1
|
Yu L, Zhang K, Zhang Y, Wang X, Dong P, Ge Y, Ni G, Liu Z, Zhang Y. A dual-targeted Gd-based contrast agent for magnetic resonance imaging in tumor diagnosis. J Mater Chem B 2024; 12:2486-2493. [PMID: 38372696 DOI: 10.1039/d3tb02917d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Enhanced magnetic resonance imaging (MRI) has important clinical value in the diagnosis of tumors. Much effort has been made to improve the relaxivity and specificity of contrast agents (CAs) in tumor diagnosis over the past few decades. However, there is still a lack of CAs which not only enhance the signal intensity of tumors rather than surrounding tissues in MRI but also maintain a high signal intensity prolonged for a long time. Herein, we synthesized a dual-targeted CA, RGD-(DOTA-Gd)-TPP (RDP), in which RGD is used to target the αvβ3 integrin receptor overexpressed in tumor cells and TPP is used to bind to a mitochondrion further. The structure of RDP was characterized and its properties, such as relaxivity and biosafety, were measured and in vitro and in vivo MRI assays were carried out. It has been proven that RDP has higher relaxivity of aqueous solution than Magnevist used in clinics. Moreover, RDP achieved higher signal intensity and a longer signal duration in tumor imaging. Therefore, RDP can be applied as the potential dual-targeted MRI CA for clinical tumor diagnosis.
Collapse
Affiliation(s)
- Lin Yu
- School of Medical Imaging, Shandong Second Medical University, Weifang, 261053, China.
| | - Kaiqi Zhang
- School of Medical Imaging, Shandong Second Medical University, Weifang, 261053, China.
| | - Yiyao Zhang
- School of Medical Imaging, Shandong Second Medical University, Weifang, 261053, China.
| | - Xun Wang
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, China.
| | - Peng Dong
- School of Medical Imaging, Shandong Second Medical University, Weifang, 261053, China.
| | - Yanming Ge
- School of Medical Imaging, Shandong Second Medical University, Weifang, 261053, China.
| | - Guangmao Ni
- School of Medical Imaging, Shandong Second Medical University, Weifang, 261053, China.
| | - Zan Liu
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, China.
| | - Yanhui Zhang
- School of Medical Imaging, Shandong Second Medical University, Weifang, 261053, China.
| |
Collapse
|
2
|
Arbuzova SN, Verkhoturova SI, Zinchenko SV, Kolyvanov NA, Chernysheva NA, Bishimbaeva GK, Trofimov BA. Catalyst‐ and Solvent‐Free Hydrophosphorylation of Aldimines with Secondary Phosphine Chalcogenides: Synthesis of Tertiary
α
‐Aminophosphine Oxides, Sulfides and Selenides. ChemistrySelect 2022. [DOI: 10.1002/slct.202202757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Svetlana N. Arbuzova
- A. E. Favorsky Irkutsk Institute of Chemistry Siberian Branch Russian Academy of Sciences 1 Favorsky Str. 664033 Irkutsk Russian Federation
| | - Svetlana I. Verkhoturova
- A. E. Favorsky Irkutsk Institute of Chemistry Siberian Branch Russian Academy of Sciences 1 Favorsky Str. 664033 Irkutsk Russian Federation
| | - Sergey V. Zinchenko
- A. E. Favorsky Irkutsk Institute of Chemistry Siberian Branch Russian Academy of Sciences 1 Favorsky Str. 664033 Irkutsk Russian Federation
| | - Nikita A. Kolyvanov
- A. E. Favorsky Irkutsk Institute of Chemistry Siberian Branch Russian Academy of Sciences 1 Favorsky Str. 664033 Irkutsk Russian Federation
| | - Nataliya A. Chernysheva
- A. E. Favorsky Irkutsk Institute of Chemistry Siberian Branch Russian Academy of Sciences 1 Favorsky Str. 664033 Irkutsk Russian Federation
| | - Gaukhar K. Bishimbaeva
- D. V. Sokolskiy Institute of Fuel, Catalysis and Electrochemistry 142 ul. Kunaeva 050010 Almaty, Republic of Kazakhstan
| | - Boris A. Trofimov
- A. E. Favorsky Irkutsk Institute of Chemistry Siberian Branch Russian Academy of Sciences 1 Favorsky Str. 664033 Irkutsk Russian Federation
| |
Collapse
|
3
|
Babayevska N, Woźniak A, Iatsunskyi I, Florczak P, Jarek M, Janiszewska E, Załęski K, Zalewski T. Multifunctional ZnO:Gd@ZIF-8 hybrid nanocomposites with tunable luminescent-magnetic performance for potential bioapplication. BIOMATERIALS ADVANCES 2022; 144:213206. [PMID: 36434929 DOI: 10.1016/j.bioadv.2022.213206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/20/2022]
Abstract
Novel multifunctional ZnO:Gd@ZIF-8 hybrid inorganic-organic nanocomposites with tunable luminescent-magnetic performance were successfully fabricated using wet chemistry synthesis routes. Physico-chemical characterization including crystal structure, phase compositions, morphology, surface properties, as well as photoluminescent and magnetic characteristics was performed using powder X-ray diffraction (XRD), FT-IR analysis, transmission and scanning electron microscopies (TEM/SEM), N2 adsorption/desorption, SQUID magnetometer, and photoluminescence spectroscopy. The biological studies of obtained materials, such as cytotoxicity profile and in vitro MRI imaging also investigated for potential use as contrast agents. Results showed that the doping with Gd3+ in a broad concentration range and the presence of ZIF-8 layer on ZnO affect the physico-chemical properties of the obtained composites. The obtained porous ZnO:Gd@ZIF-8 composites were highly crystalline with a large surface area. The XRD study indicated the formation of hexagonal wurtzite structure for ZnO and ZnO:Gd3+ (1-5 at.%). Luminescent studies showed, that ZnO is an ideal matrix for the incorporation of Gd3+ ions in a broad concentration range with efficient green luminescence. The PL intensity reached the maximum up to 5 at.% of Gd3+. The zeta potential values indicated the good stability of obtained nanoparticles. Proposed new materials with paramagnetic behavior and outstanding MR imaging capability could be used as potential contrast agents for magnetic resonance imaging.
Collapse
Affiliation(s)
- Nataliya Babayevska
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland.
| | - Anna Woźniak
- Poznan University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland
| | - Igor Iatsunskyi
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland
| | - Patryk Florczak
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland
| | - Marcin Jarek
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland
| | - Ewa Janiszewska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Karol Załęski
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland
| | - Tomasz Zalewski
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland
| |
Collapse
|
4
|
Malysheva SF, Kuimov VA, Belogorlova NA, Beloveghets LA, Albanov AI, Usoltsev YK, Trofimov BA. Synthesis of Diorganylphosphine Oxides Bearing Hetarylalkyl Moieties and Study of Their Antimicrobial Activities. ChemistrySelect 2022. [DOI: 10.1002/slct.202202149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Svetlana F. Malysheva
- A. E. Favorsky Irkutsk Institute of Chemistry Siberian Branch of the Russian Academy of Sciences 1 Favorsky St. 664033 Irkutsk Russian Federation
| | - Vladimir A. Kuimov
- A. E. Favorsky Irkutsk Institute of Chemistry Siberian Branch of the Russian Academy of Sciences 1 Favorsky St. 664033 Irkutsk Russian Federation
| | - Natalia A. Belogorlova
- A. E. Favorsky Irkutsk Institute of Chemistry Siberian Branch of the Russian Academy of Sciences 1 Favorsky St. 664033 Irkutsk Russian Federation
| | - Ludmila A. Beloveghets
- A. E. Favorsky Irkutsk Institute of Chemistry Siberian Branch of the Russian Academy of Sciences 1 Favorsky St. 664033 Irkutsk Russian Federation
| | - Alexander I. Albanov
- A. E. Favorsky Irkutsk Institute of Chemistry Siberian Branch of the Russian Academy of Sciences 1 Favorsky St. 664033 Irkutsk Russian Federation
| | - Yurii K. Usoltsev
- Hospital of the Irkutsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences 283b Lermontova St. 664033 Irkutsk Russian Federation
| | - Boris A. Trofimov
- A. E. Favorsky Irkutsk Institute of Chemistry Siberian Branch of the Russian Academy of Sciences 1 Favorsky St. 664033 Irkutsk Russian Federation
| |
Collapse
|
5
|
Xia B, Yan X, Fang WW, Chen S, Jiang Z, Wang J, Sun TC, Li Q, Li Z, Lu Y, He T, Cao B, Yang CT. Activatable Cell-Penetrating Peptide Conjugated Polymeric Nanoparticles with Gd-Chelation and Aggregation-Induced Emission for Bimodal MR and Fluorescence Imaging of Tumors. ACS APPLIED BIO MATERIALS 2020; 3:1394-1405. [DOI: 10.1021/acsabm.9b01049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Bin Xia
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - Xu Yan
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - Wei-Wei Fang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - Sheng Chen
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - ZhiLin Jiang
- Centre for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, People’s Republic of China
| | - JinChen Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - Tian-Ci Sun
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - Qing Li
- The Central Laboratory of Medical Research Centre, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230009, People’s Republic of China
| | - Zhen Li
- Centre for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, People’s Republic of China
| | - Yang Lu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - Tao He
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - BaoQiang Cao
- Department of General Surgery, Anhui No. 2 Provincial People’s Hospital, Hefei, Anhui 230041, People’s Republic of China
| | - Chang-Tong Yang
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608
- Duke-NUS Medical School, 8 College Road, Singapore 169857
| |
Collapse
|
6
|
Dual T 1 and T 2 weighted magnetic resonance imaging based on Gd 3+ loaded bioinspired melanin dots. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1743-1752. [DOI: 10.1016/j.nano.2018.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 04/08/2018] [Accepted: 04/12/2018] [Indexed: 12/19/2022]
|
7
|
Zielonka J, Sikora A, Hardy M, Ouari O, Vasquez-Vivar J, Cheng G, Lopez M, Kalyanaraman B. Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications. Chem Rev 2017; 117:10043-10120. [PMID: 28654243 PMCID: PMC5611849 DOI: 10.1021/acs.chemrev.7b00042] [Citation(s) in RCA: 961] [Impact Index Per Article: 137.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondria are recognized as one of the most important targets for new drug design in cancer, cardiovascular, and neurological diseases. Currently, the most effective way to deliver drugs specifically to mitochondria is by covalent linking a lipophilic cation such as an alkyltriphenylphosphonium moiety to a pharmacophore of interest. Other delocalized lipophilic cations, such as rhodamine, natural and synthetic mitochondria-targeting peptides, and nanoparticle vehicles, have also been used for mitochondrial delivery of small molecules. Depending on the approach used, and the cell and mitochondrial membrane potentials, more than 1000-fold higher mitochondrial concentration can be achieved. Mitochondrial targeting has been developed to study mitochondrial physiology and dysfunction and the interaction between mitochondria and other subcellular organelles and for treatment of a variety of diseases such as neurodegeneration and cancer. In this Review, we discuss efforts to target small-molecule compounds to mitochondria for probing mitochondria function, as diagnostic tools and potential therapeutics. We describe the physicochemical basis for mitochondrial accumulation of lipophilic cations, synthetic chemistry strategies to target compounds to mitochondria, mitochondrial probes, and sensors, and examples of mitochondrial targeting of bioactive compounds. Finally, we review published attempts to apply mitochondria-targeted agents for the treatment of cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Lodz University of Technology, ul. Wroblewskiego 15, 93-590 Lodz, Poland
| | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR, UMR 7273, 13013 Marseille, France
| | - Olivier Ouari
- Aix Marseille Univ, CNRS, ICR, UMR 7273, 13013 Marseille, France
| | - Jeannette Vasquez-Vivar
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Marcos Lopez
- Translational Biomedical Research Group, Biotechnology Laboratories, Cardiovascular Foundation of Colombia, Carrera 5a No. 6-33, Floridablanca, Santander, Colombia, 681003
- Graduate Program of Biomedical Sciences, Faculty of Health, Universidad del Valle, Calle 4B No. 36-00, Cali, Colombia, 760032
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| |
Collapse
|
8
|
Cao Y, Liu M, Zhang K, Zu G, Kuang Y, Tong X, Xiong D, Pei R. Poly(glycerol) Used for Constructing Mixed Polymeric Micelles as T1 MRI Contrast Agent for Tumor-Targeted Imaging. Biomacromolecules 2016; 18:150-158. [DOI: 10.1021/acs.biomac.6b01437] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yi Cao
- Key
Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou
Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School
of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Min Liu
- Key
Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou
Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Kunchi Zhang
- Key
Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou
Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Guangyue Zu
- Key
Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou
Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Ye Kuang
- Key
Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou
Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xiaoyan Tong
- Key
Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou
Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Dangsheng Xiong
- School
of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Renjun Pei
- Key
Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou
Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
9
|
Laranjeira MS, Moço A, Ferreira J, Coimbra S, Costa E, Santos-Silva A, Ferreira PJ, Monteiro FJ. Different hydroxyapatite magnetic nanoparticles for medical imaging: Its effects on hemostatic, hemolytic activity and cellular cytotoxicity. Colloids Surf B Biointerfaces 2016; 146:363-74. [DOI: 10.1016/j.colsurfb.2016.06.042] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/20/2016] [Accepted: 06/24/2016] [Indexed: 01/14/2023]
|
10
|
Zhang L, Liu R, Peng H, Li P, Xu Z, Whittaker AK. The evolution of gadolinium based contrast agents: from single-modality to multi-modality. NANOSCALE 2016; 8:10491-10510. [PMID: 27159645 DOI: 10.1039/c6nr00267f] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Gadolinium-based contrast agents are extensively used as magnetic resonance imaging (MRI) contrast agents due to their outstanding signal enhancement and ease of chemical modification. However, it is increasingly recognized that information obtained from single modal molecular imaging cannot satisfy the higher requirements on the efficiency and accuracy for clinical diagnosis and medical research, due to its limitation and default rooted in single molecular imaging technique itself. To compensate for the deficiencies of single function magnetic resonance imaging contrast agents, the combination of multi-modality imaging has turned to be the research hotpot in recent years. This review presents an overview on the recent developments of the functionalization of gadolinium-based contrast agents, and their application in biomedicine applications.
Collapse
Affiliation(s)
- Li Zhang
- Hubei Collaborative Innovation Center for Advance Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, China.
| | - Ruiqing Liu
- Hubei Collaborative Innovation Center for Advance Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, China.
| | - Hui Peng
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia 4072, Australia.
| | - Penghui Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zushun Xu
- Hubei Collaborative Innovation Center for Advance Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, China.
| | - Andrew K Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia 4072, Australia.
| |
Collapse
|
11
|
Miller-Shakesby DM, Burke BP, Nigam S, Stasiuk GJ, Prior TJ, Archibald SJ, Redshaw C. Synthesis, structures and cytotoxicity studies of p-sulfonatocalix[4]arene lanthanide complexes. CrystEngComm 2016. [DOI: 10.1039/c6ce00209a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Kuda-Wedagedara ANW, Allen MJ. Enhancing magnetic resonance imaging with contrast agents for ultra-high field strengths. Analyst 2015; 139:4401-10. [PMID: 25054827 DOI: 10.1039/c4an00990h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Contrast agents are diagnostic tools that often complement magnetic resonance imaging. At ultra-high field strengths (≥7 T), magnetic resonance imaging is capable of generating desirable high signal-to-noise ratios, but clinically available contrast agents are less effective at ultra-high field strengths relative to lower fields. This gap in effectiveness demands the development of contrast agents for ultra-high field strengths. In this minireview, we summarize contrast agents reported during the last three years that focused on ultra-high field strengths.
Collapse
|
13
|
Chandrasekharan P, Yang CT, Nasrallah FA, Tay HC, Chuang KH, Robins EG. Pharmacokinetics of Gd(DO3A-Lys) and MR imaging studies in an orthotopic U87MG glioma tumor model. CONTRAST MEDIA & MOLECULAR IMAGING 2015; 10:237-44. [DOI: 10.1002/cmmi.1634] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 08/22/2014] [Accepted: 11/19/2014] [Indexed: 01/10/2023]
Affiliation(s)
- Prashant Chandrasekharan
- Laboratory of Molecular Imaging; Singapore Bioimaging Consortium; Agency for Science, Technology and Research (A*STAR); 11 Biopolis Way, #02-02 Helios Singapore 138667
| | - Chang-Tong Yang
- Laboratory of Molecular Imaging; Singapore Bioimaging Consortium; Agency for Science, Technology and Research (A*STAR); 11 Biopolis Way, #02-02 Helios Singapore 138667
- The Lee Kong Chian School of Medicine; Nanyang Technological University; 50 Nanyang Drive Singapore 637553
| | - Fatima Ali Nasrallah
- Laboratory of Molecular Imaging; Singapore Bioimaging Consortium; Agency for Science, Technology and Research (A*STAR); 11 Biopolis Way, #02-02 Helios Singapore 138667
| | - Hui Chien Tay
- Laboratory of Molecular Imaging; Singapore Bioimaging Consortium; Agency for Science, Technology and Research (A*STAR); 11 Biopolis Way, #02-02 Helios Singapore 138667
| | - Kai-Hsiang Chuang
- Laboratory of Molecular Imaging; Singapore Bioimaging Consortium; Agency for Science, Technology and Research (A*STAR); 11 Biopolis Way, #02-02 Helios Singapore 138667
- Clinical Imaging Research Centre, Yong Loo Lin School of Medicine; National University of Singapore; 14 Medical Drive #B1-01 Singapore 117599
| | - Edward G. Robins
- Laboratory of Molecular Imaging; Singapore Bioimaging Consortium; Agency for Science, Technology and Research (A*STAR); 11 Biopolis Way, #02-02 Helios Singapore 138667
- Clinical Imaging Research Centre, Yong Loo Lin School of Medicine; National University of Singapore; 14 Medical Drive #B1-01 Singapore 117599
| |
Collapse
|
14
|
Yang CT, Chandrasekharan P, He T, Poh Z, Raju A, Chuang KH, Robins EG. An intravascular MRI contrast agent based on Gd(DO3A-Lys) for tumor angiography. Biomaterials 2013; 35:327-36. [PMID: 24138829 DOI: 10.1016/j.biomaterials.2013.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 10/01/2013] [Indexed: 02/02/2023]
Abstract
An intravascular MRI contrast agent Gd(DO3A-Lys), Gadolinium(III) (2,2',2″-(10-(3-(5-benzamido-6-methoxy-6-oxohexylamino)-3-oxopropyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate), has been studied for tumor angiography based on its high relaxivity and long blood half-life. The preparation procedures of the contrast agent have been modified in order to achieve higher yield and improve the synthetic reproducibility. High relaxivity of Gd(DO3A-Lys) has been confirmed by measurements at 3 T, 7 T and 9.4 T magnetic fields. The relaxivity-dependent albumin binding study indicated that Gd(DO3A-Lys) partially bound to albumin protein. In vitro cell viability in HK2 cell indicated low cytotoxicity of Gd(DO3A-Lys) up to 1.2 mM [Gd] concentration. In vivo toxicity studies demonstrated no toxicity of Gd(DO3A-Lys) on kidney tissues up to 0.2 mM [Gd]. While the toxicity on liver tissue was not observed at low dosage (1.0 mM [Gd]), Gd(DO3A-Lys) cause certain damage on hepatic tissue at high dosage (2.0 mM [Gd]). The DO3A-Lys has been labeled with (68)Ga radioisotope for biodistribution studies. (68)Ga(DO3A-Lys) has high uptake in both HT1080 and U87MG xenograft tumors, and has high accumulation in blood. Contrast-enhanced MR angiography (CE-MRA) in mice bearing U87MG xenograft tumor demonstrated that Gd(DO3A-Lys) could enhance vascular microenvironment around the tumor, and displays promising characteristics of an MRI contrast agent for tumor angiography.
Collapse
Affiliation(s)
- Chang-Tong Yang
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios, Singapore 138667, Singapore.
| | | | | | | | | | | | | |
Collapse
|
15
|
Preparation of Gd Complex-Immobilized Silica Particles and Their Application to MRI. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/908614] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A preparation method for Gd-ethylenediaminetetraacetic acid disodium salt dihydrate (ETDA) complex-immobilized silica particles
(Gd-EDTA/SiO2) is proposed. Preparation of spherical silica particles was performed by a sol-gel method at 35°C
using 0.2 M tetraethylorthosilicate, 25 M H2O, and 0.01 M NaOH in ethanol, which produced silica particles with an
average size of nm. Immobilization of Gd-EDTA on the silica particles was conducted at 35°C by introducing amino groups on the silica particles with (3-aminopropyl)trimethoxysilane at pH 3 (NH2/SiO2) and then making Gd-EDTA act on the NH2/SiO2 particles at pH 5. The as-prepared Gd-EDTA/SiO2 particle colloid solution was concentrated up to a Gd concentration of 0.347 mM by centrifugation. The sphere structure of Gd-EDTA/SiO2 particles was undamaged, and the colloid solution was still colloidally stable, even after the concentrating process. The concentrated Gd-EDTA/SiO2 colloid solution revealed good MRI properties. A relaxivity value for T1-weighted imaging was as high as 5.15 mM−1 s−1, that was comparable to that for a commercial Gd complex contrast agent.
Collapse
|
16
|
Ma XH, Gong A, Xiang LC, Chen TX, Gao YX, Liang XJ, Shen ZY, Wu AG. Biocompatible composite nanoparticles with large longitudinal relaxivity for targeted imaging and early diagnosis of cancer. J Mater Chem B 2013; 1:3419-3428. [DOI: 10.1039/c3tb20648c] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|