1
|
He W, Ibrahim AM, Karmakar A, Tuli S, Butcher JT, Antaki JF. Computational Fluid Dynamic Optimization of Micropatterned Surfaces: Towards Biofunctionalization of Artificial Organs. Bioengineering (Basel) 2024; 11:1092. [PMID: 39593752 PMCID: PMC11591438 DOI: 10.3390/bioengineering11111092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/17/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Modifying surface topography to prevent surface-induced thrombosis in cardiovascular implants allows endothelialization, which is the natural thrombo-resistance of blood-contacting surfaces, and is deemed to be the only long-term solution for hemocompatible materials. We adapted a simulation framework to predict platelet deposition on a modified surface and developed an optimization strategy to promote endothelial retention and limit platelet deposition. Under supraphysiological bulk shear stress, a maximum of 79% linear coverage was achieved. This study concludes that the addition of microtrenches promotes endothelial retention and can be improved through the optimal selection of geometric parameters.
Collapse
Affiliation(s)
- Wenxuan He
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA;
| | - Aminat M. Ibrahim
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA; (A.M.I.); (J.T.B.)
| | - Abhishek Karmakar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA; (A.M.I.); (J.T.B.)
| | - Shivani Tuli
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA; (A.M.I.); (J.T.B.)
| | - Jonathan T. Butcher
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA; (A.M.I.); (J.T.B.)
| | - James F. Antaki
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA; (A.M.I.); (J.T.B.)
| |
Collapse
|
2
|
Pan D, Wang J, Wang H, Wu S, Guo J, Guo L, Sun L, Gu Y. Mapping the blueprint of artificial blood vessels research: a bibliometric analysis of publications in the 21st century. Int J Surg 2024; 111:01279778-990000000-01719. [PMID: 38913439 PMCID: PMC11745618 DOI: 10.1097/js9.0000000000001877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND Vascular diseases represent a significant causes of disability and death worldwide. The demand for artificial blood vessels is increasing due to the scarce supply of healthy autologous vessels. Nevertheless, the literature in this area remains sparse and inconclusive. METHODS Bibliometrics is the study of quantitative analysis of publications and their patterns. This study conducts a bibliometric analysis of publications on artificial blood vessels in the 21st century, examining performance distribution, research trajectories, the evolution of research hotspots, and the exploration of the knowledge base. This approach provides comprehensive insights into the knowledge structure of the field. RESULTS The search retrieved 2,060 articles, showing a consistent rise in the publication volume and average annual citation frequency related to artificial blood vessels research. The United States is at the forefront of high-quality publications and international collaborations. Among academic institutions, Yale University is a leading contributor. The dominant disciplines within the artificial blood vessels sector include engineering, biomedical sciences, materials science, biomaterials science, and surgery, with surgery experiencing the most rapid expansion. CONCLUSIONS This study is the inaugural effort to bibliometric analyze and visualize the scholarly output in the artificial blood vessels domain. It provides clinicians and researchers with a reliable synopsis of the field's current state, offering a reference point for existing research and suggesting new avenues for future investigations.
Collapse
Affiliation(s)
- Dikang Pan
- Vascular Department, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jingyu Wang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Hui Wang
- Vascular Department, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Sensen Wu
- Vascular Department, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jianming Guo
- Vascular Department, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lianrui Guo
- Vascular Department, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Li Sun
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Yongquan Gu
- Vascular Department, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Magkoutas K, Chala N, Wu X, Poulikakos D, Mazza E, Meboldt M, Falk V, Ferrari A, Giampietro C, Schmid Daners M. In-vitro investigation of endothelial monolayer retention on an inflow VAD cannula inside a beating heart phantom. BIOMATERIALS ADVANCES 2023; 152:213485. [PMID: 37302211 DOI: 10.1016/j.bioadv.2023.213485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/13/2023]
Abstract
Ventricular assist devices (VADs) provide an alternative solution to heart transplantation for patients with end-stage heart failure. Insufficient hemocompatibility of VAD components can result in severe adverse events, such as thromboembolic stroke, and readmissions. To enhance VAD hemocompatibility, and avoid thrombus formation, surface modification techniques and endothelialization strategies are employed. In this work, a free form patterning topography is selected to facilitate the endothelialization of the outer surface of the inflow cannula (IC) of a commercial VAD. An endothelialization protocol for convoluted surfaces such as the IC is produced, and the retainment of the endothelial cell (EC) monolayer is evaluated. To allow this evaluation, a dedicated experimental setup is developed to simulate realistic flow phenomena inside an artificial, beating heart phantom with a VAD implanted on its apex. The procedural steps of mounting the system result to the impairment of the EC monolayer, which is further compromised by the developed flow and pressure conditions, as well as by the contact with the moving inner structures of the heart phantom. Importantly, the EC monolayer is better maintained in the lower part of the IC, which is more susceptible to thrombus formation and may therefore aid in minimizing the hemocompatibility related adverse events after the VAD implantation.
Collapse
Affiliation(s)
- Konstantinos Magkoutas
- Product Development Group Zurich, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Nafsika Chala
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Xi Wu
- Experimental Continuum Mechanics, Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zurich, Zurich, Switzerland
| | - Dimos Poulikakos
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Edoardo Mazza
- Experimental Continuum Mechanics, Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zurich, Zurich, Switzerland; Experimental Continuum Mechanics, EMPA, Dubendorf, Switzerland
| | - Mirko Meboldt
- Product Development Group Zurich, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Volkmar Falk
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, 13353 Berlin, Germany; Clinic for Cardiovascular Surgery, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Department of Health Sciences and Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Aldo Ferrari
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Costanza Giampietro
- Experimental Continuum Mechanics, Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zurich, Zurich, Switzerland; Experimental Continuum Mechanics, EMPA, Dubendorf, Switzerland.
| | - Marianne Schmid Daners
- Product Development Group Zurich, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Pramotton FM, Cousin L, Roy T, Giampietro C, Cecchini M, Masciullo C, Ferrari A, Poulikakos D. Accelerated epithelial layer healing induced by tactile anisotropy in surface topography. SCIENCE ADVANCES 2023; 9:eadd1581. [PMID: 37027475 PMCID: PMC10081848 DOI: 10.1126/sciadv.add1581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Mammalian cells respond to tactile cues from topographic elements presented by the substrate. Among these, anisotropic features distributed in an ordered manner give directionality. In the extracellular matrix, this ordering is embedded in a noisy environment altering the contact guidance effect. To date, it is unclear how cells respond to topographical signals in a noisy environment. Here, using rationally designed substrates, we report morphotaxis, a guidance mechanism enabling fibroblasts and epithelial cells to move along gradients of topographic order distortion. Isolated cells and cell ensembles perform morphotaxis in response to gradients of different strength and directionality, with mature epithelia integrating variations of topographic order over hundreds of micrometers. The level of topographic order controls cell cycle progression, locally delaying or promoting cell proliferation. In mature epithelia, the combination of morphotaxis and noise-dependent distributed proliferation provides a strategy to enhance wound healing as confirmed by a mathematical model capturing key elements of the process.
Collapse
Affiliation(s)
- Francesca Michela Pramotton
- Experimental Continuum Mechanics Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
- EMPA, Swiss Federal Laboratories for Material Science and Technologies, Überlandstrasse 129, Dübendorf 8600, Switzerland
| | - Lucien Cousin
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Tamal Roy
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich CH-8092, Switzerland
| | - Costanza Giampietro
- Experimental Continuum Mechanics Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
- EMPA, Swiss Federal Laboratories for Material Science and Technologies, Überlandstrasse 129, Dübendorf 8600, Switzerland
| | - Marco Cecchini
- NEST, Istituto Nanoscienze CNR and Scuola Normale Superiore, Pisa 56127, Italy
| | - Cecilia Masciullo
- NEST, Istituto Nanoscienze CNR and Scuola Normale Superiore, Pisa 56127, Italy
| | - Aldo Ferrari
- EMPA, Swiss Federal Laboratories for Material Science and Technologies, Überlandstrasse 129, Dübendorf 8600, Switzerland
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich CH-8092, Switzerland
| | - Dimos Poulikakos
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich CH-8092, Switzerland
| |
Collapse
|
5
|
Wang Z, Ohtsu N, Tate K, Kojima Y, Saifurrahman H, Ohta M. Migration of endothelial cells on the surface of anodized Ni-Ti stent strut. FRONTIERS IN MEDICAL TECHNOLOGY 2023; 5:1149594. [PMID: 37092024 PMCID: PMC10113440 DOI: 10.3389/fmedt.2023.1149594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
BackgroundStent is widely regarded as the main treatment for curing cardiovascular diseases such as stenosis. Previous research has revealed that the damage of endothelial cells (EC), i.e., the components of endothelium, during stent implantation, could lead to severe complications, such as restenosis. To prevent restenosis, enhancements have been made to surface biocompatibility to accelerate the stent endothelialization process. Anodization on the Ni-Ti is a simple and efficient surface modification method to improve the biocompatibility of the Ni-Ti stent surfaces by enhancing the surface hydrophilicity, leading to an increase in the EC activities. The EC activity is known to be affected by the blood flow. Flow change by stent structure may result in EC dysfunctions, thereby leading to restenosis. It is thus essential to investigate the EC activities resulting from the anodization on the Ni-Ti surface under flow conditions.ObjectiveTo study the influence of the endothelialization process on the Ni-Ti stent surface through anodization. The EC attachment and morphology on the anodized stent strut were observed under both with and without the flow conditions.MethodA parallel plate flow chamber was designed to generate a constant wall shear stress (WSS) to study the flow effect on the EC behavior. The hydrophilicity of the Ni-Ti stent strut surface was enhanced by a TiO2 layer fabricated via anodization. The EC distribution on the surface of the anodized nitinol stent strut was observed after 24 h of static (without flow) and flow exposure (with flow) experiment.ResultsUnder the static condition, the EC density on the surface of the anodized Ni-Ti stent strut was higher compared with the control. Under the flow condition, the enhancement of the EC density on the surface of the stent strut with anodization was reduced. The EC demonstrates a long and thin spindle-shaped morphology under the flow condition.ConclusionUnlike the static condition, the EC is demonstrating a long and thin morphology in response to the flow under the flow condition. By improving the surface hydrophilicity, the anodization could enhance the EC migration onto the strut surface, and subsequently, accelerate the Ni-Ti stent endothelialization process. The improvement of the surface hydrophilicity is lower under the flow conditions when compared with the static conditions.
Collapse
Affiliation(s)
- Zi Wang
- Institute of Fluid Science, Tohoku University, Sendai, Japan
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Naofumi Ohtsu
- Faculty of Engineering, Kitami Institute of Technology, Kitami, Japan
- Correspondence: Makoto Ohta Naofumi Ohtsu
| | - Kasumi Tate
- Faculty of Engineering, Kitami Institute of Technology, Kitami, Japan
| | - Yukiko Kojima
- Institute of Fluid Science, Tohoku University, Sendai, Japan
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Hanif Saifurrahman
- Institute of Fluid Science, Tohoku University, Sendai, Japan
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Makoto Ohta
- Institute of Fluid Science, Tohoku University, Sendai, Japan
- Correspondence: Makoto Ohta Naofumi Ohtsu
| |
Collapse
|
6
|
Yao Y, Zaw AM, Anderson DE, Jeong Y, Kunihiro J, Hinds MT, Yim EK. Fucoidan and topography modification improved in situ endothelialization on acellular synthetic vascular grafts. Bioact Mater 2023; 22:535-550. [PMID: 36330164 PMCID: PMC9619221 DOI: 10.1016/j.bioactmat.2022.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/20/2022] [Accepted: 10/09/2022] [Indexed: 11/13/2022] Open
Abstract
Thrombogenesis remains the primary failure of synthetic vascular grafts. Endothelial coverage is crucial to provide an antithrombogenic surface. However, most synthetic materials do not support cell adhesion, and transanastomotic endothelial migration is limited. Here, a surface modification strategy using fucoidan and topography was developed to enable fast in situ endothelialization of polyvinyl alcohol, which is not endothelial cell-adhesive. Among three different immobilization approaches compared, conjugation of aminated-fucoidan promoted endothelial monolayer formation while minimizing thrombogenicity in both in vitro platelet rich plasma testing and ex vivo non-human primate shunt assay. Screening of six topographical patterns showed that 2 μm gratings increased endothelial cell migration without inducing inflammation responses of endothelial cells. Mechanistic studies demonstrated that fucoidan could attract fibronectin, enabling integrin binding and focal adhesion formation and activating focal adhesion kinase (FAK) signaling, and 2 μm gratings further enhanced FAK-mediated cell migration. In a clinically relevant rabbit carotid artery end-to-side anastomosis model, 60% in situ endothelialization was observed throughout the entire lumen of 1.7 mm inner diameter modified grafts, compared to 0% of unmodified graft, and the four-week graft patency also increased. This work presents a promising strategy to stimulate in situ endothelialization on synthetic materials for improving long-term performance.
Collapse
Affiliation(s)
- Yuan Yao
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Aung Moe Zaw
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Deirdre E.J. Anderson
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, 97239, USA
| | - YeJin Jeong
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Joshua Kunihiro
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Monica T. Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Evelyn K.F. Yim
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Center for Biotechnology and Bioengineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
7
|
Exarchos V, Neuber S, Meyborg H, Giampietro C, Chala N, Moimas S, Hinkov H, Kaufmann F, Pramotton FM, Krüger K, Rodriguez Cetina Biefer H, Cesarovic N, Poulikakos D, Falk V, Emmert MY, Ferrari A, Nazari-Shafti TZ. Anisotropic topographies restore endothelial monolayer integrity and promote the proliferation of senescent endothelial cells. Front Cardiovasc Med 2022; 9:953582. [PMID: 36277782 PMCID: PMC9579341 DOI: 10.3389/fcvm.2022.953582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Thrombogenicity remains a major issue in cardiovascular implants (CVIs). Complete surficial coverage of CVIs by a monolayer of endothelial cells (ECs) prior to implantation represents a promising strategy but is hampered by the overall logistical complexity and the high number of cells required. Consequently, extensive cell expansion is necessary, which may eventually lead to replicative senescence. Considering that micro-structured surfaces with anisotropic topography may promote endothelialization, we investigated the impact of gratings on the biomechanical properties and the replicative capacity of senescent ECs. After cultivation on gridded surfaces, the cells showed significant improvements in terms of adherens junction integrity, cell elongation, and orientation of the actin filaments, as well as enhanced yes-associated protein nuclear translocation and cell proliferation. Our data therefore suggest that micro-structured surfaces with anisotropic topographies may improve long-term endothelialization of CVIs.
Collapse
Affiliation(s)
- Vasileios Exarchos
- Cardiosurgical Research Group, Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany,Translational Cardiovascular Regenerative Technologies Group, BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Neuber
- Cardiosurgical Research Group, Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany,Translational Cardiovascular Regenerative Technologies Group, BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Heike Meyborg
- Cardiosurgical Research Group, Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany,Translational Cardiovascular Regenerative Technologies Group, BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Costanza Giampietro
- Experimental Continuum Mechanics, Empa Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland,Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zürich, Zurich, Switzerland
| | - Nafsika Chala
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zürich, Zurich, Switzerland
| | - Silvia Moimas
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zürich, Zurich, Switzerland
| | - Hristian Hinkov
- Cardiosurgical Research Group, Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany,Translational Cardiovascular Regenerative Technologies Group, BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Friedrich Kaufmann
- Cardiosurgical Research Group, Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
| | - Francesca M. Pramotton
- Experimental Continuum Mechanics, Empa Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland,Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zürich, Zurich, Switzerland
| | - Katrin Krüger
- Cardiosurgical Research Group, Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany,Translational Cardiovascular Regenerative Technologies Group, BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany,Clinic for Cardiovascular Surgery, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Hector Rodriguez Cetina Biefer
- Cardiosurgical Research Group, Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany,Translational Cardiovascular Regenerative Technologies Group, BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany,Department of Cardiac Surgery, City Hospital of Zürich, Site Triemli, Zurich, Switzerland
| | - Nikola Cesarovic
- Cardiosurgical Research Group, Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany,Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Dimos Poulikakos
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zürich, Zurich, Switzerland
| | - Volkmar Falk
- Clinic for Cardiovascular Surgery, Charité—Universitätsmedizin Berlin, Berlin, Germany,Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland,Department for Cardiovascular and Thoracic Surgery, German Heart Center Berlin, Berlin, Germany
| | - Maximilian Y. Emmert
- Cardiosurgical Research Group, Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany,Translational Cardiovascular Regenerative Technologies Group, BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany,Clinic for Cardiovascular Surgery, Charité—Universitätsmedizin Berlin, Berlin, Germany,Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland,Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Aldo Ferrari
- Experimental Continuum Mechanics, Empa Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland,Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zürich, Zurich, Switzerland,Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zürich, Zurich, Switzerland
| | - Timo Z. Nazari-Shafti
- Cardiosurgical Research Group, Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany,Translational Cardiovascular Regenerative Technologies Group, BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany,BIH Biomedical Innovation Academy, BIH Charité (Junior) (Digital) Clinician Scientist Program, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany,*Correspondence: Timo Z. Nazari-Shafti,
| |
Collapse
|
8
|
Fallon ME, Le HH, Bates NM, Yao Y, Yim EK, Hinds MT, Anderson DE. Hemocompatibility of micropatterned biomaterial surfaces is dependent on topographical feature size. Front Physiol 2022; 13:983187. [PMID: 36200053 PMCID: PMC9527343 DOI: 10.3389/fphys.2022.983187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Small-diameter synthetic vascular grafts that have improved hemocompatibility and patency remain an unmet clinical need due to thrombosis. A surface modification that has potential to attenuate these failure mechanisms while promoting an endothelial layer is the micropatterning of luminal surfaces. Anisotropic features have been shown to downregulate smooth muscle cell proliferation, direct endothelial migration, and attenuate platelet adhesion and activation. However, the effect of micropatterning feature size and orientation relative to whole blood flow has yet to be investigated within a systematic study. In this work, hemocompatibility of micropattern grating sizes of 2, 5, and 10 µm were investigated. The thrombogenicity of the micropattern surface modifications were characterized by quantifying FXIIa activity, fibrin formation, and static platelet adhesion in vitro. Additionally, dynamic platelet attachment and end-point fibrin formation were quantified using an established, flowing whole blood ex vivo non-human primate shunt model without antiplatelet or anticoagulant therapies. We observed a higher trend in platelet attachment and significantly increased fibrin formation for larger features. We then investigated the orientation of 2 µm gratings relative to whole blood flow and found no significant differences between the various orientations for platelet attachment, rate of linear platelet attachment, or end-point fibrin formation. MicroCT analysis of micropatterned grafts was utilized to quantify luminal patency. This work is a significant step in the development of novel synthetic biomaterials with improved understanding of hemocompatibility for use in cardiovascular applications.
Collapse
Affiliation(s)
- Meghan E. Fallon
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States
| | - Hillary H. Le
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States
| | - Novella M. Bates
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States
| | - Yuan Yao
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Evelyn K.F. Yim
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Monica T. Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States
| | - Deirdre E.J. Anderson
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States
- *Correspondence: Deirdre E.J. Anderson,
| |
Collapse
|
9
|
Exarchos V, Zacharova E, Neuber S, Giampietro C, Motta SE, Hinkov H, Emmert MY, Nazari-Shafti TZ. The path to a hemocompatible cardiovascular implant: Advances and challenges of current endothelialization strategies. Front Cardiovasc Med 2022; 9:971028. [PMID: 36186971 PMCID: PMC9515323 DOI: 10.3389/fcvm.2022.971028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular (CV) implants are still associated with thrombogenicity due to insufficient hemocompatibility. Endothelialization of their luminal surface is a promising strategy to increase their hemocompatibility. In this review, we provide a collection of research studies and review articles aiming to summarize the recent efforts on surface modifications of CV implants, including stents, grafts, valves, and ventricular assist devises. We focus in particular on the implementation of micrometer or nanoscale surface modifications, physical characteristics of known biomaterials (such as wetness and stiffness), and surface morphological features (such as gratings, fibers, pores, and pits). We also review how biomechanical signals originating from the endothelial cell for surface interaction can be directed by topography engineering approaches toward the survival of the endothelium and its long-term adaptation. Finally, we summarize the regulatory and economic challenges that may prevent clinical implementation of endothelialized CV implants.
Collapse
Affiliation(s)
- Vasileios Exarchos
- Cardiosurgical Research Group, Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
- Translational Cardiovascular Regenerative Technologies Group, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, Berlin, Germany
| | - Ema Zacharova
- Cardiosurgical Research Group, Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
- Translational Cardiovascular Regenerative Technologies Group, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, Berlin, Germany
- Department of Life Sciences, IMC University of Applied Sciences Krems, Krems an der Donau, Austria
| | - Sebastian Neuber
- Cardiosurgical Research Group, Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
- Translational Cardiovascular Regenerative Technologies Group, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, Berlin, Germany
| | - Costanza Giampietro
- Experimental Continuum Mechanics, Empa Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
- Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zürich, Zurich, Switzerland
| | - Sarah E. Motta
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Hristian Hinkov
- Cardiosurgical Research Group, Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
- Translational Cardiovascular Regenerative Technologies Group, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, Berlin, Germany
| | - Maximilian Y. Emmert
- Cardiosurgical Research Group, Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
- Translational Cardiovascular Regenerative Technologies Group, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, Berlin, Germany
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Clinic for Cardiovascular Surgery, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Timo Z. Nazari-Shafti
- Cardiosurgical Research Group, Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
- Translational Cardiovascular Regenerative Technologies Group, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité (Junior) (Digital) Clinician Scientist Program, Berlin, Germany
- *Correspondence: Timo Z. Nazari-Shafti,
| |
Collapse
|
10
|
Shang T, Wang K, Tang S, Shen Y, Zhou L, Zhang L, Zhao Y, Li X, Cai L, Wang J. The Flow-Induced Degradation and Vascular Cellular Response Study of Magnesium-Based Materials. Front Bioeng Biotechnol 2022; 10:940172. [PMID: 35875490 PMCID: PMC9301134 DOI: 10.3389/fbioe.2022.940172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022] Open
Abstract
Magnesium (Mg)-based materials are considered as potential materials for biodegradable vascular stents, and some Mg-based stents have obtained regulatory approval. However, the development and application of Mg-based stents are still restricted by the rapid degradation rate of Mg and its alloys. In order to screen out the desirable Mg-based materials for stents, the degradation behavior still needs further systematic study, especially the degradation behavior under the action of near-physiological fluid. Currently, the commonly used Mg-based vascular stent materials include pure Mg, AZ31, and WE43. In this study, we systematically evaluated their corrosion behaviors in a dynamic environment and studied the effect of their degradation products on the behavior of vascular cells. The results revealed that the corrosion rate of different Mg-based materials was related to the composition of the elements. The dynamic environment accelerated the corrosion of Mg-based materials. All the same, AZ31 still shows good corrosion resistance. The effect of corrosive products on vascular cells was beneficial to re-endothelialization and inhibition of smooth muscle cell proliferation at the implantation site of vascular stent materials.
Collapse
|
11
|
Stefopoulos G, Lendenmann T, Schutzius TM, Giampietro C, Roy T, Chala N, Giavazzi F, Cerbino R, Poulikakos D, Ferrari A. Bistability of Dielectrically Anisotropic Nematic Crystals and the Adaptation of Endothelial Collectives to Stress Fields. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102148. [PMID: 35344288 PMCID: PMC9165505 DOI: 10.1002/advs.202102148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Endothelial monolayers physiologically adapt to flow and flow-induced wall shear stress, attaining ordered configurations in which elongation, orientation, and polarization are coherently organized over many cells. Here, with the flow direction unchanged, a peculiar bi-stable (along the flow direction or perpendicular to it) cell alignment is observed, emerging as a function of the flow intensity alone, while cell polarization is purely instructed by flow directionality. Driven by the experimental findings, the parallelism between endothelia is delineated under a flow field and the transition of dual-frequency nematic liquid crystals under an external oscillatory electric field. The resulting physical model reproduces the two stable configurations and the energy landscape of the corresponding system transitions. In addition, it reveals the existence of a disordered, metastable state emerging upon system perturbation. This intermediate state, experimentally demonstrated in endothelial monolayers, is shown to expose the cellular system to a weakening of cell-to-cell junctions to the detriment of the monolayer integrity. The flow-adaptation of monolayers composed of healthy and senescent endothelia is successfully predicted by the model with adjustable nematic parameters. These results may help to understand the maladaptive response of in vivo endothelial tissues to disturbed hemodynamics and the progressive functional decay of senescent endothelia.
Collapse
Affiliation(s)
- Georgios Stefopoulos
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
| | - Tobias Lendenmann
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
| | - Thomas M. Schutzius
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
| | - Costanza Giampietro
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
- Experimental Continuum MechanicsEMPA, Swiss Federal Laboratories for Materials Science and TechnologyÜberlandstrasse 129Dübendorf8600Switzerland
- Institute for Mechanical Systems, Department of Mechanical and Process EngineeringETH ZurichLeonhardstrasse 21Zurich8092Switzerland
| | - Tamal Roy
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
| | - Nafsika Chala
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
| | - Fabio Giavazzi
- Dipartimento di Biotecnologie Mediche e Medicina TraslazionaleUniversità degli Studi di MilanoVia F.lli Cervi 93Segrate20090Italy
| | - Roberto Cerbino
- Faculty of PhysicsUniversity of ViennaBoltzmanngasse 5ViennaAustria
| | - Dimos Poulikakos
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
| | - Aldo Ferrari
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
- Experimental Continuum MechanicsEMPA, Swiss Federal Laboratories for Materials Science and TechnologyÜberlandstrasse 129Dübendorf8600Switzerland
- Institute for Mechanical Systems, Department of Mechanical and Process EngineeringETH ZurichLeonhardstrasse 21Zurich8092Switzerland
| |
Collapse
|
12
|
Kaufmann F, Hoermandinger C, Knosalla C, Falk V, Potapov E. Thrombus formation at the inflow cannula of continuous-flow left ventricular assist devices - a systematic analysis. Artif Organs 2022; 46:1573-1584. [PMID: 35230721 DOI: 10.1111/aor.14222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/13/2022] [Accepted: 02/21/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Despite numerous design iterations, thrombus formation at the inflow cannula of continuous-flow left ventricular assist devices (CF-LVAD) remains an unsolved problem. We systematically investigated the impact of cannula surface on thrombus formation. METHODS Thrombus appearance was photographically documented in 177 explanted hearts with the polished (N=46) or sintered (N=131) inflow cannula of the HVAD. Thrombus load was compared for both inflow cannula types. Mean thrombus length was correlated with protruding cannula length. Support duration and the extent of thrombus growth were examined. The prevalence of thrombi at the left ventricular entry site and at the sintered-to-polished transition zone was correlated with left ventricular geometry and hemodynamic parameters. RESULTS Polished inflow cannulas showed a greater percentage and also a greater mean length of thrombus formation at the entry site than sintered cannulas (91.3% [Pol] vs. 36.7% [sTi]; p<0.0001; mean 7.6 mm vs. 1.9 mm; p<0.0001). A comparison of the early postoperative period (POD1-90) with long-term support (POD>90) showed an increase in thrombus length originating from the transition zone (1.96, ±3.41 mm vs. 3.03 ±2.91 mm; p=0.013). CONCLUSIONS A sintered titanium surface at the entry site is crucial to enable anchoring of myocardial tissue to the cannula. As thrombus growth progresses on polished surfaces, a greater sintered length seems to be beneficial. After an initial three-month healing period, thrombus load appears to decline during prolonged support duration at the sintered entry site but not at the transition zone.
Collapse
Affiliation(s)
- Friedrich Kaufmann
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
| | - Christoph Hoermandinger
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
| | - Christoph Knosalla
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Volkmar Falk
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Department of Cardiovascular Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich, Translational Cardiovascular Technology, Zurich, Switzerland
| | - Evgenij Potapov
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
13
|
Chala N, Moimas S, Giampietro C, Zhang X, Zambelli T, Exarchos V, Nazari-Shafti TZ, Poulikakos D, Ferrari A. Mechanical Fingerprint of Senescence in Endothelial Cells. NANO LETTERS 2021; 21:4911-4920. [PMID: 34081865 DOI: 10.1021/acs.nanolett.1c00064] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Endothelial senescence entails alterations of the healthy cell phenotype, which accumulate over time and contribute to cardiovascular disease. Mechanical aspects regulating cell adhesion, force generation, and the response to flow contribute to the senescence-associated drift; however, they remain largely unexplored. Here, we exploit force microscopy to resolve variations of the cell anchoring to the substrate and the tractions generated upon aging in the nanonewton (nN) range. Senescent endothelial cells display a multifold increase in the levels of basal adhesion and force generation supported by mature and strong focal adhesions. The enhanced mechanical interaction with the substrate yields static endothelial monolayers that polarize in response to flow but fail the process of coordinated cell shape remodeling and reorientation. The emerging picture indicates that senescence reinforces the local cell interaction with the substrate and may therefore prevent endothelial denudation; however, it compromises the ability to functionally adapt to the local hemodynamic conditions.
Collapse
Affiliation(s)
- Nafsika Chala
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zürich, Switzerland
| | - Silvia Moimas
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zürich, Switzerland
| | - Costanza Giampietro
- Experimental Continuum Mechanics, EMPA, Swiss Federal Laboratories for Material Science and Technologies, Überlandstrasse 129, 8600 Dübendorf, Switzerland
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zürich, Switzerland
| | - Xinyu Zhang
- Laboratory of Biosensors and Bioelectronics, Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, 8092Zürich, Switzerland
| | - Tomaso Zambelli
- Laboratory of Biosensors and Bioelectronics, Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, 8092Zürich, Switzerland
| | - Vasileios Exarchos
- German Heart Center Berlin, Department for Cardiovascular and Thoracic Surgery, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Timo Z Nazari-Shafti
- German Heart Center Berlin, Department for Cardiovascular and Thoracic Surgery, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Center for Regenerative Therapies, Föhrer Strasse 15, 13353 Berlin, Germany
| | - Dimos Poulikakos
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zürich, Switzerland
| | - Aldo Ferrari
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zürich, Switzerland
- Experimental Continuum Mechanics, EMPA, Swiss Federal Laboratories for Material Science and Technologies, Überlandstrasse 129, 8600 Dübendorf, Switzerland
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zürich, Switzerland
| |
Collapse
|
14
|
Dessalles CA, Leclech C, Castagnino A, Barakat AI. Integration of substrate- and flow-derived stresses in endothelial cell mechanobiology. Commun Biol 2021; 4:764. [PMID: 34155305 PMCID: PMC8217569 DOI: 10.1038/s42003-021-02285-w] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 06/02/2021] [Indexed: 02/05/2023] Open
Abstract
Endothelial cells (ECs) lining all blood vessels are subjected to large mechanical stresses that regulate their structure and function in health and disease. Here, we review EC responses to substrate-derived biophysical cues, namely topography, curvature, and stiffness, as well as to flow-derived stresses, notably shear stress, pressure, and tensile stresses. Because these mechanical cues in vivo are coupled and are exerted simultaneously on ECs, we also review the effects of multiple cues and describe burgeoning in vitro approaches for elucidating how ECs integrate and interpret various mechanical stimuli. We conclude by highlighting key open questions and upcoming challenges in the field of EC mechanobiology.
Collapse
Affiliation(s)
- Claire A Dessalles
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, Palaiseau, France
| | - Claire Leclech
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, Palaiseau, France
| | - Alessia Castagnino
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, Palaiseau, France
| | - Abdul I Barakat
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, Palaiseau, France.
| |
Collapse
|
15
|
Mohindra P, Desai TA. Micro- and nanoscale biophysical cues for cardiovascular disease therapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2021; 34:102365. [PMID: 33571682 PMCID: PMC8217090 DOI: 10.1016/j.nano.2021.102365] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/15/2021] [Indexed: 11/19/2022]
Abstract
After cardiovascular injury, numerous pathological processes adversely impact the homeostatic function of cardiomyocyte, macrophage, fibroblast, endothelial cell, and vascular smooth muscle cell populations. Subsequent malfunctioning of these cells may further contribute to cardiovascular disease onset and progression. By modulating cellular responses after injury, it is possible to create local environments that promote wound healing and tissue repair mechanisms. The extracellular matrix continuously provides these mechanosensitive cell types with physical cues spanning the micro- and nanoscale to influence behaviors such as adhesion, morphology, and phenotype. It is therefore becoming increasingly compelling to harness these cell-substrate interactions to elicit more native cell behaviors that impede cardiovascular disease progression and enhance regenerative potential. This review discusses recent in vitro and preclinical work that have demonstrated the therapeutic implications of micro- and nanoscale biophysical cues on cell types adversely affected in cardiovascular diseases - cardiomyocytes, macrophages, fibroblasts, endothelial cells, and vascular smooth muscle cells.
Collapse
Affiliation(s)
- Priya Mohindra
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, United States
| | - Tejal A Desai
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, United States; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA.
| |
Collapse
|
16
|
A free-form patterning method enabling endothelialization under dynamic flow. Biomaterials 2021; 273:120816. [PMID: 33895492 DOI: 10.1016/j.biomaterials.2021.120816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 12/27/2022]
Abstract
Endothelialization strategies aim at protecting the surface of cardiovascular devices upon their interaction with blood by the generation and maintenance of a mature monolayer of endothelial cells. Rational engineering of the surface micro-topography at the luminal interface provides a powerful access point to support the survival of a living endothelium under the challenging hemodynamic conditions created by the implant deployment and function. Surface structuring protocols must however be adapted to the complex, non-planar architecture of the target device precluding the use of standard lithographic approaches. Here, a novel patterning method, harnessing the condensation and evaporation of water droplets on a curing liquid elastomer, is developed to introduce arrays of microscale wells on the surface of a biocompatible silicon layer. The resulting topographies support the in vitro generation of mature human endothelia and their maintenance under dynamic changes of flow direction or magnitude, greatly outperforming identical, but flat substrates. The structuring approach is additionally demonstrated on non-planar interfaces yielding comparable topographies. The intrinsically free-form patterning is therefore compatible with a complete and stable endothelialization of complex luminal interfaces in cardiovascular implants.
Collapse
|
17
|
Reyes Lua AM, Tonnicchia S, Giampietro C, Mazza E, Ferrari A. Evaluation of Chemo- and Photo-toxicity of a Live Fluorescent Dye for Cell Analysis. Photochem Photobiol 2020; 97:448-452. [PMID: 33277719 DOI: 10.1111/php.13362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 11/30/2020] [Indexed: 12/01/2022]
Abstract
Live cell imaging is used to track the dynamic adaptation of cell size and motility to various external factors. Bright-field configuration can be used for these experiments; however, the analysis can be challenging and difficult to automate. In this direction, a superior alternative is represented by the use of live cell dyes, which provide intense fluorescence from subcellular structures of living cells. Yet, the potential chemo- and photo-toxicity of the fluorophores poses the necessity of an accurate protocol optimization to avoid artefacts. Toxicity studies generally focus on cell proliferation and apoptosis, neglecting the cellular activities under investigation. Here, we present the case of SYTO 13 in combination with primary endothelial cells. The optimization of the staining procedure is tested comparing cell proliferation and motility rate. In addition, the combined effect of staining and fluorescent illumination, reporting for photochemical toxicity, is evaluated. We demonstrate that while cell viability and proliferation are mainly unaffected by the staining and imagining protocols, a significant reduction of the motility rate is induced both by the chemical dye alone and in combination with fluorescent illumination. The general implications for this procedure are discussed.
Collapse
Affiliation(s)
| | - Simone Tonnicchia
- Institute for Mechanical Systems, ETH Zurich, Zürich, Switzerland.,Swiss Federal Laboratories for Material Science and Technologies, EMPA, Dübendorf, Switzerland
| | - Costanza Giampietro
- Swiss Federal Laboratories for Material Science and Technologies, EMPA, Dübendorf, Switzerland
| | - Edoardo Mazza
- Institute for Mechanical Systems, ETH Zurich, Zürich, Switzerland.,Swiss Federal Laboratories for Material Science and Technologies, EMPA, Dübendorf, Switzerland
| | - Aldo Ferrari
- Institute for Mechanical Systems, ETH Zurich, Zürich, Switzerland.,Swiss Federal Laboratories for Material Science and Technologies, EMPA, Dübendorf, Switzerland
| |
Collapse
|
18
|
Jana S. Endothelialization of cardiovascular devices. Acta Biomater 2019; 99:53-71. [PMID: 31454565 DOI: 10.1016/j.actbio.2019.08.042] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/19/2019] [Accepted: 08/22/2019] [Indexed: 01/10/2023]
Abstract
Blood-contacting surfaces of cardiovascular devices are not biocompatible for creating an endothelial layer on them. Numerous research studies have mainly sought to modify these surfaces through physical, chemical and biological means to ease early endothelial cell (EC) adhesion, migration and proliferation, and eventually to build an endothelial layer on the surfaces. The first priority for surface modification is inhibition of protein adsorption that leads to inhibition of platelet adhesion to the device surfaces, which may favor EC adhesion. Surface modification through surface texturing, if applicable, can bring some hopeful outcomes in this regard. Surface modifications through chemical and/or biological means may play a significant role in easy endothelialization of cardiovascular devices and inhibit smooth muscle cell proliferation. Cellular engineering of cells relevant to endothelialization can boost the positive outcomes obtained through surface engineering. This review briefly summarizes recent developments and research in early endothelialization of cardiovascular devices. STATEMENT OF SIGNIFICANCE: Endothelialization of cardiovascular implants, including heart valves, vascular stents and vascular grafts is crucial to solve many problems in our health care system. Numerous research efforts have been made to improve endothelialization on the surfaces of cardiovascular implants, mainly through surface modifications in three ways - physically, chemically and biologically. This review is intended to highlight comprehensive research studies to date on surface modifications aiming for early endothelialization on the blood-contacting surfaces of cardiovascular implants. It also discusses future perspectives to help guide endothelialization strategies and inspire further innovations.
Collapse
Affiliation(s)
- Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
19
|
Robotti F, Sterner I, Bottan S, Monné Rodríguez JM, Pellegrini G, Schmidt T, Falk V, Poulikakos D, Ferrari A, Starck C. Microengineered biosynthesized cellulose as anti-fibrotic in vivo protection for cardiac implantable electronic devices. Biomaterials 2019; 229:119583. [PMID: 31707297 DOI: 10.1016/j.biomaterials.2019.119583] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/21/2019] [Accepted: 10/26/2019] [Indexed: 01/13/2023]
Abstract
Upon cardiac implantable electronic device (CIED) exchange, upgrade, or revision surgery patients are exposed to a considerable risk of adverse events. The presence of firm fibrotic tissue endangers these procedures. Leads can be damaged in the attempt of freeing them from fibrotic tissue. Hematoma can form as result of capsulectomy, pocket debridement and leads dissection. Due to the increasing number of CIED exchange, upgrade and revision surgeries, the incidence of related complications is expected to rise in the near future.The aim of the study was to evaluate the feasibility, safety, and performance of a rationally micro-engineered non-resorbable biosynthesized cellulose (BC) membrane as conformal wrapping protection around CIED implants. Protective membranes were generated by means of a recently established method to transfer on-demand microscale geometries onto the surface of BC. A chronic minipig animal model was selected to investigate the performance of the BC anti-fibrotic protection, directly measured as reduction of fibrotic tissue formation. Sixteen (n = 16) animals received each one BC coated pacemaker (PMC) and one native pacemaker (BI) at equivalent anatomical sites. BC protective layers were juxtaposed around pacemakers through a fast and well-repeatable procedure. Explants were performed at 3 and 12 months after implantation. Endpoint analysis showed that the BC protective layers were 100% integer, with no sign of chemical or mechanical degradation and appeared as a thin layer of white-tan material, adherent to the surrounding thin fibrous capsule, from which it could be peeled off by gently pulling with forceps. The protective effect of micro-engineered BC yielded an average thickness reduction of 66% of the fibrotic tissue thickness generated around PMC, as compared to that measured around the naked counterpart (i.e. the BI). When protected by in BC, both the generator and the proximal parts of the leads were completely free from fibrotic tissue. The insertion of an anti-adhesive, non-resorbable and well-tolerated BC interface between the implant and the surrounding tissue in the surgical pocket significantly reduced the formation of fibrotic tissue, ensuring an easy access to the device pocket, and thus creating the conditions for simplified CIED revision surgeries.
Collapse
Affiliation(s)
- Francesco Robotti
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland; Wyss Zurich Translational Center, Zurich, Switzerland
| | - Ita Sterner
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
| | - Simone Bottan
- Wyss Zurich Translational Center, Zurich, Switzerland
| | - Josep M Monné Rodríguez
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| | - Giovanni Pellegrini
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Tanja Schmidt
- Charité- Universitätsmedizin Berlin, Forschungseinrichtungen für experimentelle Medizin, Berlin, Germany
| | - Volkmar Falk
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany; Division of Cardiovascular Surgery, Charité, Berlin, Germany; German Center of Cardiovascular Research (DZHK), partner site, Berlin, Germany; Department of Health Science and Technology, ETH Zurich, Switzerland
| | - Dimos Poulikakos
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland
| | - Aldo Ferrari
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland; EMPA, Swiss Federal Laboratories for Material Science and Technology, Überlandstrasse 129, Dübendorf 8600, Switzerland.
| | - Christoph Starck
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany; German Center of Cardiovascular Research (DZHK), partner site, Berlin, Germany.
| |
Collapse
|
20
|
Rebholz M, Dual S, Batliner M, Meboldt M, Schmid Daners M. Short-term physiological response to high-frequency-actuated pVAD support. Artif Organs 2019; 43:1170-1181. [PMID: 31211873 DOI: 10.1111/aor.13521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/29/2019] [Accepted: 06/07/2019] [Indexed: 01/04/2023]
Abstract
Ventricular assist devices (VADs) are an established treatment option for heart failure (HF). However, the devices are often plagued by material-related hemocompatibility issues. In contrast to continuous flow VADs with high shear stresses, pulsatile VADs (pVADs) offer the potential for an endothelial cell coating that promises to prevent many adverse events caused by an insufficient hemocompatibility. However, their size and weight often precludes their intracorporeal implantation. A reduction of the pump body size and weight of the pump could be achieved by an increase in the stroke frequency while maintaining a similar cardiac output. We present a new pVAD system consisting of a pump and an actuator specifically designed for actuation frequencies of up to 240 bpm. In vitro and in vivo results of the short-term reaction of the cardiovascular system show no significant changes in left ventricular and aortic pressure between actuation frequencies from 60 to 240 bpm. The aortic pulsatility increases when the actuation frequency is raised while the heart rate remains unaffected in vivo. These results lead us to the conclusion that the cardiovascular system tolerates short-term increases of the pVAD stroke frequencies.
Collapse
Affiliation(s)
- Mathias Rebholz
- Product Development Group Zurich, ETH Zurich, Zurich, Switzerland
| | - Seraina Dual
- Product Development Group Zurich, ETH Zurich, Zurich, Switzerland
| | - Martin Batliner
- Product Development Group Zurich, ETH Zurich, Zurich, Switzerland
| | - Mirko Meboldt
- Product Development Group Zurich, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
21
|
Bernardi L, Giampietro C, Marina V, Genta M, Mazza E, Ferrari A. Adaptive reorientation of endothelial collectives in response to strain. Integr Biol (Camb) 2019; 10:527-538. [PMID: 30112523 DOI: 10.1039/c8ib00092a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mature epithelial monolayers share the ability to coherently respond to external mechanical stimuli. Tissue remodeling requires cell shape changes and coordinated movements. Human endothelia provide an exquisite example of such emerging collective activities. As part of their function in maintaining body homeostasis under variable hemodynamic loadings, endothelial ensembles must dynamically adapt to wall shear stress and cyclic deformation. While the alignment of several types of cells, including fibroblasts, osteoblasts and epithelial tissues, in response to various flow conditions or wall shear stress levels has been described in detail, less is known about collective endothelial remodeling under pure wall deformation. Here, using a custom-developed bioreactor, we exposed mature human endothelia to two distinct physiological levels of cyclic loading, generating overlapping gradients of strain. Endothelial cells remodeled depending on the level of imposed strain yielding local variations of cell density. In particular, a collective cell orientation orthogonal to the main direction of strain was observed at low levels of wall deformation, while cells reoriented parallel to the main direction of strain at high levels of wall deformation. The tissue adaptation depended on the establishment of mature adherens junctions, which were reinforced by the polarized recruitment of the adaptor protein vinculin. The pivotal role of cell-to-cell junctions was confirmed by the biochemical inhibition of vascular endothelial cadherin homotypic contacts, which impaired the collective remodeling. Together, our data establish wall deformation as an independent determinant of endothelial architecture with direct implications in vascular physiopathology.
Collapse
Affiliation(s)
- Laura Bernardi
- ETH Zurich, Institute for Mechanical Systems, 8092 Zürich, Switzerland.
| | | | | | | | | | | |
Collapse
|
22
|
Pramotton FM, Robotti F, Giampietro C, Lendenmann T, Poulikakos D, Ferrari A. Optimized Topological and Topographical Expansion of Epithelia. ACS Biomater Sci Eng 2019; 5:3922-3934. [DOI: 10.1021/acsbiomaterials.8b01346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Francesca Michela Pramotton
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich CH-8092, Switzerland
| | - Francesco Robotti
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich CH-8092, Switzerland
| | - Costanza Giampietro
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich CH-8092, Switzerland
- EMPA, Swiss Federal Laboratories for Material Science and Technologies, Überlandstrasse 129, Dübendorf 8600, Switzerland
| | - Tobias Lendenmann
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich CH-8092, Switzerland
| | - Dimos Poulikakos
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich CH-8092, Switzerland
| | - Aldo Ferrari
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich CH-8092, Switzerland
- EMPA, Swiss Federal Laboratories for Material Science and Technologies, Überlandstrasse 129, Dübendorf 8600, Switzerland
- Institute for Mechanical Systems, ETH Zurich, Leonhardstrasse 21, Zurich CH-8092, Switzerland
| |
Collapse
|
23
|
James BD, Allen JB. Vascular Endothelial Cell Behavior in Complex Mechanical Microenvironments. ACS Biomater Sci Eng 2018; 4:3818-3842. [PMID: 33429612 DOI: 10.1021/acsbiomaterials.8b00628] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The vascular mechanical microenvironment consists of a mixture of spatially and temporally changing mechanical forces. This exposes vascular endothelial cells to both hemodynamic forces (fluid flow, cyclic stretching, lateral pressure) and vessel forces (basement membrane mechanical and topographical properties). The vascular mechanical microenvironment is "complex" because these forces are dynamic and interrelated. Endothelial cells sense these forces through mechanosensory structures and transduce them into functional responses via mechanotransduction pathways, culminating in behavior directly affecting vascular health. Recent in vitro studies have shown that endothelial cells respond in nuanced and unique ways to combinations of hemodynamic and vessel forces as compared to any single mechanical force. Understanding the interactive effects of the complex mechanical microenvironment on vascular endothelial behavior offers the opportunity to design future biomaterials and biomedical devices from the bottom-up by engineering for the cellular response. This review describes and defines (1) the blood vessel structure, (2) the complex mechanical microenvironment of the vascular endothelium, (3) the process in which vascular endothelial cells sense mechanical forces, and (4) the effect of mechanical forces on vascular endothelial cells with specific attention to recent works investigating the influence of combinations of mechanical forces. We conclude this review by providing our perspective on how the field can move forward to elucidate the effects of the complex mechanical microenvironment on vascular endothelial cell behavior.
Collapse
Affiliation(s)
- Bryan D James
- Department of Materials Science & Engineering, University of Florida, 100 Rhines Hall, PO Box 116400, Gainesville, Florida 32611, United States.,Institute for Computational Engineering, University of Florida, 300 Weil Hall, PO Box 116550, Gainesville, Florida 32611, United States
| | - Josephine B Allen
- Department of Materials Science & Engineering, University of Florida, 100 Rhines Hall, PO Box 116400, Gainesville, Florida 32611, United States.,Institute for Cell and Tissue Science and Engineering, 300 Weil Hall, PO Box 116550, Gainesville, Florida 32611, United States
| |
Collapse
|
24
|
Hosseini V, Evrova O, Hoerstrup SP, Vogel V. A Simple Modification Method to Obtain Anisotropic and Porous 3D Microfibrillar Scaffolds for Surgical and Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1702650. [PMID: 29205905 DOI: 10.1002/smll.201702650] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/04/2017] [Indexed: 06/07/2023]
Abstract
In native tissues, cellular organization is predominantly anisotropic. Yet, it remains a challenge to engineer anisotropic scaffolds that promote anisotropic cellular organization at macroscopic length scales. To overcome this challenge, an innovative, cheap and easy method to align clinically approved non-woven surgical microfibrillar scaffolds is presented. The method involves a three-step process of coating, unidirectional stretching of scaffolds after heating them above glass transition temperature, and cooling back to room temperature. Briefly, a polymer coating is applied to a non-woven mesh that results in a partial welding of randomly oriented microfibers at their intersection points. The coated scaffold is then heated above the glass transition temperature of the coating and the scaffold polymer. Subsequently, the coated scaffold is stretched to produce aligned and three dimentional (3D) porous fibrillar scaffolds. In a proof of concept study, a polyglycolic acid (PGA) micro-fibrillar scaffold was coated with poly(4-hydroxybutirate) (P4HB) acid and subsequently aligned. Fibroblasts were cultured in vitro within the scaffold and results showed an increase in cellular alignment along the direction of the PGA fibers. This method can be scaled up easily for industrial production of polymeric meshes or directly applied to small pieces of scaffolds at the point of care.
Collapse
Affiliation(s)
- Vahid Hosseini
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, Department of Health Science and Technology, ETH, CH-8093, Zurich, Switzerland
| | - Olivera Evrova
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, Department of Health Science and Technology, ETH, CH-8093, Zurich, Switzerland
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, CH-8091, Zurich, Switzerland
| | - Simon P Hoerstrup
- Institute for Regenerative Medicine (IREM), University of Zurich, CH-8091, Zurich, Switzerland
- Wyss Translational Center Zurich, University of Zurich and ETH Zürich, CH-8091, Switzerland
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, Department of Health Science and Technology, ETH, CH-8093, Zurich, Switzerland
| |
Collapse
|
25
|
Bachmann BJ, Giampietro C, Bayram A, Stefopoulos G, Michos C, Graeber G, Falk MV, Poulikakos D, Ferrari A. Honeycomb-structured metasurfaces for the adaptive nesting of endothelial cells under hemodynamic loads. Biomater Sci 2018; 6:2726-2737. [DOI: 10.1039/c8bm00660a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The thrombogenicity of artificial materials comprising ventricular assist devices (VADs) limits their long-term integration in the human body.
Collapse
Affiliation(s)
- Bjoern Johann Bachmann
- Laboratory of Thermodynamics in Emerging Technologies
- Department of Mechanical and Process Engineering
- ETH Zurich
- Zürich
- Switzerland
| | - Costanza Giampietro
- Laboratory of Thermodynamics in Emerging Technologies
- Department of Mechanical and Process Engineering
- ETH Zurich
- Zürich
- Switzerland
| | - Adem Bayram
- Laboratory of Thermodynamics in Emerging Technologies
- Department of Mechanical and Process Engineering
- ETH Zurich
- Zürich
- Switzerland
| | - Georgios Stefopoulos
- Laboratory of Thermodynamics in Emerging Technologies
- Department of Mechanical and Process Engineering
- ETH Zurich
- Zürich
- Switzerland
| | - Christos Michos
- Laboratory of Thermodynamics in Emerging Technologies
- Department of Mechanical and Process Engineering
- ETH Zurich
- Zürich
- Switzerland
| | - Gustav Graeber
- Laboratory of Thermodynamics in Emerging Technologies
- Department of Mechanical and Process Engineering
- ETH Zurich
- Zürich
- Switzerland
| | - Med Volkmar Falk
- Department of Cardiothoracic and Vascular Surgery
- German Heart Institute Berlin
- Berlin
- Germany
| | - Dimos Poulikakos
- Laboratory of Thermodynamics in Emerging Technologies
- Department of Mechanical and Process Engineering
- ETH Zurich
- Zürich
- Switzerland
| | - Aldo Ferrari
- Laboratory of Thermodynamics in Emerging Technologies
- Department of Mechanical and Process Engineering
- ETH Zurich
- Zürich
- Switzerland
| |
Collapse
|
26
|
Cortella LRX, Cestari IA, Guenther D, Lasagni AF, Cestari IN. Endothelial cell responses to castor oil-based polyurethane substrates functionalized by direct laser ablation. ACTA ACUST UNITED AC 2017; 12:065010. [PMID: 28762961 DOI: 10.1088/1748-605x/aa8353] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Surface-induced thrombosis and lack of endothelialization are major drawbacks that hamper the widespread application of polyurethanes for the fabrication of implantable cardiovascular devices. Endothelialization of the blood-contacting surfaces of these devices may avoid thrombus formation and may be implemented by strategies that introduce micro and submicron patterns that favor adhesion and growth of endothelial cells. In this study, we used laser radiation to directly introduce topographical patterns in the low micrometer range on castor oil-based polyurethane, which is currently employed to fabricate cardiovascular devices. We have investigated cell adhesion, proliferation, morphology and alignment in response to these topographies. Reported results show that line-like and pillar-like patterns improved adhesion and proliferation rate of cultured endothelial cells. The line-like pattern with 1 μm groove periodicity was the most efficient to enhance cell adhesion and induced marked polarization and alignment. Our study suggests the viability of using laser radiation to functionalize PU-based implants by the introduction of specific microtopography to facilitate the development of a functional endothelium on target surfaces.
Collapse
Affiliation(s)
- L R X Cortella
- Bioengineering Department, Heart Institute (InCor), University of São Paulo Medical School, Av. Dr Enéas de Carvalho Aguiar, 44, 05403-900-São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
27
|
Sinha R, Verdonschot N, Koopman B, Rouwkema J. Tuning Cell and Tissue Development by Combining Multiple Mechanical Signals. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:494-504. [DOI: 10.1089/ten.teb.2016.0500] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ravi Sinha
- Department of Biomechanical Engineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Nico Verdonschot
- Department of Biomechanical Engineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
- Orthopaedic Research Lab, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bart Koopman
- Department of Biomechanical Engineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Jeroen Rouwkema
- Department of Biomechanical Engineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| |
Collapse
|
28
|
Csepe TA, Kilic A. Advancements in mechanical circulatory support for patients in acute and chronic heart failure. J Thorac Dis 2017; 9:4070-4083. [PMID: 29268418 DOI: 10.21037/jtd.2017.09.89] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cardiogenic shock (CS) continues to have high mortality and morbidity despite advances in pharmacological, mechanical, and reperfusion approaches to treatment. When CS is refractory to medical therapy, percutaneous mechanical circulatory support (MCS) should be considered. Acute MCS devices, ranging from intra-aortic balloon pumps (IABPs) to percutaneous temporary ventricular assist devices (VAD) to extracorporeal membrane oxygenation (ECMO), can aid, restore, or maintain appropriate tissue perfusion before the development of irreversible end-organ damage. Technology has improved patient survival to recovery from CS, but in patients whom cardiac recovery does not occur, acute MCS can be effectively utilized as a bridge to long-term MCS devices and/or heart transplantation. Heart transplantation has been limited by donor heart availability, leading to a greater role of left ventricular assist device (LVAD) support. In patients with biventricular failure that are ineligible for LVAD implantation, further advancements in the total artificial heart (TAH) may allow for improved survival compared to medical therapy alone. In this review, we discuss the current state of acute and durable MCS, ongoing advances in LVADs and TAH devices, improved methods of durable MCS implantation and patient selection, and future MCS developments in this dynamic field that may allow for optimization of HF treatment.
Collapse
Affiliation(s)
- Thomas A Csepe
- Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ahmet Kilic
- Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
29
|
Chen JY, Hu M, Zhang H, Li BC, Chang H, Ren KF, Wang YB, Ji J. Improved Antithrombotic Function of Oriented Endothelial Cell Monolayer on Microgrooves. ACS Biomater Sci Eng 2017; 4:1976-1985. [PMID: 33445268 DOI: 10.1021/acsbiomaterials.7b00496] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Achievement of an endothelial cell (EC) monolayer (re-endothelialization) on the vascular implant surface with competent and functioning features is critical for long-term safety after implantation. Oriented EC monolayer is beneficial to improve endothelial function such as enhanced athero-resistant property. However, the information about antithrombotic property of oriented EC monolayer is limited. Here, we used the microgrooved polydimethylsiloxane substrates to guide EC orientation and obtain oriented EC monolayer. The effects of anisotropic topography on EC behaviors and antithrombotic function of the EC monolayer were then evaluated. Our data demonstrated that ECs responded to grooves in a size-dependent way as shown in oriented cell cytoskeleton and nuclei, enhanced directed migration, and overall velocity. Furthermore, compared to the EC monolayer on the flat surface, the oriented EC monolayer formed on the grooved substrates exhibited improved antithrombotic capability as indicated by higher expression of functional related genes, production of prostacyclin and tissue plasminogen activator, and prolonged activated coagulation time. The improvement of antithrombotic function was especially notable on the smaller-size groove. These findings reveal the responses of ECs to varisized topography and antithrombotic function of the oriented EC monolayer, providing insights into optimal design of vascular implants.
Collapse
Affiliation(s)
- Jia-Yan Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mi Hu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - He Zhang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bo-Chao Li
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hao Chang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ke-Feng Ren
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yun-Bing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
30
|
Abstract
In vivo, cells of the vascular system are subjected to various mechanical stimuli and have demonstrated the ability to adapt their behavior via mechanotransduction. Recent advances in microfluidic and "on-chip" techniques have provided the technology to study these alterations in cell behavior. Contrary to traditional in vitro assays such as transwell plates and parallel plate flow chambers, these microfluidic devices (MFDs) provide the opportunity to integrate multiple mechanical cues (e.g. shear stress, confinement, substrate stiffness, vessel geometry and topography) with in situ quantification capabilities. As such, MFDs can be used to recapitulate the in vivo mechanical setting and systematically vary microenvironmental conditions for improved mechanobiological studies of the endothelium. Additionally, adequate modelling provides for enhanced understanding of disease progression, design of cell separation and drug delivery systems, and the development of biomaterials for tissue engineering applications. Here, we will discuss the advances in knowledge about endothelial cell mechanosensing resulting from the design and application of biomimetic on-chip and microfluidic platforms.
Collapse
|
31
|
Left Ventricular Assist Devices: Challenges Toward Sustaining Long-Term Patient Care. Ann Biomed Eng 2017; 45:1836-1851. [DOI: 10.1007/s10439-017-1858-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/22/2017] [Indexed: 11/25/2022]
|
32
|
Stefopoulos G, Giampietro C, Falk V, Poulikakos D, Ferrari A. Facile endothelium protection from TNF-α inflammatory insult with surface topography. Biomaterials 2017; 138:131-141. [PMID: 28558298 DOI: 10.1016/j.biomaterials.2017.05.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/18/2017] [Accepted: 05/22/2017] [Indexed: 12/28/2022]
Abstract
Adverse events triggered by the direct contact between blood and synthetic materials constitute a sincere shortcoming of cardiovascular implant technology. A well-connected autologous endothelium, generated through the process of endothelialization, impedes such interaction and endows the implant luminal interface with optimal protection. The endothelialization of artificial substrates is the result of a complex interplay between endothelial cells (ECs), surface topography, and flow-generated wall shear stress (WSS). This is however tainted by the pro-inflammatory signaling, typical of cardiovascular patients, which compromises endothelial integrity and survival. Here, we challenge human endothelial monolayers with the pro-inflammatory factor TNF-α under realistic WSS conditions. In these experimental settings we demonstrate that the simple contact between ECs and an optimized surface geometry can inhibit NF-kB activation downstream of TNF-α yielding increased stability of VE-Cadherin mediated cell-to-cell junctions and of focal adhesions. Therefore the here-presented topographic modification can be implemented on a range of artificial substrates enabling their endothelialization under supra-physiological flow and in the presence of pro-inflammatory insults. These new findings constitute an important step toward achieving the full hemocompatibility of cardiovascular implants.
Collapse
Affiliation(s)
- Georgios Stefopoulos
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092, Zurich, Switzerland
| | - Costanza Giampietro
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092, Zurich, Switzerland
| | - Volkmar Falk
- Department of Cardiothoracic and Vascular Surgery, German Heart Institute Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Dimos Poulikakos
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092, Zurich, Switzerland.
| | - Aldo Ferrari
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092, Zurich, Switzerland.
| |
Collapse
|
33
|
Bachmann BJ, Bernardi L, Loosli C, Marschewski J, Perrini M, Ehrbar M, Ermanni P, Poulikakos D, Ferrari A, Mazza E. A Novel Bioreactor System for the Assessment of Endothelialization on Deformable Surfaces. Sci Rep 2016; 6:38861. [PMID: 27941901 PMCID: PMC5150819 DOI: 10.1038/srep38861] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/15/2016] [Indexed: 12/28/2022] Open
Abstract
The generation of a living protective layer at the luminal surface of cardiovascular devices, composed of an autologous functional endothelium, represents the ideal solution to life-threatening, implant-related complications in cardiovascular patients. The initial evaluation of engineering strategies fostering endothelial cell adhesion and proliferation as well as the long-term tissue homeostasis requires in vitro testing in environmental model systems able to recapitulate the hemodynamic conditions experienced at the blood-to-device interface of implants as well as the substrate deformation. Here, we introduce the design and validation of a novel bioreactor system which enables the long-term conditioning of human endothelial cells interacting with artificial materials under dynamic combinations of flow-generated wall shear stress and wall deformation. The wall shear stress and wall deformation values obtained encompass both the physiological and supraphysiological range. They are determined through separate actuation systems which are controlled based on validated computational models. In addition, we demonstrate the good optical conductivity of the system permitting online monitoring of cell activities through live-cell imaging as well as standard biochemical post-processing. Altogether, the bioreactor system defines an unprecedented testing hub for potential strategies toward the endothelialization or re-endothelialization of target substrates.
Collapse
Affiliation(s)
- Björn J. Bachmann
- ETH Zurich, Laboratory of Thermodynamics in Emerging Technologies, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Laura Bernardi
- ETH Zurich, Institute for Mechanical Systems, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Christian Loosli
- ETH Zurich, Laboratory of Composite Materials and Adaptive Structures, Department of Mechanical and Process Engineering, Tannenstrasse 3, CH-8092 Zurich, Switzerland
| | - Julian Marschewski
- ETH Zurich, Laboratory of Thermodynamics in Emerging Technologies, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Michela Perrini
- ETH Zurich, Institute for Mechanical Systems, Leonhardstrasse 21, 8092 Zurich, Switzerland
- University Hospital Zurich, Department of Obstetrics, Zurich, Switzerland
| | - Martin Ehrbar
- University Hospital Zurich, Department of Obstetrics, Zurich, Switzerland
| | - Paolo Ermanni
- ETH Zurich, Laboratory of Composite Materials and Adaptive Structures, Department of Mechanical and Process Engineering, Tannenstrasse 3, CH-8092 Zurich, Switzerland
| | - Dimos Poulikakos
- ETH Zurich, Laboratory of Thermodynamics in Emerging Technologies, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Aldo Ferrari
- ETH Zurich, Laboratory of Thermodynamics in Emerging Technologies, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Edoardo Mazza
- ETH Zurich, Institute for Mechanical Systems, Leonhardstrasse 21, 8092 Zurich, Switzerland
- Empa, Swiss Federal Laboratories for Materials Science & Technology, Überlandstr. 129, 8600 Dübendorf, Switzerland
| |
Collapse
|
34
|
Hsiao ST, Spencer T, Boldock L, Prosseda SD, Xanthis I, Tovar-Lopez FJ, Van Beusekom HMM, Khamis RY, Foin N, Bowden N, Hussain A, Rothman A, Ridger V, Halliday I, Perrault C, Gunn J, Evans PC. Endothelial repair in stented arteries is accelerated by inhibition of Rho-associated protein kinase. Cardiovasc Res 2016; 112:689-701. [PMID: 27671802 PMCID: PMC5157135 DOI: 10.1093/cvr/cvw210] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 09/09/2016] [Accepted: 09/17/2016] [Indexed: 12/14/2022] Open
Abstract
Aims Stent deployment causes endothelial cells (EC) denudation, which promotes in-stent restenosis and thrombosis. Thus endothelial regrowth in stented arteries is an important therapeutic goal. Stent struts modify local hemodynamics, however the effects of flow perturbation on EC injury and repair are incompletely understood. By studying the effects of stent struts on flow and EC migration, we identified an intervention that promotes endothelial repair in stented arteries. Methods and Results In vitro and in vivo models were developed to monitor endothelialization under flow and the influence of stent struts. A 2D parallel-plate flow chamber with 100 μm ridges arranged perpendicular to the flow was used. Live cell imaging coupled to computational fluid dynamic simulations revealed that EC migrate in the direction of flow upstream from the ridges but subsequently accumulate downstream from ridges at sites of bidirectional flow. The mechanism of EC trapping by bidirectional flow involved reduced migratory polarity associated with altered actin dynamics. Inhibition of Rho-associated protein kinase (ROCK) enhanced endothelialization of ridged surfaces by promoting migratory polarity under bidirectional flow (P < 0.01). To more closely mimic the in vivo situation, we cultured EC on the inner surface of polydimethylsiloxane tubing containing Coroflex Blue stents (65 μm struts) and monitored migration. ROCK inhibition significantly enhanced EC accumulation downstream from struts under flow (P < 0.05). We investigated the effects of ROCK inhibition on re-endothelialization in vivo using a porcine model of EC denudation and stent placement. En face staining and confocal microscopy revealed that inhibition of ROCK using fasudil (30 mg/day via osmotic minipump) significantly increased re-endothelialization of stented carotid arteries (P < 0.05). Conclusions Stent struts delay endothelial repair by generating localized bidirectional flow which traps migrating EC. ROCK inhibitors accelerate endothelial repair of stented arteries by enhancing EC polarity and migration through regions of bidirectional flow.
Collapse
Affiliation(s)
- Sarah T Hsiao
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK.,INSIGNEO Institute of In Silico Medicine, University of Sheffield, Sheffield S10 2RX, UK
| | - Tim Spencer
- Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield S1 4RF, UK
| | - Luke Boldock
- Department of Mechanical Engineering, University of Sheffield, Sheffield S10 2RX, UK.,INSIGNEO Institute of In Silico Medicine, University of Sheffield, Sheffield S10 2RX, UK
| | - Svenja Dannewitz Prosseda
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK.,INSIGNEO Institute of In Silico Medicine, University of Sheffield, Sheffield S10 2RX, UK
| | - Ioannis Xanthis
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK.,INSIGNEO Institute of In Silico Medicine, University of Sheffield, Sheffield S10 2RX, UK
| | - Francesco J Tovar-Lopez
- School of Electrical and Computer Engineering, RMIT University, Melbourne VIC 3001, Australia
| | | | - Ramzi Y Khamis
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London WI2 0HS, UK
| | | | - Neil Bowden
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK.,INSIGNEO Institute of In Silico Medicine, University of Sheffield, Sheffield S10 2RX, UK
| | - Adil Hussain
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK.,INSIGNEO Institute of In Silico Medicine, University of Sheffield, Sheffield S10 2RX, UK
| | - Alex Rothman
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK.,INSIGNEO Institute of In Silico Medicine, University of Sheffield, Sheffield S10 2RX, UK
| | - Victoria Ridger
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK.,INSIGNEO Institute of In Silico Medicine, University of Sheffield, Sheffield S10 2RX, UK
| | - Ian Halliday
- Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield S1 4RF, UK
| | - Cecile Perrault
- Department of Mechanical Engineering, University of Sheffield, Sheffield S10 2RX, UK.,INSIGNEO Institute of In Silico Medicine, University of Sheffield, Sheffield S10 2RX, UK
| | - Julian Gunn
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK.,INSIGNEO Institute of In Silico Medicine, University of Sheffield, Sheffield S10 2RX, UK
| | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK .,INSIGNEO Institute of In Silico Medicine, University of Sheffield, Sheffield S10 2RX, UK.,Bateson Centre, University of Sheffield, Sheffield S10 2RX, UK
| |
Collapse
|
35
|
Stefopoulos G, Robotti F, Falk V, Poulikakos D, Ferrari A. Endothelialization of Rationally Microtextured Surfaces with Minimal Cell Seeding Under Flow. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4113-4126. [PMID: 27346806 DOI: 10.1002/smll.201503959] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 05/19/2016] [Indexed: 06/06/2023]
Abstract
The generation of a confluent and functional endothelium at the luminal surface of cardiovascular devices represents the ideal solution to avoid contact between blood and synthetic materials thus allowing the long-term body integration of the implants. Due to the foreseen paucity of source cells in cardiovascular patients, surface engineering strategies to achieve full endothelialization, while minimizing the amount of endothelial cells required to seed the surface leading to prompt and full coverage with an endothelium are necessary. A stable endothelialization is the result of the interplay between endothelial cells, the flow-generated walls shear stress and the substrate topography. Here a novel strategy is designed and validated based on the use of engineered surface textures combined with confined islands of seeded endothelial cells. Upon release of the confinement, the cell island populations are able to migrate on the texture and merge under physiological flow conditions to promptly generate a fully connected endothelium. The interaction between endothelial cells and surface textures supports the process of endothelialization through the stabilization of cell-to-substrate adhesions and cell-to-cell junctions. It is shown that with this approach, when ≈50% of a textured surface is initially covered with cell seeding, the time to full endothelialization compared to an untextured surface is almost halved, underpinning the viability and effectiveness of the method for the quick and stable coverage of cardiovascular implants.
Collapse
Affiliation(s)
- Georgios Stefopoulos
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092, Zurich, Switzerland
| | - Francesco Robotti
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092, Zurich, Switzerland
| | - Volkmar Falk
- Department of Cardiothoracic and Vascular Surgery, German Heart Institute Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Dimos Poulikakos
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092, Zurich, Switzerland
| | - Aldo Ferrari
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092, Zurich, Switzerland
| |
Collapse
|
36
|
Lukas K, Thomas U, Gessner A, Wehner D, Schmid T, Schmid C, Lehle K. Plasma functionalization of polycarbonaturethane to improve endothelialization—Effect of shear stress as a critical factor for biocompatibility control. J Biomater Appl 2016; 30:1417-28. [DOI: 10.1177/0885328215626072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Medical devices made of polycarbonaturethane (PCU) combine excellent mechanical properties and little biological degradation, but restricted hemocompatibility. Modifications of PCU might reduce platelet adhesion and promote stable endothelialization. PCU was modified using gas plasma treatment, binding of hydrogels, and coupling of cell-active molecules (modified heparin, anti-thrombin III (ATIII), argatroban, fibronectin, laminin-nonapeptide, peptides with integrin-binding arginine-glycine-aspartic acid (RGD) motif). Biocompatibility was verified with static and dynamic cell culture techniques. Blinded analysis focused on improvement in endothelial cell (EC) adhesion/proliferation, anti-thrombogenicity, reproducible manufacturing process, and shear stress tolerance of ECs. EC adhesion and antithrombogenicity were achieved with 9/35 modifications. Additionally, 6/9 stimulated EC proliferation and 3/6 modification processes were highly reproducible for endothelialization. The latter modifications comprised immobilization of ATIII (A), polyethyleneglycole-diamine-hydrogel (E) and polyethylenimine-hydrogel connected with modified heparin (IH). Under sheer stress, only the IH modification improved EC adhesion within the graft. However, ECs did not arrange in flow direction and cell anchorage was restricted. Despite large variation in surface modification chemistry and improved EC adhesion under static culture conditions, additional introduction of shear stress foiled promising preliminary data. Therefore, biocompatibility testing required not only static tests but also usage of physiological conditions such as shear stress in the case of vascular grafts.
Collapse
Affiliation(s)
- Karin Lukas
- IMHR, Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | | | - André Gessner
- IMHR, Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | | | | | - Christof Schmid
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Karla Lehle
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
37
|
Li J, Zhang K, Wu J, Liao Y, Yang P, Huang N. Co-culture of endothelial cells and patterned smooth muscle cells on titanium: Construction with high density of endothelial cells and low density of smooth muscle cells. Biochem Biophys Res Commun 2015; 456:555-61. [DOI: 10.1016/j.bbrc.2014.10.127] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 10/25/2014] [Indexed: 12/31/2022]
|