Magnetic resonance imaging (MRI) is a tremendous modality for noninvasive cell tracking. To this end, superparamagnetic iron oxide (SPIO), one of the MRI contrast agents, should be labeled to the cells before transplantation. Currently, cellular labelling with SPIOs such as Feridex and Resovist is generally carried out through their engulfment into cytosol via endocytosis. However, the labelling efficacy via endocytosis is relatively low due to their non-specific random engulfment and degradation in the cytosol. To overcome these limitations, transfection agents such as poly-L-lysine and lipofectamine are complexed with SPIOs and treated to the cells. However, these strategies should be optimized due to the cytotoxicity of transfection agents themselves. Recently, there were developments of chemical conjugation of SPIOs onto cellular membrane. To this end, the surface of SPIOs was coated with heparin polysaccharide and chemically conjugated with collagen matrix layer of cell surface by using linker polymer, which was stably maintained in vivo. This new remedy can overcome the limitations of cell labelling via endocytosis. Collectively, these strategies could be applied for noninvasive imaging of MRI after cell transplantation in vivo.
Collapse
Affiliation(s)
- Yong Hwa Hwang
- Department of Bioengineering, College of Engineering, and Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul 133-791, Republic of Korea
| | | |
Collapse
|
33
|
Di Gialleonardo V, de Vries EFJ, Di Girolamo M, Quintero AM, Dierckx RAJO, Signore A. Imaging of β-cell mass and insulitis in insulin-dependent (Type 1) diabetes mellitus. Endocr Rev 2012; 33:892-919. [PMID: 22889646 DOI: 10.1210/er.2011-1041] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Insulin-dependent (type 1) diabetes mellitus is a metabolic disease with a complex multifactorial etiology and a poorly understood pathogenesis. Genetic and environmental factors cause an autoimmune reaction against pancreatic β-cells, called insulitis, confirmed in pancreatic samples obtained at autopsy. The possibility to noninvasively quantify β-cell mass in vivo would provide important biological insights and facilitate aspects of diagnosis and therapy, including follow-up of islet cell transplantation. Moreover, the availability of a noninvasive tool to quantify the extent and severity of pancreatic insulitis could be useful for understanding the natural history of human insulin-dependent (type 1) diabetes mellitus, to early diagnose children at risk to develop overt diabetes, and to select patients to be treated with immunotherapies aimed at blocking the insulitis and monitoring the efficacy of these therapies. In this review, we outline the imaging techniques currently available for in vivo, noninvasive detection of β-cell mass and insulitis. These imaging techniques include magnetic resonance imaging, ultrasound, computed tomography, bioluminescence and fluorescence imaging, and the nuclear medicine techniques positron emission tomography and single-photon emission computed tomography. Several approaches and radiopharmaceuticals for imaging β-cells and lymphocytic insulitis are reviewed in detail.
Collapse
Affiliation(s)
- Valentina Di Gialleonardo
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9700 AB, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
34
|
Ha YE, Shin JS, Lee DY, Rhim TY. Fluorescently Labeled Nanoparticles Enable the Detection of Stem Cell-Derived Hepatocytes. B KOREAN CHEM SOC 2012. [DOI: 10.5012/bkcs.2012.33.6.1983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|