1
|
Zhan Y, Mao Y, Sun P, Liu C, Gou H, Qi H, Chen G, Hu S, Tian B. Tumor-associated antigen-specific cell imaging based on upconversion luminescence and nucleic acid rolling circle amplification. Mikrochim Acta 2024; 191:248. [PMID: 38587676 DOI: 10.1007/s00604-024-06331-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/24/2024] [Indexed: 04/09/2024]
Abstract
Tumor-associated antigen (TAA)-based diagnosis has gained prominence for early tumor screening, treatment monitoring, prognostic assessment, and minimal residual disease detection. However, limitations such as low sensitivity and difficulty in extracting non-specific binding membrane proteins still exist in traditional detection methods. Upconversion luminescence (UCL) exhibits unique physical and chemical properties under wavelength near-infrared light excitation. Rolling circle amplification (RCA) is an efficient DNA amplification technique with amplification factors as high as 105. Therefore, the above two excellent techniques can be employed for highly accurate imaging analysis of tumor cells. Herein, we developed a novel nanoplatform for TAA-specific cell imaging based on UCL and RCA technology. An aptamer-primer complex selectively binds to Mucin 1 (MUC1), one of TAA on cell surface, to trigger RCA reaction, generating a large number of repetitive sequences. These sequences provide lots of binding sites for complementary signal probes, producing UCL from lanthanide-doped upconversion nanoparticles (UCNPs) after releasing quencher group. The experimental results demonstrate the specific attachment of upconversion nanomaterials to cancer cells which express a high level of MUC1, indicating the potential of UCNPs and RCA in tumor imaging.
Collapse
Affiliation(s)
- Ying Zhan
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yichun Mao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Pei Sun
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Chenbin Liu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Hongquan Gou
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Haipeng Qi
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
- School of Medicine, Anhui University of Science and Technology, Huainan, 232000, P. R. China
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Song Hu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| | - Bo Tian
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
2
|
Sowmiya P, Dhas TS, Inbakandan D, Anandakumar N, Nalini S, Suganya KSU, Remya RR, Karthick V, Kumar CMV. Optically active organic and inorganic nanomaterials for biological imaging applications: A review. Micron 2023; 172:103486. [PMID: 37262930 DOI: 10.1016/j.micron.2023.103486] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
Recent advancements in the field of nanotechnology have enabled targeted delivery of drug agents in vivo with minimal side effects. The use of nanoparticles for bio-imaging has revolutionized the field of nanomedicine by enabling non-invasive targeting and selective delivery of active drug moieties in vivo. Various inorganic nanomaterials like mesoporous silica nanoparticles, gold nanoparticles, magnetite nanoparticles graphene-based nanomaterials etc., have been created for multimodal therapies with varied multi-imaging modalities. These nanomaterials enable us to overcome the disadvantages of conventional imaging contrast agents (organic dyes) such as lack of stability in vitro and in vivo, high reactivity, low-quantum yield and poor photo stability. Inorganic nanomaterials can be easily fabricated, functionalised and modified as per requirements. Recently, advancements in synthesis techniques, such as the ability to generate molecules and construct supramolecular structures for specific functionalities, have boosted the usage of engineered nanomaterials. Their intrinsic physicochemical properties are unique and they possess excellent biocompatibility. Inorganic nanomaterial research has developed as the most actively booming research fields in biotechnology and biomedicine. Inorganic nanomaterials like gold nanoparticles, magnetic nanoparticles, mesoporous silica nanoparticles, graphene-based nanomaterials and quantum dots have shown excellent use in bioimaging, targeted drug delivery and cancer therapies. Biocompatibility of nanomaterials is an important aspect for the evolution of nanomaterials in the bench to bedside transition. The conduction of thorough and meticulous study for safety and efficacy in well-designed clinical trials is absolutely necessary to determine the functional and structural relationship between the engineered nanomaterial and its toxicity. In this article an attempt is made to throw some light on the current scenario and developments made in the field of nanomaterials in bioimaging.
Collapse
Affiliation(s)
- P Sowmiya
- Centre for Ocean Research (DST- FIST Sponsored Centre), MoES-Earth Science and Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - T Stalin Dhas
- Centre for Ocean Research (DST- FIST Sponsored Centre), MoES-Earth Science and Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India.
| | - D Inbakandan
- Centre for Ocean Research (DST- FIST Sponsored Centre), MoES-Earth Science and Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - N Anandakumar
- Department of Education, The Gandhigram Rural Institute, Dindigul 624302, Tamil Nadu, India
| | - S Nalini
- Department of Microbiology, Shree Rahavendra Arts and Science College, Keezhamoongiladi, Chidambaram 608102, Tamil Nadu, India
| | - K S Uma Suganya
- Department of Biotechnology and Biochemical Engineering, Sree Chitra Thirunal College of Engineering, Pappanamcode, Thiruvananthapuram 695018, Kerala, India
| | - R R Remya
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai 600073, Tamil Nadu, India
| | - V Karthick
- Centre for Ocean Research (DST- FIST Sponsored Centre), MoES-Earth Science and Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - C M Vineeth Kumar
- Centre for Ocean Research (DST- FIST Sponsored Centre), MoES-Earth Science and Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| |
Collapse
|
3
|
Li H, Sheng W, Haruna SA, Hassan MM, Chen Q. Recent advances in rare earth ion-doped upconversion nanomaterials: From design to their applications in food safety analysis. Compr Rev Food Sci Food Saf 2023; 22:3732-3764. [PMID: 37548602 DOI: 10.1111/1541-4337.13218] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023]
Abstract
The misuse of chemicals in agricultural systems and food production leads to an increase in contaminants in food, which ultimately has adverse effects on human health. This situation has prompted a demand for sophisticated detection technologies with rapid and sensitive features, as concerns over food safety and quality have grown around the globe. The rare earth ion-doped upconversion nanoparticle (UCNP)-based sensor has emerged as an innovative and promising approach for detecting and analyzing food contaminants due to its superior photophysical properties, including low autofluorescence background, deep penetration of light, low toxicity, and minimal photodamage to the biological samples. The aim of this review was to discuss an outline of the applications of UCNPs to detect contaminants in food matrices, with particular attention on the determination of heavy metals, pesticides, pathogenic bacteria, mycotoxins, and antibiotics. The review briefly discusses the mechanism of upconversion (UC) luminescence, the synthesis, modification, functionality of UCNPs, as well as the detection principles for the design of UC biosensors. Furthermore, because current UCNP research on food safety detection is still at an early stage, this review identifies several bottlenecks that must be overcome in UCNPs and discusses the future prospects for its application in the field of food analysis.
Collapse
Affiliation(s)
- Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Wei Sheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Suleiman A Haruna
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
- College of Food and Biological Engineering, Jimei University, Xiamen, P. R. China
| |
Collapse
|
4
|
Chintamaneni PK, Nagasen D, Babu KC, Mourya A, Madan J, Srinivasarao DA, Ramachandra RK, Santhoshi PM, Pindiprolu SKSS. Engineered upconversion nanocarriers for synergistic breast cancer imaging and therapy: Current state of art. J Control Release 2022; 352:652-672. [PMID: 36328078 DOI: 10.1016/j.jconrel.2022.10.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022]
Abstract
Breast cancer is the most common type of cancer in women and is the second leading cause of cancer-related deaths worldwide. Early diagnosis and effective therapeutic interventions are critical determinants that can improve survival and quality of life in breast cancer patients. Nanotheranostics are emerging interventions that offer the dual benefit of in vivo diagnosis and therapeutics through a single nano-sized carrier. Rare earth metal-doped upconversion nanoparticles (UCNPs) with their ability to convert near-infrared light to visible light or UV light in vivo settings have gained special attraction due to their unique luminescence and tumor-targeting properties. In this review, we have discussed applications of UCNPs in drug and gene delivery, photothermal therapy (PTT), photodynamic therapy (PDT) and tumor targeting in breast cancer. Further, present challenges and future opportunities for UCNPs in breast cancer treatment have also been mentioned.
Collapse
Affiliation(s)
- Pavan Kumar Chintamaneni
- Department of Pharmaceutics, GITAM School of Pharmacy, GITAM (Deemed to be University), Rudraram, 502329 Telangana, India.
| | - Dasari Nagasen
- Aditya Pharmacy College, Surampalem 533437, India; Jawaharlal Nehru Technological University Kakinada, Kakinada 533003, Andhra Pradesh, India.
| | - Katta Chanti Babu
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Atul Mourya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Dadi A Srinivasarao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India.
| | - R K Ramachandra
- Crystal Growth and Nanoscience Research Center, Department of Physics, Government College (A), Rajamahendravaram, Andhra Pradesh, India; Government Degree College, Chodavaram, Andhra Pradesh, India.
| | - P Madhuri Santhoshi
- Crystal Growth and Nanoscience Research Center, Department of Physics, Government College (A), Rajamahendravaram, Andhra Pradesh, India
| | - Sai Kiran S S Pindiprolu
- Aditya Pharmacy College, Surampalem 533437, India; Jawaharlal Nehru Technological University Kakinada, Kakinada 533003, Andhra Pradesh, India.
| |
Collapse
|
5
|
Li Y, Younis MH, Wang H, Zhang J, Cai W, Ni D. Spectral computed tomography with inorganic nanomaterials: State-of-the-art. Adv Drug Deliv Rev 2022; 189:114524. [PMID: 36058350 PMCID: PMC9664656 DOI: 10.1016/j.addr.2022.114524] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/09/2022] [Accepted: 08/27/2022] [Indexed: 01/24/2023]
Abstract
Recently, spectral computed tomography (CT) technology has received great interest in the field of radiology. Spectral CT imaging utilizes the distinct, energy-dependent X-ray absorption properties of substances in order to provide additional imaging information. Dual-energy CT and multi-energy CT (Spectral CT) are capable of constructing monochromatic energy images, material separation images, energy spectrum curves, constructing effective atomic number maps, and more. However, poor contrast, due to neighboring X-ray attenuation of organs and tissues, is still a challenge to spectral CT. Hence, contrast agents (CAs) are applied for better differentiation of a given region of interest (ROI). Currently, many different kinds of inorganic nanoparticulate CAs for spectral CT have been developed due to the limitations of clinical iodine (I)-based contrast media, leading to the conclusion that inorganic nanomedicine applied to spectral CT will be a powerful collaboration both in basic research and in clinics. In this review, the underlying principles and types of spectral CT techniques are discussed, and some evolving clinical diagnosis applications of spectral CT techniques are introduced. In particular, recent developments in inorganic CAs used for spectral CT are summarized. Finally, the challenges and future developments of inorganic nanomedicine in spectral CT are briefly discussed.
Collapse
Affiliation(s)
- Yuhan Li
- School of Medicine, Shanghai University, No. 99 Shangda Rd, Shanghai 200444, PR China
| | - Muhsin H Younis
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, WI 53705, United States
| | - Han Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Rd, Shanghai 200025, PR China
| | - Jian Zhang
- School of Medicine, Shanghai University, No. 99 Shangda Rd, Shanghai 200444, PR China; Shanghai Universal Medical Imaging Diagnostic Center, Bldg 8, No. 406 Guilin Rd, Shanghai 200233, PR China.
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, WI 53705, United States.
| | - Dalong Ni
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Rd, Shanghai 200025, PR China.
| |
Collapse
|
6
|
Ansari AA, Muthumareeswaran M, Lv R. Coordination chemistry of the host matrices with dopant luminescent Ln3+ ion and their impact on luminescent properties. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Wang H, Xu Y, Pang T, Chen B, Xin F, Xing M, Tian M, Fu Y, Luo X, Tian Y. Engineering Er 3+-sensitized nanocrystals to enhance NIR II-responsive upconversion luminescence. NANOSCALE 2022; 14:962-968. [PMID: 34989365 DOI: 10.1039/d1nr06945d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An Er3+-sensitized system with a high response to 1550 nm radiation in the second near-infrared window (NIR II) has been considered for a new class of potential candidates for applications in bio-imaging and advanced anti-counterfeiting, yet the achievement of highly efficient upconversion emission still remains a challenge. Here, we constructed a novel Er3+-sensitized core-shell-shell upconversion nanostructure with a Yb3+-enriched core as the emitting layer. This designed nanostructure allows the Yb3+ emitting layer to more efficiently trap and lock excitation energy by combining the interfacial energy transfer (IET) from the shell (Er3+) to the core (Yb3+), high activator Yb3+ content, and minimized energy back-transfer. As a result, the NIR II emission at 1000 nm is remarkably enhanced with a high quantum yield (QY) of 11.5%. Based on this trap and lock-in effect of the excitation energy in the Yb3+-enriched core, highly efficient 1550 nm-responsive visible and NIR upconversion emissions are also achieved by co-doping with other activator ions (e.g., Ho3+ and Tm3+). Our research provides a new functional design for improving NIR II-responsive upconversion luminescence, which is significant for developing practical applications.
Collapse
Affiliation(s)
- Hong Wang
- School of Science, Dalian Maritime University, Dalian 116026, China.
| | - Yang Xu
- School of Science, Dalian Maritime University, Dalian 116026, China.
| | - Tao Pang
- College of Science, Huzhou University, Huzhou 313000, China.
| | - Baojiu Chen
- School of Science, Dalian Maritime University, Dalian 116026, China.
| | - Fangyun Xin
- School of Science, Dalian Maritime University, Dalian 116026, China.
| | - Mingming Xing
- School of Science, Dalian Maritime University, Dalian 116026, China.
| | - Meng Tian
- School of Science, Dalian Maritime University, Dalian 116026, China.
| | - Yao Fu
- School of Science, Dalian Maritime University, Dalian 116026, China.
| | - Xixian Luo
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China
| | - Ying Tian
- School of Science, Dalian Maritime University, Dalian 116026, China.
| |
Collapse
|
8
|
Qi S, Wang X, Chang K, Shen W, Yu G, Du J. The bright future of nanotechnology in lymphatic system imaging and imaging-guided surgery. J Nanobiotechnology 2022; 20:24. [PMID: 34991595 PMCID: PMC8740484 DOI: 10.1186/s12951-021-01232-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/28/2021] [Indexed: 12/23/2022] Open
Abstract
Lymphatic system is identified the second vascular system after the blood circulation in mammalian species, however the research on lymphatic system has long been hampered by the lack of comprehensive imaging modality. Nanomaterials have shown the potential to enhance the quality of lymphatic imaging due to the unparalleled advantages such as the specific passive targeting and efficient co-delivery of cocktail to peripheral lymphatic system, ease molecular engineering for precise active targeting and prolonged retention in the lymphatic system of interest. Multimodal lymphatic imaging based on nanotechnology provides a complementary means to understand the kinetics of lymphoid tissues and quantify its function. In this review, we introduce the established approaches of lymphatic imaging used in clinic and summarize their strengths and weaknesses, and list the critical influence factors on lymphatic imaging. Meanwhile, the recent developments in the field of pre-clinical lymphatic imaging are discussed to shed new lights on the design of new imaging agents, the improvement of delivery methods and imaging-guided surgery strategies.
Collapse
Affiliation(s)
- Shaolong Qi
- Key Laboratory & Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, Changchun, 130031, People's Republic of China.,Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Xinyu Wang
- Key Laboratory & Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, Changchun, 130031, People's Republic of China
| | - Kun Chang
- Department of Lymphology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Wenbin Shen
- Department of Lymphology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Jianshi Du
- Key Laboratory & Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, Changchun, 130031, People's Republic of China.
| |
Collapse
|
9
|
Wang X, Chen L, Ge J, Afshari MJ, Yang L, Miao Q, Duan R, Cui J, Liu C, Zeng J, Zhong J, Gao M. Rational Constructed Ultra-Small Iron Oxide Nanoprobes Manifesting High Performance for T1-Weighted Magnetic Resonance Imaging of Glioblastoma. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2601. [PMID: 34685042 PMCID: PMC8540453 DOI: 10.3390/nano11102601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 01/22/2023]
Abstract
Precise diagnosis and monitoring of cancer depend on the development of advanced technologies for in vivo imaging. Owing to the merits of outstanding spatial resolution and excellent soft-tissue contrast, the application of magnetic resonance imaging (MRI) in biomedicine is of great importance. Herein, Angiopep-2 (ANG), which can simultaneously help to cross the blood-brain barrier and target the glioblastoma cells, was rationally combined with the 3.3 nm-sized ultra-small iron oxide (Fe3O4) to construct high-performance MRI nanoprobes (Fe3O4-ANG NPs) for glioblastoma diagnosis. The in vitro experiments show that the resultant Fe3O4-ANG NPs not only exhibit favorable relaxation properties and colloidal stability, but also have low toxicity and high specificity to glioblastoma cells, which provide critical prerequisites for the in vivo tumor imaging. Furthermore, in vivo imaging results show that the Fe3O4-ANG NPs exhibit good targeting ability toward subcutaneous and orthotopic glioblastoma model, manifesting an obvious contrast enhancement effect on the T1-weighted MR image, which demonstrates promising potential in clinical application.
Collapse
Affiliation(s)
- Xiangyan Wang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; (X.W.); (L.Y.); (J.Z.)
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China; (L.C.); (J.G.); (M.J.A.); (Q.M.); (R.D.); (J.C.); (C.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Lei Chen
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China; (L.C.); (J.G.); (M.J.A.); (Q.M.); (R.D.); (J.C.); (C.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jianxian Ge
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China; (L.C.); (J.G.); (M.J.A.); (Q.M.); (R.D.); (J.C.); (C.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Mohammad Javad Afshari
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China; (L.C.); (J.G.); (M.J.A.); (Q.M.); (R.D.); (J.C.); (C.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Lei Yang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; (X.W.); (L.Y.); (J.Z.)
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China; (L.C.); (J.G.); (M.J.A.); (Q.M.); (R.D.); (J.C.); (C.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Qingqing Miao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China; (L.C.); (J.G.); (M.J.A.); (Q.M.); (R.D.); (J.C.); (C.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ruixue Duan
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China; (L.C.); (J.G.); (M.J.A.); (Q.M.); (R.D.); (J.C.); (C.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jiabin Cui
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China; (L.C.); (J.G.); (M.J.A.); (Q.M.); (R.D.); (J.C.); (C.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Chunyi Liu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China; (L.C.); (J.G.); (M.J.A.); (Q.M.); (R.D.); (J.C.); (C.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China; (L.C.); (J.G.); (M.J.A.); (Q.M.); (R.D.); (J.C.); (C.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jian Zhong
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; (X.W.); (L.Y.); (J.Z.)
| | - Mingyuan Gao
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; (X.W.); (L.Y.); (J.Z.)
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China; (L.C.); (J.G.); (M.J.A.); (Q.M.); (R.D.); (J.C.); (C.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
10
|
PEG-modified gadolinium nanoparticles as contrast agents for in vivo micro-CT. Sci Rep 2021; 11:16603. [PMID: 34400681 PMCID: PMC8367985 DOI: 10.1038/s41598-021-95716-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/09/2021] [Indexed: 12/30/2022] Open
Abstract
Vascular research is largely performed in rodents with the goal of developing treatments for human disease. Micro-computed tomography (micro-CT) provides non-destructive three-dimensional imaging that can be used to study the vasculature of rodents. However, to distinguish vasculature from other soft tissues, long-circulating contrast agents are required. In this study, we demonstrated that poly(ethylene glycol) (PEG)-coated gadolinium nanoparticles can be used as a vascular contrast agent in micro-CT. The coated particles could be lyophilized and then redispersed in an aqueous solution to achieve 100 mg/mL of gadolinium. After an intravenous injection of the contrast agent into mice, micro-CT scans showed blood pool contrast enhancements of at least 200 HU for 30 min. Imaging and quantitative analysis of gadolinium in tissues showed the presence of contrast agent in clearance organs including the liver and spleen and very low amounts in other organs. In vitro cell culture experiments, subcutaneous injections, and analysis of mouse body weight suggested that the agents exhibited low toxicity. Histological analysis of tissues 5 days after injection of the contrast agent showed cytotoxicity in the spleen, but no abnormalities were observed in the liver, lungs, kidneys, and bladder.
Collapse
|
11
|
Chouryal YN, Nema S, Sharma RK, Kewat HL, Pandey A, Ghosh P, Bhargava Y. The nano-bio interactions of rare-earth doped BaF 2 nanophosphors shape the developmental processes of zebrafish. Biomater Sci 2020; 8:6730-6740. [PMID: 33111724 DOI: 10.1039/d0bm01282c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanoparticles with biomedical applications should be evaluated for their biocompatibility. Rare-earth doped nanoparticles with unique spectral properties are superior in vivo optical probes in comparison with quantum dots and organic dyes, however, studies describing their nano-bio interactions are still limited. Here, we have evaluated the nano-bio interactions of green-synthesized, phase-pure BaF2 nanoparticles doped with rare-earth (RE3+ = Ce3+/Tb3+) ions using larval zebrafish. We found that zebrafish can tolerate a wide concentration range of these nanoparticles, as the maximal lethality was observed at very high concentrations (more than 200 mg L-1) upon five days of continuous exposure. At a concentration of 10 mg L-1, at which Zn2+, Ti4+ and Ag+ nanoparticles are reported to be lethal to developing zebrafish, continuous exposure to our nanoparticles for four days produced no developmental anomalies, craniofacial defects, cardiac toxicity or behavioural abnormalities in the developing zebrafish larvae. We have also found that the doping of rare-earth ions has no major effect on these biomarkers. Interestingly, the function of acetylcholinesterase (AChE) and the cellular metabolic activity of whole zebrafish larvae remained unchanged, even during continuous exposure to these nanoparticles at 150 mg L-1 for four days; however, severe developmental toxicities were evident at this high concentration. Based on these results, we can conclude that the biocompatibility of rare-earth doped nanoparticles is concentration dependent. Not all biomarkers are sensitive to these nanoparticles. The high concentration-dependent toxicity occurs through a mechanism distinct from changes in the metabolic or AChE activity. The significance of these findings lies in using these nanoparticles for bioimaging applications and biomarker studies, especially for prolonged exposure times.
Collapse
Affiliation(s)
- Yogendra Nath Chouryal
- School of Chemical Science and Technology, Department of Chemistry, Dr. Harisingh Gour University (A Central University), Sagar-470003, M.P., India.
| | | | | | | | | | | | | |
Collapse
|
12
|
Chen W, Xie Y, Wang M, Li C. Recent Advances on Rare Earth Upconversion Nanomaterials for Combined Tumor Near-Infrared Photoimmunotherapy. Front Chem 2020; 8:596658. [PMID: 33240857 PMCID: PMC7677576 DOI: 10.3389/fchem.2020.596658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/07/2020] [Indexed: 01/23/2023] Open
Abstract
Cancer has been threatening the safety of human life. In order to treat cancer, many methods have been developed to treat tumor, such as traditional therapies like surgery, chemotherapy, radiotherapy, as well as new strategies like photodynamic therapy, photothermal therapy, sonodynamic therapy, and other emerging therapies. Although there are so many ways to treat tumors, these methods all face the dilemma that they are incapable to cope with metastasis and recurrence of tumors. The emergence of immunotherapy has given the hope to conquer the challenge. Immunotherapy is to use the body's own immune system to stimulate and maintain a systemic immune response to form immunological memory, resist the metastasis and recurrence of tumors. At the same time, immunotherapy can combine with other treatments to exhibit excellent antitumor effects. Upconversion nanoparticles (UCNPs) can convert near-infrared (NIR) light into ultraviolet and visible light, thus have good performance in bioimaging and NIR triggered phototherapy. In this review paper, we summarize the design, fabrication, and application of UCNPs-based NIR photoimmunotherapy for combined cancer treatment, as well as put forward the prospect of future development.
Collapse
Affiliation(s)
- Weilin Chen
- Institute of Frontier and Interdisciplinarity Science, Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, China
| | - Yulin Xie
- Institute of Frontier and Interdisciplinarity Science, Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, China
| | - Man Wang
- Institute of Frontier and Interdisciplinarity Science, Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, China
| | - Chunxia Li
- Institute of Frontier and Interdisciplinarity Science, Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, China
| |
Collapse
|
13
|
Haribabu V, Girigoswami K, Sharmiladevi P, Girigoswami A. Water-Nanomaterial Interaction to Escalate Twin-Mode Magnetic Resonance Imaging. ACS Biomater Sci Eng 2020; 6:4377-4389. [PMID: 33455176 DOI: 10.1021/acsbiomaterials.0c00409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular imaging has gained utmost importance in the recent past in early diagnosis of diseases. In comparison to other imaging modalities, magnetic resonance imaging (MRI) has proven to extend its abilities not only for its usage of non-ionizing radiation but also for the high spatial resolution in soft tissues. A major limitation faced by MRI is the sensitivity in detecting diseased conditions until a certain stage. At present, this limitation is overcome with the use of contrast agents that show potential in altering the T1 and T2 relaxation times of the hydrogen protons. This modulation to the relaxation times leads to better contrast differences based on the type of contrast agent and the pulse sequence being engaged for acquiring images. Water molecules, as the major contributor of hydrogen protons, are proven to interact with such contrast agents. Major drawbacks noted with the marketed MRI contrast agents are their toxicity and renal clearance. To conquer these issues, magnetic nanomaterials are being researched for their abilities to match the contrast enhancement offered by traditional agents reducing their drawbacks. Furthermore, comparative diagnosis with both T1 and T2 contrast at the same time has also interested investigators. To achieve this, twin mode T1 and T2 weighted contrast agents are developed utilizing the remarkable properties extended by magnetic nanoplatforms. As a step forward, multimodal imaging agents are also being engineered based on these magnetic nanoplatforms that will generate cross-verified diagnoses using multiple imaging modalities with a unique imaging agent. This review starts by introducing the basics of MRI with major focus on the typical interactions of water molecules with a variety of magnetic nanomaterials. The review also concentrates on the clinical needs and nanomaterials available for twin T1 and T2 contrast with a minor introduction to multimodal imaging agents. In conclusion, the advent of MRI with the advantages offered by magnetic nanomaterials is summarized, leading to insights for future developments.
Collapse
Affiliation(s)
- Viswanathan Haribabu
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603 103, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603 103, India
| | - Palani Sharmiladevi
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603 103, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603 103, India
| |
Collapse
|
14
|
Fan Q, Cui X, Guo H, Xu Y, Zhang G, Peng B. Application of rare earth-doped nanoparticles in biological imaging and tumor treatment. J Biomater Appl 2020; 35:237-263. [DOI: 10.1177/0885328220924540] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Rare earth-doped nanoparticles have been widely used in disease diagnosis, drug delivery, tumor therapy, and bioimaging. Among various bioimaging methods, the fluorescence imaging technology based on the rare earth-doped nanoparticles can visually display the cell activity and lesion evolution in living animals, which is a powerful tool in biological technology and has being widely applied in medical and biological fields. Especially in the band of near infrared (700–1700 nm), the emissions show the characteristics of deep penetration due to low absorption, low photon scattering, and low autofluorescence interference. Furthermore, the rare earth-doped nanoparticles can be endowed with the water solubility, biocompatibility, drug-loading ability, and the targeting ability for different tumors by surface functionalization. This confirms its potential in the cancer diagnosis and treatment. In this review, we summarized the recent progress in the application of rare earth-doped nanoparticles in the field of bioimaging and tumor treatment. The luminescent mechanism, properties, and structure design were also discussed.
Collapse
Affiliation(s)
- Qi Fan
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing, PR China
| | - Xiaoxia Cui
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, PR China
| | - Haitao Guo
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, PR China
| | - Yantao Xu
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, PR China
| | - Guangwei Zhang
- Zhejiang Fountain Aptitude Technology Inc., Hangzhou, Zhejiang, PR China
| | - Bo Peng
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
15
|
Ilves V, Sokovnin S, Zuev M, Uimin M, Privalova D, Kozlova J, Sammelselg V. Multimodal upconversion CaF2:Mn/Yb/Er/Si nanoparticles. J Fluor Chem 2020. [DOI: 10.1016/j.jfluchem.2020.109457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Oh J, Jeon I, Kim D, You Y, Baek D, Kang SJ, Lee J. Highly Stable Upconverting Nanocrystal-Polydiacetylenes Nanoplates for Orthogonal Dual Signaling-Based Detection of Cyanide. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4934-4943. [PMID: 31904923 DOI: 10.1021/acsami.9b20438] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Although the unique optical signaling properties of polydiacetylene (PDA) have been exploited in diverse bio-chemosensors, the practical application of most PDA sensor systems is limited by their instability in harsh environments and fluorescence signal weakness. Herein, a universal design principle for a highly stable PDA sensor system with a practical dual signaling capability is developed to detect cyanide (CN) ions, which are commonly found in drinking water. Effective metal intercalation and enhanced hydrophobic intermolecular interactions between PDA-metal supramolecules are used to construct highly stacked PDA-metal nanoplates that feature unusual optical stability upon exposure to strong acids, bases, organic solvents, and thermal/mechanical stresses, and can selectively detect CN anions, concomitantly undergoing a specific supramolecular structure change. To realize the practical dual signaling capability of the PDA sensor system, upconverting nanocrystals (UCNs) are incorporated into highly stacked PDA-metal nanoplates, and practical dual signaling (orthogonal changes in luminescence and visible color) is demonstrated using a portable detection system. The presented universal design principle is expected to be suitable for the development of other highly stable and selective PDA sensor systems with practical dual signaling capability.
Collapse
Affiliation(s)
- Jongwon Oh
- School of Energy and Chemical Engineering , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Inkyu Jeon
- School of Energy and Chemical Engineering , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Dowon Kim
- School of Energy and Chemical Engineering , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Younghoon You
- School of Energy and Chemical Engineering , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Dahye Baek
- School of Energy and Chemical Engineering , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Seok Ju Kang
- School of Energy and Chemical Engineering , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Jiseok Lee
- School of Energy and Chemical Engineering , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| |
Collapse
|
17
|
Shao Q, Yang C, Chen X, Zhang H, Feng G, Zhou S. Core-mediated synthesis, growth mechanism and near-infrared luminescence enhancement of α-NaGdF4@β-NaLuF4:Nd3+ core–shell nanocrystals. CrystEngComm 2020. [DOI: 10.1039/c9ce01748h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-performance α-NaGdF4@β-NaLuF4:Nd3+ nanocrystals have been constructed based on a core-mediated method. Their near-infrared emission intensity was eventually enhanced by more than 2 times.
Collapse
Affiliation(s)
- Qinqin Shao
- Institute of Laser and Micro/Nano Engineering
- College of Electronics and Information Engineering
- Sichuan University
- Chengdu 610064
- China
| | - Chao Yang
- Institute of Laser and Micro/Nano Engineering
- College of Electronics and Information Engineering
- Sichuan University
- Chengdu 610064
- China
| | - Xiaoxu Chen
- Institute of Laser and Micro/Nano Engineering
- College of Electronics and Information Engineering
- Sichuan University
- Chengdu 610064
- China
| | - Hong Zhang
- Institute of Laser and Micro/Nano Engineering
- College of Electronics and Information Engineering
- Sichuan University
- Chengdu 610064
- China
| | - Guoying Feng
- Institute of Laser and Micro/Nano Engineering
- College of Electronics and Information Engineering
- Sichuan University
- Chengdu 610064
- China
| | - Shouhuan Zhou
- Institute of Laser and Micro/Nano Engineering
- College of Electronics and Information Engineering
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
18
|
Rahmani S, Mauriello Jimenez C, Aggad D, González-Mancebo D, Ocaña M, M. A. Ali L, Nguyen C, Becerro Nieto AI, Francolon N, Oliveiro E, Boyer D, Mahiou R, Raehm L, Gary-Bobo M, Durand JO, Charnay C. Encapsulation of Upconversion Nanoparticles in Periodic Mesoporous Organosilicas. Molecules 2019; 24:E4054. [PMID: 31717490 PMCID: PMC6891486 DOI: 10.3390/molecules24224054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/21/2022] Open
Abstract
(1) Background: Nanomedicine has recently emerged as a promising field, particularly for cancer theranostics. In this context, nanoparticles designed for imaging and therapeutic applications are of interest. We, therefore, studied the encapsulation of upconverting nanoparticles in mesoporous organosilica nanoparticles. Indeed, mesoporous organosilica nanoparticles have been shown to be very efficient for drug delivery, and upconverting nanoparticles are interesting for near-infrared and X-ray computed tomography imaging, depending on the matrix used. (2) Methods: Two different upconverting-based nanoparticles were synthesized with Yb3+-Er3+ as the upconverting system and NaYF4 or BaLuF5 as the matrix. The encapsulation of these nanoparticles was studied through the sol-gel procedure with bis(triethoxysilyl)ethylene and bis(triethoxysilyl)ethane in the presence of CTAB. (3) Results: with bis(triethoxysilyl)ethylene, BaLuF5: Yb3+-Er3+, nanoparticles were not encapsulated, but anchored on the surface of the obtained mesoporous nanorods BaLuF5: Yb3+-Er3+@Ethylene. With bis(triethoxysilyl)ethane, BaLuF5: Yb3+-Er3+ and NaYF4: Yb3+-Er3+nanoparticles were encapsulated in the mesoporous cubic structure leading to BaLuF5: Yb3+-Er3+@Ethane and NaYF4: Yb3+-Er3+@Ethane, respectively. (4) Conclusions: upconversion nanoparticles were located on the surface of mesoporous nanorods obtained by hydrolysis polycondensation of bis(triethoxysilyl)ethylene, whereas encapsulation occurred with bis(triethoxysilyl)ethane. The later nanoparticles NaYF4: Yb3+-Er3+@Ethane or BaLuF5: Yb3+-Er3+@Ethane were promising for applications with cancer cell imaging or X-ray-computed tomography respectively.
Collapse
Affiliation(s)
- Saher Rahmani
- Institut Charles Gerhardt Montpellier, case 1701, UMR5253, CNRS-UM-ENSCM, Place Eugène Bataillon, 34095 Montpellier, CEDEX 05, France; (S.R.); (C.M.J.); (E.O.); (L.R.); (J.-O.D.)
| | - Chiara Mauriello Jimenez
- Institut Charles Gerhardt Montpellier, case 1701, UMR5253, CNRS-UM-ENSCM, Place Eugène Bataillon, 34095 Montpellier, CEDEX 05, France; (S.R.); (C.M.J.); (E.O.); (L.R.); (J.-O.D.)
| | - Dina Aggad
- Institut des Biomolécules Max Mousseron UMR 5247 CNRS, UM-Faculté de Pharmacie, 15 Avenue Charles Flahault, 34093 Montpellier, CEDEX 05, France; (D.A.); (L.M.A.A.); (C.N.); (M.G.-B.)
| | - Daniel González-Mancebo
- Instituto de Ciencia de Materiales de Sevilla (CSIC-US), c/Américo Vespucio, 49, 41092 Seville, Spain; (D.G.-M.); (M.O.); (A.I.B.N.)
| | - Manuel Ocaña
- Instituto de Ciencia de Materiales de Sevilla (CSIC-US), c/Américo Vespucio, 49, 41092 Seville, Spain; (D.G.-M.); (M.O.); (A.I.B.N.)
| | - Lamiaa M. A. Ali
- Institut des Biomolécules Max Mousseron UMR 5247 CNRS, UM-Faculté de Pharmacie, 15 Avenue Charles Flahault, 34093 Montpellier, CEDEX 05, France; (D.A.); (L.M.A.A.); (C.N.); (M.G.-B.)
| | - Christophe Nguyen
- Institut des Biomolécules Max Mousseron UMR 5247 CNRS, UM-Faculté de Pharmacie, 15 Avenue Charles Flahault, 34093 Montpellier, CEDEX 05, France; (D.A.); (L.M.A.A.); (C.N.); (M.G.-B.)
| | - Ana Isabel Becerro Nieto
- Instituto de Ciencia de Materiales de Sevilla (CSIC-US), c/Américo Vespucio, 49, 41092 Seville, Spain; (D.G.-M.); (M.O.); (A.I.B.N.)
| | - Nadège Francolon
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont–Ferrand, France; (N.F.); (D.B.); (R.M.)
| | - Erwan Oliveiro
- Institut Charles Gerhardt Montpellier, case 1701, UMR5253, CNRS-UM-ENSCM, Place Eugène Bataillon, 34095 Montpellier, CEDEX 05, France; (S.R.); (C.M.J.); (E.O.); (L.R.); (J.-O.D.)
| | - Damien Boyer
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont–Ferrand, France; (N.F.); (D.B.); (R.M.)
| | - Rachid Mahiou
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont–Ferrand, France; (N.F.); (D.B.); (R.M.)
| | - Laurence Raehm
- Institut Charles Gerhardt Montpellier, case 1701, UMR5253, CNRS-UM-ENSCM, Place Eugène Bataillon, 34095 Montpellier, CEDEX 05, France; (S.R.); (C.M.J.); (E.O.); (L.R.); (J.-O.D.)
| | - Magali Gary-Bobo
- Institut des Biomolécules Max Mousseron UMR 5247 CNRS, UM-Faculté de Pharmacie, 15 Avenue Charles Flahault, 34093 Montpellier, CEDEX 05, France; (D.A.); (L.M.A.A.); (C.N.); (M.G.-B.)
| | - Jean-Olivier Durand
- Institut Charles Gerhardt Montpellier, case 1701, UMR5253, CNRS-UM-ENSCM, Place Eugène Bataillon, 34095 Montpellier, CEDEX 05, France; (S.R.); (C.M.J.); (E.O.); (L.R.); (J.-O.D.)
| | - Clarence Charnay
- Institut Charles Gerhardt Montpellier, case 1701, UMR5253, CNRS-UM-ENSCM, Place Eugène Bataillon, 34095 Montpellier, CEDEX 05, France; (S.R.); (C.M.J.); (E.O.); (L.R.); (J.-O.D.)
| |
Collapse
|
19
|
Mimun LC, Ajithkumar G, Pedraza F, Rightsell C, Tsin AT, Sardar DK. PMAO coated Na(Gd 0.5Lu 0.5)F 4:Nd 3+ nanocrystals as multifunctional contrast agent with NIR optical, X-ray and magnetic imaging properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:283-291. [PMID: 31029322 DOI: 10.1016/j.msec.2019.03.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/20/2019] [Accepted: 03/24/2019] [Indexed: 11/26/2022]
Abstract
Nanomaterials with multiple imaging functionalities are nowadays getting tremendous attention due to their several superior features compared to existing contrast agents. By developing a nanomaterial that exhibit multiple functionalities, the possibility to increase the amount of imaging information obtained in a short amount of time is becoming more and more a reality. In this work, we developed a multifunctional nanocrystals (NCs), Na(Gd0.5Lu0.5)F4:Nd3+, that combines multiple rare-earth features as an all-in-one imaging agent comprised of optical imaging, magnetic imaging, and X-ray imaging by utilizing the superparamagnetic features of Gd3+, the high X-ray absorption cross section of Lu3+, and the NIR fluorescence of Nd3+. Morphology, optical properties, and cell viability are shown in detail where the utility of this multifunctional imaging agent was confirmed by optical, X-ray and magnetic imaging experiments. Surface functionalization of the NCs is also presented to highlight the potential application of the NCs as contrast agents in biological imaging.
Collapse
Affiliation(s)
- L Christopher Mimun
- Department of Physics and Astronomy, University of Texas at San Antonio, TX 78249, United States of America
| | - Gangadharan Ajithkumar
- Department of Physics and Astronomy, University of Texas at San Antonio, TX 78249, United States of America.
| | - Fransisco Pedraza
- Department of Physics and Astronomy, University of Texas at San Antonio, TX 78249, United States of America
| | - Chris Rightsell
- Department of Physics and Astronomy, University of Texas at San Antonio, TX 78249, United States of America
| | - Andy T Tsin
- Department of Biology, University of Texas at San Antonio, TX 78249, United States of America
| | - Dhiraj K Sardar
- Department of Physics and Astronomy, University of Texas at San Antonio, TX 78249, United States of America
| |
Collapse
|
20
|
Smith K, Getzin M, Garfield JJ, Suvarnapathaki S, Camci-Unal G, Wang G, Gkikas M. Nanophosphor-Based Contrast Agents for Spectral X-ray Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1092. [PMID: 31366080 PMCID: PMC6723483 DOI: 10.3390/nano9081092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/22/2019] [Accepted: 07/27/2019] [Indexed: 12/26/2022]
Abstract
Lanthanide-based nanophosphors (NPhs) are herein developed as contrast agents for spectral X-ray imaging, highlighting the chemical, macromolecular and structural differences derived from ligand exchange on computed tomography (CT) and solvent dispersibility. Taking advantage of the ability of spectral X-ray imaging with photon-counting detectors to perform image acquisition, analysis, and processing at different energy windows (bins), enhanced signal of our K-edge materials was derived, improving sensitivity of CT imaging, and differentiation between water, tumor-mimic phantoms, and contrast materials. Our results indicate that the most effective of our oleic acid-stabilized K-edge nanoparticles can achieve 2-4x higher contrast than the examined iodinated molecules, making them suitable for deep tissue imaging of tissues or tumors. On the other hand, ligand exchange yielding poly(acrylic acid)-stabilized K-edge nanoparticles allows for high dispersibility and homogeneity in water, but with a lower contrast due to the high density of the polymer grafted, unless further engineering is probed. This is the first well-defined study that manages to correlate NPh grafting density with CT numbers and water dispersibility, laying the groundwork for the development of the next generation CT-guided diagnostic and/or theranostic materials.
Collapse
Affiliation(s)
- Kevin Smith
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Matthew Getzin
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Josephine J Garfield
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Sanika Suvarnapathaki
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Ge Wang
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Manos Gkikas
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA.
| |
Collapse
|
21
|
Wang L, Huang M, Tang H, Cao D, Zhao Y. Fabrication and Application of Dual-Modality Polymer Nanoparticles Based on an Aggregation-Induced Emission-Active Fluorescent Molecule and Magnetic Fe₃O₄. Polymers (Basel) 2019; 11:polym11020220. [PMID: 30960204 PMCID: PMC6419270 DOI: 10.3390/polym11020220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/22/2022] Open
Abstract
Fluorescent magnetic nanoparticles (NPs) utilized for imaging hold great promise for biomedical applications, but it remains a challenging task. Here, we report novel dual-modality NPs using an aggregation-induced emission (AIE)-active and near-infrared (NIR) emissive dye (TPAS) and magnetic Fe3O4 as the core, and biocompatible polymer Pluronic F-127 as the encapsulation matrix by self-assembly procedures. The obtained fluorescent-magnetic AIE NPs have both high fluorescence quantum yield (13.8%) at 700 nm and high magnetic saturation value. With good photostability and biocompatibility, the resulting NPs show effective MRI ability, but also a stain in cytoplasm with a strong NIR fluorescent signal.
Collapse
Affiliation(s)
- Lingyun Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Meiying Huang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Hao Tang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Derong Cao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yu Zhao
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
22
|
Ma S, Zhang J, Xia S, Yin W, Qin Y, Lei R, Kong J, Mei L, Li J, Xin G, Li G. Three-dimensional angiography fused with CT/MRI for multimodal imaging of nanoparticles based on Ba 4Yb 3F 17:Lu 3+,Gd 3+ . NANOSCALE 2018; 10:13402-13409. [PMID: 29971300 DOI: 10.1039/c8nr03054e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Designing nanosized multi-modality contrast agents for high-resolution imaging is challenging since most agents are only useful for single-mode imaging. In this work, we successfully synthesized biocompatible polyethylene glycol (PEG-) and l-glutamine (GLN-) modified Ba4Yb3F17:Lu3+,Gd3+ nanoparticles (LNPs@PEG@GLN) that can be employed as a multi-modality contrast agent. Fluorescence dye-modified LNPs@PEG@GLN nanoparticles can be used for computed tomography (CT), magnetic resonance imaging (MRI), and fluorescence imaging (FI). They display high X-ray absorption, outstanding T2-weighted imaging capability, and good fluorescence uptake. Furthermore, LNPs@PEG@GLN enhances contrast efficiencies for different imaging modalities in vivo. Interestingly, LNPs@PEG@GLN is a promising agent for CT angiography. These nanoparticles could be a promising contrast agent for multi-modality imaging and diagnosing vascular diseases.
Collapse
Affiliation(s)
- Sihan Ma
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sun L, Wei R, Feng J, Zhang H. Tailored lanthanide-doped upconversion nanoparticles and their promising bioapplication prospects. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.03.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Yang G, Cao Y, Yan B, Lv Q, Yu J, Zhao F, Chen Z, Yang H, Chen M, Jin Z. Application of a double-colour upconversion nanofluorescent probe for targeted imaging of mantle cell lymphoma. Oncotarget 2018; 9:16758-16774. [PMID: 29682183 PMCID: PMC5908284 DOI: 10.18632/oncotarget.23860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/30/2017] [Indexed: 02/04/2023] Open
Abstract
Upconversion nanoparticles are a new type of fluorescent marker in biomedical imaging that can convert a longer wavelength (such as near-infrared fluorescence) into a shorter wavelength (such as visible light). Mantle cell lymphoma, which is derived from B-cell lymphoma, is a subtype of non-Hodgkin's lymphoma, and the immune phenotype is a mature B-cell phenotype (CD20+, CD5+). To develop the use of nanomaterials as specific markers for the medical imaging of mantle cell lymphoma, we modified the surface of UCNPs by oxidation so that the CD20 or CD5 antibody could covalently attach to the upconversion nanoparticles to form antibody-UCNP conjugates. These antibody-UCNP conjugates were used as fluorescent probes to detect the CD20 or CD5 antigen. Due to the excessive expression of these antigens on the surface of MCL cells and successful strong connection between the antibody and UCNPs, the latter could specifically combine with mantle cell lymphoma cells. Upon near-infrared excitation at 980 nm, cells labelled with UCNPs emitted bright upconversion fluorescence.
Collapse
Affiliation(s)
- Guang Yang
- Pathology Department, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang 157011, P.R. China
| | - Yong Cao
- Pathology Department, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang 157011, P.R. China.,Key Laboratory of Tumor Prevention and Treatment (Heilongjiang Higher Education Institutions), Mudanjiang Medical University, Mudanjiang 157011, P.R. China
| | - Bin Yan
- Pathology Department, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang 157011, P.R. China
| | - Qiang Lv
- Key Laboratory of Tumor Prevention and Treatment (Heilongjiang Higher Education Institutions), Mudanjiang Medical University, Mudanjiang 157011, P.R. China
| | - Jianbo Yu
- Pathology Department, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang 157011, P.R. China.,Key Laboratory of Tumor Prevention and Treatment (Heilongjiang Higher Education Institutions), Mudanjiang Medical University, Mudanjiang 157011, P.R. China
| | - Fusheng Zhao
- Key Laboratory of Tumor Prevention and Treatment (Heilongjiang Higher Education Institutions), Mudanjiang Medical University, Mudanjiang 157011, P.R. China
| | - Zhihong Chen
- Key Laboratory of Tumor Prevention and Treatment (Heilongjiang Higher Education Institutions), Mudanjiang Medical University, Mudanjiang 157011, P.R. China
| | - Heran Yang
- Pathology Department, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang 157011, P.R. China
| | - Mengxi Chen
- Pathology Department, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang 157011, P.R. China
| | - Zaishun Jin
- Pathology Department, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang 157011, P.R. China.,Key Laboratory of Tumor Prevention and Treatment (Heilongjiang Higher Education Institutions), Mudanjiang Medical University, Mudanjiang 157011, P.R. China
| |
Collapse
|
25
|
Zhang H, Wang T, Zheng Y, Yan C, Gu W, Ye L. Comparative toxicity and contrast enhancing assessments of Gd 2O 3@BSA and MnO 2@BSA nanoparticles for MR imaging of brain glioma. Biochem Biophys Res Commun 2018; 499:488-492. [PMID: 29580992 DOI: 10.1016/j.bbrc.2018.03.175] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/22/2018] [Indexed: 10/17/2022]
Abstract
The albumin-templated Gd2O3 and MnO2 nanoparticles (NPs) have been developed as a new type of magnetic resonance (MR) T1 contrast agents. However, their potential toxicity and applicability for MR imaging of brain gliomas has not been fully explored so far. In this study, we prepared Gd2O3@BSA and MnO2@BSA nanoparticles (NPs) and investigated their toxicity comprehensively and comparatively by H&E staining, blood biochemical analysis, and adverse outcome pathways testing. It is revealed that both Gd2O3@BSA and MnO2@BSA NPs are biocompatible at a rational dose level. Although the relaxivity of MnO2@BSA NPs is less than that of Gd2O3@BSA NPs, the MnO2@BSA NPs lead to a greater contrast enhancement in the brain glioma due to the controlled release of Mn ions under the acidic tumor microenvironmental conditions. These comparative toxicity and contrast enhancement data are of fundamental importance for the clinical translation of Gd2O3@BSA and MnO2@BSA NPs as MR contrast agents for brain glioma diagnosis.
Collapse
Affiliation(s)
- Hong Zhang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Tingjian Wang
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, PR China
| | - Yuanyuan Zheng
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Changxiang Yan
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, PR China
| | - Wei Gu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, PR China.
| | - Ling Ye
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
26
|
Yang D, Cao C, Feng W, Huang C, Li F. Synthesis of NaYF 4 :Nd@NaLuF 4 @SiO 2 @PS colloids for fluorescence imaging in the second biological window. J RARE EARTH 2018. [DOI: 10.1016/j.jre.2017.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Yang J, Song L, Wang X, Luo N, Wu H, Gan S, Zou L. A facile route to the controlled synthesis of β-NaLuF4:Ln3+ (Ln = Eu, Tb, Dy, Sm, Tm, Ho) phosphors and their tunable luminescence properties. CrystEngComm 2018. [DOI: 10.1039/c8ce00932e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Highly uniform and monodisperse β-NaLuF4:Ln3+ (Ln = Eu, Tb, Dy, Sm, Tm, Ho) hexagonal prisms have been synthesized via a facile two-step hydrothermal method without any organic surfactants.
Collapse
Affiliation(s)
- Junfeng Yang
- College of Chemistry
- Jilin University
- Changchun 130026
- PR China
| | - Lina Song
- College of Chemistry
- Jilin University
- Changchun 130026
- PR China
| | - Xiaoxue Wang
- College of Chemistry
- Jilin University
- Changchun 130026
- PR China
| | - Nan Luo
- College of Chemistry
- Jilin University
- Changchun 130026
- PR China
| | - Hongyue Wu
- College of Chemistry
- Jilin University
- Changchun 130026
- PR China
| | - Shucai Gan
- College of Chemistry
- Jilin University
- Changchun 130026
- PR China
| | - Lianchun Zou
- College of Chemistry
- Jilin University
- Changchun 130026
- PR China
| |
Collapse
|
28
|
A new near-infrared persistent luminescence nanoparticle as a multifunctional nanoplatform for multimodal imaging and cancer therapy. Biomaterials 2018; 152:15-23. [DOI: 10.1016/j.biomaterials.2017.10.032] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/28/2017] [Accepted: 10/17/2017] [Indexed: 12/11/2022]
|
29
|
Mahata MK, Bae H, Lee KT. Upconversion Luminescence Sensitized pH-Nanoprobes. Molecules 2017; 22:E2064. [PMID: 29186844 PMCID: PMC6149687 DOI: 10.3390/molecules22122064] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/23/2017] [Accepted: 11/23/2017] [Indexed: 01/19/2023] Open
Abstract
Photon upconversion materials, featuring excellent photophysical properties, are promising for bio-medical research due to their low autofluorescence, non-cytotoxicity, low photobleaching and high photostability. Upconversion based pH-nanoprobes are attracting considerable interest due to their superiority over pH-sensitive molecular indicators and metal nanoparticles. Herein, we review the advances in upconversion based pH-nanoprobes, the first time in the seven years since their discovery in 2009. With a brief discussion on the upconversion materials and upconversion processes, the progress in this field has been overviewed, along with the toxicity and biodistribution of upconversion materials for intracellular application. We strongly believe that this survey will encourage the further pursuit of intense research for designing molecular pH-sensors.
Collapse
Affiliation(s)
- Manoj Kumar Mahata
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea.
| | - Hyeongyu Bae
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea.
| | - Kang Taek Lee
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea.
| |
Collapse
|
30
|
Yang T, Wang Y, Gao H, Liu Q, Zhang KY. RGD-Peptide-Modified NaLuF4
:Yb,Er Nanocrystals for Upconversion-Luminescence-Targeted Tumor-Cell Imaging. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Tianshe Yang
- Key Laboratory for Organic Electronics and Information Displays and the Institute of Advanced Materials (IAM); Nanjing University of Posts and Telecommunications; 210023 Nanjing P. R. China
| | - Yemao Wang
- Key Laboratory for Organic Electronics and Information Displays and the Institute of Advanced Materials (IAM); Nanjing University of Posts and Telecommunications; 210023 Nanjing P. R. China
| | - Hui Gao
- Key Laboratory for Organic Electronics and Information Displays and the Institute of Advanced Materials (IAM); Nanjing University of Posts and Telecommunications; 210023 Nanjing P. R. China
| | - Qian Liu
- Department of Chemistry; Fudan University; 200433 Shanghai P. R. China
| | - Kenneth Yin Zhang
- Key Laboratory for Organic Electronics and Information Displays and the Institute of Advanced Materials (IAM); Nanjing University of Posts and Telecommunications; 210023 Nanjing P. R. China
| |
Collapse
|
31
|
Gulzar A, Xu J, Yang P, He F, Xu L. Upconversion processes: versatile biological applications and biosafety. NANOSCALE 2017; 9:12248-12282. [PMID: 28829477 DOI: 10.1039/c7nr01836c] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Lanthanide-doped photon upconverting nanomaterials are evolving as a new class of imaging contrast agents, offering highly promising prospects in the area of biomedical applications. Owing to their ability to convert long-wavelength near-infrared excitation radiation into shorter-wavelength emissions, these nanomaterials are well suited to yield properties of low imaging background, large anti-Stokes shift, along with high optical penetration depth of NIR light for deep tissue optical imaging or light-activated drug release and therapy. Such materials have potential for significant advantages in analytical applications compared to molecular fluorophores and quantum dots. The use of IR radiation as an excitation source diminishes autofluorescence and scattering of excitation radiation, which leads to a reduction of background in optical experiments. The upconverting nanocrystals show exceptional photostability and are constituted of materials that are not significantly toxic to biological organisms. Excitation at long wavelengths also minimizes damage to biological materials. In this detailed review, various mechanisms operating for the upconversion process, and methods that are utilized to synthesize and decorate upconverting nanoparticles are investigated to elucidate by what means absorption and emission can be tuned. Up-to-date reports concerning cellular internalization, biodistribution, excretion, cytotoxicity and in vivo toxic effects of UCNPs are discussed. Specifically, studies which assessed the relationship between the chemical and physical properties of UCNPs and their biodistribution, excretion, and toxic effects are reviewed in detail. Finally, we also deliberate the challenges of guaranteeing the biosafety of UCNPs in vivo.
Collapse
Affiliation(s)
- Arif Gulzar
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China.
| | | | | | | | | |
Collapse
|
32
|
Dai Y, Yang D, Yu D, Cao C, Wang Q, Xie S, Shen L, Feng W, Li F. Mussel-Inspired Polydopamine-Coated Lanthanide Nanoparticles for NIR-II/CT Dual Imaging and Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:26674-26683. [PMID: 28726368 DOI: 10.1021/acsami.7b06109] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanomedicine has attracted substantial attention for the accurate diagnosis or treatment of carcinoma in recent years. Nd3+-doped lanthanide nanophosphor-based near-infrared-II (NIR-II) optical imaging is widely used for deep penetration tissue imaging while X-ray computed tomography (CT) is well-suited for in vivo imaging. Polymer-coated lanthanide nanophosphors are increasingly used in both diagnostics and therapies for tumor in vivo. However, the biocompatibility of nanocomposites and the efficiency of tumor ablation should be taken into consideration when constructing a nanotheranostic probe. In this article, we have fabricated polydopamine (PDA)-coated NaYF4:Nd3+@NaLuF4 nanocomposites using the reverse microemulsion approach. The thickness of the PDA shell can be precisely modulated from ∼1.5 to ∼18 nm, endowing the obtained NaYF4:Nd3+@NaLuF4@PDA with an excellent colloidal stability and considerable biocompatibility. The photothermal conversion efficiency of the resultant nanocomposites was optimized and maximized by the increase of the PDA shell thickness. Because of the remarkable photothermal conversion efficiency, the mice xenograft tumors were completely eradicated after NIR irradiation. Given the considerable photoluminescence and X-ray attenuation efficiency, the performance of NaYF4:Nd3+@NaLuF4@PDA for NIR-II optical imaging and X-ray CT dual imaging of the tumor in vivo was evaluated. All of the results above highlight the great potential of PDA-based NaYF4:Nd3+@NaLuF4 nanocomposites as a novel multifunctional nanotheranostic agent.
Collapse
Affiliation(s)
- Yu Dai
- Department of Chemistry, Fudan University , Shanghai 20043, People's Republic of China
| | - Dongpeng Yang
- Department of Chemistry, Fudan University , Shanghai 20043, People's Republic of China
| | - Danping Yu
- School of Chemistry and Chemical Engineering, Jiangxi Engineering Laboratory of Waterborne Coating, Jiangxi Science and Technology Normal University , Nanchang, Jiangxi 330013, People's Republic of China
| | - Cong Cao
- Department of Chemistry, Fudan University , Shanghai 20043, People's Republic of China
| | - Qiuhong Wang
- Department of Chemistry, Fudan University , Shanghai 20043, People's Republic of China
| | - Songhai Xie
- Department of Chemistry, Fudan University , Shanghai 20043, People's Republic of China
| | - Liang Shen
- School of Chemistry and Chemical Engineering, Jiangxi Engineering Laboratory of Waterborne Coating, Jiangxi Science and Technology Normal University , Nanchang, Jiangxi 330013, People's Republic of China
| | - Wei Feng
- Department of Chemistry, Fudan University , Shanghai 20043, People's Republic of China
| | - Fuyou Li
- Department of Chemistry, Fudan University , Shanghai 20043, People's Republic of China
| |
Collapse
|
33
|
Generalova A, Chichkov B, Khaydukov E. Multicomponent nanocrystals with anti-Stokes luminescence as contrast agents for modern imaging techniques. Adv Colloid Interface Sci 2017; 245:1-19. [PMID: 28499601 DOI: 10.1016/j.cis.2017.05.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/03/2017] [Accepted: 05/03/2017] [Indexed: 01/10/2023]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) have recently attracted great attention in theranostics due to their exceptional optical and physicochemical properties, which enable the design of a novel UCNP-based nanoplatform for luminescent imaging, temperature mapping, sensing, and therapy. In addition, UCNPs are considered to be ideal building blocks for development of multimodal probes for cells and whole body imaging, exploiting simple variation of host matrix, dopant ions, and surface chemistry. Modalities responsible for magnetic resonance imaging (MRI), computed tomography (CT), and positron emission tomography (PET)/single-photon emission computed tomography (SPECT) are embedded in a single UC nanocrystal, providing integrating effect over any modality alone in terms of the efficiency and sensitivity for clinical innovative diagnosis through multimodal bioimaging. In particular, we demonstrate applications of UCNPs as a new nanoplatform for optical and multimodal cancer imaging in vitro and in vivo and extend discussions to delivery of UCNP-based therapeutic agents for photodynamic and photothermal cancer treatments.
Collapse
|
34
|
Lu Z, Deng R, Zhen M, Li X, Zou T, Zhou Y, Guan M, Zhang Y, Wang Y, Yu T, Shu C, Wang C. Size-tunable NaGdF4 nanoparticles as T2 contrast agents for high-field magnetic resonance imaging. RSC Adv 2017. [DOI: 10.1039/c7ra08303c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
It is important to get high-quality magnetic resonance images at high magnetic field (>3 T) for medical diagnoses.
Collapse
|
35
|
Liu JM, Liu YY, Zhang DD, Fang GZ, Wang S. Synthesis of GdAlO 3:Mn 4+,Ge 4+@Au Core-Shell Nanoprobes with Plasmon-Enhanced Near-Infrared Persistent Luminescence for in Vivo Trimodality Bioimaging. ACS APPLIED MATERIALS & INTERFACES 2016; 8:29939-29949. [PMID: 27759378 DOI: 10.1021/acsami.6b09580] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The rise of multimodal nanoprobes has promoted the development of new methods to explore multiple molecular targets simultaneously or to combine various bioimaging tools in one assay to more clearly delineate localization and expression of biomarkers. Persistent luminescence nanophosphors (PLNPs) have been qualified as a promising contrast agent for in vivo imaging. The easy surface modification and proper nanostructure design strategy would favor the fabrication of PLNP-based multifunctional nanoprobes for biological application. In this paper, we have proposed novel multifunctional core-shell nanomaterials, applying the Mn4+ and Ge4+ co-doped gadolinium aluminate (GdAlO3:Mn4+,Ge4+) PLNPs as the near-infrared persistent luminescence emission center and introducing the gold nanoshell coated on the PLNPs to enhance the luminescence efficiency via plasmon resonance. Our developed core-shell nanoprobes have demonstrated the excellent features of ultrabrightness, superlong afterglow, good monodispersity, low toxicity, and excellent biocompatibility. The well-characterized nanoprobes have been utilized for trimodality in vivo imaging, with near-infrared persistent luminescence for optical imaging, Gd element for magnetic resonance imaging, and Au element for computed tomography imaging.
Collapse
Affiliation(s)
- Jing-Min Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology , Tianjin, 300457, China
| | - Yao-Yao Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology , Tianjin, 300457, China
| | - Dong-Dong Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology , Tianjin, 300457, China
| | - Guo-Zhen Fang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology , Tianjin, 300457, China
| | - Shuo Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology , Tianjin, 300457, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU) , Beijing, 100048, China
| |
Collapse
|
36
|
Yang D, Yang G, Gai S, He F, Lv R, Dai Y, Yang P. Imaging-Guided and Light-Triggered Chemo-/Photodynamic/Photothermal Therapy Based on Gd (III) Chelated Mesoporous Silica Hybrid Spheres. ACS Biomater Sci Eng 2016; 2:2058-2071. [DOI: 10.1021/acsbiomaterials.6b00462] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dan Yang
- Key Laboratory
of Superlight
Materials and Surface Technology, Ministry of Education, College of
Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Guixin Yang
- Key Laboratory
of Superlight
Materials and Surface Technology, Ministry of Education, College of
Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Shili Gai
- Key Laboratory
of Superlight
Materials and Surface Technology, Ministry of Education, College of
Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Fei He
- Key Laboratory
of Superlight
Materials and Surface Technology, Ministry of Education, College of
Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Ruichan Lv
- Key Laboratory
of Superlight
Materials and Surface Technology, Ministry of Education, College of
Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Yunlu Dai
- Key Laboratory
of Superlight
Materials and Surface Technology, Ministry of Education, College of
Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory
of Superlight
Materials and Surface Technology, Ministry of Education, College of
Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| |
Collapse
|
37
|
Liu Y, Li L, Guo Q, Wang L, Liu D, Wei Z, Zhou J. Novel Cs-Based Upconversion Nanoparticles as Dual-Modal CT and UCL Imaging Agents for Chemo-Photothermal Synergistic Therapy. Theranostics 2016; 6:1491-505. [PMID: 27446485 PMCID: PMC4955050 DOI: 10.7150/thno.15111] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/06/2016] [Indexed: 11/20/2022] Open
Abstract
Lanthanide-based contrast agents have attracted increasing attention for their unique properties and potential applications in cancer theranostics. To date, many of these agents have been studied extensively in cells and small animal models. However, performance of these theranostic nanoparticles requires further improvement. In this study, a novel CsLu2F7:Yb,Er,Tm-based visual therapeutic platform was developed for imaging-guided synergistic cancer therapy. Due to the presence of the heavy alkali metal Cesium (Cs) in host lattice, the nanoplatform can provide a higher resolution X-ray CT imaging than many other reported lanthanide-based CT contrast agents. Furthermore, by using the targeted RGD motif, chemotherapy drug alpha-tocopheryl succinate (α-TOS), and photothermal coupling agent ICG, this nanoplatform simultaneously provides multifunctional imaging and targeted synergistic therapy. To demonstrate the theranostic performance of this novel nanoplatform in vivo, visual diagnosis in the small animal model was realized by UCL/CT imaging which was further integrated with targeted chemo-photothermal synergistic therapy. These results provided evidence for the successful construction of a novel lanthanide-based nanoplatform coupled with multimodal imaging diagnosis and potential application in synergistic cancer theranostics.
Collapse
|
38
|
Kang N, Liu Y, Zhou Y, Wang D, Chen C, Ye S, Nie L, Ren L. Phase and Size Control of Core-Shell Upconversion Nanocrystals Light up Deep Dual Luminescence Imaging and CT In Vivo. Adv Healthc Mater 2016; 5:1356-63. [PMID: 26990395 DOI: 10.1002/adhm.201600159] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Indexed: 01/24/2023]
Abstract
Upconversion nanocrystals (UCNCs) have recently been explored as optical imaging nanoprobes. However, conventional β-NaLuF4 (-) based UCNCs often suffer from large particle size and weak upconversion luminescence (UCL) intensity, leading to poor biocompatibility and low detection sensitivity. Here, a novel strategy for controlling the crystalline phase and size of UCNCs has been developed by doping of yttrium ions, resulting in particle size reduction and phase transition. The total UCL intensity of prepared core-shell UCNCs is significantly enhanced up to ≈4.9 and ≈17.4 times after Tm(3+) and Er(3+) doping than that of core UCNCs, offering deeper tissue UCL imaging with a depth of 8 mm in vivo. Moreover, the CT signal of core-shell UCNCs is ≈1.5 and ≈3.5 times brighter than that of core UCNCs and commercial ioversol agent because of increasing contents of Lu(3+) doped in UCNCs. The synthesized core-shell UCNCs hold a great promise in deep UCL and CT dual-modality imaging in vitro and in vivo.
Collapse
Affiliation(s)
- Ning Kang
- Department of Biomaterials and Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources; College of Materials; Xiamen University; Xiamen 361005 P. R. China
| | - Yu Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis and Center for Molecular Imaging and Translational Medicine; School of Public Health; Xiamen University; Xiamen 361102 P. R. China
| | - Yaming Zhou
- Department of Biomaterials and Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources; College of Materials; Xiamen University; Xiamen 361005 P. R. China
| | - Dong Wang
- Department of Biomaterials and Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources; College of Materials; Xiamen University; Xiamen 361005 P. R. China
| | - Chuan Chen
- Key Laboratory of Physical Chemistry of Solid Surfaces; Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| | - Shefang Ye
- Department of Biomaterials and Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources; College of Materials; Xiamen University; Xiamen 361005 P. R. China
| | - Liming Nie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis and Center for Molecular Imaging and Translational Medicine; School of Public Health; Xiamen University; Xiamen 361102 P. R. China
| | - Lei Ren
- Department of Biomaterials and Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources; College of Materials; Xiamen University; Xiamen 361005 P. R. China
- Key Laboratory of Physical Chemistry of Solid Surfaces; Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| |
Collapse
|
39
|
Lan J, Liu Y, Li L, Wen F, Wu F, Han Z, Sun W, Li C, Chen J. A upconversion luminescene biosensor based on dual-signal amplification for the detection of short DNA species of c-erbB-2 oncogene. Sci Rep 2016; 6:24813. [PMID: 27098295 PMCID: PMC4838860 DOI: 10.1038/srep24813] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/05/2016] [Indexed: 11/09/2022] Open
Abstract
High-sensitivity detection of trace amounts of c-erbB-2 oncogene was reported to be equal to or surpass the ability of CA 15-3 for early diagnosis and/or follow-up recurrent screening of breast cancer. Therefore, in the current study, by using upconversion nanoparticles (UCNPs), rare earth-doped NaYF4:Yb(3+)/Er(3+) as the luminescent labels, a upconversion luminescent (UCL) biosensor based on dual-signal amplification of exonuclease III (ExoIII)-assisted target cycles and long-range self-assembly DNA concatamers was developed for the detection of c-erbB-2 oncogene. The proposed biosensor exhibited ultrasensitive detection with limit as low as 40 aM, which may express the potential of being used in trace analysis of c-erbB-2 oncogene and early diagnosis of breast cancer.
Collapse
Affiliation(s)
- Jianming Lan
- Department of Basic Chemistry, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350108, P. R. China
| | - Yingxin Liu
- Department of Basic Chemistry, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350108, P. R. China
| | - Li Li
- Department of Basic Chemistry, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350108, P. R. China
| | - Fadi Wen
- Department of Basic Chemistry, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350108, P. R. China
| | - Fang Wu
- Department of Basic Chemistry, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350108, P. R. China
| | - Zhizhong Han
- Department of Basic Chemistry, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350108, P. R. China
| | - Weiming Sun
- Department of Basic Chemistry, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350108, P. R. China
| | - Chunyan Li
- Department of Basic Chemistry, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350108, P. R. China
| | - Jinghua Chen
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350108, P. R. China
| |
Collapse
|
40
|
Cytotoxic interactions of bare and coated NaGdF4:Yb3+:Er3+ nanoparticles with macrophage and fibroblast cells. Toxicol In Vitro 2016; 32:16-25. [DOI: 10.1016/j.tiv.2015.11.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 11/23/2015] [Accepted: 11/26/2015] [Indexed: 11/20/2022]
|
41
|
Liu T, Li S, Liu Y, Guo Q, Wang L, Liu D, Zhou J. Mn-complex modified NaDyF4:Yb@NaLuF4:Yb,Er@polydopamine core–shell nanocomposites for multifunctional imaging-guided photothermal therapy. J Mater Chem B 2016; 4:2697-2705. [DOI: 10.1039/c5tb02785c] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Upconversion nanoparticles (UCNPs) have been used as building blocks in the construction of multimodal contrast agents for theranostics, that is, the combination of diagnostics and therapies.
Collapse
Affiliation(s)
- Tianyun Liu
- Department of Chemistry
- Capital Normal University
- Beijing
- P. R. China
| | - Senzhi Li
- Department of Chemistry
- Capital Normal University
- Beijing
- P. R. China
| | - Yuxin Liu
- Department of Chemistry
- Capital Normal University
- Beijing
- P. R. China
| | - Quanwei Guo
- Department of Chemistry
- Capital Normal University
- Beijing
- P. R. China
| | - Lu Wang
- Department of Chemistry
- Capital Normal University
- Beijing
- P. R. China
| | - Dongdong Liu
- Department of Chemistry
- Capital Normal University
- Beijing
- P. R. China
| | - Jing Zhou
- Department of Chemistry
- Capital Normal University
- Beijing
- P. R. China
| |
Collapse
|
42
|
Lanthanide-Doped Upconversion Nanoparticles for Imaging-Guided Drug Delivery and Therapy. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2016. [DOI: 10.1007/978-3-662-48544-6_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Wang S, Bi A, Zeng W, Cheng Z. Upconversion nanocomposites for photo-based cancer theranostics. J Mater Chem B 2016; 4:5331-5348. [DOI: 10.1039/c6tb00709k] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Upconversion nanoparticles (UCNPs) are able to convert long wavelength excitation light into high energy ultraviolet (UV) or visible emissions, and they have attracted significant attention because of their distinct photochemical properties including sharp emission bands, low autofluorescence, high tissue penetration depth and minimal photodamage to tissues.
Collapse
Affiliation(s)
- Shuailiang Wang
- School of Pharmaceutical Sciences
- Central South University
- Changsha
- P. R. China
| | - Anyao Bi
- School of Pharmaceutical Sciences
- Central South University
- Changsha
- P. R. China
| | - Wenbin Zeng
- School of Pharmaceutical Sciences
- Central South University
- Changsha
- P. R. China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS)
- Canary Center at Stanford for Cancer Early Detection
- Department of Radiology and Bio-X Program
- School of Medicine
- Stanford University
| |
Collapse
|
44
|
Xiang G, Zhang J, Hao Z, Zhang X, Pan GH, Chen L, Luo Y, Lü S, Zhao H. Solvothermal synthesis and upconversion properties of about 10 nm orthorhombic LuF3: Yb3+, Er3+ rectangular nanocrystals. J Colloid Interface Sci 2015; 459:224-229. [DOI: 10.1016/j.jcis.2015.08.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/08/2015] [Accepted: 08/13/2015] [Indexed: 12/27/2022]
|
45
|
Wang Z, Zhang P, Yuan Q, Xu X, Lei P, Liu X, Su Y, Dong L, Feng J, Zhang H. Nd³⁺-sensitized NaLuF₄ luminescent nanoparticles for multimodal imaging and temperature sensing under 808 nm excitation. NANOSCALE 2015; 7:17861-17870. [PMID: 26461070 DOI: 10.1039/c5nr04889c] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this paper, intense up- and down-conversion luminescence were successfully achieved in well designed and synthesized core-shell structured NaLuF4:Gd/Yb/Er@NaLuF4:Yb@NaLuF4:Nd/Yb@NaLuF4 nanoparticles (NPs) simultaneously under 808 nm continuous-wave laser excitation. The morphologies, luminescent properties and energy transfer mechanism of the nanoparticles were studied in detail. By employing this design, multimodal imaging performance including near-infrared down-conversion optical imaging and X-ray computed tomography (CT) imaging were realized in one kind of NPs. Furthermore, the 808 nm excited optical temperature sensing property of the synthesized NPs was realized in a wide temperature range by monitoring the intensities of up- and down-conversion luminescence. This study provides a novel platform based on lanthanide fluoride nanoparticles for multifunctional imaging and temperature sensing in one system.
Collapse
Affiliation(s)
- Zhuo Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Peng Zhang
- Department of Radiology, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Qinghai Yuan
- Department of Radiology, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Xia Xu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Pengpeng Lei
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiuling Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Yue Su
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lile Dong
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jing Feng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| |
Collapse
|
46
|
Rieffel J, Chitgupi U, Lovell JF. Recent Advances in Higher-Order, Multimodal, Biomedical Imaging Agents. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:4445-61. [PMID: 26185099 PMCID: PMC4582016 DOI: 10.1002/smll.201500735] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/27/2015] [Indexed: 05/17/2023]
Abstract
Advances in biomedical imaging have spurred the development of integrated multimodal scanners, usually capable of two simultaneous imaging modes. The long-term vision of higher-order multimodality is to improve diagnostics or guidance through the analysis of complementary, data-rich, co-registered images. Synergies achieved through combined modalities could enable researchers to better track diverse physiological and structural events, analyze biodistribution and treatment efficacy, and compare established and emerging modalities. Higher-order multimodal approaches stand to benefit from molecular imaging probes and, in recent years, contrast agents that have hypermodal characteristics have increasingly been reported in preclinical studies. Given the chemical requirements for contrast agents representing various modalities to be integrated into a single entity, the higher-order multimodal agents reported so far tend to be of nanoparticulate form. To date, the majority of reported nanoparticles have included components that are active for magnetic resonance. Herein, recent progress in higher-order multimodal imaging agents is reviewed, spanning a range of material and structural classes, and demonstrating utility in three (or more) imaging modalities.
Collapse
Affiliation(s)
- James Rieffel
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Upendra Chitgupi
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
47
|
Dong H, Du SR, Zheng XY, Lyu GM, Sun LD, Li LD, Zhang PZ, Zhang C, Yan CH. Lanthanide Nanoparticles: From Design toward Bioimaging and Therapy. Chem Rev 2015; 115:10725-815. [DOI: 10.1021/acs.chemrev.5b00091] [Citation(s) in RCA: 799] [Impact Index Per Article: 88.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hao Dong
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Shuo-Ren Du
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Xiao-Yu Zheng
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Guang-Ming Lyu
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Ling-Dong Sun
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Lin-Dong Li
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Pei-Zhi Zhang
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Chao Zhang
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Chun-Hua Yan
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
48
|
Kuang XY, Liu H, Hu WY, Shao YZ. Hydrothermal synthesis of core-shell structured TbPO4:Ce(3+)@TbPO4:Gd(3+) nanocomposites for magnetic resonance and optical imaging. Dalton Trans 2015; 43:12321-8. [PMID: 24985564 DOI: 10.1039/c4dt00249k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multi-modal imaging based on multifunctional nanoparticles provides deep, non-invasive and highly sensitive imaging and is a promising alternative approach that can improve the sensitivity of early cancer diagnosis. In this study, two nanoparticles, TbPO4:Ce(3+) and TbPO4:Ce(3+)@TbPO4:Gd(3+), were synthesized via the citric-acid-mediated hydrothermal route, and then systematically characterized by means of microstructure, photoluminescence, magnetic resonance imaging (MRI), biocompatibility, and bioimaging. The results of energy dispersive X-ray spectroscopy (EDS) and electron energy loss spectroscopy (EELS) line scans indicated that TbPO4:Gd(3+) nanoshells about 5 nm in thickness were successfully coated on the TbPO4:Ce(3+) nanocores. X-ray diffraction (XRD) and Fourier transforms of high-resolution transmission electron microscopy (TEM) images indicated that the core-shell nanocomposites had a single crystal structure. The photoluminescence of the TbPO4:Ce(3+)@TbPO4:Gd(3+) and TbPO4:Ce(3+) nanoparticles was greatly intensified by 200 times and 100 times, respectively, compared with pure TbPO4 nanoparticles. In vitro cytotoxicity tests based on the methyl thiazolyl tetrazolium (MTT) assay demonstrated that the monodispersed nanoparticles of TbPO4:Ce(3+)@TbPO4:Gd(3+) had low toxicity. The intracellular luminescence of the nanoparticles after being internalized by HeLa cells was also observed using confocal fluorescence microscopes. MRI showed that the nanoshells of Gd-doped TbPO4 possessed a longitudinal relaxivity of 4.067 s(-1) mM(-1), which is comparable to that of the commercial MRI contrast Gd-TDPA. As a result, the core-shell structured TbPO4:Ce(3+)@TbPO4:Gd(3+) nanoparticles can potentially serve as multifunctional nanoprobes for both optical biolabels and MRI contrast agents.
Collapse
Affiliation(s)
- Xiao-yan Kuang
- School of Physics and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
| | | | | | | |
Collapse
|
49
|
An efficient nano-based theranostic system for multi-modal imaging-guided photothermal sterilization in gastrointestinal tract. Biomaterials 2015; 56:206-18. [PMID: 25934293 DOI: 10.1016/j.biomaterials.2015.04.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 03/31/2015] [Accepted: 04/02/2015] [Indexed: 12/23/2022]
Abstract
Since understanding the healthy status of gastrointestinal tract (GI tract) is of vital importance, clinical implementation for GI tract-related disease have attracted much more attention along with the rapid development of modern medicine. Here, a multifunctional theranostic system combining X-rays/CT/photothermal/photoacoustic mapping of GI tract and imaging-guided photothermal anti-bacterial treatment is designed and constructed. PEGylated W18O49 nanosheets (PEG-W18O49) are created via a facile solvothermal method and an in situ probe-sonication approach. In terms of excellent colloidal stability, low cytotoxicity, and neglectable hemolysis of PEG-W18O49, we demonstrate the first example of high-performance four-modal imaging of GI tract by using these nanosheets as contrast agents. More importantly, due to their intrinsic absorption of NIR light, glutaraldehyde-modified PEG-W18O49 are successfully applied as fault-free targeted photothermal agents for imaging-guided killing of bacteria on a mouse infection model. Critical to pre-clinical and clinical prospects, long-term toxicity is further investigated after oral administration of these theranostic agents. These kinds of tungsten-based nanomaterials exhibit great potential as multi-modal contrast agents for directed visualization of GI tract and anti-bacterial agents for phothothermal sterilization.
Collapse
|
50
|
Cheng Z, Lin J. Synthesis and Application of Nanohybrids Based on Upconverting Nanoparticles and Polymers. Macromol Rapid Commun 2015; 36:790-827. [DOI: 10.1002/marc.201400588] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/29/2015] [Indexed: 01/13/2023]
Affiliation(s)
- Ziyong Cheng
- State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P.R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P.R. China
| |
Collapse
|