1
|
Yanamadala Y, Muthumula CMR, Khare S, Gokulan K. Strategies to Enhance Nanocrystal Formulations for Overcoming Physiological Barriers Across Diverse Routes of Administration. Int J Nanomedicine 2025; 20:367-402. [PMID: 39816376 PMCID: PMC11733173 DOI: 10.2147/ijn.s494224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/30/2024] [Indexed: 01/18/2025] Open
Abstract
Poor aqueous solubility and bioavailability limit the translation of new drug candidates into clinical applications. Nanocrystal formulations offer a promising approach for improving the dissolution rate and saturation solubility. These formulations are applicable for various routes of administration, with each presenting unique opportunities and challenges posed by the physiological barriers. The development of nanocrystal formulation requires comprehensive understanding of these barriers and the biological environment, along with strategic modulation of particle size, surface properties, and charge to facilitate improved bioavailability to the target site. This review focuses on applications of nanocrystals for diverse administration routes and strategies in overcoming anatomical and physiological delivery barriers. The orally administered nanocrystals benefit from increased solubility, prolonged gastrointestinal retention, and enhanced permeation. However, the nanocrystals, due to their small size and high surface area, are susceptible to aggregation in the presence of gastric fluids and are more prone to enzymatic degradation compared to the macrocrystalline form. Although nanocrystal formulations are composed of pure API, the application of excipients like stabilizers reduces the aggregation and improves formulation stability, solubility, and bioavailability. Some excipients can facilitate sustained drug release. Emerging research in nanocrystals include their application in blood-brain barrier transport, intranasal delivery, stimuli responsiveness, multifunctionality, and diagnostic purposes. However, the challenges related to toxicity, scale-up, and clinical translation still need further attention. Overall, nanocrystal engineering serves as a versatile platform for expanding the therapeutic potential of insoluble drugs and enabling dose reduction for existing drugs, which can minimize toxicity and improve bioavailability at lower dosages.
Collapse
Affiliation(s)
- Yaswanthi Yanamadala
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Chandra Mohan Reddy Muthumula
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Sangeeta Khare
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Kuppan Gokulan
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| |
Collapse
|
2
|
Peng C, Zeng X, Cai J, Huang H, Yang F, Jin S, Guan X, Wang Z. Albumin-based nanosystem for dual-modality imaging-guided chem-phototherapy against immune-cold triple-negative breast cancer. Regen Biomater 2023; 10:rbad073. [PMID: 37799708 PMCID: PMC10548782 DOI: 10.1093/rb/rbad073] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 10/07/2023] Open
Abstract
Triple-negative breast cancer is a highly aggressive and metastatic tumor; diagnosing it in the early stages is still difficult, and the prognosis for conventional radio-chemotherapy and immunotreatment is not promising due to cancer's immunosuppressive microenvironment. The utilization of protein-based nanosystem has proven to be effective in delivering agents with limited adverse effects, yet the combination of diagnosis and treatment remains a difficult challenge. This research took advantage of natural albumin and organic molecules to construct a self-assemble core-shell nanostructure combining with superparamagnetic iron oxide nanocrystals and heptamethine cyanine dye IR780 through non-covalent interactions. This nanocomposite successfully decreased the transverse relaxation time of the magnetic resonance hydrogen nucleus, resulting in outstanding T2 imaging, as well as emitting near-infrared II fluorescence, thereby the resulting dual-modality imaging tool was applied to improve diagnostic competency. It is noteworthy that the nanocomposites exhibited impressive enzyme-like catalytic and photothermal capabilities, resulting in a successful activation of the immune system to efficiently suppress distant metastatic lesions in vivo. Consequently, this nano-drug-based therapy could be an advantageous asset in reinforcing the immune system and hindering the growth and reappearance of the immune-cold breast cancer.
Collapse
Affiliation(s)
- Chen Peng
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaodie Zeng
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiali Cai
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Hanyu Huang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Fan Yang
- Department of Pediatrics, Department of Nuclear Medicine, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Shaowen Jin
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiuhong Guan
- Department of Radiology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan 511518, China
| | - Zhiyong Wang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
3
|
Metal-organic framework-based smart nanoplatforms with multifunctional attributes for biosensing, drug delivery, and cancer theranostics. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
4
|
Mehta S, Suresh A, Nayak Y, Narayan R, Nayak UY. Hybrid nanostructures: Versatile systems for biomedical applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
5
|
Sohrabi H, Javanbakht S, Oroojalian F, Rouhani F, Shaabani A, Majidi MR, Hashemzaei M, Hanifehpour Y, Mokhtarzadeh A, Morsali A. Nanoscale Metal-Organic Frameworks: Recent developments in synthesis, modifications and bioimaging applications. CHEMOSPHERE 2021; 281:130717. [PMID: 34020194 DOI: 10.1016/j.chemosphere.2021.130717] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Porous Metal-Organic Frameworks (MOFs) have emerged as eye-catching materials in recent years. They are widely used in numerous fields of chemistry thanks to their desirable properties. MOFs have a key role in the development of bioimaging platforms that are hopefully expected to effectually pave the way for accurate and selective detection and diagnosis of abnormalities. Recently, many types of MOFs have been employed for detection of RNA, DNA, enzyme activity and small-biomolecules, as well as for magnetic resonance imaging (MRI) and computed tomography (CT), which are valuable methods for clinical analysis. The optimal performance of the MOF in the bio-imaging field depends on the core structure, synthesis method and modifications processes. In this review, we have attempted to present crucial parameters for designing and achieving an efficient MOF as bioimaging platforms, and provide a roadmap for researchers in this field. Moreover, the influence of modifications/fractionalizations on MOFs performance has been thoroughly discussed and challenging problems have been extensively addressed. Consideration is mainly focused on the principal concepts and applications that have been achieved to modify and synthesize advanced MOFs for future applications.
Collapse
Affiliation(s)
- Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Siamak Javanbakht
- Faculty of Chemistry, Shahid Beheshti University, G.C., P.O. Box 19396-4716, Tehran, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farzaneh Rouhani
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, G.C., P.O. Box 19396-4716, Tehran, Iran
| | - Mir Reza Majidi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mahmoud Hashemzaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol. Iran
| | - Younes Hanifehpour
- Department of Chemistry, Sayyed Jamaleddin Asadabadi University, Asadabad, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| |
Collapse
|
6
|
Abstract
With the increasing insight into molecular mechanisms of cardiovascular disease, a promising solution involves directly delivering genes, cells, and chemicals to the infarcted myocardium or impaired endothelium. However, the limited delivery efficiency after administration fails to reach the therapeutic dose and the adverse off-target effect even causes serious safety concerns. Controlled drug release via external stimuli seems to be a promising method to overcome the drawbacks of conventional drug delivery systems (DDSs). Microbubbles and magnetic nanoparticles responding to ultrasound and magnetic fields respectively have been developed as an important component of novel DDSs. In particular, several attempts have also been made for the design and fabrication of dual-responsive DDS. This review presents the recent advances in the ultrasound and magnetic fields responsive DDSs in cardiovascular application, followed by their current problems and future reformation.
Collapse
|
7
|
The Intrinsic Biological Identities of Iron Oxide Nanoparticles and Their Coatings: Unexplored Territory for Combinatorial Therapies. NANOMATERIALS 2020; 10:nano10050837. [PMID: 32349362 PMCID: PMC7712800 DOI: 10.3390/nano10050837] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022]
Abstract
Over the last 20 years, iron oxide nanoparticles (IONPs) have been the subject of increasing investigation due to their potential use as theranostic agents. Their unique physical properties (physical identity), ample possibilities for surface modifications (synthetic identity), and the complex dynamics of their interaction with biological systems (biological identity) make IONPs a unique and fruitful resource for developing magnetic field-based therapeutic and diagnostic approaches to the treatment of diseases such as cancer. Like all nanomaterials, IONPs also interact with different cell types in vivo, a characteristic that ultimately determines their activity over the short and long term. Cells of the mononuclear phagocytic system (macrophages), dendritic cells (DCs), and endothelial cells (ECs) are engaged in the bulk of IONP encounters in the organism, and also determine IONP biodistribution. Therefore, the biological effects that IONPs trigger in these cells (biological identity) are of utmost importance to better understand and refine the efficacy of IONP-based theranostics. In the present review, which is focused on anti-cancer therapy, we discuss recent findings on the biological identities of IONPs, particularly as concerns their interactions with myeloid, endothelial, and tumor cells. Furthermore, we thoroughly discuss current understandings of the basic molecular mechanisms and complex interactions that govern IONP biological identity, and how these traits could be used as a stepping stone for future research.
Collapse
|
8
|
Li Y, Wang X, Zhang Y, Nie G. Recent Advances in Nanomaterials with Inherent Optical and Magnetic Properties for Bioimaging and Imaging-Guided Nucleic Acid Therapy. Bioconjug Chem 2020; 31:1234-1246. [DOI: 10.1021/acs.bioconjchem.0c00126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yujing Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xudong Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yinlong Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- GBA Research Innovation Institute for Nanotechnology, Guangdong 510700, China
| |
Collapse
|
9
|
Zhang Z, Sang W, Xie L, Dai Y. Metal-organic frameworks for multimodal bioimaging and synergistic cancer chemotherapy. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213022] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Song X, Yan G, Quan S, Jin E, Quan J, Jin G. MRI-visible liposome-polyethylenimine complexes for DNA delivery: preparation and evaluation. Biosci Biotechnol Biochem 2018; 83:622-632. [PMID: 30585119 DOI: 10.1080/09168451.2018.1562875] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To noninvasively monitor the effect of gene therapy and achieve an optimal therapeutic effect, liposomes encapsulated polyethylenimine (PEI)-coated superparamagnetic iron oxide nanoparticles (SPION) with dual functions of MRI diagnosis and gene therapy were prepared. SPION was synthesized via co-precipitation, and then modified with PEI via thiourea reaction. The liposomes encapsulating PEI-SPION (LP-PEI-SPION) were prepared by ethanol injection. Fourier transform infrared spectra confirmed that PEI was successfully modified onto SPION, and thermogravimetric analysis indicated that the PEI content was about 17.1%. The LP-PEI-SPION/DNA had a small particle size of 253.07 ± 0.90 nm. LP-PEI-SPION/DNA had low cytotoxicity with more than 80% of the cell survival rates and high transfection efficiency compared with Lipofectamine® 2000/DNA. Additionally, it also showed good MRI effect on three cell lines. The liposomes encapsulating PEI-SPION (lipopolyplexes) have been successfully prepared as MRI contrast agents and gene delivery vectors, which may have great theoretical research significance and clinical potentials. Abbreviations: PEI, polyethylenimine; SPION, superparamagnetic iron oxide nanoparticles; LP-PEI-SPION, liposomes encapsulating PEI-SPION; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide; ICP-MS, inductively coupled plasma mass spectrometry; XRD, X-ray diffraction; TEM, transmission electron microscope; TGA, thermogravimetric analysis; DOTAP, 1,2-dioleoyl-3-trimethylammonium-propane; DOPE, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine; Chol, cholesterol.
Collapse
Affiliation(s)
- Xiaowei Song
- a Department of Radiology , Yanbian University Hospital , Yanji , China
| | - Guanghai Yan
- b Department of Anatomy, School of Basic Medical Sciences , Yanbian University , Yanji , China
| | - Songshi Quan
- a Department of Radiology , Yanbian University Hospital , Yanji , China
| | - Enhao Jin
- a Department of Radiology , Yanbian University Hospital , Yanji , China
| | - Jishan Quan
- c College of Pharmacy , Yanbian University , Yanji , China
| | - Guangyu Jin
- a Department of Radiology , Yanbian University Hospital , Yanji , China
| |
Collapse
|
11
|
Yu H, Wang Y, Wang S, Li X, Li W, Ding D, Gong X, Keidar M, Zhang W. Paclitaxel-Loaded Core-Shell Magnetic Nanoparticles and Cold Atmospheric Plasma Inhibit Non-Small Cell Lung Cancer Growth. ACS APPLIED MATERIALS & INTERFACES 2018; 10:43462-43471. [PMID: 30375840 DOI: 10.1021/acsami.8b16487] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanoparticle-based drug delivery allows effective and sustained delivery of therapeutic agents to solid tumors and has completely changed how cancer is treated. As a new technology for medical applications, cold atmospheric plasma (CAP) shows a great potential in selective cancer treatment. The aim of this work is to develop a new dual cancer treatment approach by integrating CAP with novel paclitaxel (PTX)-loaded nanoparticles for targeting A549 cells. For this purpose, PTX-loaded core-shell magnetic nanoparticles were prepared through coaxial electrospraying, and various characteristics were investigated. Biodegradable poly(lactic- co-glycolic acid) was selected as the polymer shell to encapsulate the anticancer therapeutics. Results demonstrated a uniform size distribution and high drug encapsulation efficiency of the electrosprayed nanoparticles, which had sustained release characteristics and a variety of excellent properties. An in vitro study showed that PTX-loaded nanoparticles and CAP synergistically inhibited the growth of A549 cells more effectively than when each was used individually. We also found that CAP could induce the PTX-loaded nanoparticles in tumor cells to increase the effective drug concentration to a level that might be conducive to reduce drug resistance. Therefore, the integration of PTX-encapsulated nanoparticles and CAP provides a promising tool for the development of a new non-small cell lung cancer treatment strategy.
Collapse
Affiliation(s)
- Hongli Yu
- College of Pharmacy , Weifang Medical University , Weifang 261053 , Shandong , China
| | - Yonghong Wang
- College of Pharmacy , Weifang Medical University , Weifang 261053 , Shandong , China
| | - Saisai Wang
- College of Pharmacy , Weifang Medical University , Weifang 261053 , Shandong , China
| | - Xujing Li
- Department of Pathology , Weifang Medical University , Weifang 261053 , Shandong , China
| | - Wentong Li
- Department of Pathology , Weifang Medical University , Weifang 261053 , Shandong , China
| | - Dejun Ding
- College of Pharmacy , Weifang Medical University , Weifang 261053 , Shandong , China
| | - Xiaoming Gong
- Weifang Entry-Exit Inspection and Quarantine Bureau , Weifang 261041 , Shandong , China
| | - Michael Keidar
- Department of Mechanical and Aerospace Engineering , The George Washington University , Washington , District of Columbia 20052 , United States
| | - Weifen Zhang
- College of Pharmacy , Weifang Medical University , Weifang 261053 , Shandong , China
| |
Collapse
|
12
|
Kim M, Shin SW, Lim CW, Kim J, Um SH, Kim D. Polyaspartamide-based graft copolymers encapsulating iron oxide nanoparticles for imaging and fluorescence labelling of immune cells. Biomater Sci 2018; 5:305-312. [PMID: 27999834 DOI: 10.1039/c6bm00763e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Iron oxide nanoparticles (NPs) were encapsulated with polyaspartamide-based graft copolymers to bind and track the immune cells as imaging probes. Mono-disperse iron oxide NPs with a mean diameter of 10.7 nm were synthesized by the thermal decomposition method, and their shape and distribution were measured by electrophoretic light scattering and transmission electron microscopy. To enhance their biocompatibility, interfacial and hydrodynamic stability, and fluorescence detection, biodegradable polysuccinimide (PSI) grafted with several functional groups of octadecylamine (C18), ethanolamine (EA), ethylenediamine (EDA), 4-(N-maleimidomethyl) cyclohexane carboxylic acid N-hydroxysuccinimide ester (SMCC), and fluorescein isothiocyanate (FITC) was coated on the iron oxide NPs. The structure of the C18/EA/SMCC/FITC-g-PSI copolymer was confirmed using 1H-NMR and FTIR spectroscopy, and its cell binding ability was investigated by flow cytometry and confocal laser scanning microscopy. The synthesized C18/EA/SMCC/FITC-g-PSI copolymer showed an excellent binding affinity to CD4+ T cells, and was highly biocompatible as the cell viability at the highest polymer concentration of 0.4 mg mL-1 was greater than 85 and 75% after 24 and 48 h, respectively, from MTT assay.
Collapse
Affiliation(s)
- Minsun Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Kyunggi 440-746, Republic of Korea.
| | - Seung Won Shin
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Kyunggi 440-746, Republic of Korea.
| | - Cheol Won Lim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Kyunggi 440-746, Republic of Korea.
| | - Jaeyun Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Kyunggi 440-746, Republic of Korea.
| | - Soong Ho Um
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Kyunggi 440-746, Republic of Korea.
| | - Dukjoon Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Kyunggi 440-746, Republic of Korea.
| |
Collapse
|
13
|
Lemal P, Geers C, Rothen-Rutishauser B, Lattuada M, Petri-Fink A. Measuring the heating power of magnetic nanoparticles: an overview of currently used methods. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.matpr.2017.09.175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Chen S, Zhang J, Jiang S, Lin G, Luo B, Yao H, Lin Y, He C, Liu G, Lin Z. Self-Assembled Superparamagnetic Iron Oxide Nanoclusters for Universal Cell Labeling and MRI. NANOSCALE RESEARCH LETTERS 2016; 11:263. [PMID: 27216601 PMCID: PMC4877342 DOI: 10.1186/s11671-016-1479-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/12/2016] [Indexed: 05/14/2023]
Abstract
Superparamagnetic iron oxide (SPIO) nanoparticles have been widely used in a variety of biomedical applications, especially as contrast agents for magnetic resonance imaging (MRI) and cell labeling. In this study, SPIO nanoparticles were stabilized with amphiphilic low molecular weight polyethylenimine (PEI) in an aqueous phase to form monodispersed nanocomposites with a controlled clustering structure. The iron-based nanoclusters with a size of 115.3 ± 40.23 nm showed excellent performance on cellular uptake and cell labeling in different types of cells, moreover, which could be tracked by MRI with high sensitivity. The SPIO nanoclusters presented negligible cytotoxicity in various types of cells as detected using MTS, LDH, and flow cytometry assays. Significantly, we found that ferritin protein played an essential role in protecting stress from SPIO nanoclusters. Taken together, the self-assembly of SPIO nanoclusters with good magnetic properties provides a safe and efficient method for universal cell labeling with noninvasive MRI monitoring capability.
Collapse
Affiliation(s)
- Shuzhen Chen
- Department of Microbiology and Immunology, Xiamen Medical College, Xiamen, 361008, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- Sichuan Key Laboratory of Medical Imaging, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong, 637007, China
| | - Shengwei Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Gan Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Bing Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Huan Yao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yuchun Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Chengyong He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Zhongning Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
15
|
Wu X, Liu G, Mu M, Peng Y, Li X, Deng L, Zhang Z, Chen M, You S, Kong X. Augmenter of Liver Regeneration Gene Therapy Using a Novel Minicircle DNA Vector Alleviates Liver Fibrosis in Rats. Hum Gene Ther 2016; 27:880-891. [PMID: 27136973 DOI: 10.1089/hum.2016.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Xin Wu
- Institute of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| | - Guangze Liu
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| | - Mao Mu
- Institute of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| | - Yuting Peng
- Institute of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| | - Xiumei Li
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| | - Lisi Deng
- The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Zhenwei Zhang
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| | - Meijuan Chen
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| | - Song You
- Institute of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiangping Kong
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| |
Collapse
|
16
|
Liu H, Tan Y, Xie L, Yang L, Zhao J, Bai J, Huang P, Zhan W, Wan Q, Zou C, Han Y, Wang Z. Self-assembled dual-modality contrast agents for non-invasive stem cell tracking via near-infrared fluorescence and magnetic resonance imaging. J Colloid Interface Sci 2016; 478:217-26. [PMID: 27299677 DOI: 10.1016/j.jcis.2016.05.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 01/15/2023]
Abstract
Stem cells hold great promise for treating various diseases. However, one of the main drawbacks of stem cell therapy is the lack of non-invasive image-tracking technologies. Although magnetic resonance imaging (MRI) and near-infrared fluorescence (NIRF) imaging have been employed to analyse cellular and subcellular events via the assistance of contrast agents, the sensitivity and temporal resolution of MRI and the spatial resolution of NIRF are still shortcomings. In this study, superparamagnetic iron oxide nanocrystals and IR-780 dyes were co-encapsulated in stearic acid-modified polyethylenimine to form a dual-modality contrast agent with nano-size and positive charge. These resulting agents efficiently labelled stem cells and did not influence the cellular viability and differentiation. Moreover, the labelled cells showed the advantages of dual-modality imaging in vivo.
Collapse
Affiliation(s)
- Hong Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Yan Tan
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Lisi Xie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Lei Yang
- Laboratory for Gene and Cell Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Jing Zhao
- Laboratory for Gene and Cell Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Jingxuan Bai
- Laboratory for Gene and Cell Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Ping Huang
- Laboratory for Gene and Cell Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Wugen Zhan
- Laboratory for Gene and Cell Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Qian Wan
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Chao Zou
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Yali Han
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China.
| | - Zhiyong Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China.
| |
Collapse
|
17
|
Mitochondrial electron transport chain identified as a novel molecular target of SPIO nanoparticles mediated cancer-specific cytotoxicity. Biomaterials 2016; 83:102-14. [PMID: 26773667 DOI: 10.1016/j.biomaterials.2016.01.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 12/30/2015] [Accepted: 01/01/2016] [Indexed: 01/15/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) are highly cytotoxic and target cancer cells with high specificity; however, the mechanism by which SPIONs induce cancer cell-specific cytotoxicity remains unclear. Herein, the molecular mechanism of SPION-induced cancer cell-specific cytotoxicity to cancer cells is clarified through DNA microarray and bioinformatics analyses. SPIONs can interference with the mitochondrial electron transport chain (METC) in cancer cells, which further affects the production of ATP, mitochondrial membrane potential, and microdistribution of calcium, and induces cell apoptosis. Additionally, SPIONs induce the formation of reactive oxygen species in mitochondria; these reactive oxygen species trigger cancer-specific cytotoxicity due to the lower antioxidative capacity of cancer cells. Moreover, the DNA microarray and gene ontology analyses revealed that SPIONs elevate the expression of metallothioneins in both normal and cancer cells but decrease the expression of METC genes in cancer cells. Overall, these results suggest that SPIONs induce cancer cell death by targeting the METC, which is helpful for designing anti-cancer nanotheranostics and evaluating the safety of future nanomedicines.
Collapse
|
18
|
Iacovita C, Stiufiuc R, Radu T, Florea A, Stiufiuc G, Dutu A, Mican S, Tetean R, Lucaciu CM. Polyethylene Glycol-Mediated Synthesis of Cubic Iron Oxide Nanoparticles with High Heating Power. NANOSCALE RESEARCH LETTERS 2015; 10:391. [PMID: 26446074 PMCID: PMC4596149 DOI: 10.1186/s11671-015-1091-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 09/27/2015] [Indexed: 05/04/2023]
Abstract
Iron oxide magnetic nanoparticles (IOMNPs) have been successfully synthesized by means of solvothermal reduction method employing polyethylene glycol (PEG200) as a solvent. The as-synthesized IOMNPs are poly-dispersed, highly crystalline, and exhibit a cubic shape. The size of IOMNPs is strongly dependent on the reaction time and the ration between the amount of magnetic precursor and PEG200 used in the synthesis method. At low magnetic precursor/PEG200 ratio, the cubic IOMNPs coexist with polyhedral IOMNPs. The structure and morphology of the IOMNPs were thoroughly investigated by using a wide range of techniques: TEM, XRD, XPS, FTIR, and RAMAN. XPS analysis showed that the IOMNPs comprise a crystalline magnetite core bearing on the outer surface functional groups from PEG200 and acetate. The presence of physisorbed PEG200 on the IOMNP surface is faintly detected through FT-IR spectroscopy. The surface of IOMNPs undergoes oxidation into maghemite as proven by RAMAN spectroscopy and the occurrence of satellite peaks in the Fe2p XP spectra. The magnetic studies performed on powder show that the blocking temperature (TB) of IOMNPs is around 300 K displaying a coercive field in between 160 and 170 Oe. Below the TB, the field-cooled (FC) curves turn concave and describe a plateau indicating that strong magnetic dipole-dipole interactions are manifested in between IOMNPs. The specific absorption rate (SAR) values increase with decreasing nanoparticle concentrations for the IOMNPs dispersed in water. The SAR dependence on the applied magnetic field, studied up to magnetic field amplitude of 60 kA/m, presents a sigmoid shape with saturation values up to 1700 W/g. By dispersing the IOMNPs in PEG600 (liquid) and PEG1000 (solid), it was found that the SAR values decrease by 50 or 75 %, indicating that the Brownian friction within the solvent was the main contributor to the heating power of IOMNPs.
Collapse
Affiliation(s)
- Cristian Iacovita
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, Pasteur 6, 400349, Cluj-Napoca, Romania.
| | - Rares Stiufiuc
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, Pasteur 6, 400349, Cluj-Napoca, Romania.
| | - Teodora Radu
- Interdisciplinary Research Institute on Bio-Nano-Science, Treboniu Laurian 42, 400271, Cluj-Napoca, Romania.
- National Institute of Research and Development for Isotopic and Molecular Technologies, Donath 65-103, 400293, Cluj-Napoca, Romania.
| | - Adrian Florea
- Department of Cell and Molecular Biology, Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Pasteur 6, 400349, Cluj-Napoca, Romania.
| | - Gabriela Stiufiuc
- Faculty of Physics, "Babes Bolyai" University, Kogalniceanu 1, 400084, Cluj-Napoca, Romania.
| | - Alina Dutu
- Department of Physiology, Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Clinicilor 1, 400006, Cluj-Napoca, Romania.
| | - Sever Mican
- Faculty of Physics, "Babes Bolyai" University, Kogalniceanu 1, 400084, Cluj-Napoca, Romania.
| | - Romulus Tetean
- Faculty of Physics, "Babes Bolyai" University, Kogalniceanu 1, 400084, Cluj-Napoca, Romania.
| | - Constantin M Lucaciu
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, Pasteur 6, 400349, Cluj-Napoca, Romania.
| |
Collapse
|
19
|
Wang Q, Li J, An S, Chen Y, Jiang C, Wang X. Magnetic resonance-guided regional gene delivery strategy using a tumor stroma-permeable nanocarrier for pancreatic cancer. Int J Nanomedicine 2015; 10:4479-90. [PMID: 26203245 PMCID: PMC4508066 DOI: 10.2147/ijn.s84930] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Gene therapy is a very promising technology for treatment of pancreatic ductal adenocarcinoma (PDAC). However, its application has been limited by the abundant stromal response in the tumor microenvironment. The aim of this study was to prepare a dendrimer-based gene-free loading vector with high permeability in the tumor stroma and explore an imaging-guided local gene delivery strategy for PDAC to promote the efficiency of targeted gene delivery. METHODS The experimental protocol was approved by the animal ethics committee of Zhongshan Hospital, Fudan University. Third-generation dendrigraft poly-L-lysines was selected as the nanocarrier scaffold, which was modified by cell-penetrating peptides and gadolinium (Gd) chelates. DNA plasmids were loaded with these nanocarriers via electrostatic interaction. The cellular uptake and loaded gene expression were examined in MIA PaCa-2 cell lines in vitro. Permeability of the nanoparticles in the tumor stroma and transfected gene distribution in vivo were studied using a magnetic resonance imaging-guided delivery strategy in an orthotopic nude mouse model of PDAC. RESULTS The nanocarriers were synthesized with a dendrigraft poly-L-lysine to polyethylene glycol to DTPA ratio of 1:3.4:8.3 and a mean diameter of 110.9±7.7 nm. The luciferases were strictly expressed in the tumor, and the luminescence intensity in mice treated by Gd-DPT/plasmid luciferase (1.04×10(4)±9.75×10(2) p/s/cm(2)/sr) was significantly (P<0.05) higher than in those treated with Gd-DTPA (9.56×10(2)±6.15×10 p/s/cm(2)/sr) and Gd-DP (5.75×10(3)± 7.45×10(2) p/s/cm(2)/sr). Permeability of the nanoparticles modified by cell-penetrating peptides was superior to that of the unmodified counterpart, demonstrating the improved capability of nanoparticles for diffusion in tumor stroma on magnetic resonance imaging. CONCLUSION This study demonstrated that an image-guided gene delivery system with a stroma-permeable gene vector could be a potential clinically translatable gene therapy strategy for PDAC.
Collapse
Affiliation(s)
- Qingbing Wang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, People’s Republic of China
| | - Jianfeng Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, People’s Republic of China
| | - Sai An
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, People’s Republic of China
| | - Yi Chen
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, People’s Republic of China
| | - Xiaolin Wang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
20
|
Epsilon-caprolactone modified polyethylenimine for highly efficient antigen delivery and chemical exchange saturation transfer functional MR imaging. Biomaterials 2015; 56:219-28. [DOI: 10.1016/j.biomaterials.2015.03.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/25/2015] [Accepted: 03/27/2015] [Indexed: 11/21/2022]
|
21
|
Wang H, Thorling CA, Liang X, Bridle KR, Grice JE, Zhu Y, Crawford DHG, Xu ZP, Liu X, Roberts MS. Diagnostic imaging and therapeutic application of nanoparticles targeting the liver. J Mater Chem B 2015; 3:939-958. [PMID: 32261972 DOI: 10.1039/c4tb01611d] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Liver diseases, particularly viral hepatitis, cirrhosis and hepatocellular carcinoma, are common in clinical practice with high morbidity and mortality worldwide. Many substances for diagnostic imaging and therapy of liver diseases may have either severe adverse effects or insufficient effectiveness in vivo because of their nonspecific uptake. Therefore, by targeting the delivery of drugs into the liver or specific liver cells, drug efficiency may be largely improved. This review summarizes the up-to-date research progress focusing on nanoparticles targeting the liver for both diagnostic and therapeutic purposes. Targeting strategies, mechanisms of enhanced effects, and clinical applications of nanoparticles are discussed specifically. We believe that new targeting nanotechnology such as nanoprobes for multi-modality imaging and multifunctional nanoparticles would facilitate significant advancements in this active research area in the near future.
Collapse
Affiliation(s)
- Haolu Wang
- Therapeutics Research Centre, School of Medicine, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, QLD 4102, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Gene therapy and imaging in preclinical and clinical oncology: recent developments in therapy and theranostics. Ther Deliv 2014; 5:1275-96. [DOI: 10.4155/tde.14.87] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In the case of disseminated cancer, current treatment options reach their limit. Gene theranostics emerge as an innovative route in the treatment and diagnosis of cancer and might pave the way towards development of an efficacious treatment of currently incurable cancer. Various gene vectors have been developed to realize tumor-specific nucleic acid delivery and are considered crucial for the successful application of cancer gene therapy. By adding reporter genes and imaging agents, these systems gain an additional diagnostic function, thereby advancing the theranostic paradigm into cancer gene therapy. Numerous preclinical studies have demonstrated the feasibility of combined tumor gene therapy and diagnostic imaging, and clinical trials in human and veterinary oncology have been executed with partly encouraging results.
Collapse
|
23
|
Lin G, Zhu W, Yang L, Wu J, Lin B, Xu Y, Cheng Z, Xia C, Gong Q, Song B, Ai H. Delivery of siRNA by MRI-visible nanovehicles to overcome drug resistance in MCF-7/ADR human breast cancer cells. Biomaterials 2014; 35:9495-507. [PMID: 25155545 DOI: 10.1016/j.biomaterials.2014.07.049] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/23/2014] [Indexed: 02/08/2023]
Abstract
Multidrug resistance (MDR) is one of the major barriers in cancer chemotherapy. P-glycoprotein (P-gp), a cell membrane protein in MDR, also a member of ATP-Binding cassette (ABC) transporter, can increase the efflux of various hydrophobic anticancer drugs. In this study, polycation/iron oxide nanocomposites, were chosen as small interfering RNA (siRNA) carriers to overcome MDR through silencing of the target messenger RNA and subsequently reducing the expression of P-gp. Amphiphilic low molecular weight polyethylenimine was designed with different alkylation groups and alkylation degree to form various nanocarriers with clustered iron oxide nanoparticles inside and carrying siRNA through electrostatic interaction. A few optimized formulations can form stable nanocomplexes with siRNA and protect them from degradation during delivery, and lead to effective silencing effect that comparable to a commercial golden standard transfection agent, Lipofectamine 2000. Human breast cancer MCF-7/ADR cells can be vulnerable to doxorubicin treatment after the strong downregulation of P-gp through siRNA tranfection. Once transfected with these nanocomplexes, the cells displayed significant contrast enhancement against non-transfected cells under a 3T clinical MRI scanner. These nanocomposites also demonstrated their downregulation efficacy of P-gp in a MCF-7/ADR orthotopic tumor model in mice.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Cell Survival
- Down-Regulation
- Doxorubicin/pharmacology
- Drug Delivery Systems
- Drug Resistance, Neoplasm
- Female
- Gene Silencing
- Humans
- MCF-7 Cells
- Magnetic Resonance Imaging
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Molecular Weight
- Nanostructures/chemistry
- Polyethyleneimine/chemistry
- Polyethyleneimine/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- Transfection
Collapse
Affiliation(s)
- Gan Lin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Wencheng Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Jun Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Bingbing Lin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Ye Xu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Zhuzhong Cheng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Chunchao Xia
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hua Ai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
24
|
Zuo Y, Liao S, Xu Z, Xie J, Huang W, Yu Z. A new version of targeted minicircle producer system for EBV-positive human nasopharyngeal carcinoma. Oncol Rep 2014; 32:2564-70. [PMID: 25230680 DOI: 10.3892/or.2014.3486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 07/18/2014] [Indexed: 11/06/2022] Open
Abstract
Targeted gene therapy needs to be implemented for future therapies to ensure efficient activity at the site of patient primary tumors or metastases without causing intolerable side-effects. One of the elements of gene therapy is vector, which includes viral and non-viral vector. In the present study, we constructed a novel non-viral targeted gene therapeutic system by using the new minicircle (MC) producing plasmid for Epstein-Barr virus (EBV)-positive nasopharyngeal carcinoma (NPC). Molecular cloning technique was used to construct plasmids and electrophoretic analysis. Dual-luciferase reporter assay was used to evaluate the expression of luciferase. Fluorescence microscope was used to detect the expression of enhanced green fluorescence protein (EGFP). We constructed a new MC producing system pMC.BESPX-origin of plasmid replication (oriP), and demonstrated that this system could produce highly purified MC-oriP. Furthermore, our results showed that MC-oriP vector produced by the new system could mediate targeted luciferase gene expression in EBV-positive NPC cells. In addition, we verified that MC could mediate enhanced transgene expression compared with parent plasmid through EGFP transfection. The present study constructed a targeted expression vector pMC.BESPX-oriP which could carry diversified therapeutic genes for EBV-positive NPC and provides a new approach for MC-based therapies.
Collapse
Affiliation(s)
- Yufang Zuo
- Cancer Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, P.R. China
| | - Sihai Liao
- Cancer Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, P.R. China
| | - Zumin Xu
- Cancer Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, P.R. China
| | - Jierong Xie
- Cancer Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, P.R. China
| | - Wenlin Huang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Zhonghua Yu
- Cancer Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, P.R. China
| |
Collapse
|
25
|
Shen H, Hou J, Gao Z, Chen B, Tan T. Solvothermal Synthesis of Functional Magnetic Nanoparticles for Biocatalyst. Appl Biochem Biotechnol 2014; 173:2279-86. [DOI: 10.1007/s12010-014-1033-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 06/19/2014] [Indexed: 12/11/2022]
|
26
|
Mao GY, Yang WJ, Bu FX, Jiang DM, Zhao ZJ, Zhang QH, Fang QC, Jiang JS. One-step hydrothermal synthesis of Fe3O4@C nanoparticles with great performance in biomedicine. J Mater Chem B 2014; 2:4481-4488. [DOI: 10.1039/c4tb00394b] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Core@shell structured Fe3O4@C nanoparticles synthesized by one-pot hydrothermal method show good pH-response drug release property and magneto-thermal performance.
Collapse
Affiliation(s)
- Gui-Yun Mao
- Department of Physics
- Center for Functional Nanomaterials and Devices
- East China Normal University
- Shanghai 200241, P. R. China
| | - Wen-Jing Yang
- Shanghai Diabetes Institute
- Shanghai Key Laboratory of Diabeties Mellitus
- Department of Endocrinology and Metabolism
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital
- Shanghai 200233, P. R. China
| | - Fan-Xing Bu
- Department of Physics
- Center for Functional Nanomaterials and Devices
- East China Normal University
- Shanghai 200241, P. R. China
| | - Dong-Mei Jiang
- Department of Physics
- Center for Functional Nanomaterials and Devices
- East China Normal University
- Shanghai 200241, P. R. China
| | - Zhen-Jie Zhao
- Department of Physics
- Center for Functional Nanomaterials and Devices
- East China Normal University
- Shanghai 200241, P. R. China
| | - Qing-Hong Zhang
- Engineering Research Center of Advanced Glasses Manufacturing Technology
- MOE
- Donghua University
- Shanghai 201620, P. R. China
| | - Qi-Chen Fang
- Shanghai Diabetes Institute
- Shanghai Key Laboratory of Diabeties Mellitus
- Department of Endocrinology and Metabolism
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital
- Shanghai 200233, P. R. China
| | - Ji-Sen Jiang
- Department of Physics
- Center for Functional Nanomaterials and Devices
- East China Normal University
- Shanghai 200241, P. R. China
| |
Collapse
|
27
|
Hou J, Kuang Y, Shen H, Cao H, Luo L, Liu J, Wan P, Chen B, Sun X, Tan T. Solvothermal synthesis of FeCo nanoparticles for magneto-controllable biocatalysis. RSC Adv 2014. [DOI: 10.1039/c4ra00417e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
FeCo nanoparticles were synthesized by a solvothermal method, and could work as a fuel-free magneto-controllable carrier to load biocatalytically-active cargo for magneto-controllable and recyclable biocatalysis.
Collapse
Affiliation(s)
- Jianxuan Hou
- Beijing Key Lab of Bioprocess
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029, PR China
- State Key Laboratory of Chemical Resource Engineering
| | - Yun Kuang
- State Key Laboratory of Chemical Resource Engineering
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029, PR China
| | - Huaqing Shen
- Beijing Key Lab of Bioprocess
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029, PR China
| | - Hui Cao
- Beijing Key Lab of Bioprocess
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029, PR China
| | - Liang Luo
- State Key Laboratory of Chemical Resource Engineering
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029, PR China
| | - Junfeng Liu
- State Key Laboratory of Chemical Resource Engineering
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029, PR China
| | - Pengbo Wan
- State Key Laboratory of Chemical Resource Engineering
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029, PR China
| | - Biqiang Chen
- Beijing Key Lab of Bioprocess
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029, PR China
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029, PR China
| | - Tianwei Tan
- Beijing Key Lab of Bioprocess
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029, PR China
| |
Collapse
|
28
|
Abstract
Electrical pulses directly and effectively boost both in vitro and in vivo gene transfer, but this process is greatly affected by non-electrical factors that exist during electroporation. These factors include, but are not limited to, the types of cells or tissues used, property of DNA, DNA formulation, and expressed protein. In this mini-review, we only describe and discuss a summary of DNA properties and selected DNA formulations on gene transfer via electroporation. The properties of DNA were selected for review because a substantial amount of remarkable work has been performed during the past few years but has received less notice than other works, although DNA properties appear to be critical for boosting electroporation delivery. The selected formulations will be covered in this mini-review because we are only interested in the simple formulations that could be used for cell or gene therapy via electroporation. Plus, there was an extensive review of DNA formulations in the first edition of this book. The formulations discussed in this mini-review represent novel developments in recent years and may impact electroporation significantly. These advancements in DNA formulations could prove to be important for gene delivery and disease treatment.
Collapse
Affiliation(s)
- Jiemiao Hu
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | |
Collapse
|
29
|
Development of Magnetic Nanoparticles for Cancer Gene Therapy: A Comprehensive Review. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/646284] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Since they were first proposed as nonviral transfection agents for their gene-carrying capacity, magnetic nanoparticles have been studied thoroughly, both in vitro and in vivo. Great effort has been made to manufacture biocompatible magnetic nanoparticles for use in the theragnosis of cancer and other diseases. Here we survey recent advances in the study of magnetic nanoparticles, as well as the polymers and other coating layers currently available for gene therapy, their synthesis, and bioconjugation processes. In addition, we review several gene therapy models based on magnetic nanoparticles.
Collapse
|
30
|
Wang Z, Liu G, Zheng H, Chen X. Rigid nanoparticle-based delivery of anti-cancer siRNA: challenges and opportunities. Biotechnol Adv 2013; 32:831-43. [PMID: 24013011 DOI: 10.1016/j.biotechadv.2013.08.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/21/2013] [Accepted: 08/29/2013] [Indexed: 01/03/2023]
Abstract
Gene therapy is a promising strategy to treat various genetic and acquired diseases. Small interfering RNA (siRNA) is a revolutionary tool for gene therapy and the analysis of gene function. However, the development of a safe, efficient, and targetable non-viral siRNA delivery system remains a major challenge in gene therapy. An ideal delivery system should be able to encapsulate and protect the siRNA cargo from serum proteins, exhibit target tissue and cell specificity, penetrate the cell membrane, and release its cargo in the desired intracellular compartment. Nanomedicine has the potential to deal with these challenges faced by siRNA delivery. The unique characteristics of rigid nanoparticles mostly inorganic nanoparticles and allotropes of carbon nanomaterials, including high surface area, facile surface modification, controllable size, and excellent magnetic/optical/electrical properties, make them promising candidates for targeted siRNA delivery. In this review, recent progresses on rigid nanoparticle-based siRNA delivery systems will be summarized.
Collapse
Affiliation(s)
- Zhiyong Wang
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China; Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Gang Liu
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; MOE key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|