1
|
Schwartzman JD, McCall M, Ghattas Y, Pugazhendhi AS, Wei F, Ngo C, Ruiz J, Seal S, Coathup MJ. Multifunctional scaffolds for bone repair following age-related biological decline: Promising prospects for smart biomaterial-driven technologies. Biomaterials 2024; 311:122683. [PMID: 38954959 DOI: 10.1016/j.biomaterials.2024.122683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/09/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
The repair of large bone defects due to trauma, disease, and infection can be exceptionally challenging in the elderly. Despite best clinical practice, bone regeneration within contemporary, surgically implanted synthetic scaffolds is often problematic, inconsistent, and insufficient where additional osteobiological support is required to restore bone. Emergent smart multifunctional biomaterials may drive important and dynamic cellular crosstalk that directly targets, signals, stimulates, and promotes an innate bone repair response following age-related biological decline and when in the presence of disease or infection. However, their role remains largely undetermined. By highlighting their mechanism/s and mode/s of action, this review spotlights smart technologies that favorably align in their conceivable ability to directly target and enhance bone repair and thus are highly promising for future discovery for use in the elderly. The four degrees of interactive scaffold smartness are presented, with a focus on bioactive, bioresponsive, and the yet-to-be-developed autonomous scaffold activity. Further, cell- and biomolecular-assisted approaches were excluded, allowing for contemporary examination of the capabilities, demands, vision, and future requisites of next-generation biomaterial-induced technologies only. Data strongly supports that smart scaffolds hold significant promise in the promotion of bone repair in patients with a reduced osteobiological response. Importantly, many techniques have yet to be tested in preclinical models of aging. Thus, greater clarity on their proficiency to counteract the many unresolved challenges within the scope of aging bone is highly warranted and is arguably the next frontier in the field. This review demonstrates that the use of multifunctional smart synthetic scaffolds with an engineered strategy to circumvent the biological insufficiencies associated with aging bone is a viable route for achieving next-generation therapeutic success in the elderly population.
Collapse
Affiliation(s)
| | - Max McCall
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Yasmine Ghattas
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Abinaya Sindu Pugazhendhi
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Fei Wei
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Christopher Ngo
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Jonathan Ruiz
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Sudipta Seal
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA; Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, USA, Orlando, FL
| | - Melanie J Coathup
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
2
|
Meng X, Wang WD, Li SR, Sun ZJ, Zhang L. Harnessing cerium-based biomaterials for the treatment of bone diseases. Acta Biomater 2024; 183:30-49. [PMID: 38849022 DOI: 10.1016/j.actbio.2024.05.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
Bone, an actively metabolic organ, undergoes constant remodeling throughout life. Disturbances in the bone microenvironment can be responsible for pathologically bone diseases such as periodontitis, osteoarthritis, rheumatoid arthritis and osteoporosis. Conventional bone tissue biomaterials are not adequately adapted to complex bone microenvironment. Therefore, there is an urgent clinical need to find an effective strategy to improve the status quo. In recent years, nanotechnology has caused a revolution in biomedicine. Cerium(III, IV) oxide, as an important member of metal oxide nanomaterials, has dual redox properties through reversible binding with oxygen atoms, which continuously cycle between Ce(III) and Ce(IV). Due to its special physicochemical properties, cerium(III, IV) oxide has received widespread attention as a versatile nanomaterial, especially in bone diseases. This review describes the characteristics of bone microenvironment. The enzyme-like properties and biosafety of cerium(III, IV) oxide are also emphasized. Meanwhile, we summarizes controllable synthesis of cerium(III, IV) oxide with different nanostructural morphologies. Following resolution of synthetic principles of cerium(III, IV) oxide, a variety of tailored cerium-based biomaterials have been widely developed, including bioactive glasses, scaffolds, nanomembranes, coatings, and nanocomposites. Furthermore, we highlight the latest advances in cerium-based biomaterials for inflammatory and metabolic bone diseases and bone-related tumors. Tailored cerium-based biomaterials have already demonstrated their value in disease prevention, diagnosis (imaging and biosensors) and treatment. Therefore, it is important to assist in bone disease management by clarifying tailored properties of cerium(III, IV) oxide in order to promote the use of cerium-based biomaterials in the future clinical setting. STATEMENT OF SIGNIFICANCE: In this review, we focused on the promising of cerium-based biomaterials for bone diseases. We reviewed the key role of bone microenvironment in bone diseases and the main biological activities of cerium(III, IV) oxide. By setting different synthesis conditions, cerium(III, IV) oxide nanostructures with different morphologies can be controlled. Meanwhile, tailored cerium-based biomaterials can serve as a versatile toolbox (e.g., bioactive glasses, scaffolds, nanofibrous membranes, coatings, and nanocomposites). Then, the latest research advances based on cerium-based biomaterials for the treatment of bone diseases were also highlighted. Most importantly, we analyzed the perspectives and challenges of cerium-based biomaterials. In future perspectives, this insight has given rise to a cascade of cerium-based biomaterial strategies, including disease prevention, diagnosis (imaging and biosensors) and treatment.
Collapse
Affiliation(s)
- Xiang Meng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, PR China
| | - Wen-Da Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, PR China
| | - Su-Ran Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, PR China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, PR China.
| | - Lu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, PR China; Department of Endodontics, School and Hospital of Stomatology, Wuhan University, HongShan District, LuoYu Road No. 237, Wuhan, 430079, PR China.
| |
Collapse
|
3
|
Yao L, Zhu X, Shan Y, Zhang L, Yao J, Xiong H. Recent Progress in Anti-Tumor Nanodrugs Based on Tumor Microenvironment Redox Regulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310018. [PMID: 38269480 DOI: 10.1002/smll.202310018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/30/2023] [Indexed: 01/26/2024]
Abstract
The growth state of tumor cells is strictly affected by the specific abnormal redox status of the tumor microenvironment (TME). Moreover, redox reactions at the biological level are also central and fundamental to essential energy metabolism reactions in tumors. Accordingly, anti-tumor nanodrugs targeting the disruption of this abnormal redox homeostasis have become one of the hot spots in the field of nanodrugs research due to the effectiveness of TME modulation and anti-tumor efficiency mediated by redox interference. This review discusses the latest research results of nanodrugs in anti-tumor therapy, which regulate the levels of oxidants or reductants in TME through a variety of therapeutic strategies, ultimately breaking the original "stable" redox state of the TME and promoting tumor cell death. With the gradual deepening of study on the redox state of TME and the vigorous development of nanomaterials, it is expected that more anti-tumor nano drugs based on tumor redox microenvironment regulation will be designed and even applied clinically.
Collapse
Affiliation(s)
- Lan Yao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Xiang Zhu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Yunyi Shan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Liang Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Jing Yao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Hui Xiong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| |
Collapse
|
4
|
Huang Y, Zhang M, Jin M, Ma T, Guo J, Zhai X, Du Y. Recent Advances on Cerium Oxide-Based Biomaterials: Toward the Next Generation of Intelligent Theranostics Platforms. Adv Healthc Mater 2023; 12:e2300748. [PMID: 37314429 DOI: 10.1002/adhm.202300748] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/24/2023] [Indexed: 06/15/2023]
Abstract
Disease or organ damage due to unhealthy living habits, or accidents, is inevitable. Discovering an efficient strategy to address these problems is urgently needed in the clinic. In recent years, the biological applications of nanotechnology have received extensive attention. Among them, as a widely used rare earth oxide, cerium oxide (CeO2 ) has shown good application prospects in biomedical fields due to its attractive physical and chemical properties. Here, the enzyme-like mechanism of CeO2 is elucidated, and the latest research progress in the biomedical field is reviewed. At the nanoscale, Ce ions in CeO2 can be reversibly converted between +3 and +4. The conversion process is accompanied by the generation and elimination of oxygen vacancies, which give CeO2 the performance of dual redox properties. This property facilitates nano-CeO2 to catalyze the scavenging of excess free radicals in organisms, hence providing a possibility for the treatment of oxidative stress diseases such as diabetic foot, arthritis, degenerative neurological diseases, and cancer. In addition, relying on its excellent catalytic properties, customizable life-signaling factor detectors based on electrochemical techniques are developed. At the end of this review, an outlook on the opportunities and challenges of CeO2 in various fields is provided.
Collapse
Affiliation(s)
- Yongkang Huang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
- College of Chemistry, Nankai University, Tianjin, 300350, China
| | - Mengzhen Zhang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
- College of Chemistry, Nankai University, Tianjin, 300350, China
| | - Mengdie Jin
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Tengfei Ma
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Jialiang Guo
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Xinyun Zhai
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| |
Collapse
|
5
|
Cerium-Doped Self-Assembling Nanoparticles as a Novel Anti-Oxidant Delivery System Preserving Mitochondrial Function in Cortical Neurons Exposed to Ischemia-like Conditions. Antioxidants (Basel) 2023; 12:antiox12020358. [PMID: 36829918 PMCID: PMC9952397 DOI: 10.3390/antiox12020358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Neurodegenerative diseases are characterized by mitochondrial dysfunction leading to abnormal levels of reactive oxygen species (ROS), making the use of ROS-scavenging nanomaterials a promising therapeutic approach. Here, we combined the unique ROS-scavenging properties of cerium-based nanomaterials with the lipid self-assembling nanoparticles (SANP) technology. We optimized the preparation of cerium-doped SANP (Ce-SANP) and characterized the formulations in terms of both physiochemical and biological properties. Ce-SANP exhibited good colloidal properties and were able to mimic the activity of two ROS-scavenging enzymes, namely peroxidase and super oxide dismutase. Under ischemia-like conditions, Ce-SANP could rescue neuronal cells from mitochondrial suffering by reducing ROS production and preventing ATP level reduction. Furthermore, Ce-SANP prevented mitochondrial Ca2+ homeostasis dysfunction, partially restoring mitochondrial Ca2+ handling. Taken together, these results highlight the potential of the anti-oxidant Ce-SANP platform technology to manage ROS levels and mitochondrial function for the treatment of neurodegenerative diseases.
Collapse
|
6
|
Xu S, Wu Q, He B, Rao J, Chow DHK, Xu J, Wang X, Sun Y, Ning C, Dai K. Interactive effects of cerium and copper to tune the microstructure of silicocarnotite bioceramics towards enhanced bioactivity and good biosafety. Biomaterials 2022; 288:121751. [PMID: 36031456 DOI: 10.1016/j.biomaterials.2022.121751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/09/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022]
Abstract
Endowing biomaterials with functional elements enhances their biological properties effectively. However, improving bioactivity and biosafety simultaneously is still highly desirable. Herein, cerium (Ce) and copper (Cu) are incorporated into silicocarnotite (CPS) to modulate the constitution and microstructure for degradability, bioactivity and biosafety regulation. Our results demonstrated that introducing Ce suppressed scaffold degradation, while, co-incorporation of both Ce and Cu accelerated degradability. Osteogenic effect of CPS in vitro was promoted by Ce and optimized by Cu, and Ce-induced angiogenic inhibition could be mitigated by cell coculture method and reversed by Ce-Cu co-incorporation. Ce enhanced osteogenic and angiogenic properties of CPS in a dose-dependent manner in vivo, and Cu-Ce coexistence exhibited optimal bioactivity and satisfactory biosafety. This work demonstrated that coculture in vitro was more appropriately reflecting the behavior of implanted biomaterials in vivo. Interactive effects of multi-metal elements were promising to enhance bioactivity and biosafety concurrently. The present work provided a promising biomaterial for bone repair and regeneration, and offered a comprehensive strategy to design new biomaterials which aimed at adjustable degradation behavior, and enhanced bioactivity and biosafety.
Collapse
Affiliation(s)
- Shunxiang Xu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, No. 100, Guilin Road, Xuhui District, Shanghai, 200234, PR China; Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology Faculty of Medicine, The Chinese University of Hong Kong, No. 437, Ma Liu Shui, Shatin, New Territories, Hong Kong SAR, 999077, PR China
| | - Qiang Wu
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Huangpu District, Shanghai, 200011, PR China
| | - Bo He
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, No. 100, Guilin Road, Xuhui District, Shanghai, 200234, PR China
| | - Jiancun Rao
- AIM Lab, Maryland NanoCenter, University of Maryland, MD, 20742, USA
| | - Dick Ho Kiu Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology Faculty of Medicine, The Chinese University of Hong Kong, No. 437, Ma Liu Shui, Shatin, New Territories, Hong Kong SAR, 999077, PR China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology Faculty of Medicine, The Chinese University of Hong Kong, No. 437, Ma Liu Shui, Shatin, New Territories, Hong Kong SAR, 999077, PR China
| | - Xin Wang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuchang District, Wuhan, 430071, PR China
| | - Ye Sun
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Gulou District, Nanjing, 210029, PR China
| | - Congqin Ning
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, No. 100, Guilin Road, Xuhui District, Shanghai, 200234, PR China.
| | - Kerong Dai
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Huangpu District, Shanghai, 200011, PR China.
| |
Collapse
|
7
|
Ma H, Liu Z, Koshy P, Sorrell CC, Hart JN. Density Functional Theory Investigation of the Biocatalytic Mechanisms of pH-Driven Biomimetic Behavior in CeO 2. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11937-11949. [PMID: 35229603 DOI: 10.1021/acsami.1c24686] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There is considerable interest in the pH-dependent, switchable, biocatalytic properties of cerium oxide (CeO2) nanoparticles in biomedicine, where these materials exhibit beneficial antioxidant activity against reactive oxygen species (ROS) at a basic physiological pH but cytotoxic prooxidant activity in an acidic cancer cell pH microenvironment. While the general characteristics of the role of oxygen vacancies are known, the mechanism of their action at the atomic scale under different pH conditions has yet to be elucidated. The present work applies density functional theory (DFT) calculations to interpret, at the atomic scale, the pH-induced behavior of the stable {111} surface of CeO2 containing oxygen vacancies. Analysis of the surface-adsorbed media species reveals the critical role of pH on the interaction between ROS (•O2- and H2O2) and the defective CeO2 {111} surface. Under basic conditions, the superoxide dismutase (SOD) and catalase (CAT) biomimetic reactions can be performed cyclically, scavenging and decomposing ROS to harmless products, making CeO2 an excellent antioxidant. However, under acidic conditions, the CAT biomimetic reaction is hindered owing to the limited reversibility of Ce3+ ↔ Ce4+ and formation ↔ annihilation of oxygen vacancies. A Fenton biomimetic reaction (H2O2 + Ce3+ → Ce4+ + OH- + •OH) is predicted to occur simultaneously with the SOD and CAT biomimetic reactions, resulting in the formation of hydroxyl radicals, making CeO2 a cytotoxic prooxidant.
Collapse
Affiliation(s)
- Hongyang Ma
- School of Materials Science and Engineering, UNSW Sydney, Sydney, New South Wales2052, Australia
| | - Zhao Liu
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai519082, China
| | - Pramod Koshy
- School of Materials Science and Engineering, UNSW Sydney, Sydney, New South Wales2052, Australia
| | - Charles C Sorrell
- School of Materials Science and Engineering, UNSW Sydney, Sydney, New South Wales2052, Australia
| | - Judy N Hart
- School of Materials Science and Engineering, UNSW Sydney, Sydney, New South Wales2052, Australia
| |
Collapse
|
8
|
Yong JM, Fu L, Tang F, Yu P, Kuchel RP, Whitelock JM, Lord MS. ROS-Mediated Anti-Angiogenic Activity of Cerium Oxide Nanoparticles in Melanoma Cells. ACS Biomater Sci Eng 2022; 8:512-525. [PMID: 34989230 DOI: 10.1021/acsbiomaterials.1c01268] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Angiogenesis plays a key role in cancer progression, including transition to the metastatic phase via reactive oxygen species (ROS)-dependent pathways, among others. Antivascular endothelial growth factor (VEGF) antibodies have been trialed as an anti-angiogenic therapy for cancer but are associated with high cost, limited efficacy, and side effects. Cerium oxide nanoparticles (nanoceria) are promising nanomaterials for biomedical applications due to their ability to modulate intracellular ROS. Nanoceria can be produced by a range of synthesis methods, with chemical precipitation as the most widely explored. It has been reported that chemical precipitation can fine-tune primary particle size where a limited number of synthesis parameters were varied. Here, we explore the effect of temperature, precipitating agent concentration and rate of addition, stirring rate, and surfactant concentration on nanoceria primary particle size using a fractional factorial experimental design approach. We establish a robust synthesis method for faceted nanoceria with primary particle diameters of 5-6 nm. The nanoceria are not cytotoxic to a human melanoma cell line (Mel1007) at doses up to 400 μg/mL and are dose-dependently internalized by the cells. The intracellular ROS level for some cells that internalized the nanoceria is reduced, which correlates with a dose-dependent reduction in angiogenic gene expression including VEGF. These findings contribute to our knowledge of the anti-angiogenic effects of nanoceria and help to develop our understanding of potentially new anti-angiogenic agents for combination cancer therapies.
Collapse
Affiliation(s)
- Joel M Yong
- Graduate School of Biomedical Engineering, Level 5, Samuels Building, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Lu Fu
- Graduate School of Biomedical Engineering, Level 5, Samuels Building, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Fengying Tang
- Graduate School of Biomedical Engineering, Level 5, Samuels Building, UNSW Sydney, Sydney, NSW 2052, Australia.,Department of Comparative Medicine, University of Washington, Seattle, Washington 98195, United States
| | - Peimin Yu
- Graduate School of Biomedical Engineering, Level 5, Samuels Building, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Rhiannon P Kuchel
- Electron Microscope Unit, Basement, Chemical Sciences Building, UNSW Sydney, Sydney, NSW 2052, Australia
| | - John M Whitelock
- Graduate School of Biomedical Engineering, Level 5, Samuels Building, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Megan S Lord
- Graduate School of Biomedical Engineering, Level 5, Samuels Building, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
9
|
Attia N, Rostom DM, Mashal M. The use of cerium oxide nanoparticles in liver disorders: A double-sided coin? Basic Clin Pharmacol Toxicol 2021; 130:349-363. [PMID: 34902883 DOI: 10.1111/bcpt.13700] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/01/2022]
Abstract
Being recognized as the first antioxidant nanoparticles (NPs) proposed for medicine, cerium oxide nanoparticles (CeO2 NPs) have recently gained tremendous attention for their vast biomedical applications. Nevertheless, inconsistent reports of either medical benefits or toxicity have created an atmosphere of uncertainty hindering their clinical utilization. Like other nanoparticles advocated as a promising protective/therapeutic option, CeO2 NPs are sometimes questioned as a health threat. As CeO2 NPs tend to accumulate in the liver after intravenous injection, liver is known to represent the key tissue to test for their therapeutic/toxicological effects. However, more research evidence is still needed before any conclusions can be elicited about the mechanisms by which CeO2 NPs could be harmful or protective/therapeutic to the liver tissue. A proper understanding of such discrepancies is warranted to plan for further modifications to mitigate any side effects. Therefore, in this MiniReview, we tried to demonstrate the two sides of the same coin, CeO2 NPs, within the liver context. As well, we highlighted a few promising strategies by which the negatives of CeO2 NPs could be diminished while enhancing all the positives.
Collapse
Affiliation(s)
- N Attia
- Department of Basic Sciences, The American University of Antigua-College of Medicine, Coolidge, Antigua and Barbuda.,The Center of research and evaluation, The American University of Antigua-College of Medicine, Coolidge, Antigua and Barbuda.,Histology and Cell Biology Department, Faculty of Medicine, University of Alexandria, Alexandria, Egypt.,NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gastiez, Spain
| | - D M Rostom
- Histology and Cell Biology Department, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - M Mashal
- The Center of research and evaluation, The American University of Antigua-College of Medicine, Coolidge, Antigua and Barbuda.,NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gastiez, Spain
| |
Collapse
|
10
|
Lord MS, Berret JF, Singh S, Vinu A, Karakoti AS. Redox Active Cerium Oxide Nanoparticles: Current Status and Burning Issues. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102342. [PMID: 34363314 DOI: 10.1002/smll.202102342] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Research on cerium oxide nanoparticles (nanoceria) has captivated the scientific community due to their unique physical and chemical properties, such as redox activity and oxygen buffering capacity, which made them available for many technical applications, including biomedical applications. The redox mimetic antioxidant properties of nanoceria have been effective in the treatment of many diseases caused by reactive oxygen species (ROS) and reactive nitrogen species. The mechanism of ROS scavenging activity of nanoceria is still elusive, and its redox activity is controversial due to mixed reports in the literature showing pro-oxidant and antioxidant activity. In light of its current research interest, it is critical to understand the behavior of nanoceria in the biological environment and provide answers to some of the critical and open issues. This review critically analyzes the status of research on the application of nanoceria to treat diseases caused by ROS. It reviews the proposed mechanism of action and shows the effect of surface coatings on its redox activity. It also discusses some of the crucial issues in deciphering the mechanism and redox activity of nanoceria and suggests areas of future research.
Collapse
Affiliation(s)
- Megan S Lord
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | | | - Sanjay Singh
- National Institute of Animal Biotechnology, Hyderabad, Telangana, 500032, India
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials, College of Engineering Science and Environment, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Ajay S Karakoti
- Global Innovative Center for Advanced Nanomaterials, College of Engineering Science and Environment, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| |
Collapse
|
11
|
Saifi MA, Seal S, Godugu C. Nanoceria, the versatile nanoparticles: Promising biomedical applications. J Control Release 2021; 338:164-189. [PMID: 34425166 DOI: 10.1016/j.jconrel.2021.08.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/27/2022]
Abstract
Nanotechnology has been a boon for the biomedical field due to the freedom it provides for tailoring of pharmacokinetic properties of different drug molecules. Nanomedicine is the medical application of nanotechnology for the diagnosis, treatment and/or management of the diseases. Cerium oxide nanoparticles (CNPs) are metal oxide-based nanoparticles (NPs) which possess outstanding reactive oxygen species (ROS) scavenging activities primarily due to the availability of "oxidation switch" on their surface. These NP have been found to protect from a number of disorders with a background of oxidative stress such as cancer, diabetes etc. In fact, the CNPs have been found to possess the environment-dependent ROS modulating properties. In addition, the inherent catalase, SOD, oxidase, peroxidase and phosphatase mimetic properties of CNPs provide them superiority over a number of NPs. Further, chemical reactivity of CNPs seems to be a function of their surface chemistry which can be precisely tuned by defect engineering. However, the contradictory reports make it necessary to critically evaluate the potential of CNPs, in the light of available literature. The review is aimed at probing the feasibility of CNPs to push towards the clinical studies. Further, we have also covered and censoriously discussed the suspected negative impacts of CNPs before making our way to a consensus. This review aims to be a comprehensive, authoritative, critical, and accessible review of general interest to the scientific community.
Collapse
Affiliation(s)
- Mohd Aslam Saifi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Sudipta Seal
- University of Central Florida, 12760 Pegasus Drive ENG I, Suite 207, Orlando, FL 32816, USA
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| |
Collapse
|
12
|
Effect of Artemisinin-Loaded Mesoporous Cerium-Doped Calcium Silicate Nanopowder on Cell Proliferation of Human Periodontal Ligament Fibroblasts. NANOMATERIALS 2021; 11:nano11092189. [PMID: 34578505 PMCID: PMC8465982 DOI: 10.3390/nano11092189] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 01/31/2023]
Abstract
Ion doping has rendered mesoporous structures important materials in the field of tissue engineering, as apart from drug carriers, they can additionally serve as regenerative materials. The purpose of the present study was the synthesis, characterization and evaluation of the effect of artemisinin (ART)-loaded cerium-doped mesoporous calcium silicate nanopowders (NPs) on the hemocompatibility and cell proliferation of human periodontal ligament fibroblasts (hPDLFs). Mesoporous NPs were synthesized in a basic environment via a surfactant assisted cooperative self-assembly process and were characterized using Scanning Electron Microscopy (SEM), X-ray Fluorescence Spectroscopy (XRF), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction Analysis (XRD) and N2 Porosimetry. The loading capacity of NPs was evaluated using Ultrahigh Performance Liquid Chromatography/High resolution Mass Spectrometry (UHPLC/HRMS). Their biocompatibility was evaluated with the MTT assay, and the analysis of reactive oxygen species was performed using the cell-permeable ROS-sensitive probe 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA). The synthesized NPs presented a mesoporous structure with a surface area ranging from 1312 m2/g for undoped silica to 495 m2/g for the Ce-doped NPs, excellent bioactivity after a 1-day immersion in c-SBF, hemocompatibility and a high loading capacity (around 80%). They presented ROS scavenging properties, and both the unloaded and ART-loaded NPs significantly promoted cell proliferation even at high concentrations of NPs (125 μg/mL). The ART-loaded Ce-doped NPs with the highest amount of cerium slightly restricted cell proliferation after 7 days of culture, but the difference was not significant compared with the control untreated cells.
Collapse
|
13
|
Jiang L, Tinoco M, Fernández-García S, Sun Y, Traviankina M, Nan P, Xue Q, Pan H, Aguinaco A, González-Leal JM, Blanco G, Blanco E, Hungría AB, Calvino JJ, Chen X. Enhanced Artificial Enzyme Activities on the Reconstructed Sawtoothlike Nanofacets of Pure and Pr-Doped Ceria Nanocubes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38061-38073. [PMID: 34365790 PMCID: PMC8674880 DOI: 10.1021/acsami.1c09992] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In this work, a simple one-step thermal oxidation process was established to achieve a significant surface increase in {110} and {111} nanofacets on well-defined, pure and Pr-doped, ceria nanocubes. More importantly, without changing most of the bulk properties, this treatment leads to a remarkable boost of their enzymatic activities: from the oxidant (oxidase-like) to antioxidant (hydroxyl radical scavenging) as well as the paraoxon degradation (phosphatase-like) activities. Such performance improvement might be due to the thermally generated sawtoothlike {111} nanofacets and defects, which facilitate the oxygen mobility and the formation of oxygen vacancies on the surface. Finally, possible mechanisms of nanoceria as artificial enzymes have been proposed in this manuscript. Considering the potential application of ceria as artificial enzymes, this thermal treatment may enable the future design of highly efficient nanozymes without changing the bulk composition.
Collapse
Affiliation(s)
- Lei Jiang
- Heavy
Oil State Laboratory and Center for Bioengineering and Biotechnology,
College of Chemical Engineering, China University
of Petroleum (East China), Qingdao 266580, China
| | - Miguel Tinoco
- Departamento
de Ciencia de los Materiales, Ingeniería Metalúrgica
y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, Puerto Real, Cádiz E-11510, Spain
| | - Susana Fernández-García
- Departamento
de Ciencia de los Materiales, Ingeniería Metalúrgica
y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, Puerto Real, Cádiz E-11510, Spain
| | - Yujiao Sun
- Heavy
Oil State Laboratory and Center for Bioengineering and Biotechnology,
College of Chemical Engineering, China University
of Petroleum (East China), Qingdao 266580, China
| | - Mariia Traviankina
- Heavy
Oil State Laboratory and Center for Bioengineering and Biotechnology,
College of Chemical Engineering, China University
of Petroleum (East China), Qingdao 266580, China
| | - Pengli Nan
- Heavy
Oil State Laboratory and Center for Bioengineering and Biotechnology,
College of Chemical Engineering, China University
of Petroleum (East China), Qingdao 266580, China
| | - Qi Xue
- Heavy
Oil State Laboratory and Center for Bioengineering and Biotechnology,
College of Chemical Engineering, China University
of Petroleum (East China), Qingdao 266580, China
| | - Huiyan Pan
- Departamento
de Ciencia de los Materiales, Ingeniería Metalúrgica
y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, Puerto Real, Cádiz E-11510, Spain
- Henan
Key Laboratory of Industrial Microbial Resources and Fermentation
Technology, College of Biological and Chemical Engineering, Nanyang Institute of Science and Technology, Nanyang 473004, China
| | - Almudena Aguinaco
- Departamento
de Física de la Materia Condensada, Facultad de Ciencias, Universidad
de Cádiz, Campus Río
San Pedro, Puerto Real, Cádiz E-11510, Spain
- Instituto
Universitario de Investigación en Microscopía Electrónica
y Materiales (IMEYMAT), Universidad de Cádiz, Campus Río San Pedro, Puerto Real, Cádiz E-11510, Spain
| | - Juan M. González-Leal
- Departamento
de Física de la Materia Condensada, Facultad de Ciencias, Universidad
de Cádiz, Campus Río
San Pedro, Puerto Real, Cádiz E-11510, Spain
- Instituto
Universitario de Investigación en Microscopía Electrónica
y Materiales (IMEYMAT), Universidad de Cádiz, Campus Río San Pedro, Puerto Real, Cádiz E-11510, Spain
| | - Ginesa Blanco
- Departamento
de Ciencia de los Materiales, Ingeniería Metalúrgica
y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, Puerto Real, Cádiz E-11510, Spain
- Instituto
Universitario de Investigación en Microscopía Electrónica
y Materiales (IMEYMAT), Universidad de Cádiz, Campus Río San Pedro, Puerto Real, Cádiz E-11510, Spain
| | - Eduardo Blanco
- Departamento
de Física de la Materia Condensada, Facultad de Ciencias, Universidad
de Cádiz, Campus Río
San Pedro, Puerto Real, Cádiz E-11510, Spain
- Instituto
Universitario de Investigación en Microscopía Electrónica
y Materiales (IMEYMAT), Universidad de Cádiz, Campus Río San Pedro, Puerto Real, Cádiz E-11510, Spain
| | - Ana B. Hungría
- Departamento
de Ciencia de los Materiales, Ingeniería Metalúrgica
y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, Puerto Real, Cádiz E-11510, Spain
- Instituto
Universitario de Investigación en Microscopía Electrónica
y Materiales (IMEYMAT), Universidad de Cádiz, Campus Río San Pedro, Puerto Real, Cádiz E-11510, Spain
| | - Jose J. Calvino
- Departamento
de Ciencia de los Materiales, Ingeniería Metalúrgica
y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, Puerto Real, Cádiz E-11510, Spain
- Instituto
Universitario de Investigación en Microscopía Electrónica
y Materiales (IMEYMAT), Universidad de Cádiz, Campus Río San Pedro, Puerto Real, Cádiz E-11510, Spain
| | - Xiaowei Chen
- Departamento
de Ciencia de los Materiales, Ingeniería Metalúrgica
y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, Puerto Real, Cádiz E-11510, Spain
- Instituto
Universitario de Investigación en Microscopía Electrónica
y Materiales (IMEYMAT), Universidad de Cádiz, Campus Río San Pedro, Puerto Real, Cádiz E-11510, Spain
| |
Collapse
|
14
|
Milenković I, Radotić K, Despotović J, Lončarević B, Lješević M, Spasić SZ, Nikolić A, Beškoski VP. Toxicity investigation of CeO 2 nanoparticles coated with glucose and exopolysaccharides levan and pullulan on the bacterium Vibrio fischeri and aquatic organisms Daphnia magna and Danio rerio. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 236:105867. [PMID: 34052720 DOI: 10.1016/j.aquatox.2021.105867] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/19/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Cerium oxide nanoparticles (nCeO2) have widespread applications, but they can be hazardous to the environment. Some reports indicate the toxic effect of nCeO2 on tested animals, but literature data are mainly contradictory. Coating of nCeO2 can improve their suspension stability and change their interaction with the environment, which can consequently decrease their toxic effects. Herein, the exopolysaccharides levan and pullulan, due to their high water solubility, biocompatibility, and ability to form film, were used to coat nCeO2. Additionally, the monosaccharide glucose was used, since it is a common material for nanoparticle coating. This is the first study investigating the impact of carbohydrate-coated nCeO2 in comparison to uncoated nCeO2 using different model organisms. The aim of this study was to test the acute toxicity of carbohydrate-coated nCeO2 on the bacterium Vibrio fischeri NRRL B-11177, the crustacean Daphnia magna, and zebrafish Danio rerio. The second aim was to investigate the effects of nCeO2 on respiration in Daphnia magna which was performed for the first time. Finally, it was important to see the relation between Ce bioaccumulation in Daphnia magna and Danio rerio and other investigated parameters. Our results revealed that the coating decreased the toxicity of nCeO2 on Vibrio fischeri. The coating of nCeO2 did not affect the nanoparticles' accumulation/adsorption or mortality in Daphnia magna or Danio rerio. Monitoring of respiration in Daphnia magna revealed changes in CO2 production after exposure to coated nCeO2, while the crustacean's O2 consumption was not affected by any of the coated nCeO2. In summary, this study revealed that, at 200 mg L-1, uncoated and carbohydrate-coated nCeO2 are not toxic for the tested organisms, however, the CO2 production in Daphnia magna is different when they are treated with coated and uncoated nCeO2. The highest production was in glucose and levan-coated nCeO2 according to their highest suspension stability. Daphnia magna (D. magna), Danio rerio (D. rerio), Vibrio fischeri (V. fischeri).
Collapse
Affiliation(s)
- Ivana Milenković
- University of Belgrade, Institute for Multidisciplinary Research, Kneza Višeslava 1, 11000 Belgrade, Serbia.
| | - Ksenija Radotić
- University of Belgrade, Institute for Multidisciplinary Research, Kneza Višeslava 1, 11000 Belgrade, Serbia
| | - Jovana Despotović
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11010 Belgrade, Serbia
| | - Branka Lončarević
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, 11000 Belgrade, Serbia
| | - Marija Lješević
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, 11000 Belgrade, Serbia
| | - Slađana Z Spasić
- University of Belgrade, Institute for Multidisciplinary Research, Kneza Višeslava 1, 11000 Belgrade, Serbia; Singidunum University, Danijelova 32, 11010 Belgrade, Serbia
| | - Aleksandra Nikolić
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11010 Belgrade, Serbia
| | - Vladimir P Beškoski
- University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia.
| |
Collapse
|
15
|
Goujon G, Baldim V, Roques C, Bia N, Seguin J, Palmier B, Graillot A, Loubat C, Mignet N, Margaill I, Berret J, Beray‐Berthat V. Antioxidant Activity and Toxicity Study of Cerium Oxide Nanoparticles Stabilized with Innovative Functional Copolymers. Adv Healthc Mater 2021; 10:e2100059. [PMID: 33890419 DOI: 10.1002/adhm.202100059] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/16/2021] [Indexed: 12/22/2022]
Abstract
Oxidative stress, which is one of the main harmful mechanisms of pathologies including ischemic stroke, contributes to both neurons and endothelial cell damages, leading to vascular lesions. Although many antioxidants are tested in preclinical studies, no treatment is currently available for stroke patients. Since cerium oxide nanoparticles (CNPs) exhibit remarkable antioxidant capacities, the objective is to develop an innovative coating to enhance CNPs biocompatibility without disrupting their antioxidant capacities or enhance their toxicity. This study reports the synthesis and characterization of functional polymers and their impact on the enzyme-like catalytic activity of CNPs. To study the toxicity and the antioxidant properties of CNPs for stroke and particularly endothelial damages, in vitro studies are conducted on a cerebral endothelial cell line (bEnd.3). Despite their internalization in bEnd.3 cells, coated CNPs are devoid of cytotoxicity. Microscopy studies report an intracellular localization of CNPs, more precisely in endosomes. All CNPs reduces glutamate-induced intracellular production of reactive oxygen species (ROS) in endothelial cells but one CNP significantly reduces both the production of mitochondrial superoxide anion and DNA oxidation. In vivo studies report a lack of toxicity in mice. This study therefore describes and identifies biocompatible CNPs with interesting antioxidant properties for ischemic stroke and related pathologies.
Collapse
Affiliation(s)
- Geoffroy Goujon
- Université de Paris Inserm UMR_S1140 Innovative Therapies in Haemostasis Paris 75270 France
| | - Victor Baldim
- Université de Paris CNRS UMR 7057 Matière et systèmes complexes Paris 75013 France
| | - Caroline Roques
- Université de Paris UTCBS (Unité de Technologies Chimiques et Biologiques pour la Santé) CNRS UMR8258 Inserm U1267 Inserm 4 avenue de l'observatoire Paris F‐75006 France
| | - Nicolas Bia
- Specific Polymers ZAC Via Domitia 150 Avenue des Cocardières Castries F‐34160 France
| | - Johanne Seguin
- Université de Paris UTCBS (Unité de Technologies Chimiques et Biologiques pour la Santé) CNRS UMR8258 Inserm U1267 Inserm 4 avenue de l'observatoire Paris F‐75006 France
| | - Bruno Palmier
- Université de Paris Inserm UMR_S1140 Innovative Therapies in Haemostasis Paris 75270 France
| | - Alain Graillot
- Specific Polymers ZAC Via Domitia 150 Avenue des Cocardières Castries F‐34160 France
| | - Cédric Loubat
- Specific Polymers ZAC Via Domitia 150 Avenue des Cocardières Castries F‐34160 France
| | - Nathalie Mignet
- Université de Paris UTCBS (Unité de Technologies Chimiques et Biologiques pour la Santé) CNRS UMR8258 Inserm U1267 Inserm 4 avenue de l'observatoire Paris F‐75006 France
| | - Isabelle Margaill
- Université de Paris Inserm UMR_S1140 Innovative Therapies in Haemostasis Paris 75270 France
| | - Jean‐François Berret
- Université de Paris CNRS UMR 7057 Matière et systèmes complexes Paris 75013 France
| | - Virginie Beray‐Berthat
- Université de Paris CNRS ERL 3649 “Pharmacologie et thérapies des addictions” Inserm UMR‐S 1124 T3S “Environmental Toxicity, Therapeutic Targets Cellular Signaling an biomarkers” 45 rue des Saints Pères Paris F‐75006 France
| |
Collapse
|
16
|
Wang H, Chen X, Mao M, Xue X. Multifaceted Therapy of Nanocatalysts in Neurological Diseases. J Biomed Nanotechnol 2021; 17:711-743. [PMID: 34082864 DOI: 10.1166/jbn.2021.3063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
With the development of enzymes immobilization technology and the discover of nanozymes, catalytic therapy exhibited tremendous potential for neurological diseases therapy. In especial, since the discovery of Fe₃O₄ nanoparticles possessing intrinsic peroxidase-like activity, various nanozymes have been developed and recently started to explore for neurological diseases therapy, such as Alzheimer's disease, Parkinson's disease and stroke. By combining the catalytic activities with other properties (such as optical, thermal, electrical, and magnetic properties) of nanomaterials, the multifunctional nanozymes would not only alleviate oxidative and nitrosative stress on the basis of multienzymes-mimicking activity, but also exert positive effects on immunization, inflammation, autophagy, protein aggregation, which provides the foundation for multifaceted treatments. This review will summarize various types of nanocatalysts and further provides a valuable discussion on multifaceted treatment by nanozymes for neurological diseases, which is anticipated to provide an easily accessible guide to the key opportunities and current challenges of the nanozymes-mediated treatments for neurological diseases.
Collapse
Affiliation(s)
- Heping Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, Tianjin 300353, People's Republic of China
| | - Xi Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, Tianjin 300353, People's Republic of China
| | - Mingxing Mao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, Tianjin 300353, People's Republic of China
| | - Xue Xue
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, Tianjin 300353, People's Republic of China
| |
Collapse
|
17
|
Erlichman JS, Leiter JC. Complexity of the Nano-Bio Interface and the Tortuous Path of Metal Oxides in Biological Systems. Antioxidants (Basel) 2021; 10:antiox10040547. [PMID: 33915992 PMCID: PMC8066112 DOI: 10.3390/antiox10040547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/11/2021] [Accepted: 03/23/2021] [Indexed: 01/12/2023] Open
Abstract
Metal oxide nanoparticles (NPs) have received a great deal of attention as potential theranostic agents. Despite extensive work on a wide variety of metal oxide NPs, few chemically active metal oxide NPs have received Food and Drug Administration (FDA) clearance. The clinical translation of metal oxide NP activity, which often looks so promising in preclinical studies, has not progressed as rapidly as one might expect. The lack of FDA approval for metal oxide NPs appears to be a consequence of the complex transformation of NP chemistry as any given NP passes through multiple extra- and intracellular environments and interacts with a variety of proteins and transport processes that may degrade or transform the chemical properties of the metal oxide NP. Moreover, the translational models frequently used to study these materials do not represent the final therapeutic environment well, and studies in reduced preparations have, all too frequently, predicted fundamentally different physico-chemical properties from the biological activity observed in intact organisms. Understanding the evolving pharmacology of metal oxide NPs as they interact with biological systems is critical to establish translational test systems that effectively predict future theranostic activity.
Collapse
Affiliation(s)
- Joseph S. Erlichman
- Department of Biology, St. Lawrence University, Canton, NY 13617, USA
- Correspondence: ; Tel.: +1-(315)-229-5639
| | - James C. Leiter
- White River Junction VA Medical Center, White River Junction, VT 05009, USA;
| |
Collapse
|
18
|
Liang P, Ballou B, Lv X, Si W, Bruchez MP, Huang W, Dong X. Monotherapy and Combination Therapy Using Anti-Angiogenic Nanoagents to Fight Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005155. [PMID: 33684242 DOI: 10.1002/adma.202005155] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/10/2020] [Indexed: 06/12/2023]
Abstract
Anti-angiogenic therapy, targeting vascular endothelial cells (ECs) to prevent tumor growth, has been attracting increasing attention in recent years, beginning with bevacizumab (Avastin) through its Phase II/III clinical trials on solid tumors. However, these trials showed only modest clinical efficiency; moreover, anti-angiogenic therapy may induce acquired resistance to the drugs employed. Combining advanced drug delivery techniques (e.g., nanotechnology) or other therapeutic strategies (e.g., chemotherapy, radiotherapy, phototherapy, and immunotherapy) with anti-angiogenic therapy results in significantly synergistic effects and has opened a new horizon in fighting cancer. Herein, clinical difficulties in using traditional anti-angiogenic therapy are discussed. Then, several promising applications of anti-angiogenic nanoagents in monotherapies and combination therapies are highlighted. Finally, the challenges and perspectives of anti-angiogenic cancer therapy are summarized. A useful introduction to anti-angiogenic strategies, which may significantly improve therapeutic outcomes, is thus provided.
Collapse
Affiliation(s)
- Pingping Liang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Byron Ballou
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Mellon Institute, 4400 Fifth Avenue, Pittsburgh, PA, 15213, United States
| | - Xinyi Lv
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Weili Si
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Marcel P Bruchez
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Mellon Institute, 4400 Fifth Avenue, Pittsburgh, PA, 15213, United States
| | - Wei Huang
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| |
Collapse
|
19
|
Kargozar S, Baino F, Hamzehlou S, Hamblin MR, Mozafari M. Nanotechnology for angiogenesis: opportunities and challenges. Chem Soc Rev 2020; 49:5008-5057. [PMID: 32538379 PMCID: PMC7418030 DOI: 10.1039/c8cs01021h] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiogenesis plays a critical role within the human body, from the early stages of life (i.e., embryonic development) to life-threatening diseases (e.g., cancer, heart attack, stroke, wound healing). Many pharmaceutical companies have expended huge efforts on both stimulation and inhibition of angiogenesis. During the last decade, the nanotechnology revolution has made a great impact in medicine, and regulatory approvals are starting to be achieved for nanomedicines to treat a wide range of diseases. Angiogenesis therapies involve the inhibition of angiogenesis in oncology and ophthalmology, and stimulation of angiogenesis in wound healing and tissue engineering. This review aims to summarize nanotechnology-based strategies that have been explored in the broad area of angiogenesis. Lipid-based, carbon-based and polymeric nanoparticles, and a wide range of inorganic and metallic nanoparticles are covered in detail. Theranostic and imaging approaches can be facilitated by nanoparticles. Many preparations have been reported to have a bimodal effect where they stimulate angiogenesis at low dose and inhibit it at higher doses.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, 917794-8564 Mashhad, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 101 29 Torino, Italy
| | - Sepideh Hamzehlou
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Masoud Mozafari
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
20
|
Hosseini M, Mozafari M. Cerium Oxide Nanoparticles: Recent Advances in Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3072. [PMID: 32660042 PMCID: PMC7411590 DOI: 10.3390/ma13143072] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022]
Abstract
Submicron biomaterials have recently been found with a wide range of applications for biomedical purposes, mostly due to a considerable decrement in size and an increment in surface area. There have been several attempts to use innovative nanoscale biomaterials for tissue repair and tissue regeneration. One of the most significant metal oxide nanoparticles (NPs), with numerous potential uses in future medicine, is engineered cerium oxide (CeO2) nanoparticles (CeONPs), also known as nanoceria. Although many advancements have been reported so far, nanotoxicological studies suggest that the nanomaterial's characteristics lie behind its potential toxicity. Particularly, physicochemical properties can explain the positive and negative interactions between CeONPs and biosystems at molecular levels. This review represents recent advances of CeONPs in biomedical engineering, with a special focus on tissue engineering and regenerative medicine. In addition, a summary report of the toxicity evidence on CeONPs with a view toward their biomedical applications and physicochemical properties is presented. Considering the critical role of nanoengineering in the manipulation and optimization of CeONPs, it is expected that this class of nanoengineered biomaterials plays a promising role in the future of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Motaharesadat Hosseini
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran 1591634311, Iran;
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran 1449614535, Iran
| |
Collapse
|
21
|
Fa M, Zhang J, Yang D, Gao L, Zhao R, Luo Y, Yao X. Enhancement of antioxidant activity of well-dispersed core-shell structured CeO 2 coating Au nanorods under visible light irradiation. NANOTECHNOLOGY 2020; 31:235708. [PMID: 32053800 DOI: 10.1088/1361-6528/ab764b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Gold nanoparticle (AuNP) modification shows great advantages in improving the antioxidant activity of nanoCeO2. However, the improved effect of AuNP modification becomes smaller and even results in the decrease of antioxidant ability due to severe aggregation with increasing nanomaterial concentration. Additionally, the effects of photo-properties of AuNPs on the antioxidant activity of nanoCeO2 have not been studied. In response to these problems, core-shell-shaped Au@CeO2 was synthesized which took Au nanorods (AuNRs) as carriers and had a layer of CeO2 NP coating. The antioxidant activity of Au@CeO2 was evaluated by the UV-vis method in the methyl violet-Fenton system. Results showed that AuNRs could improve the antioxidant activity of nanoCeO2 due to the increase in the amount of Ce3+ on the surface of nanoCeO2, and the enhancing effect remained across the whole experimental concentration range due to the good dispersibility of AuNRs. Additionally, a further increase in the antioxidant ability of Au@CeO2 was found with 5 min visible light irradiation, and continuous irradiation during a 25 min time reaction, which resulted in more obvious enhanced antioxidant ability. This phenomenon was attributed to the localized surface plasmon resonance of AuNRs triggered by photons which induced charge transfer from AuNRs to nanoCeO2, thus making the cyclic transformation between Ce3+ and Ce4+ easier.
Collapse
Affiliation(s)
- Mengmei Fa
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
22
|
Heckman KL, Estevez AY, DeCoteau W, Vangellow S, Ribeiro S, Chiarenzelli J, Hays-Erlichman B, Erlichman JS. Variable in Vivo and in Vitro Biological Effects of Cerium Oxide Nanoparticle Formulations. Front Pharmacol 2020; 10:1599. [PMID: 32047435 PMCID: PMC6997543 DOI: 10.3389/fphar.2019.01599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 12/10/2019] [Indexed: 12/23/2022] Open
Abstract
Cerium oxide nanoparticles (CeNPs) exhibit redox capacity in vitro with efficacy in in vivo disease models of oxidative stress. Here we compare, in parallel, three CeNP formulations with distinct chemical stabilizers and size. In vitro assays revealed antioxidant activity from all the CeNPs, but when administered to mice with a reactive oxygen species (ROS) mediated model of multiple sclerosis, only custom-synthesized Cerion NRx (CNRx) citrate-EDTA stabilized CeNPs provided protection against disease. Detectable levels of ceria and reduced ROS levels in the brains of CNRx CeNP-treated mice imply that these CeNPs' unique properties influence tissue distribution and subsequent biological activity, suggesting why differing CeNP formulations yield different in vivo effects in various models. Further, the variation in in vivo vs in vitro results with these CeNP formulations highlights the necessity for in vivo studies that confirm whether the inherent catalytic activity of CeNPs is maintained after transport and distribution within intact biological systems.
Collapse
Affiliation(s)
- Karin L Heckman
- Department of Biology, St. Lawrence University, Canton, NY, United States
| | - Ana Y Estevez
- Department of Biology, St. Lawrence University, Canton, NY, United States.,Department of Psychology, St. Lawrence University, Canton, NY, United States
| | - William DeCoteau
- Department of Psychology, St. Lawrence University, Canton, NY, United States
| | | | - Samantha Ribeiro
- Department of Biology, St. Lawrence University, Canton, NY, United States
| | | | | | - Joseph S Erlichman
- Department of Biology, St. Lawrence University, Canton, NY, United States
| |
Collapse
|
23
|
Anticancerous Activity of Transition Metal Oxide Nanoparticles. Nanobiomedicine (Rij) 2020. [DOI: 10.1007/978-981-32-9898-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
24
|
Yang Y, Tang J, Zhang M, Gu Z, Song H, Yang Y, Yu C. Responsively Aggregatable Sub-6 nm Nanochelators Induce Simultaneous Antiangiogenesis and Vascular Obstruction for Enhanced Tumor Vasculature Targeted Therapy. NANO LETTERS 2019; 19:7750-7759. [PMID: 31657578 DOI: 10.1021/acs.nanolett.9b02691] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Inhibiting the formation of new tumor blood vessels (so-called antiangiogenesis) and obstructing the established ones are two primary strategies in tumor vasculature targeted therapy. However, the therapeutic outcome of conventional methodologies relying on only one mechanism is rather limited. Herein, the first example of ultrasmall responsively aggregatable nanochelators that can intrinsically fulfill both antivasculature functions as well as high renal clearable efficiency is introduced. The nanochelators with sub-6 nm sizes exhibit not only systemic copper depletion activity for tumor antiangiogenesis but also, more surprisingly, the capability to transform from a "dispersed" state to an "aggregated" state to form large secondary particles in response to tumor microenvironment with elevated copper and phosphate levels for blood vessel obstruction. Compared to a benchmark antiangiogenic agent that can only inhibit the formation of tumor blood vessels, the nanochelators with unprecedented synergistic functions demonstrate significantly enhanced tumor inhibition activity in both breast cancer and colon cancer tumor models. Moreover, these ultrasmall nanochelators are noncytotoxic and renal clearable, ensuring superior biocompatibility. It is envisaged that the design of nanomaterials with ground-breaking properties and the synergistic antivasculature functions would offer a substantial conceptual advance for tumor vasculature targeted therapy and may provide vast opportunities for developing advanced nanomedicines.
Collapse
Affiliation(s)
- Yannan Yang
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St. Lucia , Brisbane , Queensland 4072 , Australia
| | - Jie Tang
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St. Lucia , Brisbane , Queensland 4072 , Australia
| | - Min Zhang
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St. Lucia , Brisbane , Queensland 4072 , Australia
- School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200241 , People's Republic of China
| | - Zhengying Gu
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St. Lucia , Brisbane , Queensland 4072 , Australia
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St. Lucia , Brisbane , Queensland 4072 , Australia
| | - Yang Yang
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St. Lucia , Brisbane , Queensland 4072 , Australia
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St. Lucia , Brisbane , Queensland 4072 , Australia
- School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200241 , People's Republic of China
| |
Collapse
|
25
|
Barui AK, Nethi SK, Haque S, Basuthakur P, Patra CR. Recent Development of Metal Nanoparticles for Angiogenesis Study and Their Therapeutic Applications. ACS APPLIED BIO MATERIALS 2019; 2:5492-5511. [DOI: 10.1021/acsabm.9b00587] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ayan Kumar Barui
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Susheel Kumar Nethi
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Shagufta Haque
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Papia Basuthakur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Chitta Ranjan Patra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
26
|
Gunawan C, Lord MS, Lovell E, Wong RJ, Jung MS, Oscar D, Mann R, Amal R. Oxygen-Vacancy Engineering of Cerium-Oxide Nanoparticles for Antioxidant Activity. ACS OMEGA 2019; 4:9473-9479. [PMID: 31460038 PMCID: PMC6648134 DOI: 10.1021/acsomega.9b00521] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/17/2019] [Indexed: 05/21/2023]
Abstract
To address an important challenge in the engineering of antioxidant nanoparticles, the present work devised a surface-to-bulk migration of oxygen vacancies in the oxygen radical-scavenging cerium-oxide nanoparticles. The study highlights the significance of surface oxygen vacancies in the intended cellular internalization and, subsequently, the radical scavenging activity of the nanoparticles inside the cells. The findings advise future development of therapeutic antioxidant nanomaterials to also include engineering of the particles for enhanced surface defects not only for the accessibility of their oxygen vacancies but also, equally important, rendering them bioavailable for cellular uptake.
Collapse
Affiliation(s)
- Cindy Gunawan
- ithree
institute, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- Particles and Catalysis Research Group, School of Chemical Engineering, and Graduate School
of Biomedical Engineering, The University
of New South Wales, Sydney, New South Wales 2052, Australia
| | - Megan S. Lord
- Particles and Catalysis Research Group, School of Chemical Engineering, and Graduate School
of Biomedical Engineering, The University
of New South Wales, Sydney, New South Wales 2052, Australia
| | - Emma Lovell
- Particles and Catalysis Research Group, School of Chemical Engineering, and Graduate School
of Biomedical Engineering, The University
of New South Wales, Sydney, New South Wales 2052, Australia
| | - Roong Jien Wong
- Particles and Catalysis Research Group, School of Chemical Engineering, and Graduate School
of Biomedical Engineering, The University
of New South Wales, Sydney, New South Wales 2052, Australia
- Applied
Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Moon Sun Jung
- Particles and Catalysis Research Group, School of Chemical Engineering, and Graduate School
of Biomedical Engineering, The University
of New South Wales, Sydney, New South Wales 2052, Australia
| | - Diana Oscar
- Particles and Catalysis Research Group, School of Chemical Engineering, and Graduate School
of Biomedical Engineering, The University
of New South Wales, Sydney, New South Wales 2052, Australia
| | - Riti Mann
- ithree
institute, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Rose Amal
- Particles and Catalysis Research Group, School of Chemical Engineering, and Graduate School
of Biomedical Engineering, The University
of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
27
|
Augustine R, Prasad P, Khalaf IMN. Therapeutic angiogenesis: From conventional approaches to recent nanotechnology-based interventions. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:994-1008. [DOI: 10.1016/j.msec.2019.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/06/2018] [Accepted: 01/02/2019] [Indexed: 12/27/2022]
|
28
|
Nethi SK, Barui AK, Mukherjee S, Patra CR. Engineered Nanoparticles for Effective Redox Signaling During Angiogenic and Antiangiogenic Therapy. Antioxid Redox Signal 2019; 30:786-809. [PMID: 29943661 DOI: 10.1089/ars.2017.7383] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Redox signaling plays a vital role in regulating various cellular signaling pathways and disease biology. Recently, nanomedicine (application of nanotechnology in biology and medicine) has been demonstrated to regulate angiogenesis through redox signaling. A complete understanding of redox signaling pathways influenced angiogenesis/antiangiogenesis triggered by therapeutic nanoparticles is extensively reviewed in this article. Recent Advances: In recent times, nanomedicines are regarded as the Trojan horses that could be employed for successful drug delivery, gene delivery, peptide delivery, disease diagnosis, and others, conquering barriers associated with conventional theranostic approaches. CRITICAL ISSUES Physiological angiogenesis is a tightly regulated process maintaining a balance between proangiogenic and antiangiogenic factors. The redox signaling is one of the main factors that contribute to this physiological balance. An aberrant redox signaling cascade can be caused by several exogenous and endogenous factors and leads to reduced or augmented angiogenesis that ultimately results in several disease conditions. FUTURE DIRECTIONS Redox signaling-based nanomedicine approach has emerged as a new platform for angiogenesis-related disease therapy, where nanoparticles promote angiogenesis via controlled reactive oxygen species (ROS) production and antiangiogenesis by triggering excessive ROS formation. Recently, investigators have identified different efficient nano-candidates, which modulate angiogenesis by controlling intracellular redox molecules. Considering the importance of angiogenesis in health care a thorough understanding of nanomedicine-regulated redox signaling would inspire researchers to design and develop more novel nanomaterials that could be used as an alternative strategy for the treatment of various diseases, where angiogenesis plays a vital role.
Collapse
Affiliation(s)
- Susheel Kumar Nethi
- 1 Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,2 Academy of Scientific and Innovative Research (AcSIR), Chennai, India
| | - Ayan Kumar Barui
- 1 Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,2 Academy of Scientific and Innovative Research (AcSIR), Chennai, India
| | - Sudip Mukherjee
- 1 Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,2 Academy of Scientific and Innovative Research (AcSIR), Chennai, India
| | - Chitta Ranjan Patra
- 1 Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,2 Academy of Scientific and Innovative Research (AcSIR), Chennai, India
| |
Collapse
|
29
|
Kargozar S, Baino F, Hoseini SJ, Hamzehlou S, Darroudi M, Verdi J, Hasanzadeh L, Kim HW, Mozafari M. Biomedical applications of nanoceria: new roles for an old player. Nanomedicine (Lond) 2018; 13:3051-3069. [DOI: 10.2217/nnm-2018-0189] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The use of different biomaterials with the ability to accelerate the repair and regeneration processes is of great importance in tissue engineering strategies. On this point, cerium oxide nanoparticles (CNPs or nanoceria) have recently attracted much attention due to their excellent biological properties including anti-oxidant, anti-inflammation and antibacterial activities as well as high angiogenic potential. The results of incorporation of these nano-sized particles into various constructs and scaffolds designed for tissue engineering applications have proven the success of this strategy in terms of improving healing process of different tissues. In this review, we first summarize the physicochemical and biological properties of nanoceria in brief and then present its usability in tissue engineering strategies based on the currently available published reports.
Collapse
Affiliation(s)
- Saeid Kargozar
- Department of Modern Sciences & Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Francesco Baino
- Institute of Materials Physics & Engineering, Department of Applied Science & Technology (DISAT), Politecnico di Torino, Torino, Italy
| | - Seyed Javad Hoseini
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepideh Hamzehlou
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Medical Genetics Network (MeGeNe), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Verdi
- Tissue Engineering & Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Hasanzadeh
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology & Advanced Materials Department, Materials & Energy Research Center (MERC), Tehran, Iran
- Cellular & Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
30
|
Caputo F, Giovanetti A, Corsi F, Maresca V, Briganti S, Licoccia S, Traversa E, Ghibelli L. Cerium Oxide Nanoparticles Re-establish Cell Integrity Checkpoints and Apoptosis Competence in Irradiated HaCat Cells via Novel Redox-Independent Activity. Front Pharmacol 2018; 9:1183. [PMID: 30459604 PMCID: PMC6232693 DOI: 10.3389/fphar.2018.01183] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/28/2018] [Indexed: 12/11/2022] Open
Abstract
Cerium oxide nanoparticles (CNPs) are potent radical scavengers protecting cells from oxidative insults, including ionizing radiation. Here we show that CNPs prevent X-ray-induced oxidative imbalance reducing DNA breaks on HaCat keratinocytes, nearly abating mutagenesis. At the same time, and in spite of the reduced damage, CNPs strengthen radiation-induced cell cycle arrest and apoptosis outcome, dropping colony formation; notably, CNPs do not possess any intrinsic toxicity toward non-irradiated HaCat, indicating that they act on damaged cells. Thus CNPs, while exerting their antioxidant action, also reinforce the stringency of damage-induced cell integrity checkpoints, promoting elimination of the “tolerant” cells, being in fact radio-sensitizers. These two contrasting pathways are mediated by different activities of CNPs: indeed Sm-doped CNPs, which lack the Ce3+/Ce4+ redox switch and the correlated antioxidant action, fail to decrease radiation-induced superoxide formation, as expected, but surprisingly maintain the radio-sensitizing ability and the dramatic decrease of mutagenesis. The latter is thus attributable to elimination of damaged cells rather than decreased oxidative damage. This highlights a novel redox-independent activity of CNPs, allowing selectively eliminating heavily damaged cells through non-toxic mechanisms, rather reactivating endogenous anticancer pathways in transformed cells.
Collapse
Affiliation(s)
- Fanny Caputo
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy.,Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | - Francesca Corsi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Silvia Licoccia
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Enrico Traversa
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, China
| | - Lina Ghibelli
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
31
|
Corsi F, Caputo F, Traversa E, Ghibelli L. Not Only Redox: The Multifaceted Activity of Cerium Oxide Nanoparticles in Cancer Prevention and Therapy. Front Oncol 2018; 8:309. [PMID: 30155442 PMCID: PMC6103310 DOI: 10.3389/fonc.2018.00309] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 07/23/2018] [Indexed: 11/28/2022] Open
Abstract
Much information is accumulating on the effect of cerium oxide nanoparticles (CNPs) as cell-protective agents, reducing oxidative stress through their unique ability of scavenging noxious reactive oxygen species via an energy-free, auto-regenerative redox cycle, where superoxides and peroxides are sequentially reduced exploiting the double valence (Ce3+/Ce4+) on nanoparticle surface. In vitro and in vivo studies consistently report that CNPs are responsible for attenuating and preventing almost any oxidative damage and pathology. Particularly, CNPs were found to exert strong anticancer activities, helping correcting the aberrant homeostasis of cancer microenvironment, normalizing stroma-epithelial communication, contrasting angiogenesis, and strengthening the immune response, leading to reduction of tumor mass in vivo. Since these homeostatic alterations are of an oxidative nature, their relief is generally attributed to CNPs redox activity. Other studies however reported that CNPs exert selective cytotoxic activity against cancer cells and sensitize cancer cells to chemotherapy- and radiotherapy-induced apoptosis: such effects are hardly the result of antioxidant activity, suggesting that CNPs exert such important anticancer effects through additional, non-redox mechanisms. Indeed, using Sm-doped CNPs devoid of redox activity, we could recently demonstrate that the radio-sensitizing effect of CNPs on human keratinocytes is independent from the redox switch. Mechanisms involving particle dissolution with release of toxic Ce4+ atoms, or differential inhibition of the catalase vs. SOD-mimetic activity with accumulation of H2O2 have been proposed, explaining such intriguing findings only partially. Much effort is urgently required to address the unconventional mechanisms of the non-redox bioactivity of CNPs, which may provide unexpected medicinal tools against cancer.
Collapse
Affiliation(s)
- Francesca Corsi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Fanny Caputo
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy.,Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Enrico Traversa
- School of Materials and Energy, University of Electronic Science and Technology of China, Sichuan, China
| | - Lina Ghibelli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
32
|
Vassie JA, Whitelock JM, Lord MS. Targeted Delivery and Redox Activity of Folic Acid-Functionalized Nanoceria in Tumor Cells. Mol Pharm 2018; 15:994-1004. [PMID: 29397735 DOI: 10.1021/acs.molpharmaceut.7b00920] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cerium oxide nanoparticles (nanoceria) are promising catalytic nanomaterials that are widely reported to modulate intracellular reactive oxygen species (ROS). In this study, nanoceria were synthesized by flame spray pyrolysis and functionalized with a cell-targeting ligand, folic acid (FA). The surface functionalization of nanoceria was stable, and FA enhanced the uptake of nanoceria via folate receptors. Internalized nanoceria and FA-nanoceria were localized predominantly in the cytoplasm. FA-nanoceria modulated intracellular ROS to a greater extent than the nanoceria in colon carcinoma cells, but induced ROS in ovarian cancer cells, likely due to their enhanced uptake. Together these data demonstrated that the functionalization of nanoceria with FA modulated their endocytosis and redox activity, and they may find application in the delivery of anticancer drugs in the future.
Collapse
Affiliation(s)
- James A Vassie
- Graduate School of Biomedical Engineering , University of New South Wales , Sydney , NSW 2052 , Australia
| | - John M Whitelock
- Graduate School of Biomedical Engineering , University of New South Wales , Sydney , NSW 2052 , Australia
| | - Megan S Lord
- Graduate School of Biomedical Engineering , University of New South Wales , Sydney , NSW 2052 , Australia
| |
Collapse
|
33
|
Chen BH, Stephen Inbaraj B. Various physicochemical and surface properties controlling the bioactivity of cerium oxide nanoparticles. Crit Rev Biotechnol 2018; 38:1003-1024. [PMID: 29402135 DOI: 10.1080/07388551.2018.1426555] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Amidst numerous emerging nanoparticles, cerium oxide nanoparticles (CNPs) possess fascinating pharmacological potential as they can be used as a therapeutic for various oxidative stress-associated chronic diseases such as cancer, inflammation and neurodegeneration due to unique redox cycling between Ce3+ and Ce4+ oxidation states on their surface. Lattice defects generated by the formation of Ce3+ ions and compensation by oxygen vacancies on CNPs surface has led to switching between CeO2 and CeO2-x during redox reactions making CNPs a lucrative catalytic nanoparticle capable of mimicking key natural antioxidant enzymes such as superoxide dismutase and catalase. Eventually, most of the reactive oxygen species and nitrogen species in biological system are scavenged by CNPs via an auto-regenerative mechanism in which a minimum dose can exhibit catalytic activity for a longer duration. Due to the controversial outcomes on CNPs toxicity, considerable attention has recently been drawn towards establishing relationships between the physicochemical properties of CNPs obtained by different synthesis methods and biological effects ranging from toxicity to therapeutics. Unlike non-redox active nanoparticles, variations in physicochemical properties and the surface properties of CNPs obtained from different synthesis methods can significantly affect their biological activity (inactive, antioxidant, or pro-oxidant). Moreover, these properties can influence the biological identity, cellular interactions, cellular uptake, biodistribution, and therapeutic efficiency. This review aims to highlight the critical role of various physicochemical and the surface properties of CNPs controlling their biological activity based on 165 cited references.
Collapse
Affiliation(s)
- Bing-Huei Chen
- a Department of Food Science , Fu Jen Catholic University , New Taipei City , Taiwan.,b Graduate Institute of Medicine , Fu Jen Catholic University , New Taipei City , Taiwan
| | | |
Collapse
|
34
|
Mehmood R, Wang X, Koshy P, Yang JL, Sorrell CC. Engineering oxygen vacancies through construction of morphology maps for bio-responsive nanoceria for osteosarcoma therapy. CrystEngComm 2018. [DOI: 10.1039/c8ce00001h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present work provides guidelines for the engineering of oxygen vacancy concentrations using morphology-maps based on the characteristics of nanoceria (CeO2−x) nanocubes, nanorods, and truncated nanooctahedra.
Collapse
Affiliation(s)
- Rashid Mehmood
- School of Materials Science and Engineering
- Faculty of Science
- UNSW Sydney
- Australia
| | - Xiaochun Wang
- Sarcoma and Nanooncology Group
- Adult Cancer Program
- Lowy Cancer Research Centre
- Prince of Wales Clinical School
- Faculty of Medicine
| | - Pramod Koshy
- School of Materials Science and Engineering
- Faculty of Science
- UNSW Sydney
- Australia
| | - Jia Lin Yang
- Sarcoma and Nanooncology Group
- Adult Cancer Program
- Lowy Cancer Research Centre
- Prince of Wales Clinical School
- Faculty of Medicine
| | - Charles C. Sorrell
- School of Materials Science and Engineering
- Faculty of Science
- UNSW Sydney
- Australia
| |
Collapse
|
35
|
Abdalla AM, Xiao L, Ullah MW, Yu M, Ouyang C, Yang G. Current Challenges of Cancer Anti-angiogenic Therapy and the Promise of Nanotherapeutics. Theranostics 2018; 8:533-548. [PMID: 29290825 PMCID: PMC5743565 DOI: 10.7150/thno.21674] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/28/2017] [Indexed: 02/07/2023] Open
Abstract
With growing interest in cancer therapeutics, anti-angiogenic therapy has received considerable attention and is widely administered in several types of human cancers. Nonetheless, this type of therapy may induce multiple signaling pathways compared with cytotoxics and lead to worse outcomes in terms of resistance, invasion, metastasis, and overall survival (OS). Moreover, there are important challenges that limit the translation of promising biomarkers into clinical practice to monitor the efficiency of anti-angiogenic therapy. These pitfalls emphasize the urgent need for discovering alternative angiogenic inhibitors that target multiple angiogenic factors or developing a new drug delivery system for the current inhibitors. The great advantages of nanoparticles are their ability to offer effective routes that target the biological system and regulate different vital processes based on their unique features. Limited studies so far have addressed the effectiveness of nanoparticles in the normalization of the delicate balance between stimulating (pro-angiogenic) and inhibiting (anti-angiogenic) factors. In this review, we shed light on tumor vessels and their microenvironment and consider the current directions of anti-angiogenic and nanotherapeutic treatments. To the best of our knowledge, we consider an important effort in the understanding of anti-angiogenic agents (often a small volume of metals, nonmetallic molecules, or polymers) that can control the growth of new vessels.
Collapse
Affiliation(s)
- Ahmed M.E. Abdalla
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Department of Biochemistry, College of Applied Science, University of Bahri, Khartoum 1660/11111, Sudan
| | - Lin Xiao
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- National Engineering Research Centre for Nano-Medicine, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Muhammad Wajid Ullah
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- National Engineering Research Centre for Nano-Medicine, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Miao Yu
- Department of Vascular Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Chenxi Ouyang
- Department of Vascular Surgery, Fuwai Hospital, Beijing 100037, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- National Engineering Research Centre for Nano-Medicine, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
36
|
New insights regarding the selectivity and the uptake potential of nanoceria by human cells. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.05.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Caputo F, Mameli M, Sienkiewicz A, Licoccia S, Stellacci F, Ghibelli L, Traversa E. A novel synthetic approach of cerium oxide nanoparticles with improved biomedical activity. Sci Rep 2017; 7:4636. [PMID: 28680107 PMCID: PMC5498533 DOI: 10.1038/s41598-017-04098-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/25/2017] [Indexed: 12/19/2022] Open
Abstract
Cerium oxide nanoparticles (CNPs) are novel synthetic antioxidant agents proposed for treating oxidative stress-related diseases. The synthesis of high-quality CNPs for biomedical applications remains a challenging task. A major concern for a safe use of CNPs as pharmacological agents is their tendency to agglomerate. Herein we present a simple direct precipitation approach, exploiting ethylene glycol as synthesis co-factor, to synthesize at room temperature nanocrystalline sub-10 nm CNPs, followed by a surface silanization approach to improve nanoparticle dispersibility in biological fluids. CNPs were characterized using transmission electron microscopy (TEM) observations, X-ray diffraction (XRD) analysis, thermogravimetric analysis (TGA), Fourier-transform infrared (FT-IR) spectroscopy, proton nuclear magnetic resonance (1H-NMR) spectroscopy, dynamic light scattering (DLS) and zeta potential measurements. CNP redox activity was studied in abiotic systems using electron spin resonance (ESR) measurements, and in vitro on human cell models. In-situ silanization improved CNP colloidal stability, in comparison with non-functionalized particles, and allowed at the same time improving their original biological activity, yielding thus functionalized CNPs suitable for biomedical applications.
Collapse
Affiliation(s)
- Fanny Caputo
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, 00133, Roma, Italy
- Dipartimento di Biologia, Università di Roma Tor Vergata, 00133, Roma, Italy
| | - Marta Mameli
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Andrzej Sienkiewicz
- Institute of Physics, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Silvia Licoccia
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, 00133, Roma, Italy
| | - Francesco Stellacci
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Lina Ghibelli
- Dipartimento di Biologia, Università di Roma Tor Vergata, 00133, Roma, Italy
| | - Enrico Traversa
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, 00133, Roma, Italy.
- International Research Center for Renewable Energy, Xi'an Jiaotong University, 710049, Xi'an, Shaanxi, China.
| |
Collapse
|
38
|
Hashemi Goradel N, Ghiyami-Hour F, Jahangiri S, Negahdari B, Sahebkar A, Masoudifar A, Mirzaei H. Nanoparticles as new tools for inhibition of cancer angiogenesis. J Cell Physiol 2017; 233:2902-2910. [PMID: 28543172 DOI: 10.1002/jcp.26029] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 05/24/2017] [Indexed: 12/14/2022]
Abstract
Angiogenesis is known as one of the hallmarks of cancer. Multiple lines evidence indicated that vascular endothelium growth factor (VEGF) is a key player in the progression of angiogenesis and exerts its functions via interaction with tyrosine kinase receptors (TKRs). These receptors could trigger a variety of cascades that lead to the supply of oxygen and nutrients to tumor cells and survival of these cells. With respect to pivotal role of angiogenesis in the tumor growth and survival, finding new therapeutic approaches via targeting angiogenesis could open a new horizon in cancer therapy. Among various types of therapeutic strategies, nanotechnology has emerged as new approach for the treatment of various cancers. Nanoparticles (NPs) could be used as effective tools for targeting a variety of therapeutic agents. According to in vitro and in vivo studies, NPs are efficient in depriving tumor cells from nutrients and oxygen by inhibiting angiogenesis. However, the utilization of NPs are associated with a variety of limitations. It seems that new approaches such as NPs conjugated with hydrogels could overcome to some limitations. In the present review, we summarize various mechanisms involved in angiogenesis, common anti-angiogenesis strategies, and application of NPs for targeting angiogenesis in various cancers.
Collapse
Affiliation(s)
- Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Ghiyami-Hour
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Jahangiri
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Aria Masoudifar
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hamed Mirzaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
39
|
Khan S, Ansari AA, Rolfo C, Coelho A, Abdulla M, Al-Khayal K, Ahmad R. Evaluation of in vitro cytotoxicity, biocompatibility, and changes in the expression of apoptosis regulatory proteins induced by cerium oxide nanocrystals. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2017; 18:364-373. [PMID: 28634498 PMCID: PMC5468938 DOI: 10.1080/14686996.2017.1319731] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 04/12/2017] [Accepted: 04/12/2017] [Indexed: 06/09/2023]
Abstract
Cerium oxide nanocrystals (CeO2-NCs) exhibit superoxide dismutase and catalase mimetic activities. Based on these catalytic activities, CeO2-NCs have been suggested to have the potential to treat various diseases. The crystalline size of these materials is an important factor that influences the performance of CeO2-NCs. Previous reports have shown that several metal-based nanocrystals, including CeO2-NCs, can induce cytotoxicity in cancer cells. However, the underlying mechanisms have remained unclear. To characterize the anticancer activities of CeO2-NCs, several assays related to the mechanism of cytotoxicity and induction of apoptosis has been performed. Here, we have carried out a systematic study to characterize CeO2-NCs phase purity (X-ray diffraction), morphology (electron microscopy), and optical features (optical absorption, Raman scattering, and photoluminescence) to better establish their potential as anticancer drugs. Our study revealed anticancer effects of CeO2-NCs in HT29 and SW620 colorectal cancer cell lines with half-maximal inhibitory concentration (IC50) values of 2.26 and 121.18 μg ml-1, respectively. Reductions in cell viability indicated the cytotoxic potential of CeO2-NCs in HT29 cells based on inverted and florescence microscopy assessments. The mechanism of cytotoxicity confirmed by estimating possible changes in the expression levels of Bcl2, BclxL, Bax, PARP, cytochrome c, and β-actin (control) proteins in HT29 cells. Down-regulation of Bcl2 and BclxL and up-regulation of Bax, PARP, and cytochrome c proteins suggested the significant involvement of CeO2-NCs exposure in the induction of apoptosis. Furthermore, biocompatibility assay showed minimum effect of CeO2-NCs on human red blood cells.
Collapse
Affiliation(s)
- Shahanavaj Khan
- Nanomedicine & Biotechnology Research Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Bioscience, Shri Ram Group of College (SRGC), Muzaffarnagar, India
| | - Anees A. Ansari
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Christian Rolfo
- Phase I- Early Clinical Trials Unit, Oncology Department and Multidisciplinary Oncology Center Antwerp (MOCA), Antwerp University Hospital, Edegem, Belgium
| | - Andreia Coelho
- Phase I- Early Clinical Trials Unit, Oncology Department and Multidisciplinary Oncology Center Antwerp (MOCA), Antwerp University Hospital, Edegem, Belgium
| | - Maha Abdulla
- Colorectal Research Center, College of Medicine King Saud University, Riyadh, Saudi Arabia
| | - Khayal Al-Khayal
- Colorectal Research Center, College of Medicine King Saud University, Riyadh, Saudi Arabia
| | - Rehan Ahmad
- Colorectal Research Center, College of Medicine King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
40
|
Mitra RN, Gao R, Zheng M, Wu MJ, Voinov MA, Smirnov AI, Smirnova TI, Wang K, Chavala S, Han Z. Glycol Chitosan Engineered Autoregenerative Antioxidant Significantly Attenuates Pathological Damages in Models of Age-Related Macular Degeneration. ACS NANO 2017; 11:4669-4685. [PMID: 28463509 DOI: 10.1021/acsnano.7b00429] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Age-related macular degeneration (AMD) is the foremost cause of irreversible blindness in people over the age of 65 especially in developing countries. Therefore, an exploration of effective and alternative therapeutic interventions is an unmet medical need. It has been established that oxidative stress plays a key role in the pathogenesis of AMD, and hence, neutralizing oxidative stress is an effective therapeutic strategy for treatment of this serious disorder. Owing to autoregenerative properties, nanoceria has been widely used as a nonenzymatic antioxidant in the treatment of oxidative stress related disorders. Yet, its potential clinical implementation has been greatly hampered by its poor water solubility and lack of reliable tracking methodologies/processes and hence poor absorption, distribution, and targeted delivery. The water solubility and surface engineering of a drug with biocompatible motifs are fundamental to pharmaceutical products and precision medicine. Here, we report an engineered water-soluble, biocompatible, trackable nanoceria with enriched antioxidant activity to scavenge intracellular reactive oxygen species (ROS). Experimental studies with in vitro and in vivo models demonstrated that this antioxidant is autoregenerative and more active in inhibiting laser-induced choroidal neovascularization by decreasing ROS-induced pro-angiogenic vascular endothelial growth factor (VEGF) expression, cumulative oxidative damage, and recruitment of endothelial precursor cells without exhibiting any toxicity. This advanced formulation may offer a superior therapeutic effect to deal with oxidative stress induced pathogeneses, such as AMD.
Collapse
Affiliation(s)
| | - Ruijuan Gao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, China
| | | | | | - Maxim A Voinov
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Alex I Smirnov
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Tatyana I Smirnova
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | | | - Sai Chavala
- North Texas Eye Research Institute at University of North Texas Health Science Center , Fort Worth, Texas 76107, United States
| | | |
Collapse
|
41
|
Sathiyanarayanan G, Dineshkumar K, Yang YH. Microbial exopolysaccharide-mediated synthesis and stabilization of metal nanoparticles. Crit Rev Microbiol 2017; 43:731-752. [DOI: 10.1080/1040841x.2017.1306689] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ganesan Sathiyanarayanan
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Krishnamoorthy Dineshkumar
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod, India
- Marine and Lake Biogeochemistry Group, Institute F.-A. Forel, Earth and Environmental Sciences, University of Geneva, Geneva, Switzerland
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
- Microbial Carbohydrate Resource Bank, Konkuk University, Seoul, South Korea
| |
Collapse
|
42
|
Vassie JA, Whitelock JM, Lord MS. Endocytosis of cerium oxide nanoparticles and modulation of reactive oxygen species in human ovarian and colon cancer cells. Acta Biomater 2017; 50:127-141. [PMID: 27940194 DOI: 10.1016/j.actbio.2016.12.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/14/2016] [Accepted: 12/06/2016] [Indexed: 10/20/2022]
Abstract
Cerium oxide nanoparticles (nanoceria) are widely reported to be cytocompatible and modulate intracellular reactive oxygen species (ROS) in a range of different cell types. In this study, nanoceria (d=7 and 94nm) synthesised by flame spray pyrolysis did not affect the proliferation of SKOV3 human ovarian and WiDr human colon cancer cell lines over a 72h treatment period. The cellular accumulation of nanoceria was uniform and increased up to 24h post-treatment before decreasing. The uptake of nanoceria in both cell lines was energy-dependent and was found to occur via non-specific pathways as well as clathrin-coated vesicles and caveolae. Nanoceria were localised predominantly in the cytoplasm and, to a lesser extent, with clathrin, caveolin-1 and lysosomes. The intracellular trafficking varied with particle size, treatment time and cell type. The larger nanoceria were found to scavenge intracellular ROS to a greater extent than the smaller nanoceria, and ROS scavenging was found to increase with treatment time. Together these data demonstrated that the diameter of the nanoceria and the cell types determined their mechanisms of uptake and intracellular localisation, as well as their ROS scavenging effects. STATEMENT OF SIGNIFICANCE Cerium oxide nanoparticles (nanoceria) are a promising biomaterial that can catalytically scavenge reactive oxygen species (ROS). Modulation of ROS may potentially minimise the inflammatory effects of cancer. However, the antioxidant properties of nanoceria are reported to be pH-dependent and, thus, dependent on their mechanisms of endocytosis. This study is the first to examine the effects of particle size on the uptake and intracellular trafficking of flame spray-synthesised nanoceria in human cancer cells. This study demonstrated that the particle diameter, treatment time and cell type determined the mechanisms of uptake and intracellular localisation of nanoceria, as well as their ROS scavenging effects. This study highlighted the importance of testing new nanoparticle systems rather than making assumptions based on previous uptake studies.
Collapse
|
43
|
Mukherjee S, Patra CR. Therapeutic application of anti-angiogenic nanomaterials in cancers. NANOSCALE 2016; 8:12444-12470. [PMID: 27067119 DOI: 10.1039/c5nr07887c] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Angiogenesis, the formation of new blood vessels from pre-existing vasculature, plays a vital role in physiological and pathological processes (embryonic development, wound healing, tumor growth and metastasis). The overall balance of angiogenesis inside the human body is maintained by pro- and anti-angiogenic signals. The processes by which drugs inhibit angiogenesis as well as tumor growth are called the anti-angiogenesis technique, a most promising cancer treatment strategy. Over the last couple of decades, scientists have been developing angiogenesis inhibitors for the treatment of cancers. However, conventional anti-angiogenic therapy has several limitations including drug resistance that can create problems for a successful therapeutic strategy. Therefore, a new comprehensive treatment strategy using antiangiogenic agents for the treatment of cancer is urgently needed. Recently researchers have been developing and designing several nanoparticles that show anti-angiogenic properties. These nanomedicines could be useful as an alternative strategy for the treatment of various cancers using anti-angiogenic therapy. In this review article, we critically focus on the potential application of anti-angiogenic nanomaterial and nanoparticle based drug/siRNA/peptide delivery systems in cancer therapeutics. We also discuss the basic and clinical perspectives of anti-angiogenesis therapy, highlighting its importance in tumor angiogenesis, current status and future prospects and challenges.
Collapse
Affiliation(s)
- Sudip Mukherjee
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, Telangana, India.
| | | |
Collapse
|
44
|
Lord MS, Farrugia BL, Yan CMY, Vassie JA, Whitelock JM. Hyaluronan coated cerium oxide nanoparticles modulate CD44 and reactive oxygen species expression in human fibroblasts. J Biomed Mater Res A 2016; 104:1736-46. [DOI: 10.1002/jbm.a.35704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 02/10/2016] [Accepted: 03/02/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Megan S. Lord
- Graduate School of Biomedical Engineering, University of New South WalesSydneyNSW 2052 Australia
| | - Brooke L. Farrugia
- Graduate School of Biomedical Engineering, University of New South WalesSydneyNSW 2052 Australia
| | - Claudia M. Y. Yan
- Graduate School of Biomedical Engineering, University of New South WalesSydneyNSW 2052 Australia
| | - James A. Vassie
- Graduate School of Biomedical Engineering, University of New South WalesSydneyNSW 2052 Australia
| | - John M. Whitelock
- Graduate School of Biomedical Engineering, University of New South WalesSydneyNSW 2052 Australia
| |
Collapse
|
45
|
Tuli HS, Kashyap D, Bedi SK, Kumar P, Kumar G, Sandhu SS. Molecular aspects of metal oxide nanoparticle (MO-NPs) mediated pharmacological effects. Life Sci 2015; 143:71-9. [DOI: 10.1016/j.lfs.2015.10.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/12/2015] [Accepted: 10/20/2015] [Indexed: 10/22/2022]
|
46
|
Yang ZY, Li H, Zeng YP, Hao YH, Liu C, Liu J, Wang WD, Li R. Photosensitizer-Loaded Branched Polyethylenimine-PEGylated Ceria Nanoparticles for Imaging-Guided Synchronous Photochemotherapy. ACS APPLIED MATERIALS & INTERFACES 2015; 7:24218-28. [PMID: 26485120 DOI: 10.1021/acsami.5b07702] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A multifunctional theranostic platform based on photosensitizer (chlorin e6, Ce6)-loaded branched polyethylenimine-PEGylated ceria nanoparticles (PPCNPs-Ce6) was created for the development of effective cancer treatments involving the use of imaging-guided synchronous photochemotherapy. PPCNPs-Ce6 with high Ce6 photosensitizer loading (Ce6: cerium ∼40 wt %) significantly enhanced the delivery of Ce6 into cells and its accumulation in lysosomes, remarkably improving photodynamic therapeutic (PDT) efficacy levels compared to those in the administration of free Ce6 at ultralow drug doses (∼200 nM). Interestingly, PPCNPs-Ce6 efficiently induced HeLa cell death even at low concentrations (∼10 μM) without the use of laser irradiation and exhibit chemocytotoxicity. Inductively coupled plasma mass spectrometry (ICP-MS) and biology transmission electron microscopy (Bio-TEM) analyses demonstrated that ceria nanoparticles enter cells abundantly and accumulate in lysosomes or large vesicles. We then evaluated the effects of the different materials on lysosomal integrity and function, which revealed that PPCNPs-Ce6 catastrophically impaired lysosomal function compared to results with PPCNPs and Ce6. Studies of apoptosis revealed greater induction of apoptosis by PPCNPs-Ce6 treatment. This multifunctional nanocarrier also exhibited a high degree of solubility and stability in aqueous solutions, suggesting its applicability for extensive biomedical application.
Collapse
Affiliation(s)
- Zhang-You Yang
- State Key Laboratory of Trauma Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University , Chongqing 400038, China
| | - Hong Li
- State Key Laboratory of Trauma Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University , Chongqing 400038, China
| | - Yi-Ping Zeng
- State Key Laboratory of Trauma Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University , Chongqing 400038, China
| | - Yu-Hui Hao
- State Key Laboratory of Trauma Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University , Chongqing 400038, China
| | - Cong Liu
- State Key Laboratory of Trauma Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University , Chongqing 400038, China
| | - Jing Liu
- State Key Laboratory of Trauma Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University , Chongqing 400038, China
| | - Wei-Dong Wang
- Department of Radiation Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Rong Li
- State Key Laboratory of Trauma Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University , Chongqing 400038, China
| |
Collapse
|
47
|
Saghiri MA, Orangi J, Asatourian A, Sorenson CM, Sheibani N. Functional role of inorganic trace elements in angiogenesis part III: (Ti, Li, Ce, As, Hg, Va, Nb and Pb). Crit Rev Oncol Hematol 2015; 98:290-301. [PMID: 26638864 DOI: 10.1016/j.critrevonc.2015.10.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/27/2015] [Accepted: 10/15/2015] [Indexed: 02/02/2023] Open
Abstract
Many essential elements exist in nature with significant influence on human health. Angiogenesis is vital in developmental, repair, and regenerative processes, and its aberrant regulation contributes to pathogenesis of many diseases including cancer. Thus, it is of great importance to explore the role of these elements in such a vital process. This is third in a series of reviews that serve as an overview of the role of inorganic elements in regulation of angiogenesis and vascular function. Here we will review the roles of titanium, lithium, cerium, arsenic, mercury, vanadium, niobium, and lead in these processes. The roles of other inorganic elements in angiogenesis were discussed in part I (N, Fe, Se, P, Au, and Ca) and part II (Cr, Si, Zn, Cu, and S) of these series. The methods of exposure, structure, mechanisms, and potential activities of these elements are briefly discussed. An electronic search was performed on the role of these elements in angiogenesis from January 2005 to April 2014. These elements can promote and/or inhibit angiogenesis through different mechanisms. The anti-angiogenic effect of titanium dioxide nanoparticles comes from the inhibition of angiogenic processes, and not from its toxicity. Lithium affects vasculogenesis but not angiogenesis. Nanoceria treatment inhibited tumor growth by inhibiting angiogenesis. Vanadium treatment inhibited cell proliferation and induced cytotoxic effects through interactions with DNA. The negative impact of mercury on endothelial cell migration and tube formation activities was dose and time dependent. Lead induced IL-8 production, which is known to promote tumor angiogenesis. Thus, understanding the impact of these elements on angiogenesis will help in development of new modalities to modulate angiogenesis under various conditions.
Collapse
Affiliation(s)
- Mohammad Ali Saghiri
- Departments of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Angiogenesis and Regenerative Group, Dr. H. Afsar Lajevardi Research Cluster, Shiraz, Iran.
| | - Jafar Orangi
- Angiogenesis and Regenerative Group, Dr. H. Afsar Lajevardi Research Cluster, Shiraz, Iran
| | - Armen Asatourian
- Angiogenesis and Regenerative Group, Dr. H. Afsar Lajevardi Research Cluster, Shiraz, Iran
| | - Christine M Sorenson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Nader Sheibani
- Departments of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
48
|
Alpaslan E, Yazici H, Golshan NH, Ziemer KS, Webster TJ. pH-Dependent Activity of Dextran-Coated Cerium Oxide Nanoparticles on Prohibiting Osteosarcoma Cell Proliferation. ACS Biomater Sci Eng 2015; 1:1096-1103. [PMID: 33429551 DOI: 10.1021/acsbiomaterials.5b00194] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cerium oxide nanoparticles (or nanoceria) have demonstrated great potential as antioxidants in various cell culture models. Despite such promise for reducing reactive oxygen species and an ability for surface functionalization, nanoceria has not been extensively studied for cancer applications to date. Herein, we engineered the surface of nanoceria with dextran and observed its activity in the presence bone cancer cells (osteosarcoma cells) at different pH values resembling the cancerous and noncancerous environment. We found that dextran coated nanoceria was much more effective at killing bone cancer cells at slightly acidic (pH 6) compared to physiological and basic pH values (pH 7 and pH 9). In contrast, minimal toxicity was observed for healthy (noncancerous) bone cells when cultured with nanoceria at pH = 6 after 1 day of treatment in the concentration range of 10-1000 μg/mL. Although healthy bone cancer cell viability decreased after treatment with high ceria nanoparticle concentrations (250-1000 μg/mL) for longer time periods at pH 6 (3 days and 5 days), approximately 2-3 fold higher healthy bone cell viabilities were observed compared to osteosarcoma cell viability at similar conditions. Very low toxicity was observed for healthy osteoblasts cultured with nanoceria for any concentration at any time period at pH 7. In this manner, this study provides the first evidence that nanoceria can be a promising nanoparticle for treating bone cancer without adversely affecting healthy bone cells and thus deserves further investigation.
Collapse
Affiliation(s)
- Ece Alpaslan
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Hilal Yazici
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Negar H Golshan
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Katherine S Ziemer
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States.,Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
49
|
Dong H, Du SR, Zheng XY, Lyu GM, Sun LD, Li LD, Zhang PZ, Zhang C, Yan CH. Lanthanide Nanoparticles: From Design toward Bioimaging and Therapy. Chem Rev 2015; 115:10725-815. [DOI: 10.1021/acs.chemrev.5b00091] [Citation(s) in RCA: 799] [Impact Index Per Article: 88.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hao Dong
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Shuo-Ren Du
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Xiao-Yu Zheng
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Guang-Ming Lyu
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Ling-Dong Sun
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Lin-Dong Li
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Pei-Zhi Zhang
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Chao Zhang
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Chun-Hua Yan
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
50
|
Babazada H, Yamashita F, Yanamoto S, Hashida M. Self-assembling lipid modified glycol-split heparin nanoparticles suppress lipopolysaccharide-induced inflammation through TLR4-NF-κB signaling. J Control Release 2014; 194:332-40. [PMID: 25234820 DOI: 10.1016/j.jconrel.2014.09.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/15/2014] [Accepted: 09/08/2014] [Indexed: 01/23/2023]
Abstract
Self-assembling heparin nanoparticles have attracted much attention as promising drug carriers for various drugs, genes and imaging agents. In the present investigation, we found that heparin nanoparticles are selective Toll-like receptor 4 (TLR-4) antagonists and have a much greater anti-inflammatory effect than native heparin. More specifically, we developed self-assembling nanoparticles composed of glycol-split heparin/D-erythro-sphingosine conjugates (NAHNP), characterized their physicochemical properties and anti-inflammatory effect in vitro. Unlike native heparin, NAHNP significantly inhibited lipopolysaccharide-induced activation of MyD88-dependent NF-κB signaling pathway and production of pro-inflammatory cytokines such as TNF-alpha from mouse macrophages with IC50 = 0.019 mg/mL. Furthermore, we investigated the structure-activity relationship of the conjugates and identified the length of attached alkyl chains of d-erythro-sphingosine to be critical for anti-inflammatory effect. Decrease in alkyl chain length of NAHNP resulted in loss of inhibitory activity. In line with these findings, 6-O-sulfate groups of D-glucosamine residue were essential for effective inhibition, while removal of 2-O-sulfo and 3-O-sulfo groups as well as replacement of N-sulfo groups with N-acetyl did not alter anti-inflammatory activity. Therefore, NAHNP would be a promising candidate in acute and chronic inflammatory disorders, in addition to the nature of a drug carrier.
Collapse
Affiliation(s)
- Hasan Babazada
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Fumiyoshi Yamashita
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinya Yanamoto
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitsuru Hashida
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshidaushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|