1
|
Xie B, Ma H, Yang F, Chen H, Guo Y, Zhang H, Li T, Huang X, Zhao Y, Li X, Du J. Development and evaluation of 3D composite scaffolds with piezoelectricity and biofactor synergy for enhanced articular cartilage regeneration. J Mater Chem B 2024; 12:10416-10433. [PMID: 39291892 DOI: 10.1039/d4tb01319k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The inability of articular cartilage to self-repair following injuries frequently precipitates osteoarthritis, profoundly affecting patients' quality of life. Given the limitations inherent in current clinical interventions, an urgent need exists for more effective cartilage regeneration methodologies. Previous studies have underscored the potential of electrical stimulation in cartilage repair, thus motivating the investigation of innovative strategies. The present study introduces a three-dimensional scaffold fabricated through a composite technique that leverages the synergy between piezoelectricity and biofactors to enhance cartilage repair. This scaffold is composed of polylactic acid (PLLA) and barium titanate (BT) for piezoelectric stimulation and at the bottom with a collagen-coated layer infused with fibroblast growth factor-18 (FGF-18) for biofactor delivery. Designed to emulate the properties of natural cartilage, the scaffold enables controlled generation of piezoelectric charges and the sustained release of biofactors. In vitro tests confirm that the scaffold promotes chondrocyte proliferation, matrix hyperplasia, cellular migration, and the expression of genes associated with cartilage formation. Moreover, in vivo studies on rabbits have illustrated its efficacy in catalyzing the in situ regeneration of articular cartilage defects and remodeling the extracellular matrix. This innovative approach offers significant potential for enhancing cartilage repair and holds profound implications for regenerative medicine.
Collapse
Affiliation(s)
- Bowen Xie
- Department of Orthopedics, Air Force Medical Center, Beijing 100142, China.
- Air Force Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei 230032, China.
| | - Hebin Ma
- Medical School of the PLA General Hospital, Beijing 100853, China
- Senior Department of Orthopedics, The Fourth Medical Center of the PLA General Hospital, Beijing 100048, China.
| | - Fengyuan Yang
- Graduate School of Medicine, China Medical University, Shenyang 110122, China
| | - Hongguang Chen
- Senior Department of Orthopedics, The Fourth Medical Center of the PLA General Hospital, Beijing 100048, China.
| | - Ya'nan Guo
- Senior Department of Orthopedics, The Fourth Medical Center of the PLA General Hospital, Beijing 100048, China.
| | - Hongxing Zhang
- Department of Orthopedics, Air Force Medical Center, Beijing 100142, China.
| | - Tengfei Li
- Department of Orthopedics, Air Force Medical Center, Beijing 100142, China.
| | - Xiaogang Huang
- Department of Orthopedics, Air Force Medical Center, Beijing 100142, China.
| | - Yantao Zhao
- Senior Department of Orthopedics, The Fourth Medical Center of the PLA General Hospital, Beijing 100048, China.
| | - Xiaojie Li
- Department of Orthopedics, Air Force Medical Center, Beijing 100142, China.
| | - Junjie Du
- Department of Orthopedics, Air Force Medical Center, Beijing 100142, China.
- Air Force Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei 230032, China.
- Graduate School of Medicine, China Medical University, Shenyang 110122, China
| |
Collapse
|
2
|
Lin TH, Wang HC, Tseng YL, Yeh ML. A bioactive composite scaffold enhances osteochondral repair by using thermosensitive chitosan hydrogel and endothelial lineage cell-derived chondrogenic cell. Mater Today Bio 2024; 28:101174. [PMID: 39211289 PMCID: PMC11357856 DOI: 10.1016/j.mtbio.2024.101174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Articular cartilage regeneration is a major challenge in orthopedic medicine. Endothelial progenitor cells (EPCs) are a promising cell source for regenerative medicine applications. However, their roles and functions in cartilage regeneration are not well understood. Additionally, thermosensitive chitosan hydrogels have been widely used in tissue engineering, but further development of these hydrogels incorporating vascular lineage cells for cartilage repair is insufficient. Thus, this study aimed to characterize the ability of EPCs to undergo endothelial-mesenchymal stem cell transdifferentiation and chondrogenic differentiation and investigate the ability of chondrogenic EPC-seeded thermosensitive chitosan-graft-poly (N-isopropylacrylamide) (CEPC-CSPN) scaffolds to improve healing in a rabbit osteochondral defect (OCD) model. EPCs were isolated and endothelial-to-mesenchymal transition (EndMT) was induced by transforming growth factor-β1 (TGF-β1); these EPCs are subsequently termed transdifferentiated EPCs (tEPCs). The stem cell-like properties and chondrogenic potential of tEPCs were evaluated by a series of in vitro assays. Furthermore, the effect of CEPC-CSPN scaffolds on OCD repair was evaluated. Our in vitro results confirmed that treatment of EPC with TGF-β1 induced EndMT and the acquisition of stem cell-like properties, producing tEPCs. Upon inducing chondrogenic differentiation of tEPCs (CEPCs), the cells exhibited significantly enhanced chondrogenesis and chondrocyte surface markers after 25 days. The TGF-β1-induced differentiation of EPCs is mediated by both the TGF-β/Smad and extracellular signal-regulated kinase (Erk) pathways. The CEPC-CSPN scaffold reconstructed well-integrated translucent cartilage and repaired subchondral bone in vivo, exhibiting regenerative capacity. Collectively, our results suggest that the CEPC-CSPN scaffold induces OCD repair, representing a promising approach to articular cartilage regeneration.
Collapse
Affiliation(s)
- Tzu-Hsiang Lin
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, 1 University Rd., Tainan, 701, Taiwan
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 701, Taiwan
- Medical Imaging Center, National Cheng Kung University, 1 University Rd., Tainan, 701, Taiwan
| | - Hsueh-Chun Wang
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, 1 University Rd., Tainan, 701, Taiwan
| | - Yau-Lin Tseng
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 701, Taiwan
- Medical Imaging Center, National Cheng Kung University, 1 University Rd., Tainan, 701, Taiwan
| | - Ming-Long Yeh
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, 1 University Rd., Tainan, 701, Taiwan
- Innovation Headquarters, National Cheng Kung University, 1 University Rd., Tainan, 701, Taiwan
| |
Collapse
|
3
|
Salniccia F, de Vidania S, Martinez-Caro L. Peripheral and central changes induced by neural mobilization in animal models of neuropathic pain: a systematic review. Front Neurol 2024; 14:1289361. [PMID: 38249743 PMCID: PMC10797109 DOI: 10.3389/fneur.2023.1289361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction Neural mobilization (NM) is a physiotherapy technique involving the passive mobilization of limb nerve structures with the aim to attempt to restore normal movement and structural properties. In recent years, human studies have shown pain relief in various neuropathic diseases and other pathologies as a result of this technique. Improvement in the range of motion (ROM), muscle strength and endurance, limb function, and postural control were considered beneficial effects of NM. To determine which systems generate these effects, it is necessary to conduct studies using animal models. The objective of this study was to gather information on the physiological effects of NM on the peripheral and central nervous systems (PNS and CNS) in animal models. Methods The search was performed in Medline, Pubmed and Web of Science and included 8 studies according to the inclusion criteria. Results The physiological effects found in the nervous system included the analgesic, particularly the endogenous opioid pathway, the inflammatory, by modulation of cytokines, and the immune system. Conclusion On the basis of these results, we can conclude that NM physiologically modifies the peripheral and central nervous systems in animal models.
Collapse
Affiliation(s)
- Federico Salniccia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Spain
| | - Silvia de Vidania
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Spain
| | - Leticia Martinez-Caro
- Facultad de Ciencias de la Salud, Universidad Internacional de La Rioja, Logroño, Spain
- Facultad de Ciencias Sociales Aplicadas y de la Comunicación, UNIE Universidad y Empresa, Madrid, Spain
| |
Collapse
|
4
|
Niu X, Li N, Du Z, Li X. Integrated gradient tissue-engineered osteochondral scaffolds: Challenges, current efforts and future perspectives. Bioact Mater 2023; 20:574-597. [PMID: 35846846 PMCID: PMC9254262 DOI: 10.1016/j.bioactmat.2022.06.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/30/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
The osteochondral defect repair has been most extensively studied due to the rising demand for new therapies to diseases such as osteoarthritis. Tissue engineering has been proposed as a promising strategy to meet the demand of simultaneous regeneration of both cartilage and subchondral bone by constructing integrated gradient tissue-engineered osteochondral scaffold (IGTEOS). This review brought forward the main challenges of establishing a satisfactory IGTEOS from the perspectives of the complexity of physiology and microenvironment of osteochondral tissue, and the limitations of obtaining the desired and required scaffold. Then, we comprehensively discussed and summarized the current tissue-engineered efforts to resolve the above challenges, including architecture strategies, fabrication techniques and in vitro/in vivo evaluation methods of the IGTEOS. Especially, we highlighted the advantages and limitations of various fabrication techniques of IGTEOS, and common cases of IGTEOS application. Finally, based on the above challenges and current research progress, we analyzed in details the future perspectives of tissue-engineered osteochondral construct, so as to achieve the perfect reconstruction of the cartilaginous and osseous layers of osteochondral tissue simultaneously. This comprehensive and instructive review could provide deep insights into our current understanding of IGTEOS.
Collapse
Affiliation(s)
- Xiaolian Niu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Ning Li
- Department of Orthopedics, The Fourth Central Hospital of Baoding City, Baoding, 072350, China
| | - Zhipo Du
- Department of Orthopedics, The Fourth Central Hospital of Baoding City, Baoding, 072350, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| |
Collapse
|
5
|
Restoring Osteochondral Defects through the Differentiation Potential of Cartilage Stem/Progenitor Cells Cultivated on Porous Scaffolds. Cells 2021; 10:cells10123536. [PMID: 34944042 PMCID: PMC8700224 DOI: 10.3390/cells10123536] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Cartilage stem/progenitor cells (CSPCs) are cartilage-specific, multipotent progenitor cells residing in articular cartilage. In this study, we investigated the characteristics and potential of human CSPCs combined with poly(lactic-co-glycolic acid) (PLGA) scaffolds to induce osteochondral regeneration in rabbit knees. We isolated CSPCs from human adult articular cartilage undergoing total knee replacement (TKR) surgery. We characterized CSPCs and compared them with infrapatellar fat pad-derived stem cells (IFPs) in a colony formation assay and by multilineage differentiation analysis in vitro. We further evaluated the osteochondral regeneration of the CSPC-loaded PLGA scaffold during osteochondral defect repair in rabbits. The characteristics of CSPCs were similar to those of mesenchymal stem cells (MSCs) and exhibited chondrogenic and osteogenic phenotypes without chemical induction. For in vivo analysis, CSPC-loaded PLGA scaffolds produced a hyaline-like cartilaginous tissue, which showed good integration with the host tissue and subchondral bone. Furthermore, CSPCs migrated in response to injury to promote subchondral bone regeneration. Overall, we demonstrated that CSPCs can promote osteochondral regeneration. A monophasic approach of using diseased CSPCs combined with a PLGA scaffold may be beneficial for repairing complex tissues, such as osteochondral tissue.
Collapse
|
6
|
Shen K, Liu X, Qin H, Chai Y, Wang L, Yu B. HA-g-CS Implant and Moderate-intensity Exercise Stimulate Subchondral Bone Remodeling and Promote Repair of Osteochondral Defects in Mice. Int J Med Sci 2021; 18:3808-3820. [PMID: 34790057 PMCID: PMC8579292 DOI: 10.7150/ijms.63401] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/15/2021] [Indexed: 11/05/2022] Open
Abstract
Background: Substantial evidence shows that crosstalk between cartilage and subchondral bone may play an important role in cartilage repair. Animal models have shown that hydroxyapatite-grafted-chitosan implant (HA-g-CS) and moderate-intensity exercise promote regeneration of osteochondral defects. However, no in vivo studies have demonstrated that these two factors may have a synergistic activity to facilitate subchondral bone remodeling in mice, thus supporting bone-cartilage repair. Questions: This study was to clarify whether HA-g-CS and moderate-intensity exercise might have a synergistic effect on facilitating (1) regeneration of osteochondral defects and (2) subchondral bone remodeling in a mouse model of osteochondral defects. Methods: Mouse models of osteochondral defects were created and divided into four groups. BC Group was subjected to no treatment, HC Group to HA-g-CS implantation into osteochondral defects, ME group to moderate-intensity treadmill running exercise, and HC+ME group to both HA-g-CS implantation and moderate-intensity exercise until sacrifice. Extent of subchondral bone remodeling at the injury site and subsequent cartilage repair were assessed at 4 weeks after surgery. Results: Compared with BC group, HC, ME and HC+ME groups showed more cartilage repair and thicker articular cartilage layers and HC+ME group acquired the best results. The extent of cartilage repair was correlated positively to bone formation activity at the injured site as verified by microCT and correlation analysis. Histology and immunofluorescence staining confirmed that bone remodeling activity was increased in HC and ME groups, and especially in HC+ME group. This bone formation process was accompanied by an increase in osteogenesis and chondrogenesis factors at the injury site which promoted cartilage repair. Conclusions: In a mouse model of osteochondral repair, HA-g-CS implant and moderate-intensity exercise may have a synergistic effect on improving osteochondral repair potentially through promotion of subchondral bone remodeling and generation of osteogenesis and chondrogenesis factors. Clinical Relevance: Combination of HA-g-CS implantation and moderate-intensity exercise may be considered potentially in clinic to promote osteochondral defect repair. Also, cartilage and subchondral bone forms a functional unit in an articular joint and subchondral bone may regulate cartilage repair by secreting growth factors in its remodeling process. However, a deeper insight into the exact role of HA-g-CS implantation and moderate-intensity exercise in promoting osteochondral repair in other animal models should be explored before they can be applied in clinic in the future.
Collapse
Affiliation(s)
- Ke Shen
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.,Key Laboratory of Bone and Cartilage Regeneration Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaonan Liu
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.,Key Laboratory of Bone and Cartilage Regeneration Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hanjun Qin
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.,Key Laboratory of Bone and Cartilage Regeneration Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yu Chai
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.,Key Laboratory of Bone and Cartilage Regeneration Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lei Wang
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.,Key Laboratory of Bone and Cartilage Regeneration Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Bin Yu
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.,Key Laboratory of Bone and Cartilage Regeneration Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
7
|
Lin CC, Chu CJ, Chou PH, Liang CH, Liang PI, Chang NJ. Beneficial Therapeutic Approach of Acellular PLGA Implants Coupled With Rehabilitation Exercise for Osteochondral Repair: A Proof of Concept Study in a Minipig Model. Am J Sports Med 2020; 48:2796-2807. [PMID: 32749853 DOI: 10.1177/0363546520940306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Osteochondral (OC) repair presents a significant challenge to clinicians. However, whether the use of acellular spongy poly(lactic-co-glycolic acid) (PLGA) scaffolding plus treadmill exercise as a rehabilitation program regenerates OC defects in a large-animal model has yet to be determined. HYPOTHESIS PLGA scaffolding plus treadmill exercise may offer improved OC repair for both high and low weightbearing regions in a minipig model. STUDY DESIGN Controlled laboratory study. METHODS A total of 9 mature minipigs (18 knees) were randomly divided into the treadmill exercise (TRE) group or sedentary (SED) group. All pigs received critically sized OC defects in a higher weightbearing region of the medial condyle and a lower weightbearing region of the trochlear groove. In each minipig, a PLGA scaffold was placed in the defect of the right knee (PLGA subgroup), and the defect of the left knee was untreated (empty defect [ED] subgroup). The TRE group performed exercises in 3 phases: warm-up, 3 km/h for 5 minutes; main exercise, 4 km/h for 20 minutes; and cool-down, 3 km/h for 5 minutes. The total duration was about 30 minutes whenever possible. The SED group was allowed free cage activity. RESULTS At 6 months, the TRE-PLGA group showed the highest gross morphology scores and regenerated a smooth articular surface covered with new hyaline-like tissue, while the defects of the other groups remained and contained nontransparent tissue. Histologically, the TRE-PLGA group also revealed sound OC integration, chondrocyte-like cells embedded in lacunae, abundant glycosaminoglycans, a sound collagen structure, and modest inflammatory cells with an inflammatory response (ie, tumor necrosis factor-α, interleukin-6). In addition, in the medial condyle region, the TRE-PLGA group (31.80 ± 3.03) had the highest total histological scores (TRE-ED: 20.20 ± 5.76; SED-PLGA: 10.25 ± 6.24; SED-ED: 11.75 ± 6.50; P = .004). In the trochlear groove region, the TRE-PLGA group (30.20 ± 6.42) displayed significantly higher total histological scores (TRE-ED: 19.60 ± 7.00; SED-PLGA: 10.00 ± 5.42; SED-ED: 11.25 ± 5.25; P = .006). In contrast, the SED-PLGA and SED-ED groups revealed an irregular surface with abrasion, fibrotic tissue with an empty void and inflammatory cells, disorganized collagen fibers, and less glycosaminoglycan deposition. Micro-computed tomography analysis revealed that the TRE-PLGA group had integrated OC interfaces with continued remodeling in the subchondral bone. Furthermore, comparing the 2 defect regions, no statistically significant differences in cartilage regeneration were detected, indicating the suitability of this regenerative approach for both high and low weightbearing regions. CONCLUSION Implanting an acellular PLGA scaffold plus treadmill exercise promoted articular cartilage regeneration for both high and low weightbearing regions in minipigs. CLINICAL RELEVANCE This study suggests the use of a cell-free porous PLGA scaffold and treadmill exercise rehabilitation as an alternative therapeutic strategy for OC repair in a large-animal knee joint model. This combined effect may pave the way for biomaterials and exercise regimens in the application of OC repair.
Collapse
Affiliation(s)
- Chih-Chan Lin
- Department of Medical Research, Chi Mei Medical Center, Tainan City, Taiwan
| | - Chih-Jou Chu
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Pei-Hsi Chou
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan.,PhD Program in Biomedical Engineering, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Chun-Hao Liang
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Peir-In Liang
- Department of Pathology, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Nai-Jen Chang
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan.,PhD Program in Biomedical Engineering, Kaohsiung Medical University, Kaohsiung City, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung City, Taiwan
| |
Collapse
|
8
|
Lin TH, Wang HC, Cheng WH, Hsu HC, Yeh ML. Osteochondral Tissue Regeneration Using a Tyramine-Modified Bilayered PLGA Scaffold Combined with Articular Chondrocytes in a Porcine Model. Int J Mol Sci 2019; 20:ijms20020326. [PMID: 30650528 PMCID: PMC6359257 DOI: 10.3390/ijms20020326] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 12/28/2022] Open
Abstract
Repairing damaged articular cartilage is challenging due to the limited regenerative capacity of hyaline cartilage. In this study, we fabricated a bilayered poly (lactic-co-glycolic acid) (PLGA) scaffold with small (200–300 μm) and large (200–500 μm) pores by salt leaching to stimulate chondrocyte differentiation, cartilage formation, and endochondral ossification. The scaffold surface was treated with tyramine to promote scaffold integration into native tissue. Porcine chondrocytes retained a round shape during differentiation when grown on the small pore size scaffold, and had a fibroblast-like morphology during transdifferentiation in the large pore size scaffold after five days of culture. Tyramine-treated scaffolds with mixed pore sizes seeded with chondrocytes were pressed into three-mm porcine osteochondral defects; tyramine treatment enhanced the adhesion of the small pore size scaffold to osteochondral tissue and increased glycosaminoglycan and collagen type II (Col II) contents, while reducing collagen type X (Col X) production in the cartilage layer. Col X content was higher for scaffolds with a large pore size, which was accompanied by the enhanced generation of subchondral bone. Thus, chondrocytes seeded in tyramine-treated bilayered scaffolds with small and large pores in the upper and lower parts, respectively, can promote osteochondral regeneration and integration for articular cartilage repair.
Collapse
Affiliation(s)
- Tzu-Hsiang Lin
- Department of Biomedical Engineering, National Cheng Kung University, 1 University Rd., Tainan 701, Taiwan.
| | - Hsueh-Chun Wang
- Department of Biomedical Engineering, National Cheng Kung University, 1 University Rd., Tainan 701, Taiwan.
| | - Wen-Hui Cheng
- Department of Biomedical Engineering, National Cheng Kung University, 1 University Rd., Tainan 701, Taiwan.
| | - Horng-Chaung Hsu
- Department of Orthopedics, China Medical University Hospital, 2 Yude Rd., Taichung 40447, Taiwan.
| | - Ming-Long Yeh
- Department of Biomedical Engineering, National Cheng Kung University, 1 University Rd., Tainan 701, Taiwan.
- Medical Device Innovation Center, National Cheng Kung University, 1 University Rd., Tainan 701, Taiwan.
| |
Collapse
|
9
|
Continuous Passive Motion Promotes and Maintains Chondrogenesis in Autologous Endothelial Progenitor Cell-Loaded Porous PLGA Scaffolds during Osteochondral Defect Repair in a Rabbit Model. Int J Mol Sci 2019; 20:ijms20020259. [PMID: 30634691 PMCID: PMC6358980 DOI: 10.3390/ijms20020259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/27/2018] [Accepted: 01/02/2019] [Indexed: 11/19/2022] Open
Abstract
Continuous passive motion (CPM) is widely used after total knee replacement. In this study, we investigated the effect of CPM combined with cell-based construct-transplantation in osteochondral tissue engineering. We created osteochondral defects (3 mm in diameter and 3 mm in depth) in the medial femoral condyle of 36 knees and randomized them into three groups: ED (empty defect), EPC/PLGA (endothelial progenitor cells (EPCs) seeded in the poly lactic-co-glycolic acid (PLGA) scaffold), or EPC/PLGA/CPM (EPC/PLGA scaffold complemented with CPM starting one day after transplantation). We investigated the effects of CPM and the EPC/PLGA constructs on tissue restoration in weight-bearing sites by histological observation and micro-computed tomography (micro-CT) evaluation 4 and 12 weeks after implantation. After CPM, the EPC/PLGA construct exhibited early osteochondral regeneration and prevention of subchondral bone overgrowth and cartilage degeneration. CPM did not alter the microenvironment created by the construct; it up-regulated the expression of the extracellular matrix components (glycosaminoglycan and collagen), down-regulated bone formation, and induced the biosynthesis of lubricin, which appeared in the EPC/PLGA/CPM group after 12 weeks. CPM can provide promoting signals during osteochondral tissue engineering and achieve a synergistic effect when combined with EPC/PLGA transplantation, so it should be considered a non-invasive treatment to be adopted in clinical practices.
Collapse
|
10
|
Wang HC, Lin YT, Lin TH, Chang NJ, Lin CC, Hsu HC, Yeh ML. Intra-articular injection of N-acetylglucosamine and hyaluronic acid combined with PLGA scaffolds for osteochondral repair in rabbits. PLoS One 2018; 13:e0209747. [PMID: 30596714 PMCID: PMC6312252 DOI: 10.1371/journal.pone.0209747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 12/11/2018] [Indexed: 01/08/2023] Open
Abstract
Repairing damaged articular cartilage is particularly challenging because of the limited ability of cartilage to perform self-repair. Intra-articular injections of N-acetylglucosamine (GlcNAc) comprise a method of repairing full-thickness articular cartilage defects in the rabbit knee joint model. To date, the effects of administration of GlcNAc and hyaluronic acid (HA) have been investigated only in the context of osteoarthritis treatment. Therefore, we evaluated the therapeutic effects of using cell-free porous poly lactic-co-glycolic acid (PLGA) graft implants and intra-articular injections of GlcNAc or HA in a rabbit model of osteochondral regeneration to investigate whether they have the potential for inducing osteochondral regeneration when used alone or simultaneously. Twenty-four rabbits were randomized into one of four groups: the scaffold-only group (PLGA), the scaffold with intra-articular injections of GlcNAc (PLGA+G) group, twice per week for four weeks; the scaffold with intra-articular injections of HA group (PLGA+HA) group, once per week for three weeks; and the scaffold with intra-articular injections of GlcNAc and HA (PLGA+G+HA) group, once per week for three weeks. Knees were evaluated at 4 and 12 weeks after surgery. At the end of testing, only the PLGA+G+HA group exhibited significant bone reconstruction, chondrocyte clustering, and good interactions with adjacent surfaces at 4 weeks. Additionally, the PLGA+G+HA group demonstrated essentially original hyaline cartilage structures that appeared to have sound chondrocyte orientation, considerable glycosaminoglycan levels, and reconstruction of the bone structure at 12 weeks. Moreover, the PLGA+G+HA group showed organized osteochondral integration and significantly higher bone volume per tissue volume and trabecular thickness. However, there were no significant differences between the PLGA+G and PLGA+HA groups except for gap formation on subchondral bone in the PLGA+G group. This study demonstrated that PLGA implantation combined with intra-articular injections of GlcNAc and HA allowed for cartilage and bone regeneration and significantly promoted osteochondral regeneration in rabbits without supplementation of exogenous growth factors. And the combination of this two supplements with PLGA scaffold could also prolong injection interval and better performance than either of them alone for the reconstruction of osteochondral tissue in the knee joints of rabbits.
Collapse
Affiliation(s)
- Hsueh-Chun Wang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ting Lin
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Hsiang Lin
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Nai-Jen Chang
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Chan Lin
- Laboratory Animal Center, Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
| | - Horng-Chaung Hsu
- Department of Orthopedics, China Medical University Hospital, Taichung, Taiwan
| | - Ming-Long Yeh
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
11
|
Shen J, Shi D, Dong L, Zhang Z, Li X, Chen M. Fabrication of polydopamine nanoparticles knotted alginate scaffolds and their properties. J Biomed Mater Res A 2018; 106:3255-3266. [DOI: 10.1002/jbm.a.36524] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/29/2018] [Accepted: 08/09/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Jiali Shen
- Key Laboratory of Synthetic and Biological Colloids; Ministry of Education, School of Chemical and Material Engineering, Jiangnan University; Wuxi 214122 China
| | - Dongjian Shi
- Key Laboratory of Synthetic and Biological Colloids; Ministry of Education, School of Chemical and Material Engineering, Jiangnan University; Wuxi 214122 China
| | - Liangliang Dong
- Key Laboratory of Synthetic and Biological Colloids; Ministry of Education, School of Chemical and Material Engineering, Jiangnan University; Wuxi 214122 China
| | - Zhuying Zhang
- Key Laboratory of Synthetic and Biological Colloids; Ministry of Education, School of Chemical and Material Engineering, Jiangnan University; Wuxi 214122 China
| | - Xiaojie Li
- Key Laboratory of Synthetic and Biological Colloids; Ministry of Education, School of Chemical and Material Engineering, Jiangnan University; Wuxi 214122 China
| | - Mingqing Chen
- Key Laboratory of Synthetic and Biological Colloids; Ministry of Education, School of Chemical and Material Engineering, Jiangnan University; Wuxi 214122 China
| |
Collapse
|
12
|
Chang NJ, Erdenekhuyag Y, Chou PH, Chu CJ, Lin CC, Shie MY. Therapeutic Effects of the Addition of Platelet-Rich Plasma to Bioimplants and Early Rehabilitation Exercise on Articular Cartilage Repair. Am J Sports Med 2018; 46:2232-2241. [PMID: 29927631 DOI: 10.1177/0363546518780955] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Treating articular cartilage lesions is clinically challenging. However, whether the addition of autologous platelet-rich plasma (PRP) to bioimplants along with early rehabilitation exercise provides therapeutic effects and regenerates the osteochondral defect remains uninvestigated. HYPOTHESIS The addition of PRP to a polylactic-co-glycolic acid (PLGA) scaffold along with continuous passive motion (CPM) in osteochondral defects may offer beneficial in situ microenvironment changes to facilitate hyaline cartilage and subchondral bone tissue repair. STUDY DESIGN Controlled laboratory study. METHODS In 26 rabbits, 52 critical osteochondral defects were created in bilateral femoral trochlear grooves. The rabbits were allocated to 1 of the following 3 groups: PRP gel (PG group), PRP + PLGA scaffold (PP group), and PRP + PLGA scaffold + CPM (PPC group). At 4 and 12 weeks after surgery, the specimens were assessed by a macroscopic examination, a histological evaluation with immunohistochemical staining, and micro-computed tomography. RESULTS The PPC group exhibited the most favorable therapeutic outcomes in terms of hyaline cartilage regeneration. At week 4, the PPC group exhibited significantly higher levels of glycosaminoglycan (GAG) and collagen (COL) II and modest increases in COL I, matrix metalloproteinase-3 (MMP-3), and inflammatory cells with tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6). At week 12, the PPC group had significantly higher tissue repair scores, corresponding to a sound articular cartilage surface and chondrocyte and collagen arrangement. This group demonstrated restored hyaline cartilage and mineralized bone volume per tissue volume, which had an integrating structure in the repair site. However, the PG and PP groups exhibited mainly fibrous tissue and fibrocartilage, corresponding to higher expressions of COL I, TNF-α, IL-6, and MMP-3. CONCLUSION PRP with a PLGA graft along with early CPM exercise is promising for the repair of osteochondral defects in rabbit knee joints. CLINICAL RELEVANCE This study demonstrates the efficacy of a triad therapy involving the addition of PRP to bioimplants along with early CPM intervention for hyaline cartilage and subchondral regeneration. However, PRP alone (with or without PLGA implants) is limited to osteochondral defect repair without significant regeneration.
Collapse
Affiliation(s)
- Nai-Jen Chang
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Yanjmaa Erdenekhuyag
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Pei-Hsi Chou
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Chih-Jou Chu
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Chih-Chan Lin
- Laboratory Animal Center, Department of Medical Research, Chi Mei Medical Center, Tainan City, Taiwan
| | - Ming-You Shie
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung City, Taiwan
| |
Collapse
|
13
|
Lü L, Deegan A, Musa F, Xu T, Yang Y. The effects of biomimetically conjugated VEGF on osteogenesis and angiogenesis of MSCs (human and rat) and HUVECs co-culture models. Colloids Surf B Biointerfaces 2018; 167:550-559. [PMID: 29730577 DOI: 10.1016/j.colsurfb.2018.04.060] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/09/2018] [Accepted: 04/29/2018] [Indexed: 10/17/2022]
Abstract
The purpose of this work was to investigate if the biomimetically conjugated VEGF and HUVECs co-culture could modulate the osteogenic and angiogenic differentiation of MSCs derived from rat and human bone marrow (rMSCs and hMSCs). After treated by ammonia plasma, Poly(lactic-co-glycolic acid) (PLGA) electrospun nanofibers were immobilized with VEGF through heparin to fulfil the sustained release. The proliferation capacity of rMSCs and hMSCs on neat PLGA nanofibers (NF) and VEGF immobilized NF (NF-VEGF) surfaces were assessed by CCK-8 and compared when MSCs were mono-cultured and co-cultured with HUVECs. The effect of VEGF and HUVECs co-culturing on osteogenic and angiogenic differentiation of rMSCs and hMSCs were investigated by calcium deposits and CD31 expression on NF and NF-VEGF surfaces. The results indicated that VEGF has been biomimetically immobilized onto PLGA nanofibers surface and kept sustained release successfully. The CD31 staining results showed that both VEGF and HUVECs co-culture could enhance the angiogenesis of rMSCs and hMSCs. However, the proliferation and osteogenic differentiation of MSCs when cultured with VEGF and HUVECs showed a species dependent response. Taken together, VEGF immobilization and co-culture with HUVECs promoted angiogenesis of MSCs, indicating a good strategy for vascularization in bone tissue engineering.
Collapse
Affiliation(s)
- Lanxin Lü
- Emergency Center of the Affiliated Hospital of Xuzhou Medical University, Institute of Emergency Rescue Medicine, Xuzhou Medical University, Xuzhou, 221002, China; Institute for Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, ST4 7QB, UK
| | - Anthony Deegan
- Institute for Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, ST4 7QB, UK
| | - Faiza Musa
- Institute for Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, ST4 7QB, UK
| | - Tie Xu
- Emergency Center of the Affiliated Hospital of Xuzhou Medical University, Institute of Emergency Rescue Medicine, Xuzhou Medical University, Xuzhou, 221002, China.
| | - Ying Yang
- Institute for Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, ST4 7QB, UK.
| |
Collapse
|
14
|
Chen T, Bai J, Tian J, Huang P, Zheng H, Wang J. A single integrated osteochondral in situ composite scaffold with a multi-layered functional structure. Colloids Surf B Biointerfaces 2018; 167:354-363. [PMID: 29689491 DOI: 10.1016/j.colsurfb.2018.04.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 03/14/2018] [Accepted: 04/12/2018] [Indexed: 12/15/2022]
Abstract
This work focuses on the optimization design of a functional biomimetic scaffold for the repair of osteochondral defects and includes the study of single integrated osteochondral tissue engineering scaffolds with a multi-layered functional structure. Rabbit model experiments were used to evaluate the repair of osteochondral defects. The results revealed that good integration was achieved both at the interfaces between the scaffold material and the host tissue and between the newly formed subchondral bone and cartilage. The highest total histological score of 24.2 (based on the modified O'Driscoll scoring system at 12 weeks post-operation) was achieved for osteochondral repair. The completely repaired cylindrical full-thickness defects for the rabbit animal model reached 5 mm in diameter. The thickness of the regenerated cartilage was almost in line with that of the surrounding normal cartilage, the number and arrangement of cells in the superficial area of cartilage were very close to those of normal hyaline cartilage, and there were clear cartilage lacunas in the regenerated cartilage. The hybrid-use of growth factors and LIPUS stimulation exhibited good potential in enhancing vascularization and the formation of new bone and cartilage, providing better conditions for the overall osteochondral repair.
Collapse
Affiliation(s)
- Taijun Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Jiafan Bai
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Jiajun Tian
- Sichuan Center for Disease Control and Prevention, Chengdu, 610041, PR China
| | - Pinhe Huang
- Sichuan Center for Disease Control and Prevention, Chengdu, 610041, PR China
| | - Hua Zheng
- Sichuan Center for Disease Control and Prevention, Chengdu, 610041, PR China
| | - Jianxin Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China.
| |
Collapse
|
15
|
Radhakrishnan J, Manigandan A, Chinnaswamy P, Subramanian A, Sethuraman S. Gradient nano-engineered in situ forming composite hydrogel for osteochondral regeneration. Biomaterials 2018; 162:82-98. [PMID: 29438883 DOI: 10.1016/j.biomaterials.2018.01.056] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/29/2018] [Accepted: 01/29/2018] [Indexed: 12/21/2022]
Abstract
Fabrication of anisotropic osteochondral-mimetic scaffold with mineralized subchondral zone and gradient interface remains challenging. We have developed an injectable semi-interpenetrating network hydrogel construct with chondroitin sulfate nanoparticles (ChS-NPs) and nanohydroxyapatite (nHA) (∼30-90 nm) in chondral and subchondral hydrogel zones respectively. Mineralized subchondral hydrogel exhibited significantly higher osteoblast proliferation and alkaline phosphatase activity (p < 0.05). Osteochondral hydrogel exhibited interconnected porous structure and spatial variation with gradient interface of nHA and ChS-NPs. Microcomputed tomography (μCT) demonstrated nHA gradation while rheology showed predominant elastic modulus (∼930 Pa) at the interface. Co-culture of osteoblasts and chondrocytes in gradient hydrogels showed layer-specific retention of cells and cell-cell interaction at the interface. In vivo osteochondral regeneration by biphasic (nHA or ChS) and gradient (nHA + ChS) hydrogels was compared with control using rabbit osteochondral defect after 3 and 8 weeks. Complete closure of defect was observed in gradient (8 weeks) while defect remained in other groups. Histology demonstrated collagen and glycosaminoglycan deposition in neo-matrix and presence of hyaline cartilage-characteristic matrix, chondrocytes and osteoblasts. μCT showed mineralized neo-tissue formation, which was confined within the defect with higher bone mineral density in gradient (chondral: 0.42 ± 0.07 g/cc, osteal: 0.64 ± 0.08 g/cc) group. Further, biomechanical push-out studies showed significantly higher load for gradient group (378 ± 56 N) compared to others. Thus, the developed nano-engineered gradient hydrogel enhanced hyaline cartilage regeneration with subchondral bone formation and lateral host-tissue integration.
Collapse
Affiliation(s)
- Janani Radhakrishnan
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA's Hub for Research & Innovation (SHRI), School of Chemical & Biotechnology, SASTRA University, Thanjavur, 613401, India
| | - Amrutha Manigandan
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA's Hub for Research & Innovation (SHRI), School of Chemical & Biotechnology, SASTRA University, Thanjavur, 613401, India
| | - Prabu Chinnaswamy
- Central Animal Facility, SASTRA University, Thanjavur, 613401, India
| | - Anuradha Subramanian
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA's Hub for Research & Innovation (SHRI), School of Chemical & Biotechnology, SASTRA University, Thanjavur, 613401, India
| | - Swaminathan Sethuraman
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA's Hub for Research & Innovation (SHRI), School of Chemical & Biotechnology, SASTRA University, Thanjavur, 613401, India.
| |
Collapse
|
16
|
Chang NJ, Lee KW, Chu CJ, Shie MY, Chou PH, Lin CC, Liang PI. A Preclinical Assessment of Early Continuous Passive Motion and Treadmill Therapeutic Exercises for Generating Chondroprotective Effects After Anterior Cruciate Ligament Rupture. Am J Sports Med 2017; 45:2284-2293. [PMID: 28520463 DOI: 10.1177/0363546517704847] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Anterior cruciate ligament (ACL) injury is a well-known risk factor for the development of posttraumatic osteoarthritis (PTOA). However, whether using continuous passive motion (CPM) with or without additional treadmill exercise (TRE) in early ACL injury might provide chondroprotective effects and further decrease the risk of PTOA has yet to be determined. HYPOTHESIS CPM may offer an enhanced chondroprotective effect, but TRE may attenuate that effect due to the mechanical stress on the joint and inflammatory cytokines in the joint. STUDY DESIGN Controlled laboratory study. METHODS Thirty adult New Zealand White male rabbits were randomly allocated to sedentary (SED), CPM, TRE, or CPM+TRE groups. Each rabbit underwent an ACL transection (ACLT) on the right knee, with the contralateral knee used as an internal control (sham). The 4 joint surfaces (ie, medial and lateral femoral condyles and tibial plateaus) were evaluated 4 weeks after surgery for gross appearance, histological characteristics, and quantitative osteoarthritis (OA) scores. RESULTS Overall, at the end of testing, the CPM group experienced the best protective therapeutic effects in all compartments. In gross appearance, CPM resulted in normal articular surfaces, while the TRE and SED groups exhibited surface abrasion. Histological analysis showed significant differences in articular cartilage status. The CPM group had significantly better histological OA scores ( P < .01), corresponding to the smoothest cartilage surface and sound chondrocyte and collagen arrangement. This group also showed abundant glycosaminoglycan (GAG) content and a sound growth microenvironment, with significantly lower expression levels of the inflammatory cytokine tumor necrosis factor α and the apoptotic marker caspase 3. In contrast, the TRE and SED groups showed several features of damage: distinct graded cartilage abrasion; damaged collagen fibers, corresponding to noticeable collagen type X (osteoarthritic cartilage); reduced cartilage thickness; fewer cartilaginous cells; and the appearance of chondrocyte clusters. These groups also showed loss of GAG, corresponding to higher levels of inflammatory cytokines and apoptosis of articular chondrocytes. Furthermore, the CPM+TRE group displayed visible pathological changes in the superficial cartilage, indicating that early loading exercise may contribute to osteoarthritis. The sham treatment showed no difference in the changes in all compartments between groups. CONCLUSION Immediate CPM therapy produces a superior in situ microenvironment for reducing the occurrence of PTOA after ACL injury without reconstruction in rabbits. CLINICAL RELEVANCE These data suggest that immediate application of CPM therapy may be necessary to create a sound microenvironment in joints and possibly to decrease the risk of PTOA without or while awaiting ACL reconstruction. In contrast, both early active loading exercise and inactivity lead to the development of PTOA.
Collapse
Affiliation(s)
- Nai-Jen Chang
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Kuan-Wei Lee
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Chih-Jou Chu
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Ming-You Shie
- 3D Printing Medical Research Center, China Medical University Hospital, North District, Taichung City, Taiwan
| | - Pei-Hsi Chou
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Chih-Chan Lin
- Laboratory Animal Center, Department of Medical Research, Chi-Mei Medical Center, Yongkang District, Tainan City, Taiwan
| | - Peir-In Liang
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
| |
Collapse
|
17
|
Can Early Rehabilitation Prevent Posttraumatic Osteoarthritis in the Patellofemoral Joint after Anterior Cruciate Ligament Rupture? Understanding the Pathological Features. Int J Mol Sci 2017; 18:ijms18040829. [PMID: 28420082 PMCID: PMC5412413 DOI: 10.3390/ijms18040829] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 04/11/2017] [Accepted: 04/11/2017] [Indexed: 11/26/2022] Open
Abstract
Knee instability resulting from anterior cruciate ligament (ACL) rupture is a high-risk factor for posttraumatic osteoarthritis (PTOA) in the patellofemoral joint (PFJ). However, whether non-weight-bearing and weight-bearing treatments have chondroprotective effects remains unclear. Twenty-four adult New Zealand White male rabbits were employed in this study. All animals received ACL transection in the right knee and sham surgery in the left knee. The rabbits were randomly assigned to the following groups: (I) In the sedentary (SED) group, the rabbits (n = 6) were simply kept in their cage; (II) In the continuous passive motion (CPM) group, the rabbits (n = 6) performed CPM exercise for 7 days, starting from the first postoperative day; (III) In the active treadmill exercise (TRE) group, the rabbits (n = 6) performed TRE for 2 weeks; (IV) In the CPM + TRE group, the rabbits (n = 6) executed CPM exercise, followed by TRE. Two joint surfaces (the retropatella and femoral trochlear groove) were assessed at 4 weeks after operation. Although the gross appearance in each group was comparable, histological examination revealed significant differences in the articular cartilage status. The CPM group exhibited a greater thickness of articular cartilage, maintenance of tidemark continuity, abundant glycosaminoglycan (GAG), and significantly lower inflammatory cytokine 9, e.g., tumor necrosis factor-alpha (TNF-α) 0 levels, with modest cell apoptosis (i.e., caspase-3). By contrast, the TRE group displayed the worst pathological features: an irregular cartilage surface and chondrocyte disorganization, reduced cartilage thickness, breakdown of the tidemark, depletion of collagen fibers, loss of GAG, and the highest levels of TNF-α and caspase-3 expression. Furthermore, the CPM + TRE group had more favorable outcomes than the SED group, indicating that suitable exercise is needed. The sham treatment displayed no variance in the changes in the two joint surfaces among groups. These data indicate that the application of early CPM rehabilitation is suggested for subjects in order to decrease the risk of PTOA without ACL reconstruction in the PFJ compartment in rabbits. The early TRE program, however, had harmful outcomes. Additionally, inactivity was discovered to initiate the development of PTOA.
Collapse
|
18
|
Abueva CDG, Jang DW, Padalhin A, Lee BT. Phosphonate-chitosan functionalization of a multi-channel hydroxyapatite scaffold for interfacial implant-bone tissue integration. J Mater Chem B 2017; 5:1293-1301. [DOI: 10.1039/c6tb03228a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphonate-chitosan functionalization of a multi-channel hydroxyapatite scaffold as a new approach to improve interfacial implant-bone tissue integration.
Collapse
Affiliation(s)
- Celine D. G. Abueva
- Department of Regenerative Medicine
- College of Medicine
- Soonchunhyang University
- Cheonan-si
- Republic of Korea
| | - Dong-Woo Jang
- Department of Regenerative Medicine
- College of Medicine
- Soonchunhyang University
- Cheonan-si
- Republic of Korea
| | - Andrew Padalhin
- Department of Regenerative Medicine
- College of Medicine
- Soonchunhyang University
- Cheonan-si
- Republic of Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine
- College of Medicine
- Soonchunhyang University
- Cheonan-si
- Republic of Korea
| |
Collapse
|
19
|
Narayanan G, Vernekar VN, Kuyinu EL, Laurencin CT. Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering. Adv Drug Deliv Rev 2016; 107:247-276. [PMID: 27125191 PMCID: PMC5482531 DOI: 10.1016/j.addr.2016.04.015] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/09/2016] [Accepted: 04/17/2016] [Indexed: 02/07/2023]
Abstract
Regenerative engineering converges tissue engineering, advanced materials science, stem cell science, and developmental biology to regenerate complex tissues such as whole limbs. Regenerative engineering scaffolds provide mechanical support and nanoscale control over architecture, topography, and biochemical cues to influence cellular outcome. In this regard, poly (lactic acid) (PLA)-based biomaterials may be considered as a gold standard for many orthopaedic regenerative engineering applications because of their versatility in fabrication, biodegradability, and compatibility with biomolecules and cells. Here we discuss recent developments in PLA-based biomaterials with respect to processability and current applications in the clinical and research settings for bone, ligament, meniscus, and cartilage regeneration.
Collapse
Affiliation(s)
- Ganesh Narayanan
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA; Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Varadraj N Vernekar
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA; Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Emmanuel L Kuyinu
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA; Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Cato T Laurencin
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA; Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA; School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA; Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
20
|
Wei J, Herrler T, Han D, Liu K, Huang R, Guba M, Dai C, Li Q. Autologous temporomandibular joint reconstruction independent of exogenous additives: a proof-of-concept study for guided self-generation. Sci Rep 2016; 6:37904. [PMID: 27892493 PMCID: PMC5124955 DOI: 10.1038/srep37904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/02/2016] [Indexed: 12/12/2022] Open
Abstract
Joint defects are complex and difficult to reconstruct. By exploiting the body’s own regenerative capacity, we aimed to individually generate anatomically precise neo-tissue constructs for autologous joint reconstruction without using any exogenous additives. In a goat model, CT scans of the mandibular condyle including articular surface and a large portion of the ascending ramus were processed using computer-aided design and manufacturing. A corresponding hydroxylapatite negative mold was printed in 3D and temporarily embedded into the transition zone of costal periosteum and perichondrium. A demineralized bone matrix scaffold implanted on the contralateral side served as control. Neo-tissue constructs obtained by guided self-generation exhibited accurate configuration, robust vascularization, biomechanical stability, and function. After autologous replacement surgery, the constructs showed stable results with similar anatomical, histological, and functional findings compared to native controls. Further studies are required to assess long-term outcome and possible extensions to other further applications. The absence of exogenous cells, growth factors, and scaffolds may facilitate clinical translation of this approach.
Collapse
Affiliation(s)
- Jiao Wei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tanja Herrler
- Plastic Surgery and Burn Center, Trauma Center Murnau, Munich, Germany
| | - Dong Han
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rulin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Markus Guba
- Klinik für Allgemeine, Viszeral-, Transplantations-, Gefäß- und Thoraxchirurgie, Klinikum der Universität München, Ludwig-Maximilians-Universität, Munich, Germany
| | - Chuanchang Dai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Pot MW, Gonzales VK, Buma P, IntHout J, van Kuppevelt TH, de Vries RBM, Daamen WF. Improved cartilage regeneration by implantation of acellular biomaterials after bone marrow stimulation: a systematic review and meta-analysis of animal studies. PeerJ 2016; 4:e2243. [PMID: 27651981 PMCID: PMC5018675 DOI: 10.7717/peerj.2243] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/21/2016] [Indexed: 12/21/2022] Open
Abstract
Microfracture surgery may be applied to treat cartilage defects. During the procedure the subchondral bone is penetrated, allowing bone marrow-derived mesenchymal stem cells to migrate towards the defect site and form new cartilage tissue. Microfracture surgery generally results in the formation of mechanically inferior fibrocartilage. As a result, this technique offers only temporary clinical improvement. Tissue engineering and regenerative medicine may improve the outcome of microfracture surgery. Filling the subchondral defect with a biomaterial may provide a template for the formation of new hyaline cartilage tissue. In this study, a systematic review and meta-analysis were performed to assess the current evidence for the efficacy of cartilage regeneration in preclinical models using acellular biomaterials implanted after marrow stimulating techniques (microfracturing and subchondral drilling) compared to the natural healing response of defects. The review aims to provide new insights into the most effective biomaterials, to provide an overview of currently existing knowledge, and to identify potential lacunae in current studies to direct future research. A comprehensive search was systematically performed in PubMed and EMBASE (via OvidSP) using search terms related to tissue engineering, cartilage and animals. Primary studies in which acellular biomaterials were implanted in osteochondral defects in the knee or ankle joint in healthy animals were included and study characteristics tabulated (283 studies out of 6,688 studies found). For studies comparing non-treated empty defects to defects containing implanted biomaterials and using semi-quantitative histology as outcome measure, the risk of bias (135 studies) was assessed and outcome data were collected for meta-analysis (151 studies). Random-effects meta-analyses were performed, using cartilage regeneration as outcome measure on an absolute 0–100% scale. Implantation of acellular biomaterials significantly improved cartilage regeneration by 15.6% compared to non-treated empty defect controls. The addition of biologics to biomaterials significantly improved cartilage regeneration by 7.6% compared to control biomaterials. No significant differences were found between biomaterials from natural or synthetic origin or between scaffolds, hydrogels and blends. No noticeable differences were found in outcome between animal models. The risk of bias assessment indicated poor reporting for the majority of studies, impeding an assessment of the actual risk of bias. In conclusion, implantation of biomaterials in osteochondral defects improves cartilage regeneration compared to natural healing, which is further improved by the incorporation of biologics.
Collapse
Affiliation(s)
- Michiel W Pot
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Veronica K Gonzales
- Department of Orthopedics, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Pieter Buma
- Department of Orthopedics, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Joanna IntHout
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Rob B M de Vries
- SYRCLE (SYstematic Review Centre for Laboratory animal Experimentation), Central Animal Laboratory, Radboud university medical center, Nijmegen, The Netherlands
| | - Willeke F Daamen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
22
|
Jia P, Chen H, Kang H, Qi J, Zhao P, Jiang M, Guo L, Zhou Q, Qian ND, Zhou HB, Xu YJ, Fan Y, Deng LF. Deferoxamine released from poly(lactic-co-glycolic acid) promotes healing of osteoporotic bone defect via enhanced angiogenesis and osteogenesis. J Biomed Mater Res A 2016; 104:2515-27. [PMID: 27227768 DOI: 10.1002/jbm.a.35793] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/18/2016] [Accepted: 05/24/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Peng Jia
- Department of Orthopaedics; San Xiang Road 1055, The Second Affiliated Hospital of Soochow University; Suzhou Jiangsu Province 215004 China
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese Western Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine; Rui Jin Er Road 197 Shanghai 200020 China
| | - Hao Chen
- Department of Orthopaedics; Shanghai Jiao Tong University School of Medicine, Shanghai Ren Ji Hospital; Pu Jian Road 160 Shanghai 200120 China
| | - Hui Kang
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese Western Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine; Rui Jin Er Road 197 Shanghai 200020 China
| | - Jin Qi
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese Western Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine; Rui Jin Er Road 197 Shanghai 200020 China
| | - Peng Zhao
- Nursing Department; The Second Affiliated Hospital of Soochow University; San Xiang Road 1055 Suzhou Jiangsu Province China 215004
| | - Min Jiang
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese Western Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine; Rui Jin Er Road 197 Shanghai 200020 China
| | - Lei Guo
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese Western Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine; Rui Jin Er Road 197 Shanghai 200020 China
| | - Qi Zhou
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese Western Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine; Rui Jin Er Road 197 Shanghai 200020 China
| | - Nian Dong Qian
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese Western Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine; Rui Jin Er Road 197 Shanghai 200020 China
| | - Han Bing Zhou
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese Western Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine; Rui Jin Er Road 197 Shanghai 200020 China
| | - You Jia Xu
- Department of Orthopaedics; San Xiang Road 1055, The Second Affiliated Hospital of Soochow University; Suzhou Jiangsu Province 215004 China
| | - Yongqian Fan
- Department of Orthopaedics; Huadong Hospital Affiliated Fudan University; Yan'an Western Road 221 Shanghai 200040 China
| | - Lian Fu Deng
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese Western Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine; Rui Jin Er Road 197 Shanghai 200020 China
| |
Collapse
|
23
|
Xu L, Li Z, Lei L, Zhou YZ, Deng SY, He YB, Ni GX. Spatial and temporal changes of subchondral bone proceed to articular cartilage degeneration in rats subjected to knee immobilization. Microsc Res Tech 2016; 79:209-18. [PMID: 26910643 DOI: 10.1002/jemt.22620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/21/2015] [Accepted: 12/20/2015] [Indexed: 02/05/2023]
Abstract
This study was aimed to investigate the spatial and temporal changes of subchondral bone and its overlying articular cartilage in rats following knee immobilization. A total of 36 male Wistar rats (11-13 months old) were assigned randomly and evenly into 3 groups. For each group, knee joints in 6 rats were immobilized unilaterally for 1, 4, or 8 weeks, respectively, while the remaining rats were allowed free activity and served as external control groups. For each animal, femurs at both sides were dissected after sacrificed. The distal part of femur was examined by micro-CT. Subsequently, femoral condyles were collected for further histological observation and analysis. For articular cartilage, significant changes were observed only at 4 and 8 weeks of immobilization. The thickness of articular cartilage and chondrocytes numbers decreased with time. However, significant changes in subchondral bone were defined by micro-CT following immobilization in a time-dependent manner. Immobilization led to a thinner and more porous subchondral bone plate, as well as a reduction in trabecular thickness and separation with a more rod-like architecture. Changes in subchondral bone occurred earlier than in articular cartilage. More importantly, immobilization-induced changes in subchondral bone may contribute, at least partially, to changes in its overlying articular cartilage.
Collapse
Affiliation(s)
- Lei Xu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue (N), Guangzhou, 510515, China
| | - Zhe Li
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue (N), Guangzhou, 510515, China
- Department of Orthopedics, Zhengzhou Orthopedics Hospital, 58 Longhai Road, Zhengzhou, 450052, China
| | - Lei Lei
- Department of Rehabilitation Medicine, Longyan First Hospital, 105 Jiuyi Road (N), Longyan, 364000, China
| | - Yue-Zhu Zhou
- Department of Rehabilitation Medicine, First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Song-Yun Deng
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue (N), Guangzhou, 510515, China
| | - Yong-Bin He
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue (N), Guangzhou, 510515, China
| | - Guo-Xin Ni
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue (N), Guangzhou, 510515, China
- Department of Rehabilitation Medicine, First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| |
Collapse
|
24
|
Positive effects of cell-free porous PLGA implants and early loading exercise on hyaline cartilage regeneration in rabbits. Acta Biomater 2015; 28:128-137. [PMID: 26407650 DOI: 10.1016/j.actbio.2015.09.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/17/2015] [Accepted: 09/21/2015] [Indexed: 11/24/2022]
Abstract
The regeneration of hyaline cartilage remains clinically challenging. Here, we evaluated the therapeutic effects of using cell-free porous poly(lactic-co-glycolic acid) (PLGA) graft implants (PGIs) along with early loading exercise to repair a full-thickness osteochondral defect. Rabbits were randomly allocated to a treadmill exercise (TRE) group or a sedentary (SED) group and were prepared as either a PGI model or an empty defect (ED) model. TRE was performed as a short-term loading exercise; SED was physical inactivity in a free cage. The knees were evaluated at 6 and 12 weeks after surgery. At the end of testing, none of the knees developed synovitis, formed osteophytes, or became infected. Macroscopically, the PGI-TRE group regenerated a smooth articular surface, with transparent new hyaline-like tissue soundly integrated with the neighboring cartilage, but the other groups remained distinct at the margins with fibrous or opaque tissues. In a micro-CT analysis, the synthesized bone volume/tissue volume (BV/TV) was significantly higher in the PGI-TRE group, which also had integrating architecture in the regeneration site. The thickness of the trabecular (subchondral) bone was improved in all groups from 6 to 12 weeks. Histologically, remarkable differences in the cartilage regeneration were visible. At week 6, compared with SED groups, the TRE groups manifested modest inflammatory cells with pro-inflammatory cytokines (i.e., TNF-α and IL-6), improved collagen alignment and higher glycosaminoglycan (GAG) content, particularly in the PGI-TRE group. At week 12, the PGI-TRE group had the best regeneration outcomes, showing the formation of hyaline-like cartilage, the development of columnar rounded chondrocytes that expressed enriched levels of collagen type II and GAG, and functionalized trabecular bone with osteocytes. In summary, the combination of implanting cell-free PLGA and performing an early loading exercise can significantly promote the full-thickness osteochondral regeneration in rabbit knee joint models. STATEMENT OF SIGNIFICANCE Promoting effective hyaline cartilage regeneration rather than fibrocartilage scar tissue remains clinically challenging. To address the obstacle, we fabricated a spongy cell-free PLGA scaffold, and designed a reasonable exercise program to generate combined therapeutic effects. First, the implanting scaffold generates an affordable mechanical structure to bear the loading forces and bridge with the host to offer a space in the full-thickness osteochondral regeneration in rabbit knee joint. After implantation, rabbits were performed by an early treadmill exercise 15 min/day, 5 days/week for 2 weeks that directly exerts in situ endogenous growth factor and anti-inflammatory effects in the reparative site. The advanced therapeutic strategy showed that neo-hyaline cartilage formation with enriched collagen type II, higher glycosaminoglycan, integrating subchondral bone formation and modest inflammation.
Collapse
|
25
|
Huang D, Li D, Wang T, Shen H, Zhao P, Liu B, You Y, Ma Y, Yang F, Wu D, Wang S. Isoniazid conjugated poly(lactide-co-glycolide): Long-term controlled drug release and tissue regeneration for bone tuberculosis therapy. Biomaterials 2015; 52:417-25. [DOI: 10.1016/j.biomaterials.2015.02.052] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 12/11/2022]
|
26
|
Yan LP, Oliveira JM, Oliveira AL, Reis RL. Current Concepts and Challenges in Osteochondral Tissue Engineering and Regenerative Medicine. ACS Biomater Sci Eng 2015; 1:183-200. [DOI: 10.1021/ab500038y] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Le-Ping Yan
- 3B’s
Research Group−Biomaterials, Biodegradables and Biomimetics,
Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, University of Minho, AvePark, S. Cláudio
de Barco, 4806-909 Taipas, Guimarães, Portugal
- ICVS/3B’s−PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joaquim M. Oliveira
- 3B’s
Research Group−Biomaterials, Biodegradables and Biomimetics,
Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, University of Minho, AvePark, S. Cláudio
de Barco, 4806-909 Taipas, Guimarães, Portugal
- ICVS/3B’s−PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana L. Oliveira
- 3B’s
Research Group−Biomaterials, Biodegradables and Biomimetics,
Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, University of Minho, AvePark, S. Cláudio
de Barco, 4806-909 Taipas, Guimarães, Portugal
- ICVS/3B’s−PT Government Associate Laboratory, Braga/Guimarães, Portugal
- CBQF−Center
for Biotechnology and Fine Chemistry, School of Biotechnology, Portuguese Catholic University, Porto 4200−072, Portugal
| | - Rui L. Reis
- 3B’s
Research Group−Biomaterials, Biodegradables and Biomimetics,
Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, University of Minho, AvePark, S. Cláudio
de Barco, 4806-909 Taipas, Guimarães, Portugal
- ICVS/3B’s−PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
27
|
Campos DM, Gritsch K, Salles V, Attik GN, Grosgogeat B. Surface Entrapment of Fibronectin on Electrospun PLGA Scaffolds for Periodontal Tissue Engineering. Biores Open Access 2014; 3:117-26. [PMID: 24940563 PMCID: PMC4048976 DOI: 10.1089/biores.2014.0015] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nowadays, the challenge in the tissue engineering field consists in the development of biomaterials designed to regenerate ad integrum damaged tissues. Despite the current use of bioresorbable polyesters such as poly(l-lactide) (PLA), poly(d,l-lactide-co-glycolide) (PLGA), and poly-ɛ-caprolactone in soft tissue regeneration researches, their hydrophobic properties negatively influence the cell adhesion. Here, to overcome it, we have developed a fibronectin (FN)-functionalized electrospun PLGA scaffold for periodontal ligament regeneration. Functionalization of electrospun PLGA scaffolds was performed by alkaline hydrolysis (0.1 or 0.01 M NaOH). Then, hydrolyzed scaffolds were coated by simple deposition of an FN layer (10 μg/mL). FN coating was evidenced by X-ray photoelectron analysis. A decrease of contact angle and greater cell adhesion to hydrolyzed, FN-coated PLGA scaffolds were noticed. Suitable degradation behavior without pH variations was observed for all samples up to 28 days. All treated materials presented strong shrinkage, fiber orientation loss, and collapsed fibers. However, functionalization process using 0.01 M NaOH concentration resulted in unchanged scaffold porosity, preserved chemical composition, and similar mechanical properties compared with untreated scaffolds. The proposed simplified method to functionalize electrospun PLGA fibers is an efficient route to make polyester scaffolds more biocompatible and shows potential for tissue engineering.
Collapse
Affiliation(s)
- Doris M Campos
- Laboratoire des Multimatériaux et Interfaces CNRS UMR 5615, Université Lyon 1 , Villeurbanne, France . ; UFR d'odontologie, Université Lyon 1 , Villeurbanne, France
| | - Kerstin Gritsch
- Laboratoire des Multimatériaux et Interfaces CNRS UMR 5615, Université Lyon 1 , Villeurbanne, France . ; UFR d'odontologie, Université Lyon 1 , Villeurbanne, France . ; Centre de Soins, d'Enseignement et de Recherche Dentaires (Département de Parodontologie), Université Lyon 1 , Villeurbanne, France
| | - Vincent Salles
- Laboratoire des Multimatériaux et Interfaces CNRS UMR 5615, Université Lyon 1 , Villeurbanne, France
| | - Ghania N Attik
- Laboratoire des Multimatériaux et Interfaces CNRS UMR 5615, Université Lyon 1 , Villeurbanne, France
| | - Brigitte Grosgogeat
- Laboratoire des Multimatériaux et Interfaces CNRS UMR 5615, Université Lyon 1 , Villeurbanne, France . ; UFR d'odontologie, Université Lyon 1 , Villeurbanne, France . ; Centre de Soins, d'Enseignement et de Recherche Dentaires (Département de Santé Publique), Université Lyon 1 , Villeurbanne, France
| |
Collapse
|
28
|
Levingstone TJ, Matsiko A, Dickson GR, O’Brien FJ, Gleeson JP. A biomimetic multi-layered collagen-based scaffold for osteochondral repair. Acta Biomater 2014; 10:1996-2004. [PMID: 24418437 DOI: 10.1016/j.actbio.2014.01.005] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 12/19/2013] [Accepted: 01/02/2014] [Indexed: 12/13/2022]
Abstract
Cartilage and osteochondral defects pose a significant challenge in orthopedics. Tissue engineering has shown promise as a potential method for the treatment of such defects; however, a long-lasting repair strategy has yet to be realized. This study focuses on the development of a layered construct for osteochondral repair, fabricated through a novel "iterative layering" freeze-drying technique. The process involved repeated steps of layer addition followed by freeze-drying, enabling control over material composition, pore size and substrate stiffness in each region of the construct, while also achieving a seamlessly integrated layer structure. The novel construct developed mimics the inherent gradient structure of healthy osteochondral tissue: a bone layer composed of type I collagen and hydroxyapatite (HA), an intermediate layer composed of type I collagen, type II collagen and HA and a cartilaginous region composed of type I collagen, type II collagen and hyaluronic acid. The material properties were designed to provide the biological cues required to encourage infiltration of host cells from the bone marrow while the biomechanical properties were designed to provide an environment optimized to promote differentiation of these cells towards the required lineage in each region. This novel osteochondral graft was shown to have a seamlessly integrated layer structure, high levels of porosity (>97%), a homogeneous pore structure and a high degree of pore interconnectivity. Moreover, homogeneous cellular distribution throughout the entire construct was evident following in vitro culture, demonstrating the potential of this multi-layered scaffold as an advanced strategy for osteochondral defect repair.
Collapse
|
29
|
Song JQ, Dong F, Li X, Xu CP, Cui Z, Jiang N, Jia JJ, Yu B. Effect of treadmill exercise timing on repair of full-thickness defects of articular cartilage by bone-derived mesenchymal stem cells: an experimental investigation in rats. PLoS One 2014; 9:e90858. [PMID: 24595327 PMCID: PMC3940955 DOI: 10.1371/journal.pone.0090858] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 02/06/2014] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE Current medical practice for the treatment of articular cartilage lesions remains a clinical challenge due to the limited self-repair ability of articular cartilage. Both experimental and clinical researches show that moderate exercise can improve articular cartilage repair process. However, optimal timing of moderate exercise is unclear. We aimed to evaluate the effect of timing of moderate treadmill exercise on repair of full-thickness defects of articular cartilage. DESIGN Full-thickness cartilage defects were drilled in the patellar groove of bilateral femoral condyles in a total of 40 male SD rats before they were randomly assigned into four even groups. In sedentary control (SED) group, no exercise was given; in 2-week (2W), 4-week (4W) and 8-week groups, moderate treadmill exercise was initiated respectively two, four and eight weeks after operation. Half of the animals were sacrificed at week 10 after operation and half at week 14 after operation. Femoral condyles were harvested for gross observation and histochemical measurement by O'Driscoll scoring system. Collagen type II was detected by immunohistochemistry and mRNA expressions of aggrecan and collagen type II cartilage by RT-PCR. RESULTS Both 10 and 14 weeks post-operation, the best results were observed in 4W group and the worst results appeared in 2W group. The histochemistry scores and the expressions of collagen type II and aggrecan were significantly higher in 4W group than that in other three groups (P<0.05). CONCLUSIONS Moderate exercise at a selected timing (approximately 4 weeks) after injury can significantly promote the healing of cartilage defects but may hamper the repair process if performed too early while delayed intervention by moderate exercise may reduce its benefits in repair of the defects.
Collapse
Affiliation(s)
- Jin-qi Song
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Fu Dong
- Department of Orthopaedics, Beihai People's Hospital of Guangxi Province, Bei Hai, Guangxi Province, China
| | - Xue Li
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chang-peng Xu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhuang Cui
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Nan Jiang
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jun-jie Jia
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Bin Yu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Key Laboratory of Bone and Cartilage Regenerative Medicine of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
30
|
Dai L, He Z, Zhang X, Hu X, Yuan L, Qiang M, Zhu J, Shao Z, Zhou C, Ao Y. One-step repair for cartilage defects in a rabbit model: a technique combining the perforated decalcified cortical-cancellous bone matrix scaffold with microfracture. Am J Sports Med 2014; 42:583-91. [PMID: 24496505 DOI: 10.1177/0363546513518415] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Cartilage repair still presents a challenge to clinicians and researchers alike. A more effective, simpler procedure that can produce hyaline-like cartilage is needed for articular cartilage repair. HYPOTHESIS A technique combining microfracture with a biomaterial scaffold of perforated decalcified cortical-cancellous bone matrix (DCCBM; composed of cortical and cancellous parts) would create a 1-step procedure for hyaline-like cartilage repair. STUDY DESIGN Controlled laboratory study. METHODS For the in vitro portion of this study, mesenchymal stem cells (MSCs) were isolated from bone marrow aspirates of New Zealand White rabbits. Scanning electron microscopy (SEM), confocal microscopy, and 1,9-dimethylmethylene blue assay were used to assess the attachment, proliferation, and cartilage matrix production of MSCs grown on a DCCBM scaffold. For the in vivo experiment, full-thickness defects were produced in the articular cartilage of the trochlear groove of 45 New Zealand White rabbits, and the rabbits were then assigned to 1 of 3 treatment groups: perforated DCCBM combined with microfracture (DCCBM+M group), perforated DCCBM alone (DCCBM group), and microfracture alone (M group). Five rabbits in each group were sacrificed at 6, 12, or 24 weeks after the operation, and the repair tissues were analyzed by histological examination, assessment of matrix staining, SEM, and nanoindentation of biomechanical properties. RESULTS The DCCBM+M group showed hyaline-like articular cartilage repair, and the repair tissues appeared to have better matrix staining and revealed biomechanical properties close to those of the normal cartilage. Compared with the DCCBM+M group, there was unsatisfactory repair tissues with less matrix staining in the DCCBM group and no matrix staining in the M group, as well as poor integration with normal cartilage and poor biomechanical properties. CONCLUSION The DCCBM scaffold is suitable for MSC growth and hyaline-like cartilage repair induction when combined with microfracture. CLINICAL RELEVANCE Microfracture combined with a DCCBM scaffold is a promising method that can be performed and adopted into clinical treatment for articular cartilage injuries.
Collapse
Affiliation(s)
- Linghui Dai
- Yingfang Ao, Institute of Sports Medicine, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing 100191, PR China. , and Chunyan Zhou, Department of Biochemistry and Molecular Biology, Peking University School of Basic Medical Sciences, 38 Xueyuan Rd, Haidian District, Beijing 100191, PR China (e-mail: )
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Jeon JE, Vaquette C, Klein TJ, Hutmacher DW. Perspectives in Multiphasic Osteochondral Tissue Engineering. Anat Rec (Hoboken) 2013; 297:26-35. [DOI: 10.1002/ar.22795] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 12/25/2022]
Affiliation(s)
- June E. Jeon
- Institute of Health and Biomedical Innovation, Queensland University of Technology 60 Musk Ave., Kelvin Grove, QLD, 4059, Australia
| | - Cedryck Vaquette
- Institute of Health and Biomedical Innovation, Queensland University of Technology 60 Musk Ave., Kelvin Grove, QLD, 4059, Australia
| | - Travis J. Klein
- Institute of Health and Biomedical Innovation, Queensland University of Technology 60 Musk Ave., Kelvin Grove, QLD, 4059, Australia
| | - Dietmar W. Hutmacher
- Institute of Health and Biomedical Innovation, Queensland University of Technology 60 Musk Ave., Kelvin Grove, QLD, 4059, Australia
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Drive Atlanta, GA 30332, USA
| |
Collapse
|
32
|
The basic science of continuous passive motion in promoting knee health: a systematic review of studies in a rabbit model. Arthroscopy 2013; 29:1722-31. [PMID: 23890952 PMCID: PMC4955557 DOI: 10.1016/j.arthro.2013.05.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 05/23/2013] [Accepted: 05/31/2013] [Indexed: 02/06/2023]
Abstract
PURPOSE To determine whether the basic science evidence supports the use of continuous passive motion (CPM) after articular cartilage injury in the knee. METHODS A systematic review was performed identifying and evaluating studies in animal models that focused on the basic science of CPM of the knee. Databases included in this review were PubMed, Biosis Previews, SPORTDiscus, PEDro, and EMBASE. All functional, gross anatomic, histologic, and histochemical outcomes were extracted and analyzed. RESULTS Primary outcomes of CPM analyzed in rabbit animal models (19 studies) included histologic changes in articular cartilage (13 studies), biomechanical changes and nutrition of intra-articular tissue (3 studies), and anti-inflammatory biochemical changes (3 studies). Nine studies specifically examined osteochondral defects, 6 of which used autogenous periosteal grafts. Other pathologies included were antigen-induced arthritis, septic arthritis, medial collateral ligament reconstruction, hemarthrosis, and chymopapain-induced proteoglycan destruction. In comparison to immobilized knees, CPM therapy led to decreased joint stiffness and complications related to adhesions while promoting improved neochondrogenesis with formation and preservation of normal articular cartilage. CPM was also shown to create a strong anti-inflammatory environment by effectively clearing harmful, inflammatory particles from within the knee. CONCLUSIONS Current basic science evidence from rabbit studies has shown that CPM for the knee significantly improves motion and biological properties of articular cartilage. This may be translated to potentially improved outcomes in the management of articular cartilage pathology of the knee. CLINICAL RELEVANCE If the rabbit model is relevant to humans, CPM may contribute to improved knee health by preventing joint stiffness, preserving normal articular tissue with better histologic and biologic properties, and improving range of motion as compared with joint immobilization and intermittent active motion.
Collapse
|
33
|
Chang NJ, Lam CF, Lin CC, Chen WL, Li CF, Lin YT, Yeh ML. Transplantation of autologous endothelial progenitor cells in porous PLGA scaffolds create a microenvironment for the regeneration of hyaline cartilage in rabbits. Osteoarthritis Cartilage 2013; 21:1613-22. [PMID: 23927932 DOI: 10.1016/j.joca.2013.07.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 06/14/2013] [Accepted: 07/27/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Repairing articular cartilage is clinically challenging. We investigated a simple, effective and clinically feasible cell-based therapeutic approach using a poly(lactide-co-glycolide) (PLGA) scaffold seeded with autologous endothelial progenitor cells (EPC) to repair a full-thickness osteochondral defect in rabbits using a one-step surgery. METHODS EPC obtained by purifying a small amount of peripheral blood from rabbits were seeded into a highly porous, biocompatible PLGA scaffold, namely, EPC-PLGA, and implanted into the osteochondral defect in the medial femoral condyle. Twenty two rabbits were randomized into one of three groups: the empty defect group (ED), the PLGA-only group or the EPC-PLGA group. The defect sites were evaluated 4 and 12 weeks after implantation. RESULTS At the end of testing, only the EPC-PLGA group showed the development of new cartilage tissue with a smooth, transparent and integrated articular surface. Moreover, histological analysis showed obvious differences in cartilage regeneration. At week 4, the EPC-PLGA group showed considerably higher TGF-β2 and TGF-β3 expression, a greater amount of synthesized glycosaminoglycan (GAG) content, and a higher degree of osteochondral angiogenesis in repaired tissues. At week 12, the EPC-PLGA group showed enhanced hyaline cartilage regeneration with a normal columnar chondrocyte arrangement, higher SOX9 expression, and greater GAG and collagen type II (COLII) content. Moreover, the EPC-PLGA group showed organized osteochondral integration, the formation of vessel-rich tubercular bone and significantly higher bone volume per tissue volume and trabecular thickness (Tb.Th). CONCLUSION The present EPC-PLGA cell delivery system generates a suitable in situ microenvironment for osteochondral regeneration without the supplement of exogenous growth factors.
Collapse
Affiliation(s)
- N-J Chang
- Department of Biomedical Engineering, National Cheng Kung University, 1 University Rd., Tainan City 701, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
34
|
Practice in rehabilitation after cartilage therapy: an expert survey. Arch Orthop Trauma Surg 2013; 133:311-20. [PMID: 23263155 DOI: 10.1007/s00402-012-1662-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Indexed: 02/09/2023]
Abstract
BACKGROUND Current cartilage therapy modalities like microfracture, ACT/MACT, AMIC or osteochondral transplantation are important tools to treat symptomatic (osteo)chondral lesions of the knee joint. However, until now there exists no high-level evidence based accepted rehabilitation plan for the postoperative treatment. HYPOTHESIS/PURPOSE This survey describes the predominantly used rehabilitation plan as implemented by expert musculoskeletal surgeons for operatively treated (osteo)chondral lesions. STUDY DESIGN Survey and systematic review. METHODS An electronic questionnaire covering general and specific items concerning aftercare following cartilage therapy in the knee joint was designed and disposed to analyze rehabilitation programs among a population of expert musculoskeletal surgeons of the AGA (Society of arthroscopy and joint surgery). All instructors (304 in 01/2011) were included into the survey. A total of 246 (80.9 %) instructors answered the questionnaire. RESULTS The predominant used therapy to treat cartilage lesions is microfracture and for osteochondral lesions the osteochondral transplantation. Physiotherapy starts directly after surgery and takes more than 6 weeks. Most surgeons do not immobilize patients after surgery and use partial weight-bearing for up to 5 weeks. The change from partial to full weight-bearing is done step-wise with a 20-kg/week increase. Free ROM is allowed by the majority of instructors (55 %) directly after surgery. A CPM-device is also used directly and up to 5 weeks. Swimming and biking are allowed after 6 weeks, running is allowed after 12 weeks and contact sports after 24 weeks. Most instructors do not use braces in the aftercare procedure, but nearly all (93 %) prescribe crutches. Typical drugs used during the aftercare are NSAID, Heparin and antibiotics. For most instructors (79 % respectively 75 %) knee stability and a straight leg axis are necessary for a successful cartilage therapy. If a concomitant therapy like ACL reconstruction or an osteotomy is performed, aftercare is mainly dependent on cartilage therapy (62 % respectively 59 % of instructors). CONCLUSIONS Today there exists no detailed rehabilitation program for treatment after a cartilage-related operation on the basis of an evidence-based level I study. The reason might be that many variables contribute to a specific aftercare procedure. Therefore, the survey of experienced surgeons may help to identify the most promising rehabilitation regime for today, at least until evidence-based level I studies are accomplished.
Collapse
|
35
|
Fricain JC, Schlaubitz S, Le Visage C, Arnault I, Derkaoui SM, Siadous R, Catros S, Lalande C, Bareille R, Renard M, Fabre T, Cornet S, Durand M, Léonard A, Sahraoui N, Letourneur D, Amédée J. A nano-hydroxyapatite--pullulan/dextran polysaccharide composite macroporous material for bone tissue engineering. Biomaterials 2013; 34:2947-59. [PMID: 23375393 DOI: 10.1016/j.biomaterials.2013.01.049] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 01/09/2013] [Indexed: 01/25/2023]
Abstract
Research in bone tissue engineering is focused on the development of alternatives to allogenic and autologous bone grafts that can stimulate bone healing. Here, we present scaffolds composed of the natural hydrophilic polysaccharides pullulan and dextran, supplemented or not with nanocrystalline hydroxyapatite particles (nHA). In vitro studies revealed that these matrices induced the formation of multicellular aggregates and expression of early and late bone specific markers with human bone marrow stromal cells in medium deprived of osteoinductive factors. In absence of any seeded cells, heterotopic implantation in mice and goat, revealed that only the composite macroporous scaffold (Matrix + nHA) (i) retained subcutaneously local growth factors, including Bone Morphogenetic Protein 2 (BMP2) and VEGF165, (ii) induced the deposition of a biological apatite layer, (iii) favored the formation of a dense mineralized tissue subcutaneously in mice, as well osteoid tissue after intramuscular implantation in goat. The composite scaffold was thereafter implanted in orthotopic preclinical models of critical size defects, in small and large animals, in three different bony sites, i.e. the femoral condyle of rat, a transversal mandibular defect and a tibial osteotomy in goat. The Matrix + nHA induced a highly mineralized tissue in the three models whatever the site of implantation, as well as osteoid tissue and bone tissue regeneration in direct contact to the matrix. We therefore propose this composite matrix as a material for stimulating bone cell differentiation of host mesenchymal stem cells and bone formation for orthopedic and maxillofacial surgical applications.
Collapse
|
36
|
Chang NJ, Lin CC, Li CF, Su K, Yeh ML. The effect of osteochondral regeneration using polymer constructs and continuous passive motion therapy in the lower weight-bearing zone of femoral trocheal groove in rabbits. Ann Biomed Eng 2012; 41:385-97. [PMID: 22987137 DOI: 10.1007/s10439-012-0656-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 09/04/2012] [Indexed: 11/25/2022]
Abstract
Remedying patellofemoral osteochondral defects using clinical therapy remains challenging. Construct-based and cell-based regenerative medicine with in vitro physical stimuli has been progressively implemented. However, the effect of physical stimuli in situ in knee joints with degradable constructs is still not well-documented. Therefore, we studied whether it was practical to achieve articular cartilage repair using a poly(lactic-co-glycolic acid) (PLGA) construct in addition to early short-term continuous passive motion (CPM) for treatment of full-thickness osteochondral defects in the lower-weigh bearing (LWB) zone of the femoral trocheal groove. Twenty-six rabbits were randomly allocated into either intermittent active motion (IAM) or CPM treatment groups with or without PLGA constructs, termed PLGA construct-implanted (PCI) and empty defect knee models, respectively. Gross observation, histology, inflammatory cells, which were identified using H&E staining, total collagen and alignment, studied qualitatively using Masson's trichrome staining, glycosaminoglycan (GAG), identified using Alcian blue staining, and newly formed bone, observed using micro-CT, were evaluated at 4 and 12 weeks after surgery. Repair of osteochondral defects in the PCI-CPM group was more promising than all other groups. The better osteochondral defect repair in the PCI-CPM group corresponded to smooth cartilage surfaces, no inflammatory reaction, hyaline cartilaginous tissues composition, sound collagen alignment with positive collagen type II expression, higher GAG content, mature bone regeneration with osteocyte, clear tidemark formation, and better degradation of PLGA. In summary, the use of a simple PLGA construct coupled with passive motion promotes positive healing and may be a promising clinical intervention for osteochondral regeneration in LWB defects.
Collapse
Affiliation(s)
- Nai-Jen Chang
- Institute of Biomedical Engineering, National Cheng Kung University, 1 University Rd, Tainan City 701, Taiwan
| | | | | | | | | |
Collapse
|