1
|
Choi DH, Kang SK, Lee KE, Jung J, Kim EJ, Kim WH, Kwon YG, Kim KP, Jo I, Park YS, Park SI. Nitrosylation of β2-Tubulin Promotes Microtubule Disassembly and Differentiated Cardiomyocyte Beating in Ischemic Mice. Tissue Eng Regen Med 2023; 20:921-937. [PMID: 37679590 PMCID: PMC10519925 DOI: 10.1007/s13770-023-00582-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Beating cardiomyocyte regeneration therapies have revealed as alternative therapeutics for heart transplantation. Nonetheless, the importance of nitric oxide (NO) in cardiomyocyte regeneration has been widely suggested, little has been reported concerning endogenous NO during cardiomyocyte differentiation. METHODS Here, we used P19CL6 cells and a Myocardiac infarction (MI) model to confirm NO-induced protein modification and its role in cardiac beating. Two tyrosine (Tyr) residues of β2-tubulin (Y106 and Y340) underwent nitrosylation (Tyr-NO) by endogenously generated NO during cardiomyocyte differentiation from pre-cardiomyocyte-like P19CL6 cells. RESULTS Tyr-NO-β2-tubulin mediated the interaction with Stathmin, which promotes microtubule disassembly, and was prominently observed in spontaneously beating cell clusters and mouse embryonic heart (E11.5d). In myocardial infarction mice, Tyr-NO-β2-tubulin in transplanted cells was closely related with cardiac troponin-T expression with their functional recovery, reduced infarct size and thickened left ventricular wall. CONCLUSION This is the first discovery of a new target molecule of NO, β2-tubulin, that can promote normal cardiac beating and cardiomyocyte regeneration. Taken together, we suggest therapeutic potential of Tyr-NO-β2-tubulin, for ischemic cardiomyocyte, which can reduce unexpected side effect of stem cell transplantation, arrhythmogenesis.
Collapse
Affiliation(s)
- Da Hyeon Choi
- Department of Biological Sciences and Biotechnology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Seong Ki Kang
- Division of Intractable Diseases, Center for Biomedical Sciences, Korea National Institute of Health (KNIH), Cheongju, Republic of Korea
- Department of Laboratory Medicine, Green Cross Laboratories, Yongin, Republic of Korea
| | - Kyeong Eun Lee
- Department of Biological Sciences and Biotechnology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Jongsun Jung
- AI Drug Platform Center, Syntekabio, Daejeon, Republic of Korea
| | - Eun Ju Kim
- Department of Applied Chemistry, Kyung Hee University, Yongin, Republic of Korea
| | - Won-Ho Kim
- Division of Cardiovascular and Rare Diseases, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Kyung Hee University, Yongin, Republic of Korea
| | - Inho Jo
- Department of Molecular Medicine, College of Ewha Womans University, Seoul, Republic of Korea
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Yoon Shin Park
- Department of Biological Sciences and Biotechnology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea.
| | - Sang Ick Park
- Division of Intractable Diseases, Center for Biomedical Sciences, Korea National Institute of Health (KNIH), Cheongju, Republic of Korea.
| |
Collapse
|
2
|
Che Z, Ye Z, Zhang X, Lin B, Yang W, Liang Y, Zeng J. Mesenchymal stem/stromal cells in the pathogenesis and regenerative therapy of inflammatory bowel diseases. Front Immunol 2022; 13:952071. [PMID: 35990688 PMCID: PMC9386516 DOI: 10.3389/fimmu.2022.952071] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/12/2022] [Indexed: 12/02/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) represent a group of chronic inflammatory disorders of the gastrointestinal (GI) tract including ulcerative colitis (UC), Crohn’s disease (CD), and unclassified IBDs. The pathogenesis of IBDs is related to genetic susceptibility, environmental factors, and dysbiosis that can lead to the dysfunction of immune responses and dysregulated homeostasis of local mucosal tissues characterized by severe inflammatory responses and tissue damage in GI tract. To date, extensive studies have indicated that IBDs cannot be completely cured and easy to relapse, thus prompting researchers to find novel and more effective therapeutics for this disease. Due to their potent multipotent differentiation and immunomodulatory capabilities, mesenchymal stem/stromal cells (MSCs) not only play an important role in regulating immune and tissue homeostasis but also display potent therapeutic effects on various inflammatory diseases, including IBDs, in both preclinical and clinical studies. In this review, we present a comprehensive overview on the pathological mechanisms, the currently available therapeutics, particularly, the potential application of MSCs-based regenerative therapy for IBDs.
Collapse
Affiliation(s)
- Zhengping Che
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Department of Pathology, Dongguan Hospital Affiliated to Jinan University, Binhaiwan Central Hospital of Dongguan, Dongguan, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Ziyu Ye
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Xueying Zhang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Bihua Lin
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Key Laboratory of Medical Bioactive Molecular Research for Department of Education of Guangdong Province, School of Basic Medicine, Guangdong Medical University, Dongguan, China
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangdong Medical University, Zhanjiang, China
| | - Weiqing Yang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yanfang Liang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Department of Pathology, Dongguan Hospital Affiliated to Jinan University, Binhaiwan Central Hospital of Dongguan, Dongguan, China
- *Correspondence: Jincheng Zeng, ; Yanfang Liang,
| | - Jincheng Zeng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Key Laboratory of Medical Bioactive Molecular Research for Department of Education of Guangdong Province, School of Basic Medicine, Guangdong Medical University, Dongguan, China
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangdong Medical University, Zhanjiang, China
- Dongguan Metabolite Analysis Engineering Technology Center of Cells for Medical Use, Guangdong Xinghai Institute of Cell, Dongguan, China
- *Correspondence: Jincheng Zeng, ; Yanfang Liang,
| |
Collapse
|
3
|
Ye D, Chen C, Wang Q, Zhang Q, Li S, Liu H. Short-wave enhances mesenchymal stem cell recruitment in fracture healing by increasing HIF-1 in callus. Stem Cell Res Ther 2020; 11:382. [PMID: 32894200 PMCID: PMC7487968 DOI: 10.1186/s13287-020-01888-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 01/14/2023] Open
Abstract
Background As a type of high-frequency electrotherapy, a short-wave can promote the fracture healing process; yet, its underlying therapeutic mechanisms remain unclear. Purpose To observe the effect of Short-Wave therapy on mesenchymal stem cell (MSC) homing and relative mechanisms associated with fracture healing. Materials and methods For in vivo study, the effect of Short-Wave therapy to fracture healing was examined in a stabilized femur fracture model of 40 SD rats. Radiography was used to analyze the morphology and microarchitecture of the callus. Additionally, fluorescence assays were used to analyze the GFP-labeled MSC homing after treatment in 20 nude mice with a femoral fracture. For in vitro study, osteoblast from newborn rats simulated fracture site was first irradiated by the Short-Wave; siRNA targeting HIF-1 was used to investigate the role of HIF-1. Osteoblast culture medium was then collected as chemotaxis content of MSC, and the migration of MSC from rats was evaluated using wound healing assay and trans-well chamber test. The expression of HIF-1 and its related factors were quantified by q RT-PCR, ELISA, and Western blot. Results Our in vivo experiment indicated that Short-Wave therapy could promote MSC migration, increase local and serum HIF-1 and SDF-1 levels, induce changes in callus formation, and improve callus microarchitecture and mechanical properties, thus speeding up the healing process of the fracture site. Moreover, the in vitro results further indicated that Short-Wave therapy upregulated HIF-1 and SDF-1 expression in osteoblast and its cultured medium, as well as the expression of CXCR-4, β-catenin, F-actin, and phosphorylation levels of FAK in MSC. On the other hand, the inhibition of HIF-1α was significantly restrained by the inhibition of HIF-1α in osteoblast, and it partially inhibited the migration of MSC. Conclusions These results suggested that Short-Wave therapy could increase HIF-1 in callus, which is one of the crucial mechanisms of chemotaxis MSC homing in fracture healing.
Collapse
Affiliation(s)
- Dongmei Ye
- Department of Rehabilitation, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China.
| | - Chen Chen
- Department of Anatomy, Medical College of Dalian University, Dalian, China
| | - Qiwen Wang
- Department of Rehabilitation, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China.,Department of Rehabilitation, The people's Hospital of Longhua District, Shenzhen, China
| | - Qi Zhang
- Department of Rehabilitation, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Sha Li
- Department of Rehabilitation, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Hongwei Liu
- Department of Rehabilitation, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| |
Collapse
|
4
|
Mao F, Tu Q, Wang L, Chu F, Li X, Li HS, Xu W. Mesenchymal stem cells and their therapeutic applications in inflammatory bowel disease. Oncotarget 2017; 8:38008-38021. [PMID: 28402942 PMCID: PMC5514968 DOI: 10.18632/oncotarget.16682] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/06/2017] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem or stromal cells (MSCs) are non-hematopoietic stem cells that facilitate tissue regeneration through mechanisms involving self-renewal and differentiation, supporting angiogenesis and tissue cell survival, and limiting inflammation. MSCs were originally identified and expanded in long-term cultures of cells from bone marrow and other organs; and their native identity was recently confined into pericytes and adventitial cells in vascularized tissue. The multipotency, as well as the trophic and immunosuppressive effects, of MSCs have prompted the rapid development of clinical applications for many diseases involving tissue inflammation and immune disorders, including inflammatory bowel disease. Although standard criteria have been established to define MSCs, their therapeutic efficacy has varied significantly among studies due to their natural heterogenicity. Thus, understanding the biological and immunological features of MSCs is critical to standardize and optimize MSCs-based therapy. In this review, we highlight the cellular and molecular mechanisms involved in MSCs-mediated tissue repair and immunosuppression. We also provide an update on the current development of MSCs-based clinical trials, with a detailed discussion of MSC-based cell therapy in inflammatory bowel disease.
Collapse
Affiliation(s)
- Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Qiang Tu
- Jiangning Hospital of Nanjing, Nanjing, Jiangsu, P.R. China
| | - Li Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Fuliang Chu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xia Li
- Department of Gastroenterology, Binzhou Medical University Yantai Affiliated Hospital, Yantai, Shandong, P.R. China
| | - Haiyan S. Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wenrong Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| |
Collapse
|
5
|
Valarmathi MT, Fuseler JW, Potts JD, Davis JM, Price RL. Functional Tissue Engineering: A Prevascularized Cardiac Muscle Construct for Validating Human Mesenchymal Stem Cells Engraftment Potential In Vitro. Tissue Eng Part A 2017; 24:157-185. [PMID: 28457188 PMCID: PMC5770135 DOI: 10.1089/ten.tea.2016.0539] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The influence of somatic stem cells in the stimulation of mammalian cardiac muscle regeneration is still in its early stages, and so far, it has been difficult to determine the efficacy of the procedures that have been employed. The outstanding question remains whether stem cells derived from the bone marrow or some other location within or outside of the heart can populate a region of myocardial damage and transform into tissue-specific differentiated progenies, and also exhibit functional synchronization. Consequently, this necessitates the development of an appropriate in vitro three-dimensional (3D) model of cardiomyogenesis and prompts the development of a 3D cardiac muscle construct for tissue engineering purposes, especially using the somatic stem cell, human mesenchymal stem cells (hMSCs). To this end, we have created an in vitro 3D functional prevascularized cardiac muscle construct using embryonic cardiac myocytes (eCMs) and hMSCs. First, to generate the prevascularized scaffold, human cardiac microvascular endothelial cells (hCMVECs) and hMSCs were cocultured onto a 3D collagen cell carrier (CCC) for 7 days under vasculogenic culture conditions; hCMVECs/hMSCs underwent maturation, differentiation, and morphogenesis characteristic of microvessels, and formed dense vascular networks. Next, the eCMs and hMSCs were cocultured onto this generated prevascularized CCCs for further 7 or 14 days in myogenic culture conditions. Finally, the vascular and cardiac phenotypic inductions were characterized at the morphological, immunological, biochemical, molecular, and functional levels. Expression and functional analyses of the differentiated progenies revealed neo-cardiomyogenesis and neo-vasculogenesis. In this milieu, for instance, not only were hMSCs able to couple electromechanically with developing eCMs but were also able to contribute to the developing vasculature as mural cells, respectively. Hence, our unique 3D coculture system provides us a reproducible and quintessential in vitro 3D model of cardiomyogenesis and a functioning prevascularized 3D cardiac graft that can be utilized for personalized medicine.
Collapse
Affiliation(s)
- Mani T Valarmathi
- 1 Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign , Urbana, Illinois
| | - John W Fuseler
- 2 Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina , Columbia, South Carolina
| | - Jay D Potts
- 3 Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina , Columbia, South Carolina
| | - Jeffrey M Davis
- 3 Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina , Columbia, South Carolina
| | - Robert L Price
- 3 Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina , Columbia, South Carolina
| |
Collapse
|
6
|
Fuseler JW, Valarmathi MT. Nitric Oxide Modulates Postnatal Bone Marrow-Derived Mesenchymal Stem Cell Migration. Front Cell Dev Biol 2016; 4:133. [PMID: 27933292 PMCID: PMC5122209 DOI: 10.3389/fcell.2016.00133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/01/2016] [Indexed: 01/06/2023] Open
Abstract
Nitric oxide (NO) is a small free-radical gas molecule, which is highly diffusible and can activate a wide range of downstream effectors, with rapid and widespread cellular effects. NO is a versatile signaling mediator with a plethora of cellular functions. For example, NO has been shown to regulate actin, the microfilament, dependent cellular functions, and also acts as a putative stem cell differentiation-inducing agent. In this study, using a wound-healing model of cellular migration, we have explored the effect of exogenous NO on the kinetics of movement and morphological changes in postnatal bone marrow-derived mesenchymal stem cells (MSCs). Cellular migration kinetics and morphological changes of the migrating MSCs were measured in the presence of an NO donor (S-Nitroso-N-Acetyl-D,L-Penicillamine, SNAP), especially, to track the dynamics of single-cell responses. Two experimental conditions were assessed, in which SNAP (200 μM) was applied to the MSCs. In the first experimental group (SN-1), SNAP was applied immediately following wound formation, and migration kinetics were determined for 24 h. In the second experimental group (SN-2), MSCs were pretreated for 7 days with SNAP prior to wound formation and the determination of migration kinetics. The generated displacement curves were further analyzed by non-linear regression analysis. The migration displacement of the controls and NO treated MSCs (SN-1 and SN-2) was best described by a two parameter exponential functions expressing difference constant coefficients. Additionally, changes in the fractal dimension (D) of migrating MSCs were correlated with their displacement kinetics for all the three groups. Overall, these data suggest that NO may evidently function as a stop migration signal by disordering the cytoskeletal elements required for cell movement and proliferation of MSCs.
Collapse
Affiliation(s)
- John W Fuseler
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina Columbia, SC, USA
| | - Mani T Valarmathi
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign Urbana, IL, USA
| |
Collapse
|
7
|
Zhang W, Liu J, Shi H, Yang K, Wang P, Wang G, Liu N, Wang H, Ji J, Chu PK. Communication between nitric oxide synthase and positively-charged surface and bone formation promotion. Colloids Surf B Biointerfaces 2016; 148:354-362. [PMID: 27619187 DOI: 10.1016/j.colsurfb.2016.08.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/30/2016] [Accepted: 08/27/2016] [Indexed: 12/11/2022]
Abstract
Despite the effects on physiology of bone marrow mesenchymal stem cells (BMSCs) and bone tissue, biological signal communication between bone implants and them is seldom employed as a guidance to create an osteo-inductive interface. Herein, the positively-charged surface is constructed on bone implant from the perspective of mediation of nitric oxide synthase (NOS) expression to signal BMSCs osteo-differentiation. In vitro and in vivo results indicate that the proper surface potential on the positively-charged surface affects NOS to express a high level of inducible nitric oxide synthase (iNOS) in three NOS isoforms of the contacted BMSCs, upregulates their osteogenetic expression, and ultimately foster new bone growth. However, an excessively high surface potential produces substantial immunomodulatory effects thereby offsetting the aforementioned advantages. This study demonstrates that fine-tuning of the positively-charged surface and proper utilization of the communication between NOS and bone implants promote bone formation.
Collapse
Affiliation(s)
- Wei Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jun Liu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Haigang Shi
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Kun Yang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Pingli Wang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Gexia Wang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Na Liu
- Stomatology Department of the General Hospital of Chinese PLA, 28 FuXing Road, Beijing 100853, China
| | - Huaiyu Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Junhui Ji
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Paul K Chu
- Department of Physics & Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
8
|
Alhussein G, Shanti A, Farhat IAH, Timraz SBH, Alwahab NSA, Pearson YE, Martin MN, Christoforou N, Teo JCM. A spatiotemporal characterization method for the dynamic cytoskeleton. Cytoskeleton (Hoboken) 2016; 73:221-32. [PMID: 27015595 PMCID: PMC5132051 DOI: 10.1002/cm.21297] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/17/2016] [Accepted: 03/22/2016] [Indexed: 12/16/2022]
Abstract
The significant gap between quantitative and qualitative understanding of cytoskeletal function is a pressing problem; microscopy and labeling techniques have improved qualitative investigations of localized cytoskeleton behavior, whereas quantitative analyses of whole cell cytoskeleton networks remain challenging. Here we present a method that accurately quantifies cytoskeleton dynamics. Our approach digitally subdivides cytoskeleton images using interrogation windows, within which box-counting is used to infer a fractal dimension (Df ) to characterize spatial arrangement, and gray value intensity (GVI) to determine actin density. A partitioning algorithm further obtains cytoskeleton characteristics from the perinuclear, cytosolic, and periphery cellular regions. We validated our measurement approach on Cytochalasin-treated cells using transgenically modified dermal fibroblast cells expressing fluorescent actin cytoskeletons. This method differentiates between normal and chemically disrupted actin networks, and quantifies rates of cytoskeletal degradation. Furthermore, GVI distributions were found to be inversely proportional to Df , having several biophysical implications for cytoskeleton formation/degradation. We additionally demonstrated detection sensitivity of differences in Df and GVI for cells seeded on substrates with varying degrees of stiffness, and coated with different attachment proteins. This general approach can be further implemented to gain insights on dynamic growth, disruption, and structure of the cytoskeleton (and other complex biological morphology) due to biological, chemical, or physical stimuli. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ghada Alhussein
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Aya Shanti
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Ilyas A H Farhat
- Department of Applied Mathematics and Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Sara B H Timraz
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Noaf S A Alwahab
- School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Yanthe E Pearson
- Department of Applied Mathematics and Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Matthew N Martin
- Department of Applied Mathematics and Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Nicolas Christoforou
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Jeremy C M Teo
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
9
|
Bhatta A, Sangani R, Kolhe R, Toque HA, Cain M, Wong A, Howie N, Shinde R, Elsalanty M, Yao L, Chutkan N, Hunter M, Caldwell RB, Isales C, Caldwell RW, Fulzele S. Deregulation of arginase induces bone complications in high-fat/high-sucrose diet diabetic mouse model. Mol Cell Endocrinol 2016; 422:211-220. [PMID: 26704078 PMCID: PMC4824063 DOI: 10.1016/j.mce.2015.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/03/2015] [Accepted: 12/04/2015] [Indexed: 01/21/2023]
Abstract
A balanced diet is crucial for healthy development and prevention of musculoskeletal related diseases. Diets high in fat content are known to cause obesity, diabetes and a number of other disease states. Our group and others have previously reported that activity of the urea cycle enzyme arginase is involved in diabetes-induced dysregulation of vascular function due to decreases in nitric oxide formation. We hypothesized that diabetes may also elevate arginase activity in bone and bone marrow, which could lead to bone-related complications. To test this we determined the effects of diabetes on expression and activity of arginase, in bone and bone marrow stromal cells (BMSCs). We demonstrated that arginase 1 is abundantly present in the bone and BMSCs. We also demonstrated that arginase activity and expression in bone and bone marrow is up-regulated in models of diabetes induced by HFHS diet and streptozotocin (STZ). HFHS diet down-regulated expression of healthy bone metabolism markers (BMP2, COL-1, ALP, and RUNX2) and reduced bone mineral density, bone volume and trabecular thickness. However, treatment with an arginase inhibitor (ABH) prevented these bone-related complications of diabetes. In-vitro study of BMSCs showed that high glucose treatment increased arginase activity and decreased nitric oxide production. These effects were reversed by treatment with an arginase inhibitor (ABH). Our study provides evidence that deregulation of l-arginine metabolism plays a vital role in HFHS diet-induced diabetic complications and that these complications can be prevented by treatment with arginase inhibitors. The modulation of l-arginine metabolism in disease could offer a novel therapeutic approach for osteoporosis and other musculoskeletal related diseases.
Collapse
Affiliation(s)
- Anil Bhatta
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, USA
| | - Rajnikumar Sangani
- Departments of Orthopaedic Surgery, Georgia Regents University, Augusta, GA 30912, USA
| | - Ravindra Kolhe
- Departments of Pathology, Georgia Regents University, Augusta, GA 30912, USA
| | - Haroldo A Toque
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, USA
| | - Michael Cain
- Departments of Orthopaedic Surgery, Georgia Regents University, Augusta, GA 30912, USA
| | - Abby Wong
- Departments of Orthopaedic Surgery, Georgia Regents University, Augusta, GA 30912, USA
| | - Nicole Howie
- School of Dentistry, Georgia Regents University, Augusta, GA 30912, Augusta, GA 30912, USA
| | - Rahul Shinde
- Departments of Pathology, Georgia Regents University, Augusta, GA 30912, USA
| | - Mohammed Elsalanty
- School of Dentistry, Georgia Regents University, Augusta, GA 30912, Augusta, GA 30912, USA
| | - Lin Yao
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, USA
| | | | - Monty Hunter
- Departments of Orthopaedic Surgery, Georgia Regents University, Augusta, GA 30912, USA
| | - Ruth B Caldwell
- Cell Biology and Anatomy and Vascular Biology Center, Georgia Regents University; Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Carlos Isales
- Departments of Orthopaedic Surgery, Georgia Regents University, Augusta, GA 30912, USA; Institute of Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA 30912, USA
| | - R William Caldwell
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, USA.
| | - Sadanand Fulzele
- Departments of Orthopaedic Surgery, Georgia Regents University, Augusta, GA 30912, USA; Institute of Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA 30912, USA.
| |
Collapse
|
10
|
|
11
|
Wedman P, Aladhami A, Beste M, Edwards MK, Chumanevich A, Fuseler JW, Oskeritzian CA. A New Image Analysis Method Based on Morphometric and Fractal Parameters for Rapid Evaluation of In Situ Mammalian Mast Cell Status. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2015; 21:1573-1581. [PMID: 26492872 PMCID: PMC10127439 DOI: 10.1017/s1431927615015342] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Apart from their effector functions in allergic disorders, tissue-resident mast cells (MC) are gaining recognition as initiators of inflammatory events through their distinctive ability to secrete many bioactive molecules harbored in cytoplasmic granules. Activation triggers mediator release through a regulated exocytosis named degranulation. MC activation is still substantiated by measuring systemic levels of MC-restricted mediators. However, identifying the anatomical location of MC activation is valuable for disease diagnosis. We designed a computer-assisted morphometric method based on image analysis of methylene blue (MB)-stained normal mouse skin tissue sections that quantitates actual in situ MC activation status. We reasoned MC cytoplasm could be viewed as an object featuring unique relative mass values based on activation status. Integrated optical density and area (A) ratios were significantly different between intact and degranulated MC (p<0.001). The examination of fractal characteristics is of translational diagnostic/prognostic value in cancer and readily applied to quantify cytoskeleton morphology and vasculature. Fractal dimension (D), a measure of their comparative space filling capacity and structural density, also differed significantly between intact and degranulated MC (p<0.001). Morphometric analysis provides a reliable and reproducible method for in situ quantification of MC activation status.
Collapse
|
12
|
Wang W, Lee Y, Lee CH. Effects of nitric oxide on stem cell therapy. Biotechnol Adv 2015; 33:1685-96. [PMID: 26394194 DOI: 10.1016/j.biotechadv.2015.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 09/14/2015] [Accepted: 09/18/2015] [Indexed: 12/27/2022]
Abstract
The use of stem cells as a research tool and a therapeutic vehicle has demonstrated their great potential in the treatment of various diseases. With unveiling of nitric oxide synthase (NOS) universally present at various levels in nearly all types of body tissues, the potential therapeutic implication of nitric oxide (NO) has been magnified, and thus scientists have explored new treatment strategies involved with stem cells and NO against various diseases. As the functionality of NO encompasses cardiovascular, neuronal and immune systems, NO is involved in stem cell differentiation, epigenetic regulation and immune suppression. Stem cells trigger cellular responses to external signals on the basis of both NO specific pathways and concerted action with endogenous compounds including stem cell regulators. As potency and interaction of NO with stem cells generally depend on the concentrations of NO and the presence of the cofactors at the active site, the suitable carriers for NO delivery is integral for exerting maximal efficacy of stem cells. The innovative utilization of NO functionality and involved mechanisms would invariably alter the paradigm of therapeutic application of stem cells. Future prospects in NO-involved stem cell research which promises to enhance drug discovery efforts by opening new era to improve drug efficacy, reduce drug toxicity and understand disease mechanisms and pathways, were also addressed.
Collapse
Affiliation(s)
- Wuchen Wang
- School of Pharmacy University of Missouri, Kansas City, USA
| | - Yugyung Lee
- School of Computing and Engineering, University of Missouri, Kansas City, USA
| | - Chi H Lee
- School of Pharmacy University of Missouri, Kansas City, USA.
| |
Collapse
|
13
|
15-Deoxy-Δ(12,14)-Prostaglandin J2 Inhibits Homing of Bone Marrow-Derived Mesenchymal Stem Cells Triggered by Chronic Liver Injury via Redox Pathway. PPAR Res 2015; 2015:876160. [PMID: 26457076 PMCID: PMC4592740 DOI: 10.1155/2015/876160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/27/2015] [Indexed: 12/24/2022] Open
Abstract
It has been reported that bone marrow-derived mesenchymal stem cells (BMSCs) have capacity to migrate to the damaged liver and contribute to fibrogenesis in chronic liver diseases. 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), an endogenous ligand for peroxisome proliferator-activated receptor gamma (PPARγ), is considered a new inhibitor of cell migration. However, the actions of 15d-PGJ2 on BMSC migration remain unknown. In this study, we investigated the effects of 15d-PGJ2 on the migration of BMSCs using a mouse model of chronic liver fibrosis and primary mouse BMSCs. Our results demonstrated that in vivo, 15d-PGJ2 administration inhibited the homing of BMSCs to injured liver by flow cytometric analysis and, in vitro, 15d-PGJ2 suppressed primary BMSC migration in a dose-dependent manner determined by Boyden chamber assay. Furthermore, the repressive effect of 15d-PGJ2 was blocked by reactive oxygen species (ROS) inhibitor, but not PPARγ antagonist, and action of 15d-PGJ2 was not reproduced by PPARγ synthetic ligands. In addition, 15d-PGJ2 triggered a significant ROS production and cytoskeletal remodeling in BMSCs. In conclusion, our results suggest that 15d-PGJ2 plays a crucial role in homing of BMSCs to the injured liver dependent on ROS production, independently of PPARγ, which may represent a new strategy in the treatment of liver fibrosis.
Collapse
|
14
|
Xing Q, Zhang L, Redman T, Qi S, Zhao F. Nitric oxide regulates cell behavior on an interactive cell-derived extracellular matrix scaffold. J Biomed Mater Res A 2015; 103:3807-14. [PMID: 26074441 DOI: 10.1002/jbm.a.35524] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/13/2015] [Accepted: 06/10/2015] [Indexed: 11/06/2022]
Abstract
During tissue injury and wound healing process, there are dynamic reciprocal interactions among cells, extracellular matrix (ECM), and mediating molecules which are crucial for functional tissue repair. Nitric oxide (NO) is one of the key mediating molecules that can positively regulate various biological activities involved in wound healing. Various ECM components serve as binding sites for cells and mediating molecules, and the interactions further stimulate cellular activities. Human mesenchymal stem cells (hMSCs) can migrate to the wound site and contribute to tissue regeneration through differentiation and paracrine signaling. The objective of this work was to investigate the regulatory effect of NO on hMSCs in an interactive ECM-rich microenvironment. In order to mimic the in vivo stromal environment in wound site, a cell-derived ECM scaffold that was able to release NO within the range of in vivo wound fluid NO level was fabricated. Results showed that the micro-molar level of NO released from the ECM scaffold had an inhibitory effect on cellular activities of hMSCs. The NO impaired cell growth, altered cell morphology, disrupted the F-actin organization, also decreased the expression of focal adhesion related molecules integrin α5 and paxillin. These results may contribute to the elucidation of how NO acts on hMSCs in wound healing process.
Collapse
Affiliation(s)
- Qi Xing
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan, 49931
| | - Lijun Zhang
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan, 49931.,Department of Burns, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Travis Redman
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan, 49931
| | - Shaohai Qi
- Department of Burns, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Feng Zhao
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan, 49931
| |
Collapse
|
15
|
Interferon-gamma and nitric oxide synthase 2 mediate the aggregation of resident adherent peritoneal exudate cells: implications for the host response to pathogens. PLoS One 2015; 10:e0128301. [PMID: 26029930 PMCID: PMC4452304 DOI: 10.1371/journal.pone.0128301] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 04/27/2015] [Indexed: 12/28/2022] Open
Abstract
Interferon-gamma (Ifnγ), a key macrophage activating cytokine, plays pleiotropic roles in host immunity. In this study, the ability of Ifnγ to induce the aggregation of resident mouse adherent peritoneal exudate cells (APECs), consisting primarily of macrophages, was investigated. Cell-cell interactions involve adhesion molecules and, upon addition of Ifnγ, CD11b re-localizes preferentially to the sites of interaction on APECs. A functional role of CD11b in enhancing aggregation is demonstrated using Reopro, a blocking reagent, and siRNA to Cd11b. Studies with NG-methyl-L-arginine (LNMA), an inhibitor of Nitric oxide synthase (Nos), NO donors, e.g., S-nitroso-N-acetyl-DL-penicillamine (SNAP) or Diethylenetriamine/nitric oxide adduct (DETA/NO), and Nos2-/- mice identified Nitric oxide (NO) induced by Ifnγ as a key regulator of aggregation of APECs. Further studies with Nos2-/- APECs revealed that some Ifnγ responses are independent of NO: induction of MHC class II and CD80. On the other hand, Nos2 derived NO is important for other functions: motility, phagocytosis, morphology and aggregation. Studies with cytoskeleton depolymerizing agents revealed that Ifnγ and NO mediate the cortical stabilization of Actin and Tubulin which contribute to aggregation of APECs. The biological relevance of aggregation of APECs was delineated using infection experiments with Salmonella Typhimurium (S. Typhimurium). APECs from orally infected, but not uninfected, mice produce high amounts of NO and aggregate upon ex vivo culture in a Nos2-dependent manner. Importantly, aggregated APECs induced by Ifnγ contain fewer intracellular S. Typhimurium compared to their single counterparts post infection. Further experiments with LNMA or Reopro revealed that both NO and CD11b are important for aggregation; in addition, NO is bactericidal. Overall, this study elucidates novel roles for Ifnγ and Nos2 in regulating Actin, Tubulin, CD11b, motility and morphology during the aggregation response of APECs. The implications of aggregation or “group behavior” of APECs are discussed in the context of host resistance to infectious organisms.
Collapse
|
16
|
Nitric oxide regulates multiple functions and fate of adult progenitor and stem cells. J Physiol Biochem 2014; 71:141-53. [DOI: 10.1007/s13105-014-0373-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/05/2014] [Indexed: 01/21/2023]
|
17
|
Zouein FA, Kurdi M, Booz GW, Fuseler JW. Applying fractal dimension and image analysis to quantify fibrotic collagen deposition and organization in the normal and hypertensive heart. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2014; 20:1134-1144. [PMID: 25410603 DOI: 10.1017/s1431927614001044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Hearts of mice with reduction of function mutation in STAT3 (SA/SA) develop fibrotic collagen foci and reduced systolic function with hypertension. This model was used to determine if fractal dimension and image analysis can provide a quantitative description of myocardial fibrosis using routinely prepared trichome-stained material. Collagen was characterized by relative density [integrated optical density/area (IOD/A)] and fractal dimension (D), an index of complexity. IOD/A of collagen in wild type mice increased with hypertension while D decreased, suggesting tighter collagen packing that could eventually stiffen the myocardium as in diastolic heart failure. Reduced STAT3 function caused modest collagen fibrosis with increased IOD/A and D, indicating more tightly packed, but more disorganized collagen than normotensive and hypertensive controls. Hypertension in SA/SA mice resulted in large regions where myocytes were lost and replaced by fibrotic collagen characterized by decreased density and increased disorder. This indicates that collagen associated with reparative fibrosis in SA/SA hearts experiencing hypertension was highly disorganized and more space filling. Loss of myocytes and their replacement by disordered collagen fibers may further weaken the myocardium leading to systolic heart failure. Our findings highlight the utility of image analysis in revealing importance of a cellular protein for normal and reparative extracellular matrix deposition.
Collapse
Affiliation(s)
- Fouad A Zouein
- 1Department of Pharmacology and Toxicology,School of Medicine and the Center for Excellence in Cardiovascular-Renal Research and the Mississippi Center for Heart Research,University of Mississippi Medical Center,Jackson,MS,USA
| | - Mazen Kurdi
- 1Department of Pharmacology and Toxicology,School of Medicine and the Center for Excellence in Cardiovascular-Renal Research and the Mississippi Center for Heart Research,University of Mississippi Medical Center,Jackson,MS,USA
| | - George W Booz
- 1Department of Pharmacology and Toxicology,School of Medicine and the Center for Excellence in Cardiovascular-Renal Research and the Mississippi Center for Heart Research,University of Mississippi Medical Center,Jackson,MS,USA
| | - John W Fuseler
- 3Department of Cell Biology and Anatomy,University of South Carolina School of Medicine,Columbia,SC,USA
| |
Collapse
|
18
|
Sangani R, Pandya CD, Bhattacharyya MH, Periyasamy-Thandavan S, Chutkan N, Markand S, Hill WD, Hamrick M, Isales C, Fulzele S. Knockdown of SVCT2 impairs in-vitro cell attachment, migration and wound healing in bone marrow stromal cells. Stem Cell Res 2013; 12:354-63. [PMID: 24365600 DOI: 10.1016/j.scr.2013.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 10/01/2013] [Accepted: 11/03/2013] [Indexed: 11/28/2022] Open
Abstract
Bone marrow stromal cell (BMSC) adhesion and migration are fundamental to a number of pathophysiologic processes, including fracture and wound healing. Vitamin C is beneficial for bone formation, fracture repair and wound healing. However, the role of the vitamin C transporter in BMSC adhesion, migration and wound healing is not known. In this study, we knocked-down the sodium-dependent vitamin C transporter, SVCT2, the only known transporter of vitamin C in BMSCs, and performed cell adhesion, migration, in-vitro scratch wound healing and F-actin re-arrangement studies. We also investigated the role of oxidative stress on the above processes. Our results demonstrate that both oxidative stress and down-regulation of SVCT2 decreased cell attachment and spreading. A trans-well cell migration assay showed that vitamin C helped in BMSC migration and that knockdown of SVCT2 decreased cell migration. In the in-vitro scratch wound healing studies, we established that oxidative stress dose-dependently impairs wound healing. Furthermore, the supplementation of vitamin C significantly rescued the BMSCs from oxidative stress and increased wound closing. The knockdown of SVCT2 in BMSCs strikingly decreased wound healing, and supplementing with vitamin C failed to rescue cells efficiently. The knockdown of SVCT2 and induction of oxidative stress in cells produced an alteration in cytoskeletal dynamics. Signaling studies showed that oxidative stress phosphorylated members of the MAP kinase family (p38) and that vitamin C inhibited their phosphorylation. Taken together, these results indicate that both the SVCT2 transporter and oxidative stress play a vital role in BMSC attachment, migration and cytoskeletal re-arrangement. BMSC-based cell therapy and modulation of SVCT2 could lead to a novel therapeutic approach that enhances bone remodeling, fracture repair and wound healing in chronic disease conditions.
Collapse
Affiliation(s)
- Rajnikumar Sangani
- Department of Orthopaedic Surgery, Georgia Regents University, Augusta, GA 30912, USA
| | - Chirayu D Pandya
- Department of Psychiatry and Health Behavior, Georgia Regents University, Augusta, GA 30912, USA
| | | | | | - Norman Chutkan
- Department of Orthopaedic Surgery, Georgia Regents University, Augusta, GA 30912, USA
| | - Shanu Markand
- Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA 30912, USA
| | - William D Hill
- Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA 30912, USA; Institute of Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA 30912, USA
| | - Mark Hamrick
- Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA 30912, USA; Institute of Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA 30912, USA
| | - Carlos Isales
- Department of Orthopaedic Surgery, Georgia Regents University, Augusta, GA 30912, USA; Institute of Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA 30912, USA
| | - Sadanand Fulzele
- Department of Orthopaedic Surgery, Georgia Regents University, Augusta, GA 30912, USA; Institute of Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA 30912, USA.
| |
Collapse
|
19
|
Kim JH, Kim SH, Song SY, Kim WS, Song SU, Yi T, Jeon MS, Chung HM, Xia Y, Sung JH. Hypoxia induces adipocyte differentiation of adipose-derived stem cells by triggering reactive oxygen species generation. Cell Biol Int 2013; 38:32-40. [DOI: 10.1002/cbin.10170] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 07/29/2013] [Indexed: 12/27/2022]
Affiliation(s)
- Ji Hye Kim
- Department of Applied Bioscience; CHA University; Seoul Korea
- Stem Cell Research Laboratory; CHA Stem Cell Institute; Seoul Korea
| | - Seok-Ho Kim
- Department of Pharmacy; CHA University; Pocheon-si Gyeonggi-do Korea
| | - Seung Yong Song
- Department of Plastic and Reconstructive Surgery; CHA Bundang Medical Center; CHA University; Seongnam-si, Gyeonggi-do Korea
| | - Won-Serk Kim
- Department of Dermatology; Kangbuk Samsung Hospital; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Sun U. Song
- Translational Research Center and Inha Research Institute for Medical Sciences; Inha University School of Medicine; Incheon Korea
| | - TacGhee Yi
- Translational Research Center and Inha Research Institute for Medical Sciences; Inha University School of Medicine; Incheon Korea
| | - Myung-Shin Jeon
- Translational Research Center and Inha Research Institute for Medical Sciences; Inha University School of Medicine; Incheon Korea
| | - Hyung-Min Chung
- Department of Applied Bioscience; CHA University; Seoul Korea
- Stem Cell Research Laboratory; CHA Stem Cell Institute; Seoul Korea
| | - Ying Xia
- Department of Neurosurgery; The University of Texas Medical School at Houston; Houston Texas 77030 USA
| | - Jong-Hyuk Sung
- Department of Applied Bioscience; CHA University; Seoul Korea
- Stem Cell Research Laboratory; CHA Stem Cell Institute; Seoul Korea
- Department of Pharmacy; CHA University; Pocheon-si Gyeonggi-do Korea
| |
Collapse
|
20
|
Vogt C, Xing Q, He W, Li B, Frost MC, Zhao F. Fabrication and Characterization of a Nitric Oxide-Releasing Nanofibrous Gelatin Matrix. Biomacromolecules 2013; 14:2521-30. [DOI: 10.1021/bm301984w] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Caleb Vogt
- Stem Cell and Tissue Engineering
Lab, Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Qi Xing
- Stem Cell and Tissue Engineering
Lab, Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Weilue He
- Polymer and Biomaterial Lab,
Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Bowen Li
- Department of Material Science
and Engineering Michigan Technological University Houghton, Michigan
49931, United States
| | - Megan C. Frost
- Polymer and Biomaterial Lab,
Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Feng Zhao
- Stem Cell and Tissue Engineering
Lab, Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
21
|
Zouein FA, Zgheib C, Hamza S, Fuseler JW, Hall JE, Soljancic A, Lopez-Ruiz A, Kurdi M, Booz GW. Role of STAT3 in angiotensin II-induced hypertension and cardiac remodeling revealed by mice lacking STAT3 serine 727 phosphorylation. Hypertens Res 2013; 36:496-503. [PMID: 23364341 DOI: 10.1038/hr.2012.223] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
STAT3 is involved in protection of the heart provided by ischemic preconditioning. However, the role of this transcription factor in the heart in chronic stresses such as hypertension has not been defined. We assessed whether STAT3 is important in hypertension-induced cardiac remodeling using mice with reduced STAT3 activity due to a S727A mutation (SA/SA). Wild type (WT) and SA/SA mice received angiotensin (ANG) II or saline for 17 days. ANG II increased mean arterial and systolic pressure in SA/SA and WT mice, but cardiac levels of cytokines associated with heart failure were increased less in SA/SA mice. Unlike WT mice, hearts of SA/SA mice showed signs of developing systolic dysfunction as evidenced by reduction in ejection fraction and fractional shortening. In the left ventricle of both WT and SA/SA mice, ANG II induced fibrosis. However, fibrosis in SA/SA mice appeared more extensive and was associated with loss of myocytes. Cardiac hypertrophy as indexed by heart to body weight ratio and left ventricular anterior wall dimension during diastole was greater in WT mice. In WT+ANG II mice there was an increase in the mass of individual myofibrils. In contrast, cardiac myocytes of SA/SA+ANG II mice showed a loss in myofibrils and myofibrillar mass density was decreased during ANG II infusion. Our findings reveal that STAT3 transcriptional activity is important for normal cardiac myocyte myofibril morphology. Loss of STAT3 may impair cardiac function in the hypertensive heart due to defective myofibrillar structure and remodeling that may lead to heart failure.
Collapse
Affiliation(s)
- Fouad A Zouein
- Department of Pharmacology and Toxicology, and Center for Excellence in Cardiovascular-Renal Research, The University of Mississippi Medical Center, School of Medicine, Jackson, MS, USA
| | | | | | | | | | | | | | | | | |
Collapse
|