1
|
Pal P, Sambhakar S, Paliwal S, Kumar S, Kalsi V. Biofabrication paradigms in corneal regeneration: bridging bioprinting techniques, natural bioinks, and stem cell therapeutics. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:717-755. [PMID: 38214998 DOI: 10.1080/09205063.2024.2301817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/29/2023] [Indexed: 01/14/2024]
Abstract
Corneal diseases are a major cause of vision loss worldwide. Traditional methods like corneal transplants from donors are effective but face challenges like limited donor availability and the risk of graft rejection. Therefore, new treatment methods are essential. This review examines the growing field of bioprinting and biofabrication in corneal tissue engineering. We begin by discussing various bioprinting methods such as stereolithography, inkjet, and extrusion printing, highlighting their strengths and weaknesses for eye-related uses. We also explore how biological tissues are made suitable for bioprinting through a process called decellularization, which can be achieved using chemical, physical, or biological methods. The review then looks at natural materials, known as bioinks, used in bioprinting. We focus on materials like gelatin, collagen, fibrin, chitin, chitosan, silk fibroin, and alginate, examining their mechanical and biological properties. The importance of hydrogel scaffolds, particularly those based on collagen and other materials, is also discussed in the context of repairing corneal tissue. Another key area we cover is the use of stem cells in corneal regeneration. We pay special attention to limbal epithelial stem cells and mesenchymal stromal cells, highlighting their roles in this process. The review concludes with an overview of the latest advancements in corneal tissue bioprinting, from early techniques to advanced methods of delivering stem cells using bioengineered materials. In summary, this review presents the current state and future potential of bioprinting and biofabrication in creating functional corneal tissues, highlighting new developments and ongoing challenges with a view towards restoring vision.
Collapse
Affiliation(s)
- Pankaj Pal
- Department of Pharmacy, Banasthali Vidyapith, Radha Kishnpura, Rajasthan, India
| | - Sharda Sambhakar
- Department of Pharmacy, Banasthali Vidyapith, Radha Kishnpura, Rajasthan, India
| | - Shailendra Paliwal
- Department of Pharmacy, L.L.R.M Medical College, Meerut, Uttar Pradesh, India
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Vandna Kalsi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
2
|
Hemmati Dezaki Z, Parivar K, Goodarzi V, Nourani MR. Cobalt/Bioglass Nanoparticles Enhanced Dermal Regeneration in a 3-Layered Electrospun Scaffold. Adv Pharm Bull 2024; 14:192-207. [PMID: 38585469 PMCID: PMC10997931 DOI: 10.34172/apb.2024.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 11/12/2022] [Accepted: 07/19/2023] [Indexed: 04/09/2024] Open
Abstract
Purpose Due to the multilayered structure of the skin tissue, the architecture of its engineered scaffolds needs to be improved. In the present study, 45s5 bioglass nanoparticles were selected to induce fibroblast proliferation and their protein secretion, although cobalt ions were added to increase their potency. Methods A 3-layer scaffold was designed as polyurethane (PU) - polycaprolactone (PCL)/ collagen/nanoparticles-PCL/collagen. The scaffolds examined by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), tensile, surface hydrophilicity and weight loss. Biological tests were performed to assess cell survival, adhesion and the pattern of gene expression. Results The mechanical assay showed the highest young modulus for the scaffold with the doped nanoparticles and the water contact angle of this scaffold after chemical crosslinking of collagen was reduced to 52.34±7.7°. In both assessments, the values were statistically compared to other groups. The weight loss of the corresponding scaffold was the highest value of 82.35±4.3 % due to the alkaline effect of metal ions and indicated significant relations in contrast to the scaffold with non-doped particles and bare one (P value<0.05). Moreover, better cell expansion, greater cell confluence and a lower degree of toxicity were confirmed. The up-regulation of TGF β1 and VEGF genes introduced this scaffold as a better model for the fibroblasts commitment to a new skin tissue among bare and nondoped scaffold (P value<0.05). Conclusion The 3-layered scaffold which is loaded with cobalt ions-bonded bioglass nanoparticles, is a better substrate for the culture of the fibroblasts.
Collapse
Affiliation(s)
- Zahra Hemmati Dezaki
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Vahabodin Goodarzi
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohamad Reza Nourani
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Gonthier A, Botvinick EL, Grosberg A, Mohraz A. Effect of Porous Substrate Topographies on Cell Dynamics: A Computational Study. ACS Biomater Sci Eng 2023; 9:5666-5678. [PMID: 37713253 PMCID: PMC10565724 DOI: 10.1021/acsbiomaterials.3c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023]
Abstract
Controlling cell-substrate interactions via the microstructural characteristics of biomaterials offers an advantageous path for modulating cell dynamics, mechanosensing, and migration, as well as for designing immune-modulating implants, all without the drawbacks of chemical-based triggers. Specifically, recent in vivo studies have suggested that a porous implant's microscale curvature landscape can significantly impact cell behavior and ultimately the immune response. To investigate such cell-substrate interactions, we utilized a 3D computational model incorporating the minimum necessary physics of cell migration and cell-substrate interactions needed to replicate known in vitro behaviors. This model specifically incorporates the effect of membrane tension, which was found to be necessary to replicate in vitro cell behavior on curved surfaces. Our simulated substrates represent two classes of porous materials recently used in implant studies, which have markedly different microscale curvature distributions and pore geometries. We found distinct differences between the overall migration behaviors, shapes, and actin polymerization dynamics of cells interacting with the two substrates. These differences were correlated to the shape energy of the cells as they interacted with the porous substrates, in effect interpreting substrate topography as an energetic landscape interrogated by cells. Our results demonstrate that microscale curvature directly influences cell shape and migration and, therefore, is likely to influence cell behavior. This supports further investigation of the relationship between the surface topography of implanted materials and the characteristic immune response, a complete understanding of which would broadly advance principles of biomaterial design.
Collapse
Affiliation(s)
- Alyse
R. Gonthier
- Department
of Materials Science & Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Elliot L. Botvinick
- Department
of Biomedical Engineering, University of
California, Irvine, Irvine, California 92697, United States
- Center
for Complex Biological Systems, University
of California, Irvine, Irvine, California 92697, United States
- Beckman
Laser Institute and Medical Clinic, University
of California, Irvine, Irvine, California 92697, United States
- Department
of Surgery,University of California, Irvine, Irvine, California 92697, United States
- Edwards
Lifesciences
Foundation Cardiovascular Innovation & Research Center, University of California, Irvine, Irvine, California 92697, United States
| | - Anna Grosberg
- Department
of Biomedical Engineering, University of
California, Irvine, Irvine, California 92697, United States
- Center
for Complex Biological Systems, University
of California, Irvine, Irvine, California 92697, United States
- Edwards
Lifesciences
Foundation Cardiovascular Innovation & Research Center, University of California, Irvine, Irvine, California 92697, United States
- Department
of Chemical & Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
- The
NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California 92697, United States
- Sue
and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, California 92697, United States
| | - Ali Mohraz
- Department
of Materials Science & Engineering, University of California, Irvine, Irvine, California 92697, United States
- Department
of Chemical & Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
4
|
Hady TF, Hwang B, Waworuntu RL, Ratner BD, Bryers JD. Cells resident to precision templated 40-µm pore scaffolds generate small extracellular vesicles that affect CD4 + T cell phenotypes through regulatory TLR4 signaling. Acta Biomater 2023; 166:119-132. [PMID: 37150279 PMCID: PMC10330460 DOI: 10.1016/j.actbio.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Precision porous templated scaffolds (PTS) are a hydrogel construct of uniformly sized interconnected spherical pores that induce a pro-healing response (reducing the foreign body reaction, FBR) exclusively when the pores are 30-40µm in diameter. Our previous work demonstrated the necessity of Tregs in the maintenance of PTS pore size specific differences in CD4+ T cell phenotype. Work here characterizes the role of Tregs in the responses to implanted 40µm and 100µm PTS using WT and FoxP3+ cell (Treg) depleted mice. Proteomic analyses indicate that integrin signaling, monocytes/macrophages, cytoskeletal remodeling, inflammatory cues, and vesicule endocytosis may participate in Treg activation and the CD4+ T cell equilibrium modulated by PTS resident cell-derived small extracellular vesicles (sEVs). The role of MyD88-dependent and MyD88-independent TLR4 activation in PTS cell-derived sEV-to-T cell signaling is quantified by treating WT, TLR4ko, and MyD88ko splenic T cells with PTS cell-derived sEVs. STAT3 and mTOR are identified as mechanisms for further study for pore-size dependent PTS cell-derived sEV-to-T cell signaling. STATEMENT OF SIGNIFICANCE: Unique cell populations colonizing only within 40µm pore size PTS generate sEVs that resolve inflammation by modifying CD4+ T cell phenotypes through TLR4 signaling.
Collapse
Affiliation(s)
- T F Hady
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - B Hwang
- Center for Lung Biology, Department of Surgery, University of Washington Seattle, WA 98109, USA
| | - R L Waworuntu
- Center for Lung Biology, Department of Surgery, University of Washington Seattle, WA 98109, USA
| | - B D Ratner
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - J D Bryers
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
5
|
Hsiao FT, Chien HJ, Chou YH, Peng SJ, Chung MH, Huang TH, Lo LW, Shen CN, Chang HP, Lee CY, Chen CC, Jeng YM, Tien YW, Tang SC. Transparent tissue in solid state for solvent-free and antifade 3D imaging. Nat Commun 2023; 14:3395. [PMID: 37296117 PMCID: PMC10256715 DOI: 10.1038/s41467-023-39082-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Optical clearing with high-refractive-index (high-n) reagents is essential for 3D tissue imaging. However, the current liquid-based clearing condition and dye environment suffer from solvent evaporation and photobleaching, causing difficulties in maintaining the tissue optical and fluorescent features. Here, using the Gladstone-Dale equation [(n-1)/density=constant] as a design concept, we develop a solid (solvent-free) high-n acrylamide-based copolymer to embed mouse and human tissues for clearing and imaging. In the solid state, the fluorescent dye-labeled tissue matrices are filled and packed with the high-n copolymer, minimizing scattering in in-depth imaging and dye fading. This transparent, liquid-free condition provides a friendly tissue and cellular environment to facilitate high/super-resolution 3D imaging, preservation, transfer, and sharing among laboratories to investigate the morphologies of interest in experimental and clinical conditions.
Collapse
Affiliation(s)
- Fu-Ting Hsiao
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Hung-Jen Chien
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Ya-Hsien Chou
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Shih-Jung Peng
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Mei-Hsin Chung
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Pathology, National Taiwan University Hospital-Hsinchu Branch, Hsinchu, Taiwan
| | - Tzu-Hui Huang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Li-Wen Lo
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Chia-Ning Shen
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsiu-Pi Chang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Yuan Lee
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Chia Chen
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Yung-Ming Jeng
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Wen Tien
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Shiue-Cheng Tang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan.
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan.
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
6
|
Zhang ZQ, Ren KF, Ji J. Silane coupling agent in biomedical materials. Biointerphases 2023; 18:030801. [PMID: 37382394 DOI: 10.1116/6.0002712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/24/2023] [Indexed: 06/30/2023] Open
Abstract
Medical devices are becoming more and more significant in our daily life. For implantable medical devices, good biocompatibility is required for further use in vivo. Thus, surface modification of medical devices is really important, which gives a wide application scene for a silane coupling agent. The silane coupling agent is able to form a durable bond between organic and inorganic materials. The dehydration process provides linking sites to achieve condensation of two hydroxyl groups. The forming covalent bond brings excellent mechanical properties among different surfaces. Indeed, the silane coupling agent is a popular component in surface modification. Metals, proteins, and hydrogels are using silane coupling agent to link parts commonly. The mild reaction environment also brings advantages for the spread of the silane coupling agent. In this review, we summarize two main methods of using the silane coupling agent. One is acting as a crosslinker mixed in the whole system, and the other is to provide a bridge between different surfaces. Moreover, we introduce their applications in biomedical devices.
Collapse
Affiliation(s)
- Ze-Qun Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ke-Feng Ren
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Soochow University, Suzhou 215123, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Hernandez JL, Woodrow KA. Medical Applications of Porous Biomaterials: Features of Porosity and Tissue-Specific Implications for Biocompatibility. Adv Healthc Mater 2022; 11:e2102087. [PMID: 35137550 PMCID: PMC9081257 DOI: 10.1002/adhm.202102087] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/17/2021] [Indexed: 12/14/2022]
Abstract
Porosity is an important material feature commonly employed in implants and tissue scaffolds. The presence of material voids permits the infiltration of cells, mechanical compliance, and outward diffusion of pharmaceutical agents. Various studies have confirmed that porosity indeed promotes favorable tissue responses, including minimal fibrous encapsulation during the foreign body reaction (FBR). However, increased biofilm formation and calcification is also described to arise due to biomaterial porosity. Additionally, the relevance of host responses like the FBR, infection, calcification, and thrombosis are dependent on tissue location and specific tissue microenvironment. In this review, the features of porous materials and the implications of porosity in the context of medical devices is discussed. Common methods to create porous materials are also discussed, as well as the parameters that are used to tune pore features. Responses toward porous biomaterials are also reviewed, including the various stages of the FBR, hemocompatibility, biofilm formation, and calcification. Finally, these host responses are considered in tissue specific locations including the subcutis, bone, cardiovascular system, brain, eye, and female reproductive tract. The effects of porosity across the various tissues of the body is highlighted and the need to consider the tissue context when engineering biomaterials is emphasized.
Collapse
Affiliation(s)
- Jamie L Hernandez
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA, 98195, USA
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA, 98195, USA
| |
Collapse
|
8
|
Unruh RM, Bornhoeft LR, Nichols SP, Wisniewski NA, McShane MJ. Inorganic-Organic Interpenetrating Network Hydrogels as Tissue-Integrating Luminescent Implants: Physicochemical Characterization and Preclinical Evaluation. Macromol Biosci 2022; 22:e2100380. [PMID: 34847287 PMCID: PMC8930476 DOI: 10.1002/mabi.202100380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/23/2021] [Indexed: 11/07/2022]
Abstract
Sensors capable of accurate, continuous monitoring of biochemistry are crucial to the realization of personalized medicine on a large scale. Great strides have been made to enhance tissue compatibility of long-term in vivo biosensors using biomaterials strategies such as tissue-integrating hydrogels. However, the low level of oxygen in tissue presents a challenge for implanted devices, especially when the biosensing function relies on oxygen as a measure-either as a primary analyte or as an indirect marker to transduce levels of other biomolecules. This work presents a method of fabricating inorganic-organic interpenetrating network (IPN) hydrogels to optimize the oxygen transport through injectable biosensors. Capitalizing on the synergy between the two networks, various physicochemical properties (e.g., swelling, glass transition temperature, and mechanical properties) are shown to be independently adjustable while maintaining a 250% increase in oxygen permeability relative to poly(2-hydroxyethyl methacrylate) controls. Finally, these gels, when functionalized with a Pd(II) benzoporphyrin phosphor, track tissue oxygen in real time for 76 days as subcutaneous implants in a porcine model while promoting tissue ingrowth and minimizing fibrosis around the implant. These findings support IPN networks for fine-tuned design of implantable biomaterials in personalized medicine and other biomedical applications.
Collapse
Affiliation(s)
- Rachel M Unruh
- 5045 Emerging Technologies Building, 3120 TAMU, College Station, TX, 77843, USA
| | - Lindsey R Bornhoeft
- 5045 Emerging Technologies Building, 3120 TAMU, College Station, TX, 77843, USA
| | - Scott P Nichols
- Profusa, Inc., 5959 Horton St #450, Emeryville, CA, 94608, USA
| | | | - Michael J McShane
- 5045 Emerging Technologies Building, 3120 TAMU, College Station, TX, 77843, USA
| |
Collapse
|
9
|
Farzaneh S, Hosseinzadeh S, Samanipour R, Hatamie S, Ranjbari J, Khojasteh A. Fabrication and characterization of cobalt ferrite magnetic hydrogel combined with static magnetic field as a potential bio-composite for bone tissue engineering. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102525] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Ma P, Chen Y, Lai X, Zheng J, Ye E, Loh XJ, Zhao Y, Parikh BH, Su X, You M, Wu YL, Li Z. The Translational Application of Hydrogel for Organoid Technology: Challenges and Future Perspectives. Macromol Biosci 2021; 21:e2100191. [PMID: 34263547 DOI: 10.1002/mabi.202100191] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/17/2021] [Indexed: 12/16/2022]
Abstract
Human organoids mimic the physiology and tissue architecture of organs and are of great significance for promoting the study of human diseases. Traditionally, organoid cultures rely predominantly on animal or tumor-derived extracellular matrix (ECM), resulting in poor reproducibility. This limits their utility in for large-scale drug screening and application for regenerative medicine. Recently, synthetic polymeric hydrogels, with high biocompatibility and biodegradability, stability, uniformity of compositions, and high throughput properties, have emerged as potential materials for achieving 3D architectures for organoid cultures. Compared to conventional animal or tumor-derived organoids, these newly engineered hydrogel-based organoids more closely resemble human organs, as they are able to mimic native structural and functional properties observed in-situ. In this review, recent developments in hydrogel-based organoid culture will be summarized, emergent hydrogel technology will be highlighted, and future challenges in applying them to organoid culture will be discussed.
Collapse
Affiliation(s)
- Panqin Ma
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Ying Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Xiyu Lai
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Jie Zheng
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Enyi Ye
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Yi Zhao
- BayRay Innovation Center, Shenzhen Bay Laboratory (SZBL), Shenzhen, 518132, China
| | - Bhav Harshad Parikh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis, Drive, Proteos, Singapore, 138673, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore, 117597, Singapore
| | - Xinyi Su
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis, Drive, Proteos, Singapore, 138673, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore, 117597, Singapore.,Singapore Eye Research Institute (SERI), The Academia, 20 College Road Discovery Tower Level 6, Singapore, 169856, Singapore.,Department of Ophthalmology, National University Hospital, Singapore, 119074, Singapore
| | - Mingliang You
- Hangzhou Cancer Institute, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Zibiao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore.,Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| |
Collapse
|
11
|
Khosravimelal S, Mobaraki M, Eftekhari S, Ahearne M, Seifalian AM, Gholipourmalekabadi M. Hydrogels as Emerging Materials for Cornea Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006335. [PMID: 33887108 DOI: 10.1002/smll.202006335] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Hydrogel biomaterials have many favorable characteristics including tuneable mechanical behavior, cytocompatibility, optical properties suitable for regeneration and restoration of the damaged cornea tissue. The cornea is a tissue susceptible to various injuries and traumas with a complicated healing cascade, in which conserving its transparency and integrity is critical. Accordingly, the hydrogels' known properties along with the stimulation of nerve and cell regeneration make them ideal scaffold for corneal tissue engineering. Hydrogels have been used extensively in clinical applications for the repair and replacement of diseased organs. The development and optimizing of novel hydrogels to repair/replace corneal injuries have been the main focus of researches within the last decade. This research aims to critically review in vitro, preclinical, as well as clinical trial studies related to corneal wound healing using hydrogels in the past 10 years, as this is considered as an emerging technology for corneal treatment. Several unique modifications of hydrogels with smart behaviors have undergone early phase clinical trials and showed promising outcomes. Financially, this considers a multibillion dollars industry and with huge interest from medical devices as well as pharmaceutical industries with several products may emerge within the next five years.
Collapse
Affiliation(s)
- Sadjad Khosravimelal
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Mohammadmahdi Mobaraki
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, 1591634311, Iran
| | - Samane Eftekhari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Mark Ahearne
- Trinity Centre for Biomedical Engineering, School of Engineering, Trinity College Dublin, University of Dublin, Dublin, D02 R590, Republic of Ireland
| | - Alexander Marcus Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (NanoRegMed Ltd), London BioScience Innovation Centre, London, NW1 0NH, UK
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| |
Collapse
|
12
|
Kramer S, Cameron NR, Krajnc P. Porous Polymers from High Internal Phase Emulsions as Scaffolds for Biological Applications. Polymers (Basel) 2021; 13:polym13111786. [PMID: 34071683 PMCID: PMC8198890 DOI: 10.3390/polym13111786] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/14/2022] Open
Abstract
High internal phase emulsions (HIPEs), with densely packed droplets of internal phase and monomers dispersed in the continuous phase, are now an established medium for porous polymer preparation (polyHIPEs). The ability to influence the pore size and interconnectivity, together with the process scalability and a wide spectrum of possible chemistries are important advantages of polyHIPEs. In this review, the focus on the biomedical applications of polyHIPEs is emphasised, in particular the applications of polyHIPEs as scaffolds/supports for biological cell growth, proliferation and tissue (re)generation. An overview of the polyHIPE preparation methodology is given and possibilities of morphology tuning are outlined. In the continuation, polyHIPEs with different chemistries and their interaction with biological systems are described. A further focus is given to combined techniques and advanced applications.
Collapse
Affiliation(s)
- Stanko Kramer
- PolyOrgLab, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia;
| | - Neil R. Cameron
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, VIC 3800, Australia
- Correspondence: (N.R.C.); (P.K.)
| | - Peter Krajnc
- PolyOrgLab, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia;
- Correspondence: (N.R.C.); (P.K.)
| |
Collapse
|
13
|
Abstract
Hydrogels are polymeric networks highly swollen with water. Because of their versatility and properties mimicking biological tissues, they are very interesting for biomedical applications. In this aim, the control of porosity is of crucial importance since it governs the transport properties and influences the fate of cells cultured onto or into the hydrogels. Among the techniques allowing for the elaboration of hydrogels, photopolymerization or photo-cross-linking are probably the most powerful and versatile synthetic routes. This Review aims at giving an overview of the literature dealing with photopolymerized hydrogels for which the generation or characterization of porosity is studied. First, the materials (polymers and photoinitiating systems) used for synthesizing hydrogels are presented. The different ways for generating porosity in the photopolymerized hydrogels are explained, and the characterization techniques allowing adequate study of the porosity are presented. Finally, some applications in the field of controlled release and tissue engineering are reviewed.
Collapse
Affiliation(s)
- Erwan Nicol
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS Le Mans Université, Avenue Olivier Messiaen, 72085 Cedex 9 Le Mans, France
| |
Collapse
|
14
|
Li S, Wang X, Zhu J, Wang Z, Wang L. Synthesis and characterization of photothermal antibacterial hydrogel with enhanced mechanical properties. NEW J CHEM 2021. [DOI: 10.1039/d1nj02529e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Based on Fe3O4 nanoparticles, a hydrogel with controllable crosslinking density, good mechanical properties, photothermal and antibacterial abilities was constructed.
Collapse
Affiliation(s)
- Shubin Li
- Harbin Institute of Technology, 92 Xidazhi Road, Nangang District, Harbin 150001, P. R. China
| | - Xiao Wang
- Harbin Institute of Technology, 92 Xidazhi Road, Nangang District, Harbin 150001, P. R. China
| | - Jiang Zhu
- Harbin Medical University, 157 Baojian Road, Nangang District, Harbin 150001, P. R. China
| | - Zhenyu Wang
- Harbin Institute of Technology, 92 Xidazhi Road, Nangang District, Harbin 150001, P. R. China
| | - Lu Wang
- Harbin Institute of Technology, 92 Xidazhi Road, Nangang District, Harbin 150001, P. R. China
| |
Collapse
|
15
|
Hady TF, Hwang B, Pusic AD, Waworuntu RL, Mulligan M, Ratner B, Bryers JD. Uniform 40-µm-pore diameter precision templated scaffolds promote a pro-healing host response by extracellular vesicle immune communication. J Tissue Eng Regen Med 2020; 15:24-36. [PMID: 33217150 DOI: 10.1002/term.3160] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Implanted porous precision templated scaffolds (PTS) with 40-µm spherical pores reduce inflammation and foreign body reaction (FBR) while increasing vascular density upon implantation. Larger or smaller pores, however, promote chronic inflammation and FBR. While macrophage (MØ) recruitment and polarization participates in perpetuating this pore-size-mediated phenomenon, the driving mechanism of this unique pro-healing response is poorly characterized. We hypothesized that the primarily myeloid PTS resident cells release small extracellular vesicles (sEVs) that induce pore-size-dependent pro-healing effects in surrounding T cells. Upon profiling resident immune cells and their sEVs from explanted 40-µm- (pro-healing) and 100-µm-pore diameter (inflammatory) PTS, we found that PTS pore size did not affect PTS resident immune cell population ratios or the proportion of myeloid sEVs generated from explanted PTS. However, quantitative transcriptomic assessment indicated cell and sEV phenotype were pore size dependent. In vitro experiments demonstrated the ability of PTS cell-derived sEVs to stimulate T cells transcriptionally and proliferatively. Specifically, sEVs isolated from cells inhabiting explanted 100 μm PTS significantly upregulated Th1 inflammatory gene expression in immortalized T cells. sEVs isolated from cell inhabiting both 40- and 100-μm PTS upregulated essential Treg transcriptional markers in both primary and immortalized T cells. Finally, we investigated the effects of Treg depletion on explanted PTS resident cells. FoxP3+ cell depletion suggests Tregs play a unique role in balancing T cell subset ratios, thus driving host response in 40-μm PTS. These results indicate that predominantly 40-µm PTS myeloid cell-derived sEVs affect T cells through a distinct, pore-size-mediated modality.
Collapse
Affiliation(s)
- Thomas F Hady
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Billanna Hwang
- Center for Lung Biology, Department of Surgery, University of Washington, Seattle, Washington, USA.,West Coast Exosortium (Westco Exosortium), University of Washington, Seattle, Washington, USA
| | - A D Pusic
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Racheal L Waworuntu
- Center for Lung Biology, Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Michael Mulligan
- Center for Lung Biology, Department of Surgery, University of Washington, Seattle, Washington, USA.,West Coast Exosortium (Westco Exosortium), University of Washington, Seattle, Washington, USA
| | - Buddy Ratner
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - James D Bryers
- Department of Bioengineering, University of Washington, Seattle, Washington, USA.,West Coast Exosortium (Westco Exosortium), University of Washington, Seattle, Washington, USA
| |
Collapse
|
16
|
Muckom RJ, Sampayo RG, Johnson HJ, Schaffer DV. Advanced Materials to Enhance Central Nervous System Tissue Modeling and Cell Therapy. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2002931. [PMID: 33510596 PMCID: PMC7840150 DOI: 10.1002/adfm.202002931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Indexed: 05/04/2023]
Abstract
The progressively deeper understanding of mechanisms underlying stem cell fate decisions has enabled parallel advances in basic biology-such as the generation of organoid models that can further one's basic understanding of human development and disease-and in clinical translation-including stem cell based therapies to treat human disease. Both of these applications rely on tight control of the stem cell microenvironment to properly modulate cell fate, and materials that can be engineered to interface with cells in a controlled and tunable manner have therefore emerged as valuable tools for guiding stem cell growth and differentiation. With a focus on the central nervous system (CNS), a broad range of material solutions that have been engineered to overcome various hurdles in constructing advanced organoid models and developing effective stem cell therapeutics is reviewed. Finally, regulatory aspects of combined material-cell approaches for CNS therapies are considered.
Collapse
Affiliation(s)
- Riya J Muckom
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, CA 94704, USA
| | - Rocío G Sampayo
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, CA 94704, USA
| | - Hunter J Johnson
- Department of Bioengineering, UC Berkeley, Berkeley, CA 94704, USA
| | - David V Schaffer
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, CA 94704, USA
| |
Collapse
|
17
|
Gong L, Li J, Zhang J, Pan Z, Liu Y, Zhou F, Hong Y, Hu Y, Gu Y, Ouyang H, Zou X, Zhang S. An interleukin-4-loaded bi-layer 3D printed scaffold promotes osteochondral regeneration. Acta Biomater 2020; 117:246-260. [PMID: 33007484 DOI: 10.1016/j.actbio.2020.09.039] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/12/2020] [Accepted: 09/23/2020] [Indexed: 02/09/2023]
Abstract
Multilayer scaffolds fabricated by 3D printing or other techniques have been used to repair osteochondral defects. However, it remains a challenge to regenerate the articular cartilage and subchondral bone simultaneously with higher performance. In the present study, we enhanced the repair efficiency of osteochondral defects by developing a bi-layer scaffold: an interleukin-4 (IL-4)-loaded radially oriented gelatin methacrylate (GelMA) scaffold printed with digital light processing (DLP) in the upper layer and a porous polycaprolactone and hydroxyapatite (PCL-HA) scaffold printed with fused deposition modeling (FDM) in the lower layer. An in vitro test showed that both layers supported cell adhesion and proliferation, as the lower layer promoted osteogenic differentiation and the upper layer with IL-4 relieved the negative effects of inflammation on murine chondrocytes, which were induced by interleukin-1β (IL-1β) and M1 macrophages. In a rabbit osteochondral defect repair model, the IL-4-loaded bi-layer scaffold group obtained the highest histological score (24 ± 2) compared to the nontreated (11 ± 1) and pure bi-layer scaffold (16 ± 1) groups after 16 weeks of implantation, which showed that the IL-4-loaded bi-layer scaffold promoted regeneration of both cartilage and subchondral bone with increased formation of neocartilage and neobone tissues. Thus, the IL-4-loaded bi-layer scaffold is an attractive candidate for repair and regeneration of osteochondral defects.
Collapse
|
18
|
Lattuada E, Leo M, Caprara D, Salvatori L, Stoppacciaro A, Sciortino F, Filetici P. DNA-GEL, Novel Nanomaterial for Biomedical Applications and Delivery of Bioactive Molecules. Front Pharmacol 2020; 11:01345. [PMID: 33013376 PMCID: PMC7500453 DOI: 10.3389/fphar.2020.01345] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/11/2020] [Indexed: 01/19/2023] Open
Abstract
Novel DNA materials promise unpredictable perspectives for applications in cell biology. The realization of DNA-hydrogels built by a controlled association of DNA nanostars, whose binding can be tuned with minor changes in the nucleotide sequences, has been recently described. DNA hydrogels, with specific gelation properties that can be reassambled in desired culture media supplemented with drugs, RNA, DNA molecules and other bioactive compounds offer the opportunity to develop a novel nanomaterial for the delivery of single or multiple drugs in tumor tissues as an innovative and promising strategy. We provide here a comprehensive description of different, recently realized DNA-gels with the perspective of stimulating their biomedical application. Finally, we discuss the possibility to design sophisticated 3D tissue-like DNA-gels incorporating cell spheroids or single cells for the assembly of a novel kind of cellular matrix as a preclinical investigation for the implementation of tools for in vivo delivery of bioactive molecules.
Collapse
Affiliation(s)
- Enrico Lattuada
- Department of Physics, Sapienza University of Rome, Rome, Italy
| | - Manuela Leo
- Department of Physics, Sapienza University of Rome, Rome, Italy
| | - Debora Caprara
- Department of Physics, Sapienza University of Rome, Rome, Italy
| | - Luisa Salvatori
- Institute of Molecular Biology and Pathology - CNR, Sapienza University of Rome, Rome, Italy
| | - Antonella Stoppacciaro
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | | | - Patrizia Filetici
- Institute of Molecular Biology and Pathology - CNR, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
19
|
Liu YP, Wang J, Tian ZL, Zhai PS, Wang ZQ, Zhou YM, Ni SL. [Effects of scaffold microstructure and mechanical properties on regeneration of tubular dentin]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2020; 38:314-318. [PMID: 32573141 DOI: 10.7518/hxkq.2020.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tubular dentin is of great significance in the process of tooth tissue and tooth regeneration, because it is not only the structural feature of primary dentin, but also can affect the tooth sensory function, affect the differentiation of dental pulp cells and provide strong mechanical support for teeth. Scaffold is one of the three elements of tissue engineering dentin regeneration. Most experiments on dentin regeneration involve the study of the microstructure and mechanical properties of the scaffold. The microstructure and mechanical characteristics of scaffold materials have important effects on the differentiation and adhesion of odontoblast, it can directly affect the tissue structure of regenerated dentin.
Collapse
Affiliation(s)
- Yi-Ping Liu
- Dept. of Implant Center, Hospital of Stomatology, Jilin University, Changchun 130000, China
| | - Jue Wang
- Dept. of Implant Center, Hospital of Stomatology, Jilin University, Changchun 130000, China
| | - Zi-Lu Tian
- Dept. of Implant Center, Hospital of Stomatology, Jilin University, Changchun 130000, China
| | - Pei-Song Zhai
- Dept. of Implant Center, Hospital of Stomatology, Jilin University, Changchun 130000, China
| | - Zhan-Qi Wang
- Dept. of Implant Center, Hospital of Stomatology, Jilin University, Changchun 130000, China
| | - Yan-Min Zhou
- Dept. of Implant Center, Hospital of Stomatology, Jilin University, Changchun 130000, China
| | - Shi-Lei Ni
- Dept. of Implant Center, Hospital of Stomatology, Jilin University, Changchun 130000, China
| |
Collapse
|
20
|
Luo LJ, Nguyen DD, Lai JY. Long-acting mucoadhesive thermogels for improving topical treatments of dry eye disease. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111095. [PMID: 32600699 DOI: 10.1016/j.msec.2020.111095] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/12/2020] [Accepted: 05/12/2020] [Indexed: 12/25/2022]
Abstract
Dry eye disease (DED) is the most common ocular disorder that causes persistent discomfort and blurry vision in patients. Despite pharmacotherapy strategies, the current topical administration of eye drops remains a great challenge owing to their low bioavailability and short residence time. Herein, we demonstrate an effective topical treatment of DED via rational design of a long-acting and mucoadhesive drug delivery system. Specifically, the drug carrier is a chemically ternary material system consisting of gelatin that serves as an enzyme-mediated degradable matrix, poly(N-isopropylacrylamide) as a thermo-responsive regulator, and lectin Helix pomatia agglutinin as a mucus-binding component. The long-acting drug release performance is exploited via initiator effects during the synthesis of the thermo-responsive polymer, while the mucoadhesive feature is inherited from the mucus-binding material. In a rabbit model of DED, a pharmacotherapy based on one-time topical administration of epigallocatechin gallate-loaded carrier onto the cul-de-sac could effectively repair the defective corneal epithelium via mitigating cellular inflammation, oxidative stress, and cell apoptosis for a sustained period over 14 days. These findings on the initiator and synergy effects in the development of the advanced ophthalmic formulation show great promise for efficient management of complex ocular diseases by a simple topical administration route.
Collapse
Affiliation(s)
- Li-Jyuan Luo
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan, ROC
| | - Duc Dung Nguyen
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan, ROC
| | - Jui-Yang Lai
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan, ROC; Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan, ROC; Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC.
| |
Collapse
|
21
|
Xu X, Liu Y, Fu W, Yao M, Ding Z, Xuan J, Li D, Wang S, Xia Y, Cao M. Poly(N-isopropylacrylamide)-Based Thermoresponsive Composite Hydrogels for Biomedical Applications. Polymers (Basel) 2020; 12:polym12030580. [PMID: 32150904 PMCID: PMC7182829 DOI: 10.3390/polym12030580] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
Poly(N-isopropylacrylamide) (PNIPAM)-based thermosensitive hydrogels demonstrate great potential in biomedical applications. However, they have inherent drawbacks such as low mechanical strength, limited drug loading capacity and low biodegradability. Formulating PNIPAM with other functional components to form composited hydrogels is an effective strategy to make up for these deficiencies, which can greatly benefit their practical applications. This review seeks to provide a comprehensive observation about the PNIPAM-based composite hydrogels for biomedical applications so as to guide related research. It covers the general principles from the materials choice to the hybridization strategies as well as the performance improvement by focusing on several application areas including drug delivery, tissue engineering and wound dressing. The most effective strategies include incorporation of functional inorganic nanoparticles or self-assembled structures to give composite hydrogels and linking PNIPAM with other polymer blocks of unique properties to produce copolymeric hydrogels, which can improve the properties of the hydrogels by enhancing the mechanical strength, giving higher biocompatibility and biodegradability, introducing multi-stimuli responsibility, enabling higher drug loading capacity as well as controlled release. These aspects will be of great help for promoting the development of PNIPAM-based composite materials for biomedical applications.
Collapse
Affiliation(s)
- Xiaomin Xu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, University of Petroleum (East China), Qingdao 266580, China; (X.X.); (Y.L.); (M.Y.); (Z.D.); (J.X.); (S.W.); (Y.X.)
| | - Yang Liu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, University of Petroleum (East China), Qingdao 266580, China; (X.X.); (Y.L.); (M.Y.); (Z.D.); (J.X.); (S.W.); (Y.X.)
| | - Wenbo Fu
- Heze Key Laboratory of Water Pollution Treatment, Heze Vocational College, Heze 274000, China;
| | - Mingyu Yao
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, University of Petroleum (East China), Qingdao 266580, China; (X.X.); (Y.L.); (M.Y.); (Z.D.); (J.X.); (S.W.); (Y.X.)
| | - Zhen Ding
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, University of Petroleum (East China), Qingdao 266580, China; (X.X.); (Y.L.); (M.Y.); (Z.D.); (J.X.); (S.W.); (Y.X.)
| | - Jiaming Xuan
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, University of Petroleum (East China), Qingdao 266580, China; (X.X.); (Y.L.); (M.Y.); (Z.D.); (J.X.); (S.W.); (Y.X.)
| | - Dongxiang Li
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China;
| | - Shengjie Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, University of Petroleum (East China), Qingdao 266580, China; (X.X.); (Y.L.); (M.Y.); (Z.D.); (J.X.); (S.W.); (Y.X.)
| | - Yongqing Xia
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, University of Petroleum (East China), Qingdao 266580, China; (X.X.); (Y.L.); (M.Y.); (Z.D.); (J.X.); (S.W.); (Y.X.)
| | - Meiwen Cao
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, University of Petroleum (East China), Qingdao 266580, China; (X.X.); (Y.L.); (M.Y.); (Z.D.); (J.X.); (S.W.); (Y.X.)
- Correspondence: ; Tel./Fax: +86-532-86983455
| |
Collapse
|
22
|
Facile Fabrication of Composite Scaffolds for Long-Term Controlled Dual Drug Release. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/3927860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bone tuberculosis (TB) caused by mycobacterium tuberculosis continues to present a formidable challenge to humans. To effectively cure serious bone TB, a novel kind of composite scaffolds with long-term dual drug release behaviours were prepared to satisfy the needs of both bone regeneration and antituberculosis drug therapy. In virtue of an improved O/W emulsion technique, water-soluble isoniazid (INH)-loaded gelatin microparticles were obtained by tailoring the content of β-tricalcium phosphate (β-TCP), which played significant roles in INH entrapment efficiency and drug release behaviours. By mixing with the poly(ε-caprolactone)-block-poly (lactic-co-glycolic acid) (b-PLGC) solution containing oil-soluble rifampicin (RFP) via the particle leaching combined with phase separation technique, the dual drugs-loaded composite scaffolds were fabricated, which possessed interconnected porous structures and achieved the steady release of INH and RFP drugs for three months. Moreover, this dual drugs-loaded system could basically achieve their expectant roles of respective drugs without obvious influences with each other. This strategy on preparation of intelligent composite scaffolds with the multi-drugs loading capacity and controlled long-term release behaviour will be potential and promising substrates in clinical treatment of bone tuberculosis.
Collapse
|
23
|
Li X, Rombouts W, van der Gucht J, de Vries R, Dijksman JA. Mechanics of composite hydrogels approaching phase separation. PLoS One 2019; 14:e0211059. [PMID: 30682112 PMCID: PMC6347237 DOI: 10.1371/journal.pone.0211059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/07/2019] [Indexed: 12/14/2022] Open
Abstract
For polymer-particle composites, limited thermodynamic compatibility of polymers and particles often leads to poor dispersal and agglomeration of the particles in the matrix, which negatively impacts the mechanics of composites. To study the impact of particle compatibility in polymer matrices on the mechanical properties of composites, we here study composite silica- protein based hydrogels. The polymer used is a previously studied telechelic protein-based polymer with end groups that form triple helices, and the particles are silica nanoparticles that only weakly associate with the polymer matrix. At 1mM protein polymer, up to 7% of silica nanoparticles can be embedded in the hydrogel. At higher concentrations the system phase separates. Oscillatory rheology shows that at high frequencies the particles strengthen the gels by acting as short-lived multivalent cross-links, while at low frequencies, the particles reduce the gel strength, presumably by sequestering part of the protein polymers in such a way that they can no longer contribute to the network strength. As is generally observed for polymer/particle composites, shear-induced polymer desorption from the particles leads to a viscous dissipation that strongly increases with increasing particle concentration. While linear rheological properties as function of particle concentration provide no signals for an approaching phase separation, this is very different for the non-linear rheology, especially fracture. Strain-at-break decreases rapidly with increasing particle concentration and vanishes as the phase boundary is approached, suggesting that the interfaces between regions of high and low particle densities in composites close to phase separation provide easy fracture planes.
Collapse
Affiliation(s)
- Xiufeng Li
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708WE Wageningen, the Netherlands
| | - Wolf Rombouts
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708WE Wageningen, the Netherlands
| | - Jasper van der Gucht
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708WE Wageningen, the Netherlands
| | - Renko de Vries
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708WE Wageningen, the Netherlands
| | - Joshua A. Dijksman
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708WE Wageningen, the Netherlands
- * E-mail:
| |
Collapse
|
24
|
Zou M, Jin R, Hu Y, Zhang Y, Wang H, Liu G, Nie Y, Wang Y. A thermo-sensitive, injectable and biodegradable in situ hydrogel as a potential formulation for uveitis treatment. J Mater Chem B 2019. [DOI: 10.1039/c9tb00939f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The thermo-sensitive hydrogels with high drug loading rate achieved sustained drug release over 2 weeks. Histopathological examination of retina confirmed the excellent biocompatibility and effective anti-inflammatory property of the hydrogel.
Collapse
Affiliation(s)
- Mengwei Zou
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- P. R. China
| | - Rongrong Jin
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- P. R. China
| | - Yanfei Hu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- P. R. China
| | - Ying Zhang
- Department of Ophthalmology
- West China Hospital
- Sichuan University
- Chengdu
- P. R. China
| | - Haibo Wang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- P. R. China
| | - Gongyan Liu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- P. R. China
| | - Yu Nie
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- P. R. China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- P. R. China
| |
Collapse
|
25
|
Farhat W, Hasan A, Lucia L, Becquart F, Ayoub A, Kobeissy F. Hydrogels for Advanced Stem Cell Therapies: A Biomimetic Materials Approach for Enhancing Natural Tissue Function. IEEE Rev Biomed Eng 2019; 12:333-351. [DOI: 10.1109/rbme.2018.2824335] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Ying GL, Maharjan S, Yin YX, Chai RR, Cao X, Yang JZ, Miri AK, Hassan S, Zhang YS. Aqueous Two-Phase Emulsion Bioink-Enabled 3D Bioprinting of Porous Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1805460. [PMID: 30345555 PMCID: PMC6402588 DOI: 10.1002/adma.201805460] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Indexed: 05/03/2023]
Abstract
3D bioprinting technology provides programmable and customizable platforms to engineer cell-laden constructs mimicking human tissues for a wide range of biomedical applications. However, the encapsulated cells are often restricted in spreading and proliferation by dense biomaterial networks from gelation of bioinks. Herein, a cell-benign approach is reported to directly bioprint porous-structured hydrogel constructs by using an aqueous two-phase emulsion bioink. The bioink, which contains two immiscible aqueous phases of cell/gelatin methacryloyl (GelMA) mixture and poly(ethylene oxide) (PEO), is photocrosslinked to fabricate predesigned cell-laden hydrogel constructs by extrusion bioprinting or digital micromirror device-based stereolithographic bioprinting. The porous structure of the 3D-bioprinted hydrogel construct is formed by subsequently removing the PEO phase from the photocrosslinked GelMA hydrogel. Three different cell types (human hepatocellular carcinoma cells, human umbilical vein endothelial cells, and NIH/3T3 mouse embryonic fibroblasts) within the 3D-bioprinted porous hydrogel patterns show enhanced cell viability, spreading, and proliferation compared to the standard (i.e., nonporous) hydrogel constructs. The 3D bioprinting strategy is believed to provide a robust and versatile platform to engineer porous-structured tissue constructs and their models for a variety of applications in tissue engineering, regenerative medicine, drug development, and personalized therapeutics.
Collapse
Affiliation(s)
- Guo-Liang Ying
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Sushila Maharjan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Yi-Xia Yin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Rong-Rong Chai
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Xia Cao
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Jing-Zhou Yang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Amir K. Miri
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Shabir Hassan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| |
Collapse
|
27
|
Zhao Y, Fan J, Bai S. Biocompatibility of injectable hydrogel from decellularized human adipose tissue in vitro and in vivo. J Biomed Mater Res B Appl Biomater 2018; 107:1684-1694. [PMID: 30352138 DOI: 10.1002/jbm.b.34261] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 08/18/2018] [Accepted: 09/23/2018] [Indexed: 12/23/2022]
Abstract
Adipose tissue engineering is considered as a promising treatment for repairing soft tissue defects. The decellularized extracellular matrix (ECM) is becoming the research focus in tissue engineering for its tissue specificity. In this study, the human adipose tissue liposucted from healthy people were decellularized by a series of mechanical, chemical, and enzymatic methods. The components of cell and lipid were effectively removed, whereas the collagens and other ingredients in adipose tissue were retained in the human decellularized adipose tissue (hDAT). Then the extracted hDAT was further fabricated into injectable hydrogel, which could be self-assembled to form gel under certain condition. The hDAT hydrogel was nontoxic to human adipose-derived stem cells (ADSCs) and could spontaneously induce adipogenic differentiation in vitro. It was highly biocompatible and could not cause inflammation and rejection after being implanted subcutaneously. The hDAT hydrogel developed in this study will be one of the available choices for soft tissue enlargement and cosmetic fillers because of its noninvasive in collection and implantation process. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1684-1694, 2019.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Plastic Surgery, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110004, China.,Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning, 110122, China
| | - Jun Fan
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning, 110122, China
| | - Shuling Bai
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning, 110122, China
| |
Collapse
|
28
|
Xu T, Zhang J, Zhu Y, Zhao W, Pan C, Ma H, Zhang L. A poly(hydroxyethyl methacrylate)-Ag nanoparticle porous hydrogel for simultaneous in vivo prevention of the foreign-body reaction and bacterial infection. NANOTECHNOLOGY 2018; 29:395101. [PMID: 29989569 DOI: 10.1088/1361-6528/aad257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The use of implants or indwelling medical devices has greatly enhanced the quality and efficacy of health care. However, foreign-body reactions (FBRs) and infections can lead to potential failure or removal of the devices, or increased morbidity and mortality of patients. Herein, we develop a silver nanoparticle (AgNP) loaded poly(hydroxyethyl methacrylate) hydrogel with spherical, interconnected 40 μm pores. The resulting hydrogels displayed good antibacterial properties regarding both gram positive bacteria (Staphylococcus aureus) and gram negative bacteria (Escherichia coli (E. coli)) in vitro and were highly efficient at inhibiting bacterial cell growth. Moreover, they exhibited an in vivo resistance to FBRs by reducing the immune responses, and completely prevented the formation of collagen capsules. Finally, in vivo studies of the E. coli infected mouse model demonstrated that the AgNP loaded porous hydrogels were highly efficient at resisting the bacterial FBRs and infections, while they promoted cell mitigation and infiltration. Findings from this work suggest that AgNP loaded porous hydrogels hold promise in various biomedical applications including in the new generation of implantable biomedical devices and tissue engineering scaffolds.
Collapse
Affiliation(s)
- Tong Xu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China. Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People's Republic of China. Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
29
|
Schulz A, Gepp MM, Stracke F, von Briesen H, Neubauer JC, Zimmermann H. Tyramine-conjugated alginate hydrogels as a platform for bioactive scaffolds. J Biomed Mater Res A 2018; 107:114-121. [PMID: 30256518 PMCID: PMC6585978 DOI: 10.1002/jbm.a.36538] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/14/2018] [Accepted: 08/29/2018] [Indexed: 02/04/2023]
Abstract
Alginate‐based hydrogels represent promising microenvironments for cell culture and tissue engineering, as their mechanical and porous characteristics are adjustable toward in vivo conditions. However, alginate scaffolds are bioinert and thus inhibit cellular interactions. To overcome this disadvantage, bioactive alginate surfaces were produced by conjugating tyramine molecules to high‐molecular‐weight alginates using the carbodiimide chemistry. Structural elucidation using nuclear magnetic resonance spectroscopy and contact angle measurements revealed a surface chemistry and wettability of tyramine‐alginate hydrogels similar to standard cell culture treated polystyrene. In contrast to stiff cell culture plastic, tyramine‐alginate scaffolds were found to be soft (60–80 kPa), meeting the elastic moduli of human tissues such as liver and heart. We further demonstrated an enhanced protein adsorption with increasing tyramine conjugation, stable for several weeks. Cell culture studies with human mesenchymal stem cells and human pluripotent stem cell‐derived cardiomyocytes qualified tyramine‐alginate hydrogels as bioactive platforms enabling cell adhesion and contraction on (structured) 2‐D layer and spherical matrices. Due to the alginate functionalization with tyramines, stable cell–matrix interactions were observed beneficial for an implementation in biology, biotechnology, and medicine toward efficient cell culture and tissue substitutes. © 2018 The Authors. Journal of Biomedical Materials Research Part A published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 114–121, 2019.
Collapse
Affiliation(s)
- André Schulz
- Fraunhofer Institute for Biomedical Engineering, Sulzbach, 66280, Germany
| | - Michael M Gepp
- Fraunhofer Institute for Biomedical Engineering, Sulzbach, 66280, Germany.,Fraunhofer Project Center for Stem Cell Process Engineering, Wuerzburg, 97082, Germany
| | - Frank Stracke
- Fraunhofer Institute for Biomedical Engineering, Sulzbach, 66280, Germany
| | - Hagen von Briesen
- Fraunhofer Institute for Biomedical Engineering, Sulzbach, 66280, Germany
| | - Julia C Neubauer
- Fraunhofer Institute for Biomedical Engineering, Sulzbach, 66280, Germany.,Fraunhofer Project Center for Stem Cell Process Engineering, Wuerzburg, 97082, Germany
| | - Heiko Zimmermann
- Fraunhofer Institute for Biomedical Engineering, Sulzbach, 66280, Germany.,Chair for Molecular and Cellular Biotechnology, Saarland University, Saarbruecken, 66123, Germany.,Faculty of Marine Science, Universidad Católica del Norte, Coquimbo, Chile
| |
Collapse
|
30
|
Luo P, Nie M, Wen H, Xu W, Fan L, Cao Q. Preparation and characterization of carboxymethyl chitosan sulfate/oxidized konjac glucomannan hydrogels. Int J Biol Macromol 2018; 113:1024-1031. [DOI: 10.1016/j.ijbiomac.2018.01.101] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/06/2018] [Accepted: 01/15/2018] [Indexed: 12/25/2022]
|
31
|
He B, Zhu X, Zhao C, Wang G, Ma Y, Yang W. Cytocompatible Fabrication of Yeast Cells/Fabrics Composite Sheet for Bioethanol Production. Macromol Rapid Commun 2018; 39:e1800212. [PMID: 29947153 DOI: 10.1002/marc.201800212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/06/2018] [Indexed: 11/10/2022]
Abstract
Entrapment of living cells into a polymer network has significant potential in various fields such as biomass conversion and tissue engineering. A crucial challenge for this strategy is to provide a mild enough condition to preserve cell viability. Here, a facile and cytocompatible method to entrap living yeast cells into a poly(ethylene glycol) (PEG) network grafting from polypropylene nonwoven fabrics via visible-light-induced surface living graft crosslinking polymerization is reported. Due to the mild reaction conditions and excellent biocompatibility of PEG, the immobilized yeast cells could maintain their viability and proliferate well. The obtained composite sheet has excellent long-term stability and shows no significant efficiency loss after 25 cycles of repeated batch bioethanol fermentation. The immobilized yeast cells exhibit 18.0% higher bioethanol fermentation efficiency than free cells. This strategy for immobilization of living cells with high viability has significant potential application.
Collapse
Affiliation(s)
- Bin He
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xing Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Changwen Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Guan Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuhong Ma
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China.,Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China.,Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
32
|
Tew LS, Ching JY, Ngalim SH, Khung YL. Driving mesenchymal stem cell differentiation from self-assembled monolayers. RSC Adv 2018; 8:6551-6564. [PMID: 35540392 PMCID: PMC9078311 DOI: 10.1039/c7ra12234a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/27/2018] [Indexed: 12/26/2022] Open
Abstract
The utilization of self-assembled monolayer (SAM) systems to direct Mesenchymal Stem Cell (MSC) differentiation has been covered in the literature for years, but finding a general consensus pertaining to its exact role over the differentiation of stem cells had been rather challenging. Although there are numerous reports on surface functional moieties activating and inducing differentiation, the results are often different between reports due to the varying surface conditions, such as topography or surface tension. Herein, in view of the complexity of the subject matter, we have sought to catalogue the recent developments around some of the more common functional groups on predominantly hard surfaces and how these chemical groups may influence the overall outcome of the mesenchymal stem cells (MSC) differentiation so as to better establish a clearer underlying relationship between stem cells and their base substratum interactions. Graphical illustration showing the functional groups that drive MSC differentiation without soluble bioactive cues within the first 14 days.![]()
Collapse
Affiliation(s)
- L. S. Tew
- Regenerative Medicine Cluster
- Advanced Medical and Dental Institute (AMDI)
- Universiti Sains Malaysia
- Malaysia
| | - J. Y. Ching
- Institute of Biological Science and Technology
- China Medical University
- Taichung
- Republic of China
| | - S. H. Ngalim
- Regenerative Medicine Cluster
- Advanced Medical and Dental Institute (AMDI)
- Universiti Sains Malaysia
- Malaysia
| | - Y. L. Khung
- Institute of New Drug Development
- China Medical University
- Taichung
- Republic of China
| |
Collapse
|
33
|
Paljevac M, Gradišnik L, Lipovšek S, Maver U, Kotek J, Krajnc P. Multiple-Level Porous Polymer Monoliths with Interconnected Cellular Topology Prepared by Combining Hard Sphere and Emulsion Templating for Use in Bone Tissue Engineering. Macromol Biosci 2017; 18. [PMID: 29205840 DOI: 10.1002/mabi.201700306] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/20/2017] [Indexed: 11/10/2022]
Abstract
A combination of hard sphere and high internal phase emulsion templating gives a platform for synthesizing hierarchically porous polymers with a unique topology exhibiting interconnected spherical features on multiple levels. Polymeric spheres are fused by thermal sintering to create a 3D monolithic structure while an emulsion with a high proportion of internal phase and monomers in the continuous phase is added to the voids of the previously constructed monolith. Following polymerization of the emulsion and dissolution of the templating structure, a down-replicating topology is created with a primary level of pores as a result of fused spheres of the 3D monolithic structure, a secondary level of pores resulting from the emulsion's internal phase, and a tertiary level of interconnecting channels. Thiol-ene chemistry with divinyladipate and pentaerythritol tetrakis(3-mercaptopropionate) is used to demonstrate the preparation of a crosslinked polyester with overall porosity close to 90%. Due to multilevel porosity, such materials are interesting for applications in bone tissue engineering, possibly simulating the native sponge like bone structure. Their potential to promote ossteointegration is tested using human bone derived osteoblasts. Material-cell interactions are evaluated and they reveal growth and proliferation of osteoblasts both on surface and in the bulk of the scaffold.
Collapse
Affiliation(s)
- Muzafera Paljevac
- PolyOrgLab, Faculty of Chemistry and Chemical Engineering University of Maribor, Smetanova 17, 2000, Maribor, Slovenia
| | - Lidija Gradišnik
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia
| | - Saška Lipovšek
- PolyOrgLab, Faculty of Chemistry and Chemical Engineering University of Maribor, Smetanova 17, 2000, Maribor, Slovenia.,Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia.,Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška 160, 2000, Maribor, Slovenia
| | - Uroš Maver
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia
| | - Jiři Kotek
- Institute of Macromolecular Chemistry Academy of Sciences of the Czech Republic, v.v.i., Heyrovského námesti 2, 16206, Prague, Czech Republic
| | - Peter Krajnc
- PolyOrgLab, Faculty of Chemistry and Chemical Engineering University of Maribor, Smetanova 17, 2000, Maribor, Slovenia
| |
Collapse
|
34
|
Vedadghavami A, Minooei F, Mohammadi MH, Khetani S, Rezaei Kolahchi A, Mashayekhan S, Sanati-Nezhad A. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications. Acta Biomater 2017; 62:42-63. [PMID: 28736220 DOI: 10.1016/j.actbio.2017.07.028] [Citation(s) in RCA: 272] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/16/2017] [Accepted: 07/20/2017] [Indexed: 10/19/2022]
Abstract
Hydrogels have been recognized as crucial biomaterials in the field of tissue engineering, regenerative medicine, and drug delivery applications due to their specific characteristics. These biomaterials benefit from retaining a large amount of water, effective mass transfer, similarity to natural tissues and the ability to form different shapes. However, having relatively poor mechanical properties is a limiting factor associated with hydrogel biomaterials. Controlling the biomechanical properties of hydrogels is of paramount importance. In this work, firstly, mechanical characteristics of hydrogels and methods employed for characterizing these properties are explored. Subsequently, the most common approaches used for tuning mechanical properties of hydrogels including but are not limited to, interpenetrating polymer networks, nanocomposites, self-assembly techniques, and co-polymerization are discussed. The performance of different techniques used for tuning biomechanical properties of hydrogels is further compared. Such techniques involve lithography techniques for replication of tissues with complex mechanical profiles; microfluidic techniques applicable for generating gradients of mechanical properties in hydrogel biomaterials for engineering complex human tissues like intervertebral discs, osteochondral tissues, blood vessels and skin layers; and electrospinning techniques for synthesis of hybrid hydrogels and highly ordered fibers with tunable mechanical and biological properties. We finally discuss future perspectives and challenges for controlling biomimetic hydrogel materials possessing proper biomechanical properties. STATEMENT OF SIGNIFICANCE Hydrogels biomaterials are essential constituting components of engineered tissues with the applications in regenerative medicine and drug delivery. The mechanical properties of hydrogels play crucial roles in regulating the interactions between cells and extracellular matrix and directing the cells phenotype and genotype. Despite significant advances in developing methods and techniques with the ability of tuning the biomechanical properties of hydrogels, there are still challenges regarding the synthesis of hydrogels with complex mechanical profiles as well as limitations in vascularization and patterning of complex structures of natural tissues which barricade the production of sophisticated organs. Therefore, in addition to a review on advanced methods and techniques for measuring a variety of different biomechanical characteristics of hydrogels, the new techniques for enhancing the biomechanics of hydrogels are presented. It is expected that this review will profit future works for regulating the biomechanical properties of hydrogel biomaterials to satisfy the demands of a variety of different human tissues.
Collapse
|
35
|
Rana D, Ramalingam M. Enhanced proliferation of human bone marrow derived mesenchymal stem cells on tough hydrogel substrates. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:1057-1065. [DOI: 10.1016/j.msec.2017.03.202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 01/02/2023]
|
36
|
Ma R, Ma ZG, Zhen CL, Shen X, Li SL, Li L, Zheng YF, Dong DL, Sun ZJ. Design, synthesis and characterization of poly (methacrylic acid-niclosamide) and its effect on arterial function. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:352-359. [PMID: 28532040 DOI: 10.1016/j.msec.2017.03.161] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/26/2016] [Accepted: 03/18/2017] [Indexed: 12/22/2022]
Abstract
We have found that niclosamide induced relaxation of constricted artery. However, niclosamide is insoluble, the low bioavailability and the resultant low plasma concentration limit its potential exertion in vivo. The aim of the present study is to synthesize a soluble poly (methacrylic acid-niclosamide) polymer (PMAN) and study the effects of PMAN on arterial function in vitro and the blood pressure and heart rate of rats in vivo. We synthesized the poly (methacrylic acid-niclosamide) polymer (PMAN), the chemical structure of which was identified by FTIR and 1H NMR spectra. The average molecular weight and polydispersity index of PMAN were 5138 and 1.193 respectively. Compared with niclosamide, the water solubility of niclosamide in PMAN was significantly increased. PMAN showed dose-dependent vasorelaxation effect on rat mesenteric arteries with intact or denuded endothelium in phenylephrine (PE) and high K+ (KPSS)-induced vasoconstriction models in vitro. The efficacy of vasorelaxant effect and the cytotoxic effect of PMAN on vascular smooth muscle cells (A10) were lower than that of niclosamide. The LD50 of PMAN in mice (iv) was 80mg/kg. Venous injection of PMAN (equivalent 5mg niclosamide per kg) showed acute reduction of the rat blood pressure and heart rate in vivo. In conclusion, the solubility of niclosamide was increased in the way of poly (methacrylic acid-niclosamide) polymer, which relaxes the constricted arteries in vitro and reduces the rat blood pressure and heart rate in vivo, indicating that modifying niclosamide solubility through polymerization is a feasible approach to improve its pharmacokinetic profiles for potential clinic application.
Collapse
Affiliation(s)
- Rui Ma
- Institute of Materials Processing and Intelligent Manufacturing, Center for Biomedical Materials and Engineering, Harbin Engineering University, 145 Nantong Street, Nangang District, Harbin 150001, PR China
| | - Zhen-Gang Ma
- Institute of Materials Processing and Intelligent Manufacturing, Center for Biomedical Materials and Engineering, Harbin Engineering University, 145 Nantong Street, Nangang District, Harbin 150001, PR China
| | - Chang-Lin Zhen
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150086, PR China
| | - Xin Shen
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150086, PR China
| | - Shan-Liang Li
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150086, PR China
| | - Li Li
- Institute of Materials Processing and Intelligent Manufacturing, Center for Biomedical Materials and Engineering, Harbin Engineering University, 145 Nantong Street, Nangang District, Harbin 150001, PR China
| | - Yu-Feng Zheng
- Institute of Materials Processing and Intelligent Manufacturing, Center for Biomedical Materials and Engineering, Harbin Engineering University, 145 Nantong Street, Nangang District, Harbin 150001, PR China
| | - De-Li Dong
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150086, PR China
| | - Zhi-Jie Sun
- Institute of Materials Processing and Intelligent Manufacturing, Center for Biomedical Materials and Engineering, Harbin Engineering University, 145 Nantong Street, Nangang District, Harbin 150001, PR China.
| |
Collapse
|
37
|
Preparation and characterization of oxidized konjac glucomannan/carboxymethyl chitosan/graphene oxide hydrogel. Int J Biol Macromol 2016; 91:358-67. [DOI: 10.1016/j.ijbiomac.2016.05.042] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/08/2016] [Accepted: 05/11/2016] [Indexed: 11/19/2022]
|
38
|
Yang Y, Wang C, Wiener CG, Hao J, Shatas S, Weiss RA, Vogt BD. Tough Stretchable Physically-Cross-linked Electrospun Hydrogel Fiber Mats. ACS APPLIED MATERIALS & INTERFACES 2016; 8:22774-22779. [PMID: 27548013 DOI: 10.1021/acsami.6b08255] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nature uses supramolecular interactions and hierarchical structures to produce water-rich materials with combinations of properties that are challenging to obtain in synthetic systems. Here, we demonstrate hierarchical supramolecular hydrogels from electrospun, self-associated copolymers with unprecedented elongation and toughness for high porosity hydrogels. Hydrophobic association of perfluoronated comonomers provides the physical cross-links for these hydrogels based on copolymers of dimethyl acrylamide and 2-(N-ethylperfluorooctane sulfonamido)ethyl methacrylate (FOSM). Intriguingly, the hydrogel fiber mats show an enhancement in toughness in comparison to compression molded bulk hydrogels. This difference is attributed to the size distribution of the hydrophobic aggregates where narrowing the distribution in the electrospun material enhances the toughness of the hydrogel. These hydrogel fiber mats exhibit extensibility more than double that of the bulk hydrogel and a comparable modulus despite the porosity of the fiber mat leading to >25 wt % increase in water content.
Collapse
Affiliation(s)
- Yiming Yang
- Department of Polymer Engineering, University of Akron , 250 South Forge Street, Akron, Ohio 44325, United States
| | - Chao Wang
- Department of Polymer Engineering, University of Akron , 250 South Forge Street, Akron, Ohio 44325, United States
| | - Clinton G Wiener
- Department of Polymer Engineering, University of Akron , 250 South Forge Street, Akron, Ohio 44325, United States
| | - Jinkun Hao
- Department of Polymer Engineering, University of Akron , 250 South Forge Street, Akron, Ohio 44325, United States
| | - Sophia Shatas
- Department of Polymer Engineering, University of Akron , 250 South Forge Street, Akron, Ohio 44325, United States
| | - R A Weiss
- Department of Polymer Engineering, University of Akron , 250 South Forge Street, Akron, Ohio 44325, United States
| | - Bryan D Vogt
- Department of Polymer Engineering, University of Akron , 250 South Forge Street, Akron, Ohio 44325, United States
| |
Collapse
|
39
|
Tsou YH, Khoneisser J, Huang PC, Xu X. Hydrogel as a bioactive material to regulate stem cell fate. Bioact Mater 2016; 1:39-55. [PMID: 29744394 PMCID: PMC5883979 DOI: 10.1016/j.bioactmat.2016.05.001] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/27/2016] [Accepted: 05/02/2016] [Indexed: 02/08/2023] Open
Abstract
The encapsulation of stem cells in a hydrogel substrate provides a promising future in biomedical applications. However, communications between hydrogels and stem cells is complicated; various factors such as porosity, different polymer types, stiffness, compatibility and degradation will lead to stem cell survival or death. Hydrogels mimic the three-dimensional extracellular matrix to provide a friendly environment for stem cells. On the other hand, stem cells can sense the surroundings to make the next progression, stretching out, proliferating or just to remain. As such, understanding the correlation between stem cells and hydrogels is crucial. In this Review, we first discuss the varying types of the hydrogels and stem cells, which are most commonly used in the biomedical fields and further investigate how hydrogels interact with stem cells from the perspective of their biomedical application, while providing insights into the design and development of hydrogels for drug delivery, tissue engineering and regenerative medicine purpose. In addition, we compare the results such as stiffness, degradation time and pore size as well as peptide types of hydrogels from respected journals. We also discussed most recently magnificent materials and their effects to regulate stem cell fate. Hydrogels as Extracellular Matrix (ECM) mimics stem cells proliferation and differentiation. Discuss how hydrogels interact with stem cells from the perspective of their biomedical applications. Recent magnificent materials and their effects to regulate stem cells fate.
Collapse
Affiliation(s)
- Yung-Hao Tsou
- Department of Chemical, Biological, and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Joe Khoneisser
- Department of Chemical, Biological, and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Ping-Chun Huang
- Department of Chemical, Biological, and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Xiaoyang Xu
- Department of Chemical, Biological, and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
40
|
Sohn SS, Revuri V, Nurunnabi M, Kwak KS, Lee YK. Biomimetic and photo crosslinked hyaluronic acid/pluronic F127 hydrogels with enhanced mechanical and elastic properties to be applied in tissue engineering. Macromol Res 2016. [DOI: 10.1007/s13233-016-4029-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
41
|
Larsen EKU, Larsen NB, Almdal K, Larsen EKU, Larsen NB, Almdal K. Multimaterial hydrogel with widely tunable elasticity by selective photopolymerization of PEG diacrylate and epoxy monomers. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/polb.24007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Esben Kjaer Unmack Larsen
- DTU Nanotech, Department of Micro- and Nanotechnology; Technical University of Denmark; Lyngby 2800 Kgs Denmark
| | - Niels B. Larsen
- DTU Nanotech, Department of Micro- and Nanotechnology; Technical University of Denmark; Lyngby 2800 Kgs Denmark
| | - Kristoffer Almdal
- DTU Nanotech, Department of Micro- and Nanotechnology; Technical University of Denmark; Lyngby 2800 Kgs Denmark
| | - E. K. U. Larsen
- DTU Nanotech, Department of Micro- and Nanotechnology; Technical University of Denmark; Lyngby 2800 Kgs Denmark
| | - N. B. Larsen
- DTU Nanotech, Department of Micro- and Nanotechnology; Technical University of Denmark; Lyngby 2800 Kgs Denmark
| | - K. Almdal
- DTU Nanotech, Department of Micro- and Nanotechnology; Technical University of Denmark; Lyngby 2800 Kgs Denmark
| |
Collapse
|
42
|
Zhuang Y, Shen H, Yang F, Wang X, Wu D. Synthesis and characterization of PLGA nanoparticle/4-arm-PEG hybrid hydrogels with controlled porous structures. RSC Adv 2016. [DOI: 10.1039/c6ra08404d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Here, we constructed PLGA NP crosslinked 4-arm-PEG hybrid hydrogels with adjustable porous structures, surface properties and mechanical properties.
Collapse
Affiliation(s)
- Yaping Zhuang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics & Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Hong Shen
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics & Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Fei Yang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics & Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics & Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Decheng Wu
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics & Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
43
|
Cui N, Qian J, Xu W, Xu M, Zhao N, Liu T, Wang H. Preparation, characterization, and biocompatibility evaluation of poly(Nɛ-acryloyl-L-lysine)/hyaluronic acid interpenetrating network hydrogels. Carbohydr Polym 2015; 136:1017-26. [PMID: 26572442 DOI: 10.1016/j.carbpol.2015.09.095] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/23/2015] [Accepted: 09/26/2015] [Indexed: 02/04/2023]
Abstract
In the present study, poly(Nɛ-acryloyl-L-lysine)/hyaluronic acid (pLysAAm/HA) interpenetrating network (IPN) hydrogels were successfully fabricated through the combination of hydrazone bond crosslinking and photo-crosslinking reactions. The HA hydrogel network was first synthesized from 3,3'-dithiodipropionate hydrazide-modified HA and polyethylene glycol dilevulinate by hydrazone bond crosslinking. The pLysAAm hydrogel network was prepared from Nɛ-acryloyl-L-lysine and N,N'-bis(acryloyl)-(L)-cystine by photo-crosslinking. The resultant pLysAAm/HA hydrogels had a good shape recovery property after loading and unloading for 1.5 cycles (up to 90%) and displayed a highly porous microstructure. Their compressive moduli were at least 5 times higher than that of HA hydrogels. The pLysAAm/HA hydrogels had an equilibrium swelling ratio of up to 37.9 and displayed a glutathione-responsive degradation behavior. The results from in vitro biocompatibility evaluation with pre-osteoblasts MC3T3-E1 cells revealed that the pLysAAm/HA hydrogels could support cell viability and proliferation. Hematoxylin and eosin staining indicated that the pLysAAm/HA hydrogels allowed cell and tissue infiltration, confirming their good in vivo biocompatibility. Therefore, the novel pLysAAm/HA IPN hydrogels have great potential for bone tissue engineering applications.
Collapse
Affiliation(s)
- Ning Cui
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Junmin Qian
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Weijun Xu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Minghui Xu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Na Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ting Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongjie Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|