1
|
Carvalho MS, Nogueira DE, Cabral JM, Rodrigues CA. Neural progenitor cell-derived extracellular matrix as a new platform for neural differentiation of human induced pluripotent stem cells. BIOMATERIALS AND BIOSYSTEMS 2022; 8:100070. [PMID: 36824374 PMCID: PMC9934470 DOI: 10.1016/j.bbiosy.2022.100070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
Abstract
The culture microenvironment has been demonstrated to regulate stem cell fate and to be a crucial aspect for quality-controlled stem cell maintenance and differentiation to a specific lineage. In this context, extracellular matrix (ECM) proteins are particularly important to mediate the interactions between the cells and the culture substrate. Human induced pluripotent stem cells (hiPSCs) are usually cultured as anchorage-dependent cells and require adhesion to an ECM substrate to support their survival and proliferation in vitro. Matrigel, a common substrate for hiPSC culture is a complex and undefined mixture of ECM proteins which are expensive and not well suited to clinical application. Decellularized cell-derived ECM has been shown to be a promising alternative to the common protein coatings used in stem cell culture. However, very few studies have used this approach as a niche for neural differentiation of hiPSCs. Here, we developed a new stem cell culture system based on decellularized cell-derived ECM from neural progenitor cells (NPCs) for expansion and neural differentiation of hiPSCs, as an alternative to Matrigel and poly-l-ornithine/laminin-coated well plates. Interestingly, hiPSCs were able to grow and maintain their pluripotency when cultured on decellularized ECM from NPCs (NPC ECM). Furthermore, NPC ECM enhanced the neural differentiation of hiPSCs compared to poly-l-ornithine/laminin-coated wells, which are used in most neural differentiation protocols, presenting a statistically significant enhancement of neural gene expression markers, such as βIII-Tubulin and MAP2. Taken together, our results demonstrate that NPC ECM provides a functional microenvironment, mimicking the neural niche, which may have interesting future applications for the development of new strategies in neural stem cell research.
Collapse
Affiliation(s)
- Marta S. Carvalho
- Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal,Associate Laboratory i4HB – Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal,Corresponding author.
| | - Diogo E.S. Nogueira
- Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal,Associate Laboratory i4HB – Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Joaquim M.S. Cabral
- Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal,Associate Laboratory i4HB – Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Carlos A.V. Rodrigues
- Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal,Associate Laboratory i4HB – Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
2
|
Thanuthanakhun N, Kim MH, Kino-oka M. Cell Behavioral Dynamics as a Cue in Optimizing Culture Stabilization in the Bioprocessing of Pluripotent Stem Cells. Bioengineering (Basel) 2022; 9:669. [PMID: 36354580 PMCID: PMC9687444 DOI: 10.3390/bioengineering9110669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 04/23/2024] Open
Abstract
Pluripotent stem cells (PSCs) are important for future regenerative medicine therapies. However, in the production of PSCs and derivatives, the control of culture-induced fluctuations in the outcome of cell quality remains challenging. A detailed mechanistic understanding of how PSC behaviors are altered in response to biomechanical microenvironments within a culture is necessary for rational bioprocessing optimization. In this review, we discuss recent insights into the role of cell behavioral and mechanical homeostasis in modulating the states and functions of PSCs during culture processes. We delineate promising ways to manipulate the culture variability through regulating cell behaviors using currently developed tools. Furthermore, we anticipate their potential implementation for designing a culture strategy based on the concept of Waddington's epigenetic landscape that may provide a feasible solution for tuning the culture quality and stability in the bioprocessing space.
Collapse
Affiliation(s)
- Naruchit Thanuthanakhun
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Mee-Hae Kim
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Masahiro Kino-oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
- Research Base for Cell Manufacturability, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| |
Collapse
|
3
|
Açarı İK, Sel E, Özcan İ, Ateş B, Köytepe S, Thakur VK. Chemistry and engineering of brush type polymers: Perspective towards tissue engineering. Adv Colloid Interface Sci 2022; 305:102694. [PMID: 35597039 DOI: 10.1016/j.cis.2022.102694] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/21/2022] [Accepted: 05/06/2022] [Indexed: 11/01/2022]
Abstract
In tissue engineering, it is imperative to control the behaviour of cells/stem cells, such as adhesion, proliferation, propagation, motility, and differentiation for tissue regeneration. Surfaces that allow cells to behave in this way are critical as support materials in tissue engineering. Among these surfaces, brush-type polymers have an important potential for tissue engineering and biomedical applications. Brush structure and length, end groups, bonding densities, hydrophilicity, surface energy, structural flexibility, thermal stability, surface chemical reactivity, rheological and tribological properties, electron and energy transfer ability, cell binding and absorption abilities for various biological molecules of brush-type polymers were increased its importance in tissue engineering applications. In addition, thanks to these functional properties and adjustable surface properties, brush type polymers are used in different high-tech applications such as electronics, sensors, anti-fouling, catalysis, purification and energy etc. This review comprehensively highlights the use of brush-type polymers in tissue engineering applications. Considering the superior properties of brush-type polymer structures, it is believed that in the future, it will be an effective tool in structure designs containing many different biomolecules (enzymes, proteins, etc.) in the field of tissue engineering.
Collapse
|
4
|
Aisenbrey EA, Murphy WL. Synthetic alternatives to Matrigel. NATURE REVIEWS. MATERIALS 2020; 5:539-551. [PMID: 32953138 PMCID: PMC7500703 DOI: 10.1038/s41578-020-0199-8] [Citation(s) in RCA: 456] [Impact Index Per Article: 114.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/31/2020] [Indexed: 05/19/2023]
Abstract
Matrigel, a basement-membrane matrix extracted from Engelbreth-Holm-Swarm mouse sarcomas, has been used for more than four decades for a myriad of cell culture applications. However, Matrigel is limited in its applicability to cellular biology, therapeutic cell manufacturing and drug discovery owing to its complex, ill-defined and variable composition. Variations in the mechanical and biochemical properties within a single batch of Matrigel - and between batches - have led to uncertainty in cell culture experiments and a lack of reproducibility. Moreover, Matrigel is not conducive to physical or biochemical manipulation, making it difficult to fine-tune the matrix to promote intended cell behaviours and achieve specific biological outcomes. Recent advances in synthetic scaffolds have led to the development of xenogenic-free, chemically defined, highly tunable and reproducible alternatives. In this Review, we assess the applications of Matrigel in cell culture, regenerative medicine and organoid assembly, detailing the limitations of Matrigel and highlighting synthetic scaffold alternatives that have shown equivalent or superior results. Additionally, we discuss the hurdles that are limiting a full transition from Matrigel to synthetic scaffolds and provide a brief perspective on the future directions of synthetic scaffolds for cell culture applications.
Collapse
Affiliation(s)
| | - William L. Murphy
- Department of Biomedical Engineering, University of Wisconsin–Madison, WI, USA
- Department of Orthopedics and Rehabilitation, University of Wisconsin–Madison, WI, USA
| |
Collapse
|
5
|
Zhou N, Ma X, Bernaerts KV, Ren P, Hu W, Zhang T. Expansion of Ovarian Cancer Stem-like Cells in Poly(ethylene glycol)-Cross-Linked Poly(methyl vinyl ether-alt-maleic acid) and Alginate Double-Network Hydrogels. ACS Biomater Sci Eng 2020; 6:3310-3326. [DOI: 10.1021/acsbiomaterials.9b01967] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Naizhen Zhou
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaoe Ma
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Katrien V. Bernaerts
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Pengfei Ren
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Wanjun Hu
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Tianzhu Zhang
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
6
|
Ireland RG, Kibschull M, Audet J, Ezzo M, Hinz B, Lye SJ, Simmons CA. Combinatorial extracellular matrix microarray identifies novel bioengineered substrates for xeno-free culture of human pluripotent stem cells. Biomaterials 2020; 248:120017. [PMID: 32283392 DOI: 10.1016/j.biomaterials.2020.120017] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 03/09/2020] [Accepted: 03/27/2020] [Indexed: 11/24/2022]
Abstract
Stem cells in their microenvironment are exposed to a plethora of biochemical signals and biophysical forces. Interrogating the role of each factor in the cell microenvironment, however, remains difficult due to the inability to study microenvironmental cues and tease apart their interactions in high throughput. To address this need, we developed an extracellular matrix (ECM) microarray screening platform capable of tightly controlling substrate stiffness and ECM protein composition to screen the effects of these cues and their interactions on cell fate. We combined this platform with a design of experiments screening strategy to identify optimal conditions that can maintain human pluripotent stem cell (hPSC) pluripotency in chemically defined, xeno-free conditions. Combinations of ECM proteins (fibronectin, vitronectin, laminin-521, and collagen IV) were deposited on polydimethylsiloxane substrates with elastic moduli ranging from ~1 to 60 kPa using a high throughput protein plotter. Through our screening approach, we identified several non-intuitive protein-protein and protein-stiffness interactions and developed three novel culture substrates. hPSCs grown on these novel culture substrates displayed higher proliferation rates and pluripotency marker expression than current gold-standard culture substrates Geltrex- and vitronectin-coated plastic. This ECM microarray and screening approach is not limited to the factors studied here and can be broadly applied to other cell types to systematically screen microenvironmental conditions to optimally guide cell phenotype.
Collapse
Affiliation(s)
- Ronald G Ireland
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, Canada
| | - Mark Kibschull
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Julie Audet
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Maya Ezzo
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Boris Hinz
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Stephen J Lye
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada; Departments of Obstetrics & Gynaecology, Physiology, and Medicine, University of Toronto, Toronto, ON, Canada; Alliance for Human Development, Sinai Health System, Toronto, ON, Canada
| | - Craig A Simmons
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
7
|
Raasch M, Fritsche E, Kurtz A, Bauer M, Mosig AS. Microphysiological systems meet hiPSC technology - New tools for disease modeling of liver infections in basic research and drug development. Adv Drug Deliv Rev 2019; 140:51-67. [PMID: 29908880 DOI: 10.1016/j.addr.2018.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/01/2018] [Accepted: 06/12/2018] [Indexed: 02/08/2023]
Abstract
Complex cell culture models such as microphysiological models (MPS) mimicking human liver functionality in vitro are in the spotlight as alternative to conventional cell culture and animal models. Promising techniques like microfluidic cell culture or micropatterning by 3D bioprinting are gaining increasing importance for the development of MPS to address the needs for more predictivity and cost efficiency. In this context, human induced pluripotent stem cells (hiPSCs) offer new perspectives for the development of advanced liver-on-chip systems by recreating an in vivo like microenvironment that supports the reliable differentiation of hiPSCs to hepatocyte-like cells (HLC). In this review we will summarize current protocols of HLC generation and highlight recently established MPS suitable to resemble physiological hepatocyte function in vitro. In addition, we are discussing potential applications of liver MPS for disease modeling related to systemic or direct liver infections and the use of MPS in testing of new drug candidates.
Collapse
|
8
|
Chen LH, Sung TC, Lee HHC, Higuchi A, Su HC, Lin KJ, Huang YR, Ling QD, Kumar SS, Alarfaj AA, Munusamy MA, Nasu M, Chen DC, Hsu ST, Chang Y, Lee KF, Wang HC, Umezawa A. Xeno-free and feeder-free culture and differentiation of human embryonic stem cells on recombinant vitronectin-grafted hydrogels. Biomater Sci 2019; 7:4345-4362. [DOI: 10.1039/c9bm00418a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Xeno-free culture and cardiomyocyte differentiation of human embryonic stem cells on vitronectin-grafted hydrogels by adjusting surface charge and elasticity.
Collapse
|
9
|
Meseguer-Ripolles J, Khetani SR, Blanco JG, Iredale M, Hay DC. Pluripotent Stem Cell-Derived Human Tissue: Platforms to Evaluate Drug Metabolism and Safety. AAPS J 2017; 20:20. [PMID: 29270863 PMCID: PMC5804345 DOI: 10.1208/s12248-017-0171-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/16/2017] [Indexed: 12/15/2022] Open
Abstract
Despite the improvements in drug screening, high levels of drug attrition persist. Although high-throughput screening platforms permit the testing of compound libraries, poor compound efficacy or unexpected organ toxicity are major causes of attrition. Part of the reason for drug failure resides in the models employed, most of which are not representative of normal organ biology. This same problem affects all the major organs during drug development. Hepatotoxicity and cardiotoxicity are two interesting examples of organ disease and can present in the late stages of drug development, resulting in major cost and increased risk to the patient. Currently, cell-based systems used within industry rely on immortalized or primary cell lines from donated tissue. These models possess significant advantages and disadvantages, but in general display limited relevance to the organ of interest. Recently, stem cell technology has shown promise in drug development and has been proposed as an alternative to current industrial systems. These offerings will provide the field with exciting new models to study human organ biology at scale and in detail. We believe that the recent advances in production of stem cell-derived hepatocytes and cardiomyocytes combined with cutting-edge engineering technologies make them an attractive alternative to current screening models for drug discovery. This will lead to fast failing of poor drugs earlier in the process, delivering safer and more efficacious medicines for the patient.
Collapse
Affiliation(s)
| | - Salman R Khetani
- University of Illinois at Chicago, Bioengineering (MC 063) 851 S Morgan St, 218 SEO, Chicago, Illinois, 60607, USA
| | - Javier G Blanco
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Mairi Iredale
- MRC Centre for Regenerative Medicine, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - David C Hay
- MRC Centre for Regenerative Medicine, 5 Little France Drive, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
10
|
Chen YM, Chen LH, Li MP, Li HF, Higuchi A, Kumar SS, Ling QD, Alarfaj AA, Munusamy MA, Chang Y, Benelli G, Murugan K, Umezawa A. Xeno-free culture of human pluripotent stem cells on oligopeptide-grafted hydrogels with various molecular designs. Sci Rep 2017; 7:45146. [PMID: 28332572 PMCID: PMC5362828 DOI: 10.1038/srep45146] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/16/2017] [Indexed: 01/15/2023] Open
Abstract
Establishing cultures of human embryonic (ES) and induced pluripotent (iPS) stem cells in xeno-free conditions is essential for producing clinical-grade cells. Development of cell culture biomaterials for human ES and iPS cells is critical for this purpose. We designed several structures of oligopeptide-grafted poly (vinyl alcohol-co-itaconic acid) hydrogels with optimal elasticity, and prepared them in formations of single chain, single chain with joint segment, dual chain with joint segment, and branched-type chain. Oligopeptide sequences were selected from integrin- and glycosaminoglycan-binding domains of the extracellular matrix. The hydrogels grafted with vitronectin-derived oligopeptides having a joint segment or a dual chain, which has a storage modulus of 25 kPa, supported the long-term culture of human ES and iPS cells for over 10 passages. The dual chain and/or joint segment with cell adhesion molecules on the hydrogels facilitated the proliferation and pluripotency of human ES and iPS cells.
Collapse
Affiliation(s)
- Yen-Ming Chen
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001 Taiwan
| | - Li-Hua Chen
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001 Taiwan
| | - Meng-Pei Li
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001 Taiwan
| | - Hsing-Fen Li
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001 Taiwan
| | - Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001 Taiwan.,Department of Reproduction, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan.,Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - S Suresh Kumar
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, 43400 Serdang, Slangor, Malaysia
| | - Qing-Dong Ling
- Cathay Medical Research Institute, Cathay General Hospital, No. 32, Ln 160, Jian-Cheng Road, Hsi-Chi City, Taipei, 221, Taiwan.,Graduate Institute of Systems Biology and Bioinformatics, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001 Taiwan
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Murugan A Munusamy
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yung Chang
- Department of Chemical Engineering, R&D Center for Membrane Technology, Chung Yuan Christian University, 200, Chung-Bei Rd., Chungli, Taoyuan, 320, Taiwan
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Kadarkarai Murugan
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India.,Department of Zoology, Thiruvalluvar University, Serkkadu, Vellore 632 115, India
| | - Akihiro Umezawa
- Department of Reproduction, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| |
Collapse
|
11
|
Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok HA. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem Rev 2017; 117:1105-1318. [PMID: 28135076 DOI: 10.1021/acs.chemrev.6b00314] [Citation(s) in RCA: 603] [Impact Index Per Article: 86.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The generation of polymer brushes by surface-initiated controlled radical polymerization (SI-CRP) techniques has become a powerful approach to tailor the chemical and physical properties of interfaces and has given rise to great advances in surface and interface engineering. Polymer brushes are defined as thin polymer films in which the individual polymer chains are tethered by one chain end to a solid interface. Significant advances have been made over the past years in the field of polymer brushes. This includes novel developments in SI-CRP, as well as the emergence of novel applications such as catalysis, electronics, nanomaterial synthesis and biosensing. Additionally, polymer brushes prepared via SI-CRP have been utilized to modify the surface of novel substrates such as natural fibers, polymer nanofibers, mesoporous materials, graphene, viruses and protein nanoparticles. The last years have also seen exciting advances in the chemical and physical characterization of polymer brushes, as well as an ever increasing set of computational and simulation tools that allow understanding and predictions of these surface-grafted polymer architectures. The aim of this contribution is to provide a comprehensive review that critically assesses recent advances in the field and highlights the opportunities and challenges for future work.
Collapse
Affiliation(s)
- Justin O Zoppe
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Nariye Cavusoglu Ataman
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Piotr Mocny
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Jian Wang
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - John Moraes
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Kim W, Jung J. Polymer brush: a promising grafting approach to scaffolds for tissue engineering. BMB Rep 2017; 49:655-661. [PMID: 27697112 PMCID: PMC5346310 DOI: 10.5483/bmbrep.2016.49.12.166] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Indexed: 01/21/2023] Open
Abstract
Polymer brush is a soft material unit tethered covalently on the surface of scaffolds. It can induce functional and structural modification of a substrate’s properties. Such surface coating approach has attracted special attentions in the fields of stem cell biology, tissue engineering, and regenerative medicine due to facile fabrication, usability of various polymers, extracellular matrix (ECM)-like structural features, and in vivo stability. Here, we summarized polymer brush-based grafting approaches comparing self-assembled monolayer (SAM)-based coating method, in addition to physico-chemical characterization techniques for surfaces such as wettability, stiffness/elasticity, roughness, and chemical composition that can affect cell adhesion, differentiation, and proliferation. We also reviewed recent advancements in cell biological applications of polymer brushes by focusing on stem cell differentiation and 3D supports/implants for tissue formation. Understanding cell behaviors on polymer brushes in the scale of nanometer length can contribute to systematic understandings of cellular responses at the interface of polymers and scaffolds and their simultaneous effects on cell behaviors for promising platform designs.
Collapse
Affiliation(s)
- Woonjung Kim
- Department of Chemistry, Hannam University, Daejeon 34054, Korea
| | - Jongjin Jung
- Department of Chemistry, Hannam University, Daejeon 34054, Korea
| |
Collapse
|
13
|
Krutty JD, Schmitt SK, Gopalan P, Murphy WL. Surface functionalization and dynamics of polymeric cell culture substrates. Curr Opin Biotechnol 2016; 40:164-169. [PMID: 27314835 PMCID: PMC6893855 DOI: 10.1016/j.copbio.2016.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/12/2016] [Accepted: 05/23/2016] [Indexed: 12/15/2022]
Abstract
The promise of growing tissues to replace or improve the function of failing ones, a practice often referred to as regenerative medicine, has been driven in recent years by the development of stem cells and cell lines. Stem cells are typically cultured outside the body to increase cell number or differentiate the cells into mature cell types. In order to maximize the regenerative potential of these cells, there is a need to understand cell-material interactions that direct cell behavior and cell-material dynamics. Most synthetic surfaces used for growth and differentiation of cells in the lab are impractical and cost prohibitive in clinical labs. This review focuses on the modification of low cost polymer substrates that are already widely used for cell culture so that they may be used to control and understand cell-material interactions. In addition, we discuss the ability of cells to exert dynamic control over the microenvironment leading to a more complex, less controlled surface.
Collapse
Affiliation(s)
- John D Krutty
- Department of Biomedical Engineering, University of Wisconsin-Madison, 53706, USA
| | - Samantha K Schmitt
- Department of Materials Science and Engineering, University of Wisconsin-Madison, 53706, USA
| | - Padma Gopalan
- Department of Materials Science and Engineering, University of Wisconsin-Madison, 53706, USA; Department of Chemistry, University of Wisconsin-Madison, 53706, USA
| | - William L Murphy
- Department of Biomedical Engineering, University of Wisconsin-Madison, 53706, USA; Department of Materials Science and Engineering, University of Wisconsin-Madison, 53706, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 53706, USA.
| |
Collapse
|
14
|
Kumar R, Lahann J. Predictive Model for the Design of Zwitterionic Polymer Brushes: A Statistical Design of Experiments Approach. ACS APPLIED MATERIALS & INTERFACES 2016; 8:16595-16603. [PMID: 27268965 DOI: 10.1021/acsami.6b04370] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The performance of polymer interfaces in biology is governed by a wide spectrum of interfacial properties. With the ultimate goal of identifying design parameters for stem cell culture coatings, we developed a statistical model that describes the dependence of brush properties on surface-initiated polymerization (SIP) parameters. Employing a design of experiments (DOE) approach, we identified operating boundaries within which four gel architecture regimes can be realized, including a new regime of associated brushes in thin films. Our statistical model can accurately predict the brush thickness and the degree of intermolecular association of poly[{2-(methacryloyloxy) ethyl} dimethyl-(3-sulfopropyl) ammonium hydroxide] (PMEDSAH), a previously reported synthetic substrate for feeder-free and xeno-free culture of human embryonic stem cells. DOE-based multifunctional predictions offer a powerful quantitative framework for designing polymer interfaces. For example, model predictions can be used to decrease the critical thickness at which the wettability transition occurs by simply increasing the catalyst quantity from 1 to 3 mol %.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemical Engineering, ‡Department of Macromolecular Science & Engineering, §Department of Material Science & Engineering, ⊥Department of Biomedical Engineering, and ∥Biointerfaces Institute, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Joerg Lahann
- Department of Chemical Engineering, ‡Department of Macromolecular Science & Engineering, §Department of Material Science & Engineering, ⊥Department of Biomedical Engineering, and ∥Biointerfaces Institute, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
15
|
Abstract
Stem cells have the ability to self-renew and differentiate into specialized cell types, and, in the human body, they reside in specialized microenvironments called "stem cell niches." Although several niches have been described and studied in vivo, their functional replication in vitro is still incomplete. The in vitro culture of pluripotent stem cells may represent one of the most advanced examples in the effort to create an artificial or synthetic stem cell niche. A focus has been placed on the development of human stem cell microenvironments due to their significant clinical implications, in addition to the potential differences between animal and human cells. In this concise review we describe the advances in human pluripotent stem cell culture, and explore the idea that the knowledge gained from this model could be replicated to create synthetic niches for other human stem cell populations, which have proven difficult to maintain in vitro.
Collapse
|
16
|
Peng IC, Yeh CC, Lu YT, Muduli S, Ling QD, Alarfaj AA, Munusamy MA, Kumar SS, Murugan K, Lee HC, Chang Y, Higuchi A. Continuous harvest of stem cells via partial detachment from thermoresponsive nanobrush surfaces. Biomaterials 2016; 76:76-86. [DOI: 10.1016/j.biomaterials.2015.10.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 10/15/2015] [Accepted: 10/18/2015] [Indexed: 12/19/2022]
|
17
|
Qian X, Kim JK, Tong W, Villa-Diaz LG, Krebsbach PH. DPPA5 Supports Pluripotency and Reprogramming by Regulating NANOG Turnover. Stem Cells 2015; 34:588-600. [PMID: 26661329 DOI: 10.1002/stem.2252] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 09/19/2015] [Accepted: 10/18/2015] [Indexed: 01/16/2023]
Abstract
Although a specific group of transcription factors such as OCT4, SOX2, and NANOG are known to play essential roles in pluripotent stem cell (PSC) self-renewal, pluripotency, and reprogramming, other factors and the key signaling pathways regulating these important properties are not completely understood. Here, we demonstrate that the PSC marker Developmental Pluripotency Associated 5 (DPPA5) plays an important role in human PSC (hPSC) self-renewal and cell reprogramming in feeder-free conditions. Compared to hPSCs grown on mouse embryonic fibroblasts, cells cultured on feeder-free substrates, such as Matrigel, Laminin-511, Vitronectin, or the synthetic polymer poly[2-(methacryloyloxy) ethyl dimethyl-(3-sulfopropyl) ammonium hydroxide], had significantly higher DPPA5 gene expression and protein levels. Overexpression of DPPA5 in hPSCs increased NANOG protein levels via a post-transcriptional mechanism. Coimmunoprecipitation, protein stability assays, and quantitative RT-PCR, demonstrated that DPPA5 directly interacted, stabilized, and enhanced the function of NANOG in hPSCs. Additionally, DPPA5 increased the reprogramming efficiency of human somatic cells to induced pluripotent stem cells (hiPSCs). Our study provides new insight into the function of DPPA5 and NANOG regulation in hPSCs.
Collapse
Affiliation(s)
- Xu Qian
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Jin Koo Kim
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Wilbur Tong
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Luis G Villa-Diaz
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Paul H Krebsbach
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
18
|
Higuchi A, Kao SH, Ling QD, Chen YM, Li HF, Alarfaj AA, Munusamy MA, Murugan K, Chang SC, Lee HC, Hsu ST, Kumar SS, Umezawa A. Long-term xeno-free culture of human pluripotent stem cells on hydrogels with optimal elasticity. Sci Rep 2015; 5:18136. [PMID: 26656754 PMCID: PMC4677349 DOI: 10.1038/srep18136] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/13/2015] [Indexed: 12/18/2022] Open
Abstract
The tentative clinical application of human pluripotent stem cells (hPSCs), such as human embryonic stem cells and human induced pluripotent stem cells, is restricted by the possibility of xenogenic contamination resulting from the use of mouse embryonic fibroblasts (MEFs) as a feeder layer. Therefore, we investigated hPSC cultures on biomaterials with different elasticities that were grafted with different nanosegments. We prepared dishes coated with polyvinylalcohol-co-itaconic acid hydrogels grafted with an oligopeptide derived from vitronectin (KGGPQVTRGDVFTMP) with elasticities ranging from 10.3 to 30.4 kPa storage moduli by controlling the crosslinking time. The hPSCs cultured on the stiffest substrates (30.4 kPa) tended to differentiate after five days of culture, whereas the hPSCs cultured on the optimal elastic substrates (25 kPa) maintained their pluripotency for over 20 passages under xeno-free conditions. These results indicate that cell culture matrices with optimal elasticity can maintain the pluripotency of hPSCs in culture.
Collapse
Affiliation(s)
- Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, No. 300 Jhongli, Taoyuan, 32001 Taiwan.,Department of Reproduction, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan.,Nano Medical Engineering Laboratory, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan.,Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shih-Hsuan Kao
- Department of Chemical and Materials Engineering, National Central University, No. 300 Jhongli, Taoyuan, 32001 Taiwan
| | - Qing-Dong Ling
- Cathay Medical Research Institute, Cathay General Hospital, No. 32, Ln 160, Jian-Cheng Road, Hsi-Chi City, Taipei, 221, Taiwan.,Graduate Institute of Systems Biology and Bioinformatics, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001 Taiwan
| | - Yen-Ming Chen
- Department of Chemical and Materials Engineering, National Central University, No. 300 Jhongli, Taoyuan, 32001 Taiwan
| | - Hsing-Fen Li
- Department of Chemical and Materials Engineering, National Central University, No. 300 Jhongli, Taoyuan, 32001 Taiwan
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Murugan A Munusamy
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Kadarkarai Murugan
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Shih-Chang Chang
- Department of Surgery, Cathay General Hospital, No.280, Sec. 4, Ren'ai Rd., Da'an Dist., Taipei, 10693, Taiwan
| | - Hsin-Chung Lee
- Department of Surgery, Cathay General Hospital, No.280, Sec. 4, Ren'ai Rd., Da'an Dist., Taipei, 10693, Taiwan.,Graduate Institute of Translational and Interdisciplinary Medicine, College of Health Science and Technology, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001 Taiwan
| | - Shih-Tien Hsu
- Department of Internal Medicine, Taiwan Landseed Hospital, 77, Kuangtai Road, Pingjen City, Taoyuan 32405, Taiwan
| | - S Suresh Kumar
- Department of Medical Microbiology and Parasitology, Universities Putra Malaysia, Serdang 43400, Slangor, Malaysia
| | - Akihiro Umezawa
- Department of Reproduction, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| |
Collapse
|
19
|
Laperle A, Hsiao C, Lampe M, Mortier J, Saha K, Palecek SP, Masters KS. α-5 Laminin Synthesized by Human Pluripotent Stem Cells Promotes Self-Renewal. Stem Cell Reports 2015; 5:195-206. [PMID: 26235893 PMCID: PMC4618661 DOI: 10.1016/j.stemcr.2015.06.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 06/24/2015] [Accepted: 06/30/2015] [Indexed: 12/22/2022] Open
Abstract
Substrate composition significantly impacts human pluripotent stem cell (hPSC) self-renewal and differentiation, but relatively little is known about the role of endogenously produced extracellular matrix (ECM) components in regulating hPSC fates. Here we identify α-5 laminin as a signature ECM component endogenously synthesized by undifferentiated hPSCs cultured on defined substrates. Inducible shRNA knockdown and Cas9-mediated disruption of the LAMA5 gene dramatically reduced hPSC self-renewal and increased apoptosis without affecting the expression of pluripotency markers. Increased self-renewal and survival was restored to wild-type levels by culturing the LAMA5-deficient cells on exogenous laminin-521. Furthermore, treatment of LAMA5-deficient cells with blebbistatin or a ROCK inhibitor partially restored self-renewal and diminished apoptosis. These results demonstrate that endogenous α-5 laminin promotes hPSC self-renewal in an autocrine and paracrine manner. This finding has implications for understanding how stem cells dynamically regulate their microenvironment to promote self-renewal and provides guidance for efforts to design substrates for stem cell bioprocessing.
Collapse
Affiliation(s)
- Alex Laperle
- Department of Biomedical Engineering, University of Wisconsin - Madison, 1550 Engineering Drive, Madison, WI 53706, USA; Wisconsin Institute for Discovery, University of Wisconsin - Madison, 330 North Orchard Street, Madison, WI 53715, USA
| | - Cheston Hsiao
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, 1415 Engineering Drive, Madison, WI 53706, USA
| | - Michael Lampe
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, 1415 Engineering Drive, Madison, WI 53706, USA
| | - Jaime Mortier
- Department of Biomedical Engineering, University of Wisconsin - Madison, 1550 Engineering Drive, Madison, WI 53706, USA
| | - Krishanu Saha
- Department of Biomedical Engineering, University of Wisconsin - Madison, 1550 Engineering Drive, Madison, WI 53706, USA; Wisconsin Institute for Discovery, University of Wisconsin - Madison, 330 North Orchard Street, Madison, WI 53715, USA
| | - Sean P Palecek
- Department of Biomedical Engineering, University of Wisconsin - Madison, 1550 Engineering Drive, Madison, WI 53706, USA; Department of Chemical and Biological Engineering, University of Wisconsin - Madison, 1415 Engineering Drive, Madison, WI 53706, USA
| | - Kristyn S Masters
- Department of Biomedical Engineering, University of Wisconsin - Madison, 1550 Engineering Drive, Madison, WI 53706, USA; Wisconsin Institute for Discovery, University of Wisconsin - Madison, 330 North Orchard Street, Madison, WI 53715, USA.
| |
Collapse
|
20
|
From Self-Assembled Monolayers to Coatings: Advances in the Synthesis and Nanobio Applications of Polymer Brushes. Polymers (Basel) 2015. [DOI: 10.3390/polym7071346] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
21
|
Tong Z, Solanki A, Hamilos A, Levy O, Wen K, Yin X, Karp JM. Application of biomaterials to advance induced pluripotent stem cell research and therapy. EMBO J 2015; 34:987-1008. [PMID: 25766254 PMCID: PMC4406648 DOI: 10.15252/embj.201490756] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/25/2015] [Accepted: 02/17/2015] [Indexed: 12/19/2022] Open
Abstract
Derived from any somatic cell type and possessing unlimited self-renewal and differentiation potential, induced pluripotent stem cells (iPSCs) are poised to revolutionize stem cell biology and regenerative medicine research, bringing unprecedented opportunities for treating debilitating human diseases. To overcome the limitations associated with safety, efficiency, and scalability of traditional iPSC derivation, expansion, and differentiation protocols, biomaterials have recently been considered. Beyond addressing these limitations, the integration of biomaterials with existing iPSC culture platforms could offer additional opportunities to better probe the biology and control the behavior of iPSCs or their progeny in vitro and in vivo. Herein, we discuss the impact of biomaterials on the iPSC field, from derivation to tissue regeneration and modeling. Although still exploratory, we envision the emerging combination of biomaterials and iPSCs will be critical in the successful application of iPSCs and their progeny for research and clinical translation.
Collapse
Affiliation(s)
- Zhixiang Tong
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital Harvard Medical School, Cambridge, MA, USA Harvard Stem Cell Institute, Cambridge, MA, USA Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| | - Aniruddh Solanki
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital Harvard Medical School, Cambridge, MA, USA Harvard Stem Cell Institute, Cambridge, MA, USA Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| | - Allison Hamilos
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital Harvard Medical School, Cambridge, MA, USA Harvard Stem Cell Institute, Cambridge, MA, USA Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| | - Oren Levy
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital Harvard Medical School, Cambridge, MA, USA Harvard Stem Cell Institute, Cambridge, MA, USA Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| | - Kendall Wen
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital Harvard Medical School, Cambridge, MA, USA Harvard Stem Cell Institute, Cambridge, MA, USA Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| | - Xiaolei Yin
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital Harvard Medical School, Cambridge, MA, USA Harvard Stem Cell Institute, Cambridge, MA, USA Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Jeffrey M Karp
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital Harvard Medical School, Cambridge, MA, USA Harvard Stem Cell Institute, Cambridge, MA, USA Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| |
Collapse
|
22
|
Mangani C, Lilienkampf A, Roy M, de Sousa PA, Bradley M. Thermoresponsive hydrogel maintains the mouse embryonic stem cell “naïve” pluripotency phenotype. Biomater Sci 2015; 3:1371-5. [DOI: 10.1039/c5bm00121h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A chemically defined hydrogel HG21, which allows enzyme-free passaging, is a substitute for gelatin allowing standardised and inexpensive mESC culture.
Collapse
Affiliation(s)
| | | | - Marcia Roy
- Centre for Neuroregeneration
- University of Edinburgh
- Edinburgh
- UK
| | - Paul A. de Sousa
- Scottish Centre for Regenerative Medicine
- University of Edinburgh
- Edinburgh
- UK
| | - Mark Bradley
- School of Chemistry
- EaStCHEM
- University of Edinburgh
- Edinburgh
- UK
| |
Collapse
|