1
|
Biological Response to Sintered Titanium in Left Ventricular Assist Devices: Pseudoneointima, Neointima, and Pannus. ASAIO J 2023; 69:1-10. [PMID: 35649199 DOI: 10.1097/mat.0000000000001777] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Titanium alloys have traditionally been used in blood-contacting cardiovascular devices, including left ventricular assist devices (LVADs). However, titanium surfaces are susceptible to adverse coagulation, leading to thrombogenesis and stroke. To improve hemocompatibility, LVAD manufacturers introduced powder sintering on blood-wetted surfaces in the 1980s to induce endothelialization. This technique has been employed in multiple contemporary LVADs on the pump housing, as well as the interior and exterior of the inflow cannula. Despite the wide adoption of sintered titanium, reported biologic response over the past several decades has been highly variable and apparently unpredictable-including combinations of neointima, pseudoneoimtima, thrombus, and pannus. We present a history of sintered titanium used in LVAD, a review of accumulated clinical outcomes, and a synopsis of gross appearance and composition of various depositions found clinically and in animal studies, which is unfortunately confounded by the variability and inconsistency in terminology. Therefore, this review endeavors to introduce a unified taxonomy to harmonize published observations of biologic response to sintered titanium in LVADs. From these data, we are able to deduce the natural history of the biologic response to sintered titanium, toward development of a deterministic model of the genesis of a hemocompatible neointima.
Collapse
|
2
|
Malcor JD, Mallein-Gerin F. Biomaterial functionalization with triple-helical peptides for tissue engineering. Acta Biomater 2022; 148:1-21. [PMID: 35675889 DOI: 10.1016/j.actbio.2022.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/09/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022]
Abstract
In the growing field of tissue engineering, providing cells in biomaterials with the adequate biological cues represents an increasingly important challenge. Yet, biomaterials with excellent mechanical properties often are often biologically inert to many cell types. To address this issue, researchers resort to functionalization, i.e. the surface modification of a biomaterial with active molecules or substances. Functionalization notably aims to replicate the native cellular microenvironment provided by the extracellular matrix, and in particular by collagen, its major component. As our understanding of biological processes regulating cell behaviour increases, functionalization with biomolecules binding cell surface receptors constitutes a promising strategy. Amongst these, triple-helical peptides (THPs) that reproduce the architectural and biological properties of collagen are especially attractive. Indeed, THPs containing binding sites from the native collagen sequence have successfully been used to guide cell response by establishing cell-biomaterial interactions. Notably, the GFOGER motif recognising the collagen-binding integrins is extensively employed as a cell adhesive peptide. In biomaterials, THPs efficiently improved cell adhesion, differentiation and function on biomaterials designed for tissue repair (especially for bone, cartilage, tendon and heart), vascular graft fabrication, wound dressing, drug delivery or immunomodulation. This review describes the key characteristics of THPs, their effect on cells when combined to biomaterials and their strong potential as biomimetic tools for regenerative medicine. STATEMENT OF SIGNIFICANCE: This review article describes how triple-helical peptides constitute efficient tools to improve cell-biomaterial interactions in tissue engineering. Triple helical peptides are bioactive molecules that mimic the architectural and biological properties of collagen. They have been successfully used to specifically recognize cell-surface receptors and provide cells seeded on biomaterials with controlled biological cues. Functionalization with triple-helical peptides has enabled researchers to improve cell function for regenerative medicine applications, such as tissue repair. However, despite encouraging results, this approach remains limited and under-exploited, and most functionalization strategies reported in the literature rely on biomolecules that are unable to address collagen-binding receptors. This review will assist researchers in selecting the correct tools to functionalize biomaterials in efforts to guide cellular response.
Collapse
Affiliation(s)
- Jean-Daniel Malcor
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR 5305, University Claude Bernard-Lyon 1 and University of Lyon, 7 Passage du Vercors, Cedex 07, Lyon 69367, France.
| | - Frédéric Mallein-Gerin
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR 5305, University Claude Bernard-Lyon 1 and University of Lyon, 7 Passage du Vercors, Cedex 07, Lyon 69367, France
| |
Collapse
|
3
|
Wolfe JT, Shradhanjali A, Tefft BJ. Strategies for improving endothelial cell adhesion to blood-contacting medical devices. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:1067-1092. [PMID: 34693761 DOI: 10.1089/ten.teb.2021.0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The endothelium is a critical mediator of homeostasis on blood-contacting surfaces in the body, serving as a selective barrier to regulate processes such as clotting, immune cell adhesion, and cellular response to fluid shear stress. Implantable cardiovascular devices including stents, vascular grafts, heart valves, and left ventricular assist devices are in direct contact with circulating blood and carry a high risk for platelet activation and thrombosis without a stable endothelial cell (EC) monolayer. Development of a healthy endothelium on the blood-contacting surface of these devices would help ameliorate risks associated with thrombus formation and eliminate the need for long-term anti-platelet or anti-coagulation therapy. Although ECs have been seeded onto or recruited to these blood-contacting surfaces, most ECs are lost upon exposure to shear stress due to circulating blood. Many investigators have attempted to generate a stable EC monolayer by improving EC adhesion using surface modifications, material coatings, nanofiber topology, and modifications to the cells. Despite some success with enhanced EC retention in vitro and in animal models, no studies to date have proven efficacious for routinely creating a stable endothelium in the clinical setting. This review summarizes past and present techniques directed at improving the adhesion of ECs to blood-contacting devices.
Collapse
Affiliation(s)
- Jayne Taylor Wolfe
- Medical College of Wisconsin, 5506, Biomedical Engineering, 8701 Watertown Plank Rd, Milwaukee, Wisconsin, United States, 53226-0509;
| | - Akankshya Shradhanjali
- Medical College of Wisconsin, 5506, Biomedical Engineering, Milwaukee, Wisconsin, United States;
| | - Brandon J Tefft
- Medical College of Wisconsin, 5506, Biomedical Engineering, Milwaukee, Wisconsin, United States;
| |
Collapse
|
4
|
Zhao J, Feng Y. Surface Engineering of Cardiovascular Devices for Improved Hemocompatibility and Rapid Endothelialization. Adv Healthc Mater 2020; 9:e2000920. [PMID: 32833323 DOI: 10.1002/adhm.202000920] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/18/2020] [Indexed: 12/13/2022]
Abstract
Cardiovascular devices have been widely applied in the clinical treatment of cardiovascular diseases. However, poor hemocompatibility and slow endothelialization on their surface still exist. Numerous surface engineering strategies have mainly sought to modify the device surface through physical, chemical, and biological approaches to improve surface hemocompatibility and endothelialization. The alteration of physical characteristics and pattern topographies brings some hopeful outcomes and plays a notable role in this respect. The chemical and biological approaches can provide potential signs of success in the endothelialization of vascular device surfaces. They usually involve therapeutic drugs, specific peptides, adhesive proteins, antibodies, growth factors and nitric oxide (NO) donors. The gene engineering can enhance the proliferation, growth, and migration of vascular cells, thus boosting the endothelialization. In this review, the surface engineering strategies are highlighted and summarized to improve hemocompatibility and rapid endothelialization on the cardiovascular devices. The potential outlook is also briefly discussed to help guide endothelialization strategies and inspire further innovations. It is hoped that this review can assist with the surface engineering of cardiovascular devices and promote future advancements in this emerging research field.
Collapse
Affiliation(s)
- Jing Zhao
- School of Chemical Engineering and Technology Tianjin University Yaguan Road 135 Tianjin 300350 P. R. China
| | - Yakai Feng
- School of Chemical Engineering and Technology Tianjin University Yaguan Road 135 Tianjin 300350 P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) Yaguan Road 135 Tianjin 300350 P. R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education) Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
5
|
Jana S. Endothelialization of cardiovascular devices. Acta Biomater 2019; 99:53-71. [PMID: 31454565 DOI: 10.1016/j.actbio.2019.08.042] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/19/2019] [Accepted: 08/22/2019] [Indexed: 01/10/2023]
Abstract
Blood-contacting surfaces of cardiovascular devices are not biocompatible for creating an endothelial layer on them. Numerous research studies have mainly sought to modify these surfaces through physical, chemical and biological means to ease early endothelial cell (EC) adhesion, migration and proliferation, and eventually to build an endothelial layer on the surfaces. The first priority for surface modification is inhibition of protein adsorption that leads to inhibition of platelet adhesion to the device surfaces, which may favor EC adhesion. Surface modification through surface texturing, if applicable, can bring some hopeful outcomes in this regard. Surface modifications through chemical and/or biological means may play a significant role in easy endothelialization of cardiovascular devices and inhibit smooth muscle cell proliferation. Cellular engineering of cells relevant to endothelialization can boost the positive outcomes obtained through surface engineering. This review briefly summarizes recent developments and research in early endothelialization of cardiovascular devices. STATEMENT OF SIGNIFICANCE: Endothelialization of cardiovascular implants, including heart valves, vascular stents and vascular grafts is crucial to solve many problems in our health care system. Numerous research efforts have been made to improve endothelialization on the surfaces of cardiovascular implants, mainly through surface modifications in three ways - physically, chemically and biologically. This review is intended to highlight comprehensive research studies to date on surface modifications aiming for early endothelialization on the blood-contacting surfaces of cardiovascular implants. It also discusses future perspectives to help guide endothelialization strategies and inspire further innovations.
Collapse
Affiliation(s)
- Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
6
|
Xu Z, Gu Y, Li J, Feng Z, Guo L, Tong Z, Ye L, Wang C, Wang R, Geng X, Wang C, Zhang J. Vascular Remodeling Process of Heparin-Conjugated Poly(ε-Caprolactone) Scaffold in a Rat Abdominal Aorta Replacement Model. J Vasc Res 2018; 55:338-349. [PMID: 30485863 DOI: 10.1159/000494509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/15/2018] [Indexed: 11/19/2022] Open
Abstract
In the field of vascular graft research, poly-ε-caprolactone (PCL) is used owing to its good mechanical strength and biocompatibility. In this study, PCL scaffold was prepared by electrospinning and surface modification with heparin via hexamethylenediamine. Then the scaffolds were implanted into the infrarenal abdominal aorta of Wistar rats and contrast-enhanced micro-ultrasound was used to monitor the patency of grafts after implantation. These grafts were extracted from the rats at 1, 3, and 6 months for histological analysis, immunofluorescence staining, and scanning electron microscopy observation. Although some grafts experienced aneurysmal change, results showed that all implanted grafts were patent during the course of 6 months and these grafts demonstrated well-organized neotissue with endothelium formation, smooth muscle regeneration, and extracellular matrix formation. Such findings confirm feasibility to create heparin-conjugated scaffolds of next-generation vascular grafts.
Collapse
Affiliation(s)
- Zeqin Xu
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing, China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing, China
| | - Jianxin Li
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing, China
| | - Zengguo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Lianrui Guo
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing, China
| | - Zhu Tong
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing, China
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Chunmei Wang
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing, China
| | - Rong Wang
- Department of Central Laboratory, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Xue Geng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Cong Wang
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing, China
| | - Jian Zhang
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing, China,
| |
Collapse
|
7
|
Krüger-Genge A, Schulz C, Kratz K, Lendlein A, Jung F. Comparison of two substrate materials used as negative control in endothelialization studies: Glass versus polymeric tissue culture plate. Clin Hemorheol Microcirc 2018; 69:437-445. [PMID: 29843229 DOI: 10.3233/ch-189904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The endothelialization of synthetic surfaces applied as cardiovascular implant materials is an important issue to ensure the anti-thrombotic quality of a biomaterial. However, the rapid and constant development of a functionally-confluent endothelial cell monolayer is challenging. In order to investigate the compatibility of potential implant materials with endothelial cells several in vitro studies are performed. Here, glass and tissue culture plates (TCP) are often used as reference materials for in vitro pre-testing. However, a direct comparison of both substrates is lacking.Therefore, a comparison of study results is difficult, since results are often related to various reference materials. In this study, the endothelialization of glass and TCP was investigated in terms of adherence, morphology, integrity, viability and function using human umbilical vein endothelial cells (HUVEC).On both substrates an almost functionally confluent HUVEC monolayer was developed after nine days of cell seeding with clearly visible cell rims, decreased stress fiber formation and a pronounced marginal filament band. The viability of HUVEC was comparable for both substrates nine days after cell seeding with only a few dead cells. According to that, the cell membrane integrity as well as the metabolic activity showed no differences between TCP and glass. However, a significant difference was observed for the secretion of IL-6 and IL-8. The concentration of both cytokines, which are associated with migratory activity, was increased in the supernatant of HUVEC seeded on TCP. This result matches well with the slightly increased number of adherent HUVEC on TCP.In conclusion, these findings indicate that both reference materials are almost comparable and can be used equivalently as control materials in in vitro endothelialization studies.
Collapse
Affiliation(s)
- Anne Krüger-Genge
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Christian Schulz
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Karl Kratz
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - Friedrich Jung
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| |
Collapse
|
8
|
Gao J, Jiang L, Liang Q, Shi J, Hou D, Tang D, Chen S, Kong D, Wang S. The grafts modified by heparinization and catalytic nitric oxide generation used for vascular implantation in rats. Regen Biomater 2018; 5:105-114. [PMID: 29644092 PMCID: PMC5888227 DOI: 10.1093/rb/rby003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/05/2018] [Accepted: 02/09/2018] [Indexed: 01/03/2023] Open
Abstract
Small-diameter (<6 mm) vascular grafts are increasingly needed in peripheral vascular surgery but have few successes because of acute thrombosis, incomplete endothelialization and intimal hyperplasia after implantation. This study used electrospun poly(ε-caprolactone) as the matrix material. Heparin and selenium-containing catalyst-organoselenium modified polyethyleneimine were introduced through layer-by-layer assembly in order to build a vascular graft with in situ nitric oxide (NO) generation. The aim of this study was to explore the application of the graft with improved histocompatibility and biological function for vascular implantation in rats. After implantation in rats, compared to poly(ε-caprolactone), the modified grafts could promote the adhesion and proliferation of endothelial cells, and inhibit the adhesion of smooth muscle cells. The modified grafts remarkably promoted endothelialization, inhibited intimal hyperplasia and increased the ratio of alternatively activated macrophages (M2) to classical activated macrophages (M1). This work constructed a vascular graft with heparinization and catalytic NO generation for improving the vascularization, and accelerating the tissue regeneration by regulating the inflammatory response. The present study indicates that it is a promising method for regulating response and tissue regeneration of small diameter vascular grafts by a novel approach of combining heparinization and catalytic NO generation.
Collapse
Affiliation(s)
- Jingchen Gao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Li Jiang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qinge Liang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jie Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ding Hou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Di Tang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Siyuan Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shufang Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
9
|
Dan P, Velot É, Francius G, Menu P, Decot V. Human-derived extracellular matrix from Wharton's jelly: An untapped substrate to build up a standardized and homogeneous coating for vascular engineering. Acta Biomater 2017; 48:227-237. [PMID: 27769940 DOI: 10.1016/j.actbio.2016.10.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/04/2016] [Accepted: 10/11/2016] [Indexed: 12/18/2022]
Abstract
One of the outstanding goals in tissue engineering is to develop a natural coating surface which is easy to manipulate, effective for cell adhesion and fully biocompatible. The ideal surface would be derived from human tissue, perfectly controllable, and pathogen-free, thereby satisfying all of the standards of the health authorities. This paper reports an innovative approach to coating surfaces using a natural extracellular matrix (ECM) extracted from the Wharton's jelly (WJ) of the umbilical cord (referred to as WJ-ECM). We have shown by atomic force microscopy (AFM), that the deposition of WJ-ECM on surfaces is homogenous with a controllable thickness, and that this easily-prepared coating is appropriate for both the adhesion and proliferation of human mesenchymal stem cells and mature endothelial cells. Furthermore, under physiological shear stress conditions, a larger number of cells remained adhered to WJ-ECM than to a conventional coating such as collagen - a result supported by the higher expression of both integrins α2 and β1 in cells cultured on WJ-ECM. Our data clearly show that Wharton's jelly is a highly promising coating for the design of human biocompatible surfaces in tissue engineering as well as in regenerative medicine. STATEMENT OF SIGNIFICANCE Discovery and design of biomaterial surface are a hot spot in the tissue engineering field. Natural matrix is preferred to mimic native cell microenvironment but its use is limited due to poor resource availability. Moreover, current studies often use single or several components of natural polymers, which is not the case in human body. This paper reports a natural extracellular matrix with full components derived from healthy human tissue: Wharton's jelly of umbilical cord. Reconstituting this matrix as a culture surface, our easily-prepared coating provides superior biocompatibility for stem and mature cells. Furthermore, we observed improved cell performance on this coating under both static and dynamic condition. This novel human derived ECM would be a promising choice for regenerative medicine.
Collapse
Affiliation(s)
- Pan Dan
- UMR 7365 CNRS, Ingénierie Moléculaire et Physiopathologie Articulaire Université de Lorraine, Vandœuvre-lès-Nancy Cedex 54505, France
| | - Émilie Velot
- UMR 7365 CNRS, Ingénierie Moléculaire et Physiopathologie Articulaire Université de Lorraine, Vandœuvre-lès-Nancy Cedex 54505, France
| | - Grégory Francius
- UMR 7564, Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, Villers-lès-Nancy 54600, France
| | - Patrick Menu
- UMR 7365 CNRS, Ingénierie Moléculaire et Physiopathologie Articulaire Université de Lorraine, Vandœuvre-lès-Nancy Cedex 54505, France.
| | - Véronique Decot
- UMR 7365 CNRS, Ingénierie Moléculaire et Physiopathologie Articulaire Université de Lorraine, Vandœuvre-lès-Nancy Cedex 54505, France; Unité de Thérapie Cellulaire et Tissulaire, CHRU de Nancy, Vandœuvre-lès-Nancy 54511, France
| |
Collapse
|
10
|
Gao J, Wang Y, Chen S, Tang D, Jiang L, Kong D, Wang S. Electrospun poly-ε-caprolactone scaffold modified with catalytic nitric oxide generation and heparin for small-diameter vascular graft. RSC Adv 2017. [DOI: 10.1039/c7ra02086d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Vascular grafts are significantly needed in peripheral vascular surgery; however, small diameter grafts are not always available, and synthetic grafts perform poorly because of acute thrombosis and neointimal proliferation after implantation.
Collapse
Affiliation(s)
- Jingchen Gao
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials for Ministry of Education
- College of Life Sciences
- Institute of Molecular Biology
- Nankai University
| | - Yaping Wang
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials for Ministry of Education
- College of Life Sciences
- Institute of Molecular Biology
- Nankai University
| | - Siyuan Chen
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials for Ministry of Education
- College of Life Sciences
- Institute of Molecular Biology
- Nankai University
| | - Di Tang
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials for Ministry of Education
- College of Life Sciences
- Institute of Molecular Biology
- Nankai University
| | - Li Jiang
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials for Ministry of Education
- College of Life Sciences
- Institute of Molecular Biology
- Nankai University
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials for Ministry of Education
- College of Life Sciences
- Institute of Molecular Biology
- Nankai University
| | - Shufang Wang
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials for Ministry of Education
- College of Life Sciences
- Institute of Molecular Biology
- Nankai University
| |
Collapse
|
11
|
Krüger-Genge A, Fuhrmann R, Jung F, Franke RP. Effects of different components of the extracellular matrix on endothelialization. Clin Hemorheol Microcirc 2016; 64:867-874. [PMID: 27935545 DOI: 10.3233/ch-168051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The endothelialization of cardiovascular prostheses is known to improve their haemocompatibility. As such body-foreign materials often do not endothelialize spontaneously. A lot of in vitro studies are ongoing how endothelialization of biomaterials can be improved. In this study the influence of different components of a tissue-typical extracellular matrix (ECM) like laminin, fibronectin or gelatin on the formation of an endothelial cell monolayer and on the shear resistance of adherent cells on these substrates was studied.The study revealed that the density of human venous endothelial cells (HUVEC) monolayers differed markedly between cells grown on a natural ECM and cells grown on singularized components of an ECM (p < 0.001). Only HUVEC grown on laminin showed similar densities and a stress fiber pattern comparable to HUVEC grown on the ECM. HUVEC grown on gelatin- or fibronectin-coated coverslips were less firmly attached to the substrate; frequently individual HUVEC and even groups of cells detached.Concluding it seems that coating of implants with laminin supports the formation of shear resistant endothelial cell (EC) monolayer - superior to other ECM components.
Collapse
Affiliation(s)
- A Krüger-Genge
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - R Fuhrmann
- Abteilung Biomaterialien, Zentralinstitut für Biomedizinische Technik, Universität Ulm, Ulm, Germany
| | - F Jung
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - R P Franke
- Abteilung Biomaterialien, Zentralinstitut für Biomedizinische Technik, Universität Ulm, Ulm, Germany
| |
Collapse
|
12
|
Krüger-Genge A, Fuhrmann R, Jung F, Franke RP. Morphology of primary human venous endothelial cell cultures before and after culture medium exchange. Clin Hemorheol Microcirc 2016; 61:151-6. [PMID: 26410871 DOI: 10.3233/ch-151992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The evaluation of the interaction of human, venous endothelial cells (HUVEC) with body foreign materials on the cellular level cannot be performed in vivo, but is investigated in vitro under standard culture conditions. To maintain the vitality, proliferation and morphology of HUVEC seeded on body foreign substrates over days, the cell culture medium is usually exchanged every second day. It is well known, that alterations in the microenvironment of cells bear the risk of influencing cell morphology and function. In the current study the influence of cell culture medium exchange on HUVEC cytoskeletal microfilament structure and function was investigated. MATERIAL AND METHODS HUVEC in the third passage were seeded on extracellular matrix (ECM) - which was secreted from bovine corneal endothelial cells on glass- until functional confluence was reached. The experiment started 11 days after HUVEC seeding with an exchange of the cell culture medium followed by a staining of the actin microfilaments with phalloidin-rhodamin 1.5 and 5 minutes after medium exchange. The microfilaments were documented by use of an Olympus microscope (IMT-2) equipped with a UV lamp and online connected to a TV chain (Sony XC 50 ST/monochrome) implying an OPTIMAS - Image analysis system. Prostacyclin was analysed in the cell culture supernatant. RESULTS 1.5 min after culture medium exchange in the functionally confluent cultures a slight disturbance of the actin microfilament structure with a broadening of the marginal filament band, a partial disconnection of cell-cell contacts and the appearance of intercellular fenestrations were observed. 5 minutes after medium exchange a redevelopment of the slightly disturbed microfilament structure with a condensation and narrowing of the marginal filament band was seen. 12 h later a further consolidation of the microfilament structure occurred. In addition, a perturbation of the cultured HUVEC occurred after cell culture medium exchange. The prostacyclin concentration in the supernatant increased significantly after 1.5 min to 466 ± 543 pg·mL-1 (p < 0.001) and after 5 min to 408 ± 458 pg·mL-1 (p < 0.001), while in control cells the prostacyclin concentration did not change remaining in the range of 50 ± 48.9 pg·mL-1. CONCLUSION This study revealed that the exchange of the cell culture medium led to a rapid disturbance of the HUVEC with stress fiber formation, disconnection of cell-cell contacts and an altered prostacyclin secretion, which had regressed nearly completely after 12 hours. Therefore, the evaluation of HUVEC on body foreign materials should be performed not earlier than 12 hours after cell culture medium exchange to avoid a misinterpretation of the endothelial cell morphological state. This procedure minimizes the risk of a misinterpretation of the endothelial cell morphology - caused by the culture medium exchange and not by the interaction between biomaterials and HUVEC.
Collapse
Affiliation(s)
- A Krüger-Genge
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - R Fuhrmann
- Abteilung Biomaterialien, Zentralinstitut für Biomedizinische Technik, Universität Ulm, Albert-Einstein-Allee, Ulm, Germany
| | - F Jung
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - R P Franke
- Abteilung Biomaterialien, Zentralinstitut für Biomedizinische Technik, Universität Ulm, Albert-Einstein-Allee, Ulm, Germany
| |
Collapse
|
13
|
Kim MH, Lee J, Jung S, Kim JW, Shin JH, Lee HJ. The involvement of ginseng berry extract in blood flow via regulation of blood coagulation in rats fed a high-fat diet. J Ginseng Res 2016; 41:120-126. [PMID: 28413315 PMCID: PMC5386124 DOI: 10.1016/j.jgr.2016.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/24/2016] [Accepted: 01/27/2016] [Indexed: 01/25/2023] Open
Abstract
Background The present study investigated the effect of ginseng berry hot water extract (GBx) on blood flow via the regulation of lipid metabolites and blood coagulation in rats fed a high-fat diet (HFD). Methods Sixty rats were divided into five groups in descending order of body weight. Except for the control group, the other four groups were fed a HFD containing 45% kcal from fat for 11 wk without GBx. GBx groups were then additionally treated by gastric gavage with GBx dissolved in distilled water at 50 (GBx 50) mg/kg, 100 (GBx 100) mg/kg, or 150 (GBx 150) mg/kg body weight for 6 wk along with the HFD. To investigate the effects of GBx on rats fed a HFD, biochemical metabolite, blood coagulation assay, and histological analysis were performed. Results In the experiments to measure the serum levels of leptin and apolipoprotein B/A, GBx treatment attenuated the HFD-induced increases in these metabolites (p < 0.05). Adiponectin and apolipoprotein E levels in GBx-treated groups were significantly higher than the HFD group. Prothrombin time and activated partial thromboplastin time were increased in all GBx-treated groups. In the GBx-treated groups, the serum levels of thromboxane A2 and serotonin were decreased and concentrations of serum fibrinogen degradation products were increased (p < 0.05). Moreover, histomorphometric dyslipidemia-related atherosclerotic changes were significantly improved by treatment with GBx. Conclusion These results suggest the possibility that GBx can ameliorate blood flow by decreasing intima-media thickness via the regulation of blood coagulation factors related to lipid metabolites in rats fed a HFD.
Collapse
Affiliation(s)
- Min Hee Kim
- Department of Physical Therapy, College of Health Science, Eulji University, Gyeonggi-do, Korea
| | - Jongsung Lee
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Gyeonggi-do, Korea
| | - Sehyun Jung
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Gyeonggi-do, Korea
| | - Joo Wan Kim
- Natural Product Research Center, Aribio Co. Ltd., Gyoenggi-do, Korea
| | - Jae-Ho Shin
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Gyeonggi-do, Korea
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Gyeonggi-do, Korea
| |
Collapse
|
14
|
Pacelli S, Manoharan V, Desalvo A, Lomis N, Jodha KS, Prakash S, Paul A. Tailoring biomaterial surface properties to modulate host-implant interactions: implication in cardiovascular and bone therapy. J Mater Chem B 2015; 4:1586-1599. [PMID: 27630769 PMCID: PMC5019489 DOI: 10.1039/c5tb01686j] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Host body response to a foreign medical device plays a critical role in defining its fate post implantation. It is thus important to control host-material interactions by designing innovative implant surfaces. In the recent years, biochemical and topographical features have been explored as main target to produce this new type of bioinert or bioresponsive implants. The review discusses specific biofunctional materials and strategies to achieve a precise control over implant surface properties and presents possible solutions to develop next generation of implants, particularly in the fields of bone and cardiovascular therapy.
Collapse
Affiliation(s)
- Settimio Pacelli
- BioIntel Research Laboratory, Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, KS, USA
| | - Vijayan Manoharan
- BioIntel Research Laboratory, Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, KS, USA
| | - Anna Desalvo
- University of Southampton, School of Medicine, University Road, Southampton SO17 1BJ, United Kingdom
| | - Nikita Lomis
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, Duff Medical Building, 3775 University Street, McGill University, QC, Canada H3A 2B4
| | - Kartikeya Singh Jodha
- BioIntel Research Laboratory, Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, KS, USA
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, Duff Medical Building, 3775 University Street, McGill University, QC, Canada H3A 2B4
| | - Arghya Paul
- BioIntel Research Laboratory, Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
15
|
Zhang GP, Sun JN, Wang J, Zhang HJ, Zhu CH, Lin L, Li QH, Zhao ZS, Yu XG, Liu GB, Dong W. Correlation between polymorphism of endothelial nitric oxide synthase and avascular necrosis of femoral head. Int J Clin Exp Med 2015; 8:18849-18854. [PMID: 26770506 PMCID: PMC4694406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 09/10/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVE We analyzed the correlation between mutation in intron 4 and exon 7 of endothelial nitric oxide synthase (eNOS) and avascular necrosis of femoral head (ANFH). METHOD A total of 260 ANFH cases without history of hip joint injuries were diagnosed and subject to staging according to Ficat standard, with 262 health subjects as control. Venous blood was collected to extract genome DNA, which was then amplified by PCR. The polymorphism of 27 bp repeat sequence in intron 4 and G894T polymorphism in exon 7 of eNOS gene was detected. RESULTS The b/b, b/a and a/a genotype frequency of intron 4 was 77.7%, 19.2% and 3.1% in ANFH group, respectively, and that in the control group was 58.0%, 32.8% and 9.2%, respectively. The b allele frequency in ANFH group was obviously higher than that in the control (P<0.0001). The frequency of 894 G/G wild type, G/T heterozygote and T/T homozygote in eNOS exon 7 was analyzed by PCR-RLFP: 65.4%, 26.5% and 8.1% in ANFH group, and 46.2%, 37.8% and 16% in normal control, respectively. The frequency of TT genotype in ANFH was obviously higher than that in the control group (P<0.001). CONCLUSION Polymorphism of eNOS was correlated with ANFH.
Collapse
Affiliation(s)
- Guo-Ping Zhang
- Department of Orthopeadic Surgery, The First Hospital of Hebei Medical UniversityNo. 89, Donggang Road, Yuhua District, Shijiazhuang, Hebei Province, China
| | - Jing-Na Sun
- Department of Clinical Laboratory, The First Hospital of Hebei Medical UniversityNo. 89, Donggang Road, Yuhua District, Shijiazhuang, Hebei Province, China
| | - Jian Wang
- Department of Orthopeadic Surgery, The First Hospital of Hebei Medical UniversityNo. 89, Donggang Road, Yuhua District, Shijiazhuang, Hebei Province, China
| | - Hai-Jing Zhang
- Department of Orthopeadic Surgery, The First Hospital of Hebei Medical UniversityNo. 89, Donggang Road, Yuhua District, Shijiazhuang, Hebei Province, China
| | - Chao-Hua Zhu
- Department of Orthopeadic Surgery, The First Hospital of Hebei Medical UniversityNo. 89, Donggang Road, Yuhua District, Shijiazhuang, Hebei Province, China
| | - Lei Lin
- Department of Orthopeadic Surgery, The First Hospital of Hebei Medical UniversityNo. 89, Donggang Road, Yuhua District, Shijiazhuang, Hebei Province, China
| | - Quan-Hai Li
- Department of Cell Therapy Center, The First Hospital of Hebei Medical UniversityNo. 89 Donggang Road, Yuhua District, Shijiazhuang, Hebei Province, China
| | - Zhen-Shuan Zhao
- Department of Orthopeadic Surgery, The First Hospital of Hebei Medical UniversityNo. 89, Donggang Road, Yuhua District, Shijiazhuang, Hebei Province, China
| | - Xiao-Guang Yu
- Department of Orthopeadic Surgery, The First Hospital of Hebei Medical UniversityNo. 89, Donggang Road, Yuhua District, Shijiazhuang, Hebei Province, China
| | - Guo-Bin Liu
- Department of Orthopeadic Surgery, The First Hospital of Hebei Medical UniversityNo. 89, Donggang Road, Yuhua District, Shijiazhuang, Hebei Province, China
| | - Wei Dong
- Department of Orthopeadic Surgery, The First Hospital of Hebei Medical UniversityNo. 89, Donggang Road, Yuhua District, Shijiazhuang, Hebei Province, China
| |
Collapse
|
16
|
Balaoing LR, Post AD, Lin AY, Tseng H, Moake JL, Grande-Allen KJ. Laminin Peptide-Immobilized Hydrogels Modulate Valve Endothelial Cell Hemostatic Regulation. PLoS One 2015; 10:e0130749. [PMID: 26090873 PMCID: PMC4474637 DOI: 10.1371/journal.pone.0130749] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 05/23/2015] [Indexed: 11/18/2022] Open
Abstract
Valve endothelial cells (VEC) have unique phenotypic responses relative to other types of vascular endothelial cells and have highly sensitive hemostatic functions affected by changes in valve tissues. Furthermore, effects of environmental factors on VEC hemostatic function has not been characterized. This work used a poly(ethylene glycol) diacrylate (PEGDA) hydrogel platform to evaluate the effects of substrate stiffness and cell adhesive ligands on VEC phenotype and expression of hemostatic genes. Hydrogels of molecular weights (MWs) 3.4, 8, and 20 kDa were polymerized into platforms of different rigidities and thiol-modified cell adhesive peptides were covalently bound to acrylate groups on the hydrogel surfaces. The peptide RKRLQVQLSIRT (RKR) is a syndecan-1 binding ligand derived from laminin, a trimeric protein and a basement membrane matrix component. Conversely, RGDS is an integrin binding peptide found in many extracellular matrix (ECM) proteins including fibronectin, fibrinogen, and von Willebrand factor (VWF). VECs adhered to and formed a stable monolayer on all RKR-coated hydrogel-MW combinations. RGDS-coated platforms supported VEC adhesion and growth on RGDS-3.4 kDa and RGDS-8 kDa hydrogels. VECs cultured on the softer RKR-8 kDa and RKR-20 kDa hydrogel platforms had significantly higher gene expression for all anti-thrombotic (ADAMTS-13, tissue factor pathway inhibitor, and tissue plasminogen activator) and thrombotic (VWF, tissue factor, and P-selectin) proteins than VECs cultured on RGDS-coated hydrogels and tissue culture polystyrene controls. Stimulated VECs promoted greater platelet adhesion than non-stimulated VECs on their respective culture condition; yet stimulated VECs on RGDS-3.4 kDa gels were not as responsive to stimulation relative to the RKR-gel groups. Thus, the syndecan binding, laminin-derived peptide promoted stable VEC adhesion on the softer hydrogels and maintained VEC phenotype and natural hemostatic function. In conclusion, utilization of non-integrin adhesive peptide sequences derived from basement membrane ECM may recapitulate balanced VEC function and may benefit endothelialization of valve implants.
Collapse
Affiliation(s)
- Liezl Rae Balaoing
- Department of Bioengineering, Rice University, Houston, TX, 77005, United States of America
| | - Allison Davis Post
- Department of Bioengineering, Rice University, Houston, TX, 77005, United States of America
| | - Adam Yuh Lin
- Department of Bioengineering, Rice University, Houston, TX, 77005, United States of America
| | - Hubert Tseng
- Department of Bioengineering, Rice University, Houston, TX, 77005, United States of America
| | - Joel L. Moake
- Department of Bioengineering, Rice University, Houston, TX, 77005, United States of America
| | - K. Jane Grande-Allen
- Department of Bioengineering, Rice University, Houston, TX, 77005, United States of America
| |
Collapse
|
17
|
Cheung DY, Duan B, Butcher JT. Current progress in tissue engineering of heart valves: multiscale problems, multiscale solutions. Expert Opin Biol Ther 2015; 15:1155-72. [PMID: 26027436 DOI: 10.1517/14712598.2015.1051527] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Heart valve disease is an increasingly prevalent and clinically serious condition. There are no clinically effective biological diagnostics or treatment strategies. The only recourse available is replacement with a prosthetic valve, but the inability of these devices to grow or respond biologically to their environments necessitates multiple resizing surgeries and life-long coagulation treatment, especially in children. Tissue engineering has a unique opportunity to impact heart valve disease by providing a living valve conduit, capable of growth and biological integration. AREAS COVERED This review will cover current tissue engineering strategies in fabricating heart valves and their progress towards the clinic, including molded scaffolds using naturally derived or synthetic polymers, decellularization, electrospinning, 3D bioprinting, hybrid techniques, and in vivo engineering. EXPERT OPINION Whereas much progress has been made to create functional living heart valves, a clinically viable product is not yet realized. The next leap in engineered living heart valves will require a deeper understanding of how the natural multi-scale structural and biological heterogeneity of the tissue ensures its efficient function. Related, improved fabrication strategies must be developed that can replicate this de novo complexity, which is likely instructive for appropriate cell differentiation and remodeling whether seeded with autologous stem cells in vitro or endogenously recruited cells.
Collapse
Affiliation(s)
- Daniel Y Cheung
- Cornell University, Department of Biomedical Engineering , Ithaca, NY , USA
| | | | | |
Collapse
|