1
|
Opriessnig T, Gauger PC, Filippsen Favaro P, Rawal G, Magstadt DR, Digard P, Lee HM, Halbur PG. An experimental universal swine influenza a virus (IAV) vaccine candidate based on the M2 ectodomain (M2e) peptide does not provide protection against H1N1 IAV challenge in pigs. Vaccine 2024; 42:220-228. [PMID: 38087714 DOI: 10.1016/j.vaccine.2023.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/13/2023] [Accepted: 12/02/2023] [Indexed: 01/01/2024]
Abstract
Swine flu is a common disease problem in North American pig populations and swine influenza A viruses (IAV) are extremely diverse and the lack of cross protection between heterologous strains is impacting vaccine efficacy in the field. The objective of this study was to design and test a novel swine flu vaccine targeting the M2 ectodomain (M2e) of IAV, a highly conserved region within the IAV proteome. In brief, an M2e peptide was designed to match the predominant swine IAV M2 sequence based on global analysis of sequences from pigs and humans. The resulting sequence was used to synthesize the M2e peptide coupled to a carrier protein. The final vaccine concentration was 200 µg per dose, and a commercial, microemulsion-based aqueous adjuvant was added. Nine 3-week-old IAV negative piglets were randomly assigned to three groups and rooms including non-vaccinated pigs (NEG-CONTROLs) and vaccinated pigs using the intramuscular (M2e-IM) or the intranasal route (M2e-IN). Vaccinations were done at weaning and again at 2 weeks later. An in-house enzyme-linked immunosorbent assay (ELISA) was developed and validated to study the M2e IgG antibody response and demonstrated M2e-IM pigs had a higher systemic antibody response compared to M2e-IN pigs. Subsequently, an IAV challenge study was conducted. The results indicated that M2e-IM vaccinated pigs were not protected from H1N1 (US pandemic clade, global clade 1A.3.3.2) challenge despite having a strong humoral anti-M2e immune response. In conclusion, while the experimental IAV vaccine was able to induce anti-M2e antibodies, when challenged with H1N1, the vaccinated pigs were not protected, perhaps indicating that reactivity to the M2e antigen alone is not sufficient to reduce clinical signs, lesions or shedding associated with experimental IAV challenge.
Collapse
Affiliation(s)
- Tanja Opriessnig
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA; Vaccines and Diagnostics Department, Moredun Research Institute, Penicuik, Edinburgh, UK.
| | - Phillip C Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| | | | - Gaurav Rawal
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| | - Drew R Magstadt
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| | - Paul Digard
- The Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK.
| | - Hui-Min Lee
- The Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK.
| | - Patrick G Halbur
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| |
Collapse
|
2
|
Rotavirus spike protein ΔVP8* as a novel carrier protein for conjugate vaccine platform with demonstrated antigenic potential for use as bivalent vaccine. Sci Rep 2021; 11:22037. [PMID: 34764353 PMCID: PMC8586335 DOI: 10.1038/s41598-021-01549-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/29/2021] [Indexed: 11/18/2022] Open
Abstract
Conjugate vaccine platform is a promising strategy to overcome the poor immunogenicity of bacterial polysaccharide antigens in infants and children. A carrier protein in conjugate vaccines works not only as an immune stimulator to polysaccharide, but also as an immunogen; with the latter generally not considered as a measured outcome in real world. Here, we probed the potential of a conjugate vaccine platform to induce enhanced immunogenicity of a truncated rotavirus spike protein ΔVP8*. ΔVP8* was covalently conjugated to Vi capsular polysaccharide (Vi) of Salmonella Typhi to develop a bivalent vaccine, termed Vi-ΔVP8*. Our results demonstrated that the Vi-ΔVP8* vaccine can induce specific immune responses against both antigens in immunized mice. The conjugate vaccine elicits high antibody titers and functional antibodies against S. Typhi and Rotavirus (RV) when compared to immunization with a single antigen. Together, these results indicate that Vi-ΔVP8* is a potent and immunogenic vaccine candidate, thus strengthening the potential of conjugate vaccine platform with enhanced immune responses to carrier protein, including ΔVP8*.
Collapse
|
3
|
Xue Z, Han Q, Huang P, Jiang X, Tan M, Zhao Y, Li N, Zhang R. Characterization of Functional Components in Bovine Colostrum That Inhibit Norovirus Capsid Protruding Domains Interacting with HBGA Ligands. Pathogens 2021; 10:857. [PMID: 34358006 PMCID: PMC8308730 DOI: 10.3390/pathogens10070857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 12/15/2022] Open
Abstract
Human noroviruses (huNoVs) cause epidemic acute gastroenteritis with significant mortality and morbidity worldwide. However, there are no commercial vaccines or antivirals against these important pathogens so far. In this study, we found that bovine colostrum (bCM) inhibited huNoV VLPs and their capsid-protruding (P) domains binding to histo-blood group antigens (HBGAs) that are huNoV receptor or attachment factors for infection, suggesting that bCM may function as a natural antiviral against huNoVs. We then characterized the bCM for the functional inhibition components by sequentially separating bCM into multiple fractions through various chromatography approaches, followed by determining their inhibitory abilities against huNoV receptor-binding P protein interacting with HBGAs. The protein components of bCM functional fractions were examined by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). Our data suggested that some milk proteins, likely in the form of glycoproteins, contribute to the observed blocking effects of bCM. Our findings lay an important foundation to further develop bCM into a potential natural antiviral against huNoVs.
Collapse
Affiliation(s)
- Zhaolei Xue
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (Z.X.); (Q.H.); (Y.Z.); (N.L.)
| | - Qi Han
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (Z.X.); (Q.H.); (Y.Z.); (N.L.)
| | - Pengwei Huang
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (P.H.); (X.J.); (M.T.)
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (P.H.); (X.J.); (M.T.)
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (P.H.); (X.J.); (M.T.)
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (Z.X.); (Q.H.); (Y.Z.); (N.L.)
| | - Ning Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (Z.X.); (Q.H.); (Y.Z.); (N.L.)
| | - Ran Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (Z.X.); (Q.H.); (Y.Z.); (N.L.)
| |
Collapse
|
4
|
Liu C, Huang P, Zhao D, Xia M, Zhong W, Jiang X, Tan M. Effects of rotavirus NSP4 protein on the immune response and protection of the S R69A-VP8* nanoparticle rotavirus vaccine. Vaccine 2021; 39:263-271. [PMID: 33309483 PMCID: PMC7822095 DOI: 10.1016/j.vaccine.2020.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/05/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022]
Abstract
Rotavirus causes severe diarrhea and dehydration in young children. Even with the implementation of the current live vaccines, rotavirus infections still cause significant mortality and morbidity, indicating a need for new rotavirus vaccines with improved efficacy. To this end, we have developed an SR69A-VP8*/S60-VP8* nanoparticle rotavirus vaccine candidate that will be delivered parenterally with Alum adjuvant. In this study, as parts of our further development of this nanoparticle vaccine, we evaluated 1) roles of rotavirus nonstructural protein 4 (NSP4) that is the rotavirus enterotoxin, a possible vaccine target, and an immune stimulator, and 2) effects of CpG adjuvant that is a toll-like receptor 9 (TLR9) ligand and agonist on the immune response and protection of our SR69A-VP8*/S60-VP8* nanoparticle vaccine. The resulted vaccine candidates were examined for their IgG responses in mice. In addition, the resulted mouse sera were assessed for i) blocking titers against interactions of rotavirus VP8* proteins with their glycan ligands, ii) neutralization titers against rotavirus replication in cell culture, and iii) passive protection against rotavirus challenge with diarrhea in suckling mice. Our data showed that the Alum adjuvant appeared to work better with the SR69A-VP8*/S60-VP8* nanoparticles than the CpG adjuvant, while an addition of the NSP4 antigen to the SR69A-VP8*/S60-VP8* vaccine may not help to further increase the immune response and protection of the resulted vaccine.
Collapse
Affiliation(s)
- Cunbao Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, Yunnan Province, China
| | - Pengwei Huang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Dandan Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ming Xia
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Weiming Zhong
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
5
|
Tan M, Jiang X. Norovirus Capsid Protein-Derived Nanoparticles and Polymers as Versatile Platforms for Antigen Presentation and Vaccine Development. Pharmaceutics 2019; 11:pharmaceutics11090472. [PMID: 31547456 PMCID: PMC6781506 DOI: 10.3390/pharmaceutics11090472] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/27/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022] Open
Abstract
Major viral structural proteins interact homotypically and/or heterotypically, self-assembling into polyvalent viral capsids that usually elicit strong host immune responses. By taking advantage of such intrinsic features of norovirus capsids, two subviral nanoparticles, 60-valent S60 and 24-valent P24 nanoparticles, as well as various polymers, have been generated through bioengineering norovirus capsid shell (S) and protruding (P) domains, respectively. These nanoparticles and polymers are easily produced, highly stable, and extremely immunogenic, making them ideal vaccine candidates against noroviruses. In addition, they serve as multifunctional platforms to display foreign antigens, self-assembling into chimeric nanoparticles or polymers as vaccines against different pathogens and illnesses. Several chimeric S60 and P24 nanoparticles, as well as P domain-derived polymers, carrying different foreign antigens, have been created and demonstrated to be promising vaccine candidates against corresponding pathogens in preclinical animal studies, warranting their further development into useful vaccines.
Collapse
Affiliation(s)
- Ming Tan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
6
|
Xia M, Huang P, Jiang X, Tan M. Immune response and protective efficacy of the S particle presented rotavirus VP8* vaccine in mice. Vaccine 2019; 37:4103-4110. [PMID: 31201052 PMCID: PMC6668625 DOI: 10.1016/j.vaccine.2019.05.075] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 05/04/2019] [Accepted: 05/26/2019] [Indexed: 12/15/2022]
Abstract
Rotaviruses cause severe diarrhea in infants and young children, leading to significant morbidity and mortality. Despite implementation of current rotavirus vaccines, severe diarrhea caused by rotaviruses still claims ∼200,000 lives of children with great economic loss worldwide each year. Thus, new prevention strategies with high efficacy are highly demanded. Recently, we have developed a polyvalent protein nanoparticle derived from norovirus VP1, the S particle, and applied it to display rotavirus neutralizing antigen VP8* as a vaccine candidate (S-VP8*) against rotavirus, which showed promise as a vaccine based on mouse immunization and in vitro neutralization studies. Here we further evaluated this S-VP8* nanoparticle vaccine in a mouse rotavirus challenge model. S-VP8* vaccines containing the murine rotavirus (EDIM strain) VP8* antigens (S-mVP8*) were constructed and immunized mice, resulting in high titers of anti-EDIM VP8* IgG. The S-mVP8* nanoparticle vaccine protected immunized mice against challenge of the homologous murine EDIM rotavirus at a high efficacy of 97% based on virus shedding reduction in stools compared with unimmunized controls. Our study further supports the polyvalent S-VP8* nanoparticles as a promising vaccine candidate against rotavirus and warrants further development.
Collapse
Affiliation(s)
- Ming Xia
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Pengwei Huang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
7
|
Xia M, Huang P, Sun C, Han L, Vago FS, Li K, Zhong W, Jiang W, Klassen JS, Jiang X, Tan M. Bioengineered Norovirus S 60 Nanoparticles as a Multifunctional Vaccine Platform. ACS NANO 2018; 12:10665-10682. [PMID: 30234973 PMCID: PMC6261714 DOI: 10.1021/acsnano.8b02776] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Homotypic interactions of viral capsid proteins are common, driving viral capsid self-formation. By taking advantage of such interactions of the norovirus shell (S) domain that naturally builds the interior shells of norovirus capsids, we have developed a technology to produce 60-valent, icosahedral S60 nanoparticles through the E. coli system. This has been achieved by several modifications to the S domain, including an R69A mutation to destruct an exposed proteinase cleavage site and triple cysteine mutations (V57C/Q58C/S136C) to establish inter-S domain disulfide bonds for enhanced inter-S domain interactions. The polyvalent S60 nanoparticle with 60 exposed S domain C-termini offers an ideal platform for antigen presentation, leading to enhanced immunogenicity to the surface-displayed antigens for vaccine development. This was proven by constructing a chimeric S60 nanoparticle displaying 60 rotavirus (RV) VP8* proteins, the major RV-neutralizing antigen. These S60-VP8* particles are easily produced and elicited high IgG response in mice toward the displayed VP8* antigens. The mouse antisera after immunization with the S60-VP8* particles exhibited high blockades against RV VP8* binding to its glycan ligands and high neutralizing activities against RV infection in culture cells. The three-dimensional structures of the S60 and S60-VP8* particles were studied. Furthermore, the S60 nanoparticle can display other antigens, supporting the notion that the S60 nanoparticle is a multifunctional vaccine platform. Finally, the intermolecular disulfide bond approach may be used to stabilize other viral-like particles to display foreign antigens for vaccine development.
Collapse
Affiliation(s)
- Ming Xia
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, 45229, USA
| | - Pengwei Huang
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, 45229, USA
| | - Chen Sun
- Department of Biological Sciences, Purdue Cryo-EM Facility, Purdue University, West Lafayette, 47907, USA
| | - Ling Han
- Department of Chemistry, University of Alberta, Alberta, T6G 2G2, Canada
| | - Frank S. Vago
- Department of Biological Sciences, Purdue Cryo-EM Facility, Purdue University, West Lafayette, 47907, USA
| | - Kunpeng Li
- Department of Biological Sciences, Purdue Cryo-EM Facility, Purdue University, West Lafayette, 47907, USA
| | - Weiming Zhong
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, 45229, USA
| | - Wen Jiang
- Department of Biological Sciences, Purdue Cryo-EM Facility, Purdue University, West Lafayette, 47907, USA
| | - John S. Klassen
- Department of Chemistry, University of Alberta, Alberta, T6G 2G2, Canada
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, 45229, USA
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, 45229, USA
| |
Collapse
|
8
|
Saliva as a source of reagent to study human susceptibility to avian influenza H7N9 virus infection. Emerg Microbes Infect 2018; 7:156. [PMID: 30228261 PMCID: PMC6143562 DOI: 10.1038/s41426-018-0160-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/30/2018] [Accepted: 08/21/2018] [Indexed: 11/08/2022]
Abstract
Avian influenza H7N9 viruses are an important public health concern due to their high mortality rate and potentials for future pandemics. We investigated human susceptibility to H7N9 viruses using recombinant H7N9 hemagglutinin (HA) proteins as a probe and found a strong association between H7N9 infections and HA binding among saliva samples from 32 patients and 60 uninfected controls in Jiangsu province, China, during the 2016 epidemic season. We also found that sialyl Lex (SLex) antigen that was recognized by H7N9 HA was associated with H7N9 virus infection. Further analysis suggested that additional saccharide residues adjacent to the SLex moiety may affect the H7N9-binding specificity. Our data suggested that saliva may be a useful reagent to study human susceptibility to avian influenza H7N9 virus, which may impact the disease control and prevention of avian influenza viruses as important human pathogens.
Collapse
|
9
|
Comparison of the efficacy of a commercial inactivated influenza A/H1N1/pdm09 virus (pH1N1) vaccine and two experimental M2e-based vaccines against pH1N1 challenge in the growing pig model. PLoS One 2018; 13:e0191739. [PMID: 29381710 PMCID: PMC5790244 DOI: 10.1371/journal.pone.0191739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/10/2018] [Indexed: 01/05/2023] Open
Abstract
Swine influenza A viruses (IAV-S) found in North American pigs are diverse and the lack of cross-protection among heterologous strains is a concern. The objective of this study was to compare a commercial inactivated A/H1N1/pdm09 (pH1N1) vaccine and two novel subunit vaccines, using IAV M2 ectodomain (M2e) epitopes as antigens, in a growing pig model. Thirty-nine 2-week-old IAV negative pigs were randomly assigned to five groups and rooms. At 3 weeks of age and again at 5 weeks of age, pigs were vaccinated intranasally with an experimental subunit particle vaccine (NvParticle/M2e) or a subunit complex-based vaccine (NvComplex/M2e) or intramuscularly with a commercial inactivated vaccine (Inact/pH1N1). At 7 weeks of age, the pigs were challenged with pH1N1 virus or sham-inoculated. Necropsy was conducted 5 days post pH1N1 challenge (dpc). At the time of challenge one of the Inact/pH1N1 pigs had seroconverted based on IAV nucleoprotein-based ELISA, Inact/pH1N1 pigs had significantly higher pdm09H1N1 hemagglutination inhibition (HI) titers compared to all other groups, and M2e-specific IgG responses were detected in the NvParticle/M2e and the NvComplex/M2e pigs with significantly higher group means in the NvComplex/M2e group compared to SHAMVAC-NEG pigs. After challenge, nasal IAV RNA shedding was significantly reduced in Inact/pH1N1 pigs compared to all other pH1N1 infected groups and this group also had reduced IAV RNA in oral fluids. The macroscopic lung lesions were characterized by mild-to-severe, multifocal-to-diffuse, cranioventral dark purple consolidated areas typical of IAV infection and were similar for NvParticle/M2e, NvComplex/M2e and SHAMVAC-IAV pigs. Lesions were significantly less severe in the SHAMVAC-NEG and the Inact/pH1N1pigs. Under the conditions of this study, a commercial Inact/pH1N1 specific vaccine effectively protected pigs against homologous challenge as evidenced by reduced clinical signs, virus shedding in nasal secretions and oral fluids and reduced macroscopic and microscopic lesions whereas intranasal vaccination with experimental M2e epitope-based subunit vaccines did not. The results further highlight the importance using IAV-S type specific vaccines in pigs.
Collapse
|
10
|
Kondakova OA, Nikitin NA, Trifonova EA, Atabekov JG, Karpova OV. Rotavirus Vaccines: New Strategies and Approaches. ACTA ACUST UNITED AC 2018. [DOI: 10.3103/s0096392517040071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Kocher JF, Debbink K, Lindesmith LC, Graham RL, Bogaerts H, Goodwin RR, Baric RS. Norovirus Vaccines. PLOTKIN'S VACCINES 2018:698-703.e4. [DOI: 10.1016/b978-0-323-35761-6.00041-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
12
|
Abstract
Viral structural proteins share a common nature of homotypic interactions that drive viral capsid formation. This natural process has been mimicked in vitro through recombinant technology to generate various virus-like particles (VLPs) and small subviral particles that exhibit similar structural and antigenic properties of their authentic viruses. Therefore, such self-assembled, polyvalent, and highly immunogenic VLPs and small subviral particles are excellent subunit vaccines against individual viruses, such as the VLP vaccines against the hepatitis B virus, human papilloma virus, and hepatitis E virus, which have already been in the markets. In addition, various antigens and epitopes can be fused with VLPs, small subviral particles, or protein polymers, forming chimeric mono-, bi-, or trivalent vaccines. Owing to their easy-production, un-infectiousness, and polyvalence, the recombinant, chimeric vaccines offer a new approach for development of safe, low-cost, and high efficient subunit vaccines against a single or more pathogens or diseases. While the first VLP-based combination vaccine against malaria has been approved for human use, many others are under development with promising future, which are summarized in this commentary.
Collapse
Affiliation(s)
- Ming Tan
- a Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA.,b Department of Pediatrics , University of Cincinnati College of Medicine , Cincinnati , OH , USA
| | - Xi Jiang
- a Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA.,b Department of Pediatrics , University of Cincinnati College of Medicine , Cincinnati , OH , USA
| |
Collapse
|
13
|
Jiang X, Liu Y, Tan M. Histo-blood group antigens as receptors for rotavirus, new understanding on rotavirus epidemiology and vaccine strategy. Emerg Microbes Infect 2017; 6:e22. [PMID: 28400594 PMCID: PMC5457676 DOI: 10.1038/emi.2017.30] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/16/2017] [Accepted: 03/20/2017] [Indexed: 12/11/2022]
Abstract
The success of the two rotavirus (RV) vaccines (Rotarix and RotaTeq) in many countries endorses a live attenuated vaccine approach against RVs. However, the lower efficacies of both vaccines in many low- and middle-income countries indicate a need to improve the current RV vaccines. The recent discovery that RVs recognize histo-blood group antigens (HBGAs) as potential receptors has significantly advanced our understanding of RV diversity, evolution and epidemiology, providing important new insights into the performances of current RV vaccines in different populations and emphasizing a P-type-based vaccine approach. New understanding of RV diversity and evolution also raises a fundamental question about the ‘Jennerian' approach, which needs to be addressed for future development of live attenuated RV vaccines. Alternative approaches to develop safer and more cost-effective subunit vaccines against RVs are also discussed.
Collapse
Affiliation(s)
- Xi Jiang
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Yang Liu
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Ming Tan
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
14
|
Xia M, Wei C, Wang L, Cao D, Meng XJ, Jiang X, Tan M. Development and evaluation of two subunit vaccine candidates containing antigens of hepatitis E virus, rotavirus, and astrovirus. Sci Rep 2016; 6:25735. [PMID: 27194006 PMCID: PMC4872161 DOI: 10.1038/srep25735] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/18/2016] [Indexed: 02/07/2023] Open
Abstract
Hepatitis E virus (HEV), rotavirus (RV), and astrovirus (AstV) are important pathogens that transmit through a common fecal-oral route, causing hepatitis (HEV) and gastroenteritis (RV and AstV) respectively in humans. In this study, we developed and evaluated two subunit vaccine candidates that consisted of the same protruding or spike protein antigens of the three viruses in two formats, a fusion of the three antigens into one molecule (fused vaccine) vs. a mixture of the three free antigens together (mixed vaccine). Both vaccines were easily made via E. coli expression system. Mouse immunization experiments showed that the fused vaccine elicited significantly higher antibody responses against the three viral antigens than those induced by the mixed vaccine. In addition, the mouse post-immune antisera of the fused vaccine revealed significantly higher neutralizing titers against HEV infection in cell culture, as well as significantly higher 50% blocking titers (BT50) against RV VP8-HBGA receptor interactions than those of the post-immune antisera after immunization of the mixed vaccine. Thus, the fused vaccine is a promising trivalent vaccine candidate against HEV, RV, and AstV, which is worth for further development.
Collapse
Affiliation(s)
- Ming Xia
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Chao Wei
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Leyi Wang
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Dianjun Cao
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
15
|
Xia M, Wei C, Wang L, Cao D, Meng XJ, Jiang X, Tan M. A trivalent vaccine candidate against hepatitis E virus, norovirus, and astrovirus. Vaccine 2016; 34:905-913. [PMID: 26778421 PMCID: PMC4732564 DOI: 10.1016/j.vaccine.2015.12.068] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/25/2015] [Accepted: 12/30/2015] [Indexed: 02/07/2023]
Abstract
Hepatitis E virus (HEV), norovirus (NoV), and astrovirus (AstV) are enterically-transmitted viral pathogens causing epidemic or endemic hepatitis (HEV) and gastroenteritis (NoV and AstV) respectively in humans, leading to significant morbidity and mortality worldwide. While a recombinant subunit vaccine against HEVs is available in China, there is no commercial vaccine or antiviral against NoV or AstV. We report here our development of a trivalent vaccine against the three viral pathogens through our new polymer vaccine technology. All HEV, NoV, and AstV are non-enveloped RNA viruses covered by a protein capsid, featuring surface protruding (P) proteins that are responsible for virus-host interaction. These dimeric P proteins elicit neutralizing antibody and are good targets for subunit vaccine development. The trivalent subunit vaccine was developed by fusion of the dimeric P domains of the three viruses together that formed tetramers. This trivalent vaccine elicited significantly higher antibody responses in mice against all three P domains than those induced by a mixture of the three free P domains (mixed vaccine). Furthermore, the post-immune antisera of the trivalent vaccine showed significantly higher neutralizing titers against HEV infection in cell culture and higher blocking activity against NoV binding to HBGA ligands than those of the post-immune sera of the mixed vaccine. Thus, the trivalent vaccine is a promising vaccine candidate against HEV, NoV, and AstV.
Collapse
Affiliation(s)
- Ming Xia
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Chao Wei
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Leyi Wang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Dianjun Cao
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
16
|
Kocher J, Yuan L. Norovirus vaccines and potential antinorovirus drugs: recent advances and future perspectives. Future Virol 2015; 10:899-913. [PMID: 26568768 DOI: 10.2217/fvl.15.57] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human noroviruses (HuNoVs) are a leading cause of acute, nonbacterial gastroenteritis worldwide. The lack of a cell culture system and smaller animal model has delayed the development and commercial availability of vaccines and antiviral drugs. Current vaccines rely on recombinant capsid proteins, such as P particles and virus-like particles (VLPs), which have been promising in clinical trials. Anti-HuNoV drug development is another area of extensive research, including currently available antiviral drugs for other viral pathogens. This review will provide an overview of recent advances in vaccine and antiviral development. The implication of recent advances in HuNoV cell culture for improving vaccine and antiviral development is also discussed.
Collapse
Affiliation(s)
- Jacob Kocher
- Department of Biomedical Sciences & Pathobiology, Center for Molecular Medicine & Infectious Diseases, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061-0913, USA
| | - Lijuan Yuan
- Department of Biomedical Sciences & Pathobiology, Center for Molecular Medicine & Infectious Diseases, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061-0913, USA
| |
Collapse
|
17
|
Han L, Kitova EN, Tan M, Jiang X, Pluvinage B, Boraston AB, Klassen JS. Affinities of human histo-blood group antigens for norovirus capsid protein complexes. Glycobiology 2014; 25:170-80. [PMID: 25395406 DOI: 10.1093/glycob/cwu100] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The binding profiles of many human noroviruses (huNoVs) for human histo-blood group antigens have been characterized. However, quantitative-binding data for these important virus-host interactions are lacking. Here, we report on the intrinsic (per binding site) affinities of HBGA oligosaccharides for the huNoV VA387 virus-like particles (VLPs) and the associated subviral P particles measured using electrospray ionization mass spectrometry. The affinities of 13 HBGA oligosaccharides, containing A, B and H epitopes, with variable sizes (disaccharide to tetrasaccharide) and different precursor chain types (types 1, 2, 3, 5 and 6), were measured for the P particle, while the affinities of the A and B trisaccharides and A and B type 6 tetrasaccharides for the VLP were determined. The intrinsic affinities of the HBGA oligosaccharides for the P particle range from 500 to 2300 M(-1), while those of the A and B trisaccharides and the A and B type 6 tetrasaccharides for the VLP range from 1000 to 4000 M(-1). Comparison of these binding data with those measured previously for the corresponding P dimer reveals that the HBGA oligosaccharides tested exhibit similar intrinsic affinities for the P dimer and P particle. The intrinsic affinities for the VLP are consistently higher than those measured for the P particle, but within a factor of three. While the cause of the subtle differences in HBGA oligosaccharide affinities for the P dimer and P particle and those for the VLP remains unknown, the present data support the use of P dimers or P particles as surrogates to the VLP for huNoV-receptor-binding studies.
Collapse
Affiliation(s)
- Ling Han
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, AB, Canada T6G 2G2
| | - Elena N Kitova
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, AB, Canada T6G 2G2
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Benjamin Pluvinage
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8W 3P6
| | - Alisdair B Boraston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8W 3P6
| | - John S Klassen
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, AB, Canada T6G 2G2
| |
Collapse
|
18
|
Han L, Tan M, Xia M, Kitova EN, Jiang X, Klassen JS. Gangliosides are ligands for human noroviruses. J Am Chem Soc 2014; 136:12631-7. [PMID: 25105447 PMCID: PMC4160279 DOI: 10.1021/ja505272n] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
![]()
Human
noroviruses (NoVs) are known to recognize histo-blood group
antigens (HBGAs) as attachment factors. We report the first experimental
evidence that sialic acid-containing glycosphingolipids (gangliosides)
are also ligands for human NoVs. Electrospray ionization mass spectrometry-based
carbohydrate binding measurements performed on assemblies (P dimer,
P particle, and virus-like particle) of recombinant viral capsid proteins
of two NoV strains, VA387 (GII.4) and VA115 (GI.3), identified binding
to the oligosaccharides of mono-, di-, and trisialylated gangliosides.
The intrinsic (per binding site) affinities measured for these ligands
are similar in magnitude (102–103 M–1) to those of human HBGAs. Binding of NoV VLPs, P
particles, and glutathione S-transferase (GST)-P domain fusion proteins
to sialic acid-containing glycoconjugates, observed in enzyme-linked
immunosorbent assays, provided additional confirmation of the NoV–ganglioside
interactions.
Collapse
Affiliation(s)
- Ling Han
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada
| | | | | | | | | | | |
Collapse
|