1
|
Hou T, Yang Q, Ding M, Wang X, Mei K, Guan P, Wang C, Hu X. Blood-brain barrier permeable carbon nano-assemblies for amyloid-β clearance and neurotoxic attenuation. Colloids Surf B Biointerfaces 2024; 244:114182. [PMID: 39216441 DOI: 10.1016/j.colsurfb.2024.114182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Abnormal amyloid β-protein (Aβ42) fibrillation is a key event in Alzheimer's disease (AD), and photodynamic therapy (PDT) possesses great potential in modulating Aβ42 self-assembly. However, the poor blood-brain barrier (BBB) penetration, low biocompatibility, and limited tissue penetration depth of existing photosensitizers limit the progress of photo-oxidation strategies. In this paper, novel indocyanine green-modified graphene quantum dot nano-assemblies (NBGQDs-ICGs) were synthesized based on a molecular assembly strategy of electrostatic interactions for PDT inhibition of Aβ42 self-assembly process and decomposition of preformed fibrils under near-infrared light. Combining the small-size structure of graphene quantum dots and the near-infrared light-responsive properties of ICGs, the NBGQDs-ICGs could achieve BBB penetration under 808 nm irradiation. More importantly, the neuroprotective mechanism of NBGQDs-ICG was studied for the first time by AFM, which effectively weakened the adhesion of Aβ42 aggregates to the cell surface by blocking the interaction between Aβ42 and the cell membrane, and restored the mechanical stability and adhesion of the neuron membrane. Meanwhile, NBGQDs-ICG promoted phagocytosis of Aβ42 by microglia. In addition, the good biocompatibility and stability ensured the biosafety of NBGQDs-ICG in future clinical applications. We anticipate that such multifunctional nanocomponents may provide promising avenues for the development of novel AD inhibitors.
Collapse
Affiliation(s)
- Tongtong Hou
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Qian Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi'an 710032, PR China
| | - Minling Ding
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Xin Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Kun Mei
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Ping Guan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| | - Chaoli Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi'an 710032, PR China.
| | - Xiaoling Hu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| |
Collapse
|
2
|
Guo Y, Xia C, Cao Y, Su J, Chi W, Chen D, Yan J. Modulation of intramolecular freedom for tuning fluorescence imaging and photooxidation of amyloid-β aggregates. MATERIALS HORIZONS 2024; 11:6040-6048. [PMID: 39295492 DOI: 10.1039/d4mh00660g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Alzheimer's disease (AD) is distinguished by amyloid-β (Aβ) deposition and plaque formation, prompting significant interest in fluorescence imaging and photooxidation of Aβ aggregates for diagnostic and intervention purposes. However, the molecular engineering required to modulate fluorescence imaging and photooxidation of Aβ presents notable challenges. Here, we present the design of four small molecules (BTD-SZ, BTD-YD, BTD-TA-SZ, and BTD-TA-YD) aimed at investigating the influence of intramolecular freedom of movement on imaging and photooxidation. Notably, BTD-SZ exhibits exceptional fluorescence properties, offering promising potential for non-invasive detection of Aβ plaques in vivo. Furthermore, by converting dimethylamine into triphenylamine to restrict intramolecular freedom of movement in the aggregate state, we synthesized a photosensitizer denoted as BTD-TA-SZ. This compound demonstrates aggregation-induced photooxidation (AIP), effectively impeding Aβ aggregation under light irradiation in vivo. Thus, the modulation of intramolecular freedom of movement emerges as a pivotal molecular engineering strategy for developing photosensitizers for the diagnosis and intervention of AD, offering insights into innovative approaches for combating this debilitating condition.
Collapse
Affiliation(s)
- Yuhui Guo
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Chunli Xia
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519040, P. R. China
| | - Yingmei Cao
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Junyi Su
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519040, P. R. China
| | - Weijie Chi
- Collaborative Innovation Center of One Health, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Daoyuan Chen
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519040, P. R. China
| | - Jinwu Yan
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China.
| |
Collapse
|
3
|
Liu S, Li Y, Yang J, Zhang L, Yan J. An in situ-activated and chemi-excited photooxygenation system based on G-poly(thioacetal) for Aβ 1-42 aggregates. J Mater Chem B 2024; 12:10850-10860. [PMID: 39417544 DOI: 10.1039/d4tb01147c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The abnormal aggregation of Aβ proteins, inflammatory responses, and mitochondrial dysfunction have been reported as major targets in Alzheimer's disease (AD). Photooxygenation of the amyloid-β peptide (Aβ) is viewed as a promising therapeutic intervention for AD treatment. However, the limitations of the depth of the external light source passing through the brain and the toxic side effects on healthy tissues are two significant challenges in the photooxidation of Aβ aggregates. We proposed a method to initiate the chemical stimulation of Aβ1-42 aggregate oxidation through H2O2 and correct the abnormal microenvironment of the lesions by eliminating the cascading reactions of oxidative stress. The degradable G-poly(thioacetal) undergoes cascade release of cinnamaldehyde (CA) and thioacetal triggered by endogenous H2O2, with CA in turn amplifying degradation by generating more H2O2 through mitochondrial dysfunction. A series of novel photosensitizers have been prepared and synthesized for use in the photodynamic oxidation of Aβ1-42 aggregates under white light activation. The nanoparticles (BD-6-QM/NPs) self-assembled from BD-6-QM, bis[2,4,5-trichloro-6-(pentoxycarbonyl) phenyl] ester (CPPO), and G-poly(thioacetal) not only exhibit H2O2-stimulated controlled release but also can be chemically triggered by H2O2 to generate singlet oxygen to inhibit Aβ1-42 aggregates, reducing the Aβ1-42-induced neurotoxicity.
Collapse
Affiliation(s)
- Shasha Liu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Yanping Li
- School of Medicine, Foshan University, Foshan 528225, P. R. China
| | - Jinrong Yang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Lei Zhang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Jinwu Yan
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China.
| |
Collapse
|
4
|
Song Q, Li J, Li T, Li H. Nanomaterials that Aid in the Diagnosis and Treatment of Alzheimer's Disease, Resolving Blood-Brain Barrier Crossing Ability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403473. [PMID: 39101248 PMCID: PMC11481234 DOI: 10.1002/advs.202403473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/04/2024] [Indexed: 08/06/2024]
Abstract
As a form of dementia, Alzheimer's disease (AD) suffers from no efficacious cure, yet AD treatment is still imperative, as it ameliorates the symptoms or prevents it from deteriorating or maintains the current status to the longest extent. The human brain is the most sensitive and complex organ in the body, which is protected by the blood-brain barrier (BBB). This yet induces the difficulty in curing AD as the drugs or nanomaterials that are much inhibited from reaching the lesion site. Thus, BBB crossing capability of drug delivery system remains a significant challenge in the development of neurological therapeutics. Fortunately, nano-enabled delivery systems possess promising potential to achieve multifunctional diagnostics/therapeutics against various targets of AD owing to their intriguing advantages of nanocarriers, including easy multifunctionalization on surfaces, high surface-to-volume ratio with large payloads, and potential ability to cross the BBB, making them capable of conquering the limitations of conventional drug candidates. This review, which focuses on the BBB crossing ability of the multifunctional nanomaterials in AD diagnosis and treatment, will provide an insightful vision that is conducive to the development of AD-related nanomaterials.
Collapse
Affiliation(s)
- Qingting Song
- Department of ChemistryThe Chinese University of Hong KongHong KongChina
| | - Junyou Li
- Department of ChemistryThe Chinese University of Hong KongHong KongChina
| | - Ting Li
- Department of ChemistryThe Chinese University of Hong KongHong KongChina
| | - Hung‐Wing Li
- Department of ChemistryThe Chinese University of Hong KongHong KongChina
| |
Collapse
|
5
|
Jang J, Joo S, Yeom J, Jo Y, Zhang J, Hong S, Park CB. Lateral Piezoelectricity of Alzheimer's Aβ Aggregates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406678. [PMID: 39159132 PMCID: PMC11497015 DOI: 10.1002/advs.202406678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/01/2024] [Indexed: 08/21/2024]
Abstract
Alzheimer's disease (AD) is the most frequent neurodegenerative disorder in the elderly aged over 65. The extracellular accumulation of beta-amyloid (Aβ) aggregates in the brain is considered as the major event worsening the AD symptoms, but its underlying reason has remained unclear. Here the piezoelectric characteristics of Aβ aggregates are revealed. The vector piezoresponse force microscopy (PFM) analysis results exhibit that Aβ fibrils have spiraling piezoelectric domains along the length and a lateral piezoelectric constant of 44.1 pC N-1. Also, the continuous sideband Kelvin probe force microscopy (KPFM) images display that the increment of charge-induced surface potential on a single Aβ fibril is allowed to reach above +1700 mV in response to applied forces. These findings shed light on the peculiar mechano-electrical surface properties of pathological Aβ fibrils that exceed those of normal body components.
Collapse
Affiliation(s)
- Jinhyeong Jang
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)335 Science RoadDaejeon34141Republic of Korea
- Applied Science Research InstituteKorea Advanced Institute of Science and Technology (KAIST)335 Science RoadDaejeon34141Republic of Korea
| | - Soyun Joo
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)335 Science RoadDaejeon34141Republic of Korea
| | - Jiwon Yeom
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)335 Science RoadDaejeon34141Republic of Korea
| | - Yonghan Jo
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)335 Science RoadDaejeon34141Republic of Korea
| | - Jingshu Zhang
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)335 Science RoadDaejeon34141Republic of Korea
| | - Seungbum Hong
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)335 Science RoadDaejeon34141Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)335 Science RoadDaejeon34141Republic of Korea
| |
Collapse
|
6
|
Takebe G, Okazaki S, Ottevaere H. Effect of Aggregated Lysozyme on Fluorescence Properties of Rose Bengal. Chemphyschem 2024:e202400554. [PMID: 39176999 DOI: 10.1002/cphc.202400554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/28/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
Protein aggregates cause abnormal states and trigger various diseases, including neurodegenerative disorders. This study examined whether the xanthene dye derivative Rose Bengal could track a series of conformational changes in protein aggregates. Using lysozyme as a model protein, aggregated proteins were prepared by heating under acidic conditions. The absorption spectra, steady-state fluorescence spectra, fluorescence quantum yield, fluorescence lifetime, and phosphorescence lifetime of a solution containing Rose Bengal in the presence of aggregated lysozyme were measured to identify their spectroscopic characteristics. The absorption spectrum of Rose Bengal changed significantly during the formation of agglomerates in heated lysozyme. Additionally, the fluorescence intensity decreased during the initial stages of the aggregation process with an increase in heating time, followed by an increase in intensity along with a red-shift of the peak wavelength. The decrease in quantum yield with a fixed fluorescence lifetime supported the formation of a nonfluorescent ground-state complex between Rose Bengal and the aggregated lysozyme. Based on the characteristic changes in absorption and fluorescence properties observed during the aggregation process, Rose Bengal is considered an excellent indicator for the sensitive discernment of aggregated proteins.
Collapse
Affiliation(s)
- Gen Takebe
- Central Research Laboratory, Hamamatsu Photonics K.K., 5000, Hirakuchi, Hamana-ku, Hamamatsu City, Shizuoka Pref., Japan
- Brussels Photonics (B-PHOT), Department of Applied Physics and Photonics, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Shigetoshi Okazaki
- Central Research Laboratory, Hamamatsu Photonics K.K., 5000, Hirakuchi, Hamana-ku, Hamamatsu City, Shizuoka Pref., Japan
| | - Heidi Ottevaere
- Brussels Photonics (B-PHOT), Department of Applied Physics and Photonics, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| |
Collapse
|
7
|
Maghsoodi F, Martin TD, Chi EY. Partial Destabilization of Amyloid-β Protofibril by Methionine Photo-Oxidation: A Molecular Dynamic Simulation Study. ACS OMEGA 2023; 8:10148-10159. [PMID: 36969430 PMCID: PMC10035002 DOI: 10.1021/acsomega.2c07468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Selective photosensitized oxidation of amyloid protein aggregates is being investigated as a possible therapeutic strategy for treating Alzheimer's disease (AD). Photo-oxidation has been shown to degrade amyloid-β (Aβ) aggregates and ameliorate aggregate toxicity in vitro and reduce aggregate levels in the brains of AD animal models. To shed light on the mechanism by which photo-oxidation induces fibril destabilization, we carried out an all-atom molecular dynamics (MD) simulation to examine the effect of methionine (Met35) oxidation on the conformation and stability of a β-sheet-rich Aβ9-40 protofibril. Analyses of up to 1 μs simulations showed that the oxidation of the Met35 residues, which resulted in the addition of hydrophilic oxygens in the fibril core, reduced the overall conformational stability of the protofibril. Specifically, Met35 disrupted the hydrophobic interface that stabilizes the stacking of the two hexamers that comprise the protofibril. The oxidized protofibril is more solvent exposed and exhibits more backbone flexibility. However, the protofibril retained the underlying U-shaped architecture of each peptide upon oxidation, and although some loss of β-sheets occurred, a significant portion remained. Our simulation results are thus consistent with our experimental observation that photo-oxidation of Aβ40 fibril resulted in the dis-agglomeration and fragmentation of Aβ fibrils but did not cause complete disruption of the fibrillar morphology or β-sheet structures. The partial destabilization of Aβ aggregates supports the further development of photosensitized platforms for the targeting and clearing of Aβ aggregates as a therapeutic strategy for treating AD.
Collapse
Affiliation(s)
- Fahimeh Maghsoodi
- Nanoscience
and Microsystems Engineering Graduate Program, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Center
for Biomedical Engineering, University of
New Mexico, Albuquerque, New Mexico 87131, United States
| | - Tye D. Martin
- Center
for Biomedical Engineering, University of
New Mexico, Albuquerque, New Mexico 87131, United States
| | - Eva Y. Chi
- Center
for Biomedical Engineering, University of
New Mexico, Albuquerque, New Mexico 87131, United States
- Department
of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
8
|
Zhang E, Dai F, Chen T, Liu S, Xiao C, Shen X. Diagnostic models and predictive drugs associated with cuproptosis hub genes in Alzheimer's disease. Front Neurol 2023; 13:1064639. [PMID: 36776574 PMCID: PMC9909238 DOI: 10.3389/fneur.2022.1064639] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/29/2022] [Indexed: 01/27/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease, and its underlying genes and treatments are unclear. Abnormalities in copper metabolism can prevent the clearance of β-amyloid peptides and promote the progression of AD pathogenesis. Therefore, the present study used a bioinformatics approach to perform an integrated analysis of the hub gene based on cuproptosis that can influence the diagnosis and treatment of AD. The gene expression profiles were obtained from the Gene Expression Omnibus database, including non-demented (ND) and AD samples. A total of 2,977 cuproptosis genes were retrieved from published articles. The seven hub genes associated with cuproptosis and AD were obtained from the differentially expressed genes and WGCNA in brain tissue from GSE33000. The GO analysis demonstrated that these genes were involved in phosphoribosyl pyrophosphate, lipid, and glucose metabolism. By stepwise regression and logistic regression analysis, we screened four of the seven cuproptosis genes to construct a diagnostic model for AD, which was validated by GES15222, GS48350, and GSE5281. In addition, immune cell infiltration of samples was investigated for correlation with these hub genes. We identified six drugs targeting these seven cuproptosis genes in DrugBank. Hence, these cuproptosis gene signatures may be an important prognostic indicator for AD and may offer new insights into treatment options.
Collapse
Affiliation(s)
- Erdong Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, China,Key Laboratory of Optimal Utilization of Natural Medicinal Resources, Guizhou Medical University, Guiyang, Guizhou, China,*Correspondence: Erdong Zhang ✉
| | - Fengqiu Dai
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Tingting Chen
- Guiyang Maternal and Child Health-Care Hospital, Guiyang, Guizhou, China
| | - Shanhui Liu
- Key Laboratory of Urological Diseases in Gansu Province, Gansu Nephro-Urological Clinical Center, Institute of Urology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Chaolun Xiao
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiangchun Shen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, China,Key Laboratory of Optimal Utilization of Natural Medicinal Resources, Guizhou Medical University, Guiyang, Guizhou, China,Xiangchun Shen ✉
| |
Collapse
|
9
|
Ma M, Wang J, Jiang H, Chen Q, Xiao Y, Yang H, Lin L. Transcranial deep-tissue phototherapy for Alzheimer's disease using low-dose X-ray-activated long-afterglow scintillators. Acta Biomater 2023; 155:635-643. [PMID: 36328129 DOI: 10.1016/j.actbio.2022.10.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/30/2022] [Accepted: 10/23/2022] [Indexed: 11/13/2022]
Abstract
Non-invasive phototherapy has been emerging as an ambitious tactic for suppression of amyloid-β (Aβ) self-assembly against Alzheimer's disease (AD). However, it remains a daunting challenge to develop efficient photosensitizers for Aβ oxygenation that are activatable in a deep brain tissue through the scalp and skull, while reducing side effects on normal tissues. Here, we report an Aβ targeted, low-dose X-ray-excitable long-afterglow scintillator (ScNPs@RB/Ab) for efficient deep-brain phototherapy. We demonstrate that the as-synthesized ScNPs@RB/Ab is capable of converting X-rays into visible light to activate the photosensitizers of rose bengal (RB) for Aβ oxygenation through the scalp and skull. We show that the ScNPs@RB/Ab persistently emitting visible luminescence can substantially minimize the risk of excessive X-ray exposure dosage. Importantly, peptide KLVFFAED-functionalized ScNPs@RB/Ab shows a blood-brain barrier permeability. In vivo experimental results validated that ScNPs@RB/Ab alleviated Aβ burden and slowed cognitive decline in triple-transgenic AD model mice at extremely low X-ray doses without side effects. Our study paves a new pathway to develop high-efficiency transcranial AD phototherapy. STATEMENT OF SIGNIFICANCE: Non-invasive phototherapy has been emerging as an ambitious tactic for suppression of amyloid-β (Aβ) self-assembly against Alzheimer's disease (AD). However, it remains a daunting challenge to develop efficient photosensitizers for Aβ oxygenation that are activatable in a deep brain tissue through the scalp and skull, while reducing side effects on normal tissues. Herein, we report an Aβ targeted, low-dose X-ray-excitable long-afterglow scintillators (ScNPs@RB/Ab) for efficient deep-brain phototherapy. In vivo experimental results validated that ScNPs@RB/Ab alleviated Aβ burden and slowed cognitive decline in triple-transgenic AD model mice at extremely low X-ray doses without side effects.
Collapse
Affiliation(s)
- Mengmeng Ma
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jing Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hao Jiang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Qiushui Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yi Xiao
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 637457, Singapore.
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325000, China.
| |
Collapse
|
10
|
Xu Y, Xiong H, Zhang B, Lee I, Xie J, Li M, Zhang H, Seung Kim J. Photodynamic Alzheimer’s disease therapy: From molecular catalysis to photo-nanomedicine. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Jiang Y, Zeng Z, Yao J, Guan Y, Jia P, Zhao X, Xu L. Treatment of Alzheimer's disease with small-molecule photosensitizers. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
12
|
Mou CY, Xie YF, Wei JX, Wang QY, Le JY, Bao YJ, Zhang PP, Mao YC, Huang XH, Pan HB, Naman CB, Liu L, Liang HZ, Wu X, Xu J, Cui W. Rose Bengal inhibits β-amyloid oligomers-induced tau hyperphosphorylation via acting on Akt and CDK5 kinases. Psychopharmacology (Berl) 2022; 239:3579-3593. [PMID: 36221038 DOI: 10.1007/s00213-022-06232-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022]
Abstract
RATIONALE Tau hyperphosphorylation and aggregation is considered as a main pathological mechanism underlying Alzheimer's disease (AD). Rose Bengal (RB) is a synthetic dye used for disease diagnosis, which was reported to inhibit tau toxicity via inhibiting tau aggregation in Drosophila. However, it was unknown if RB could produce anti-AD effects in rodents. OBJECTIVES The research aimed to investigate if and how RB could prevent β-amyloid (Aβ) oligomers-induced tau hyperphosphorylation in rodents. METHODS AND RESULTS RB was tested in vitro (0.3-1 μM) and prevented Aβ oligomers-induced tau hyperphosphorylation in PC12 cells. Moreover, RB (10-30 mg/kg, i.p.) effectively attenuated cognitive impairments induced by Aβ oligomers in mice. Western blotting analysis demonstrated that RB significantly increased the expression of pSer473-Akt, pSer9-glycogen synthase kinase-3β (GSK3β) and reduced the expression of cyclin-dependent kinase 5 (CDK5) both in vitro and in vivo. Molecular docking analysis suggested that RB might directly interact with GSK3β and CDK5 by acting on ATP binding sites. Gene Ontology enrichment analysis indicated that RB might act on protein phosphorylation pathways to inhibit tau hyperphosphorylation. CONCLUSIONS RB was shown to inhibit tau neurotoxicity at least partially via inhibiting the activity of GSK3β and CDK5, which is a novel neuroprotective mechanism besides the inhibition of tau aggregation. As tau hyperphosphorylation is an important target for AD therapy, this study also provided support for investigating the drug repurposing of RB as an anti-AD drug candidate.
Collapse
Affiliation(s)
- Chen-Ye Mou
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315211, China.,Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Yan-Fei Xie
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Jia-Xin Wei
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315211, China.,Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Qi-Yao Wang
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Jing-Yang Le
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Yong-Jie Bao
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Pan-Pan Zhang
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Yue-Chun Mao
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Xing-Han Huang
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Han-Bo Pan
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - C Benjamin Naman
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Lin Liu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315211, China
| | - Hong-Ze Liang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Xiang Wu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315211, China
| | - Jia Xu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315211, China.,Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Wei Cui
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315211, China. .,Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
13
|
Hong M, Kim M, Yoon J, Lee SH, Baik MH, Lim MH. Excited-State Intramolecular Hydrogen Transfer of Compact Molecules Controls Amyloid Aggregation Profiles. JACS AU 2022; 2:2001-2012. [PMID: 36186552 PMCID: PMC9516708 DOI: 10.1021/jacsau.2c00281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 06/16/2023]
Abstract
Developing chemical methodologies to directly modify harmful biomolecules affords the mitigation of their toxicity by persistent changes in their properties and structures. Here we report compact photosensitizers composed of the anthraquinone (AQ) backbone that undergo excited-state intramolecular hydrogen transfer, effectively oxidize amyloidogenic peptides, and, subsequently, alter their aggregation pathways. Density functional theory calculations showed that the appropriate position of the hydroxyl groups in the AQ backbone and the consequent intramolecular hydrogen transfer can facilitate the energy transfer to triplet oxygen. Biochemical and biophysical investigations confirmed that these photoactive chemical reagents can oxidatively vary both metal-free amyloid-β (Aβ) and metal-bound Aβ, thereby redirecting their on-pathway aggregation into off-pathway as well as disassembling their preformed aggregates. Moreover, the in vivo histochemical analysis of Aβ species produced upon photoactivation of the most promising candidate demonstrated that they do not aggregate into oligomeric or fibrillar aggregates in the brain. Overall, our combined computational and experimental studies validate a light-based approach for designing small molecules, with minimum structural complexity, as chemical reagents targeting and controlling amyloidogenic peptides associated with neurodegenerative disorders.
Collapse
Affiliation(s)
- Mannkyu Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Mingeun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jiwon Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seung-Hee Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
14
|
Near-Infrared Photothermally Enhanced Photo-Oxygenation for Inhibition of Amyloid-β Aggregation Based on RVG-Conjugated Porphyrinic Metal-Organic Framework and Indocyanine Green Nanoplatform. Int J Mol Sci 2022; 23:ijms231810885. [PMID: 36142796 PMCID: PMC9505608 DOI: 10.3390/ijms231810885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Amyloid aggregation is associated with many neurodegenerative diseases such as Alzheimer's disease (AD). The current technologies using phototherapy for amyloid inhibition are usually photodynamic approaches based on evidence that reactive oxygen species can inhibit Aβ aggregation. Herein, we report a novel combinational photothermally assisted photo-oxygenation treatment based on a nano-platform of the brain-targeting peptide RVG conjugated with the 2D porphyrinic PCN-222 metal-organic framework and indocyanine green (PCN-222@ICG@RVG) with enhanced photo-inhibition in Alzheimer's Aβ aggregation. A photothermally assisted photo-oxygenation treatment based on PCN@ICG could largely enhance the photo-inhibition effect on Aβ42 aggregation and lead to much lower neurotoxicity upon near-infrared (NIR) irradiation at 808 nm compared with a single modality of photo-treatment in both cell-free and in vitro experiments. Generally, local photothermal heat increases the instability of Aβ aggregates and keeps Aβ in the status of monomers, which facilitates the photo-oxygenation process of generating oxidized Aβ monomers with low aggregation capability. In addition, combined with the brain-targeting peptide RVG, the PCN-222@ICG@RVG nanoprobe shows high permeability of the human blood-brain barrier (BBB) on a human brain-on-a-chip platform. The ex vivo study also demonstrates that NIR-activated PCN-222@ICG@RVG could efficiently dissemble Aβ plaques. Our work suggests that the combination of photothermal treatment with photo-oxygenation can synergistically enhance the inhibition of Aβ aggregation, which may boost NIR-based combinational phototherapy of AD in the future.
Collapse
|
15
|
Aires-Fernandes M, Amantino CF, do Amaral SR, Primo FL. Tissue Engineering and Photodynamic Therapy: A New Frontier of Science for Clinical Application -An Up-To-Date Review. Front Bioeng Biotechnol 2022; 10:837693. [PMID: 35782498 PMCID: PMC9240431 DOI: 10.3389/fbioe.2022.837693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Tissue engineering (TE) connects principles of life sciences and engineering to develop biomaterials as alternatives to biological systems and substitutes that can improve and restore tissue function. The principle of TE is the incorporation of cells through a 3D matrix support (scaffold) or using scaffold-free organoid cultures to reproduce the 3D structure. In addition, 3D models developed can be used for different purposes, from studies mimicking healthy tissues and organs as well as to simulate and study different pathologies. Photodynamic therapy (PDT) is a non-invasive therapeutic modality when compared to conventional therapies. Therefore, PDT has great acceptance among patients and proves to be quite efficient due to its selectivity, versatility and therapeutic simplicity. The PDT mechanism consists of the use of three components: a molecule with higher molar extinction coefficient at UV-visible spectra denominated photosensitizer (PS), a monochromatic light source (LASER or LED) and molecular oxygen present in the microenvironment. The association of these components leads to a series of photoreactions and production of ultra-reactive singlet oxygen and reactive oxygen species (ROS). These species in contact with the pathogenic cell, leads to its target death based on necrotic and apoptosis ways. The initial objective of PDT is the production of high concentrations of ROS in order to provoke cellular damage by necrosis or apoptosis. However, recent studies have shown that by decreasing the energy density and consequently reducing the production of ROS, it enabled a specific cell response to photostimulation, tissues and/or organs. Thus, in the present review we highlight the main 3D models involved in TE and PS most used in PDT, as well as the applications, future perspectives and limitations that accompany the techniques aimed at clinical use.
Collapse
|
16
|
Fanni AM, Okoye D, Monge FA, Hammond J, Maghsoodi F, Martin TD, Brinkley G, Phipps ML, Evans DG, Martinez JS, Whitten DG, Chi EY. Controlled and Selective Photo-oxidation of Amyloid-β Fibrils by Oligomeric p-Phenylene Ethynylenes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14871-14886. [PMID: 35344326 PMCID: PMC10452927 DOI: 10.1021/acsami.1c22869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photodynamic therapy (PDT) has been explored as a therapeutic strategy to clear toxic amyloid aggregates involved in neurodegenerative disorders such as Alzheimer's disease. A major limitation of PDT is off-target oxidation, which can be lethal for the surrounding cells. We have shown that a novel class of oligo-p-phenylene ethynylenes (OPEs) exhibit selective binding and fluorescence turn-on in the presence of prefibrillar and fibrillar aggregates of disease-relevant proteins such as amyloid-β (Aβ) and α-synuclein. Concomitant with fluorescence turn-on, OPE also photosensitizes singlet oxygen under illumination through the generation of a triplet state, pointing to the potential application of OPEs as photosensitizers in PDT. Herein, we investigated the photosensitizing activity of an anionic OPE for the photo-oxidation of Aβ fibrils and compared its efficacy to the well-known but nonselective photosensitizer methylene blue (MB). Our results show that, while MB photo-oxidized both monomeric and fibrillar conformers of Aβ40, OPE oxidized only Aβ40 fibrils, targeting two histidine residues on the fibril surface and a methionine residue located in the fibril core. Oxidized fibrils were shorter and more dispersed but retained the characteristic β-sheet rich fibrillar structure and the ability to seed further fibril growth. Importantly, the oxidized fibrils displayed low toxicity. We have thus discovered a class of novel theranostics for the simultaneous detection and oxidization of amyloid aggregates. Importantly, the selectivity of OPE's photosensitizing activity overcomes the limitation of off-target oxidation of traditional photosensitizers and represents an advancement of PDT as a viable strategy to treat neurodegenerative disorders.
Collapse
Affiliation(s)
- Adeline M. Fanni
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131
- Biomedical Engineering Graduate Program, University of New Mexico, Albuquerque, NM. 87131
| | - Daniel Okoye
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131
| | - Florencia A. Monge
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131
- Biomedical Engineering Graduate Program, University of New Mexico, Albuquerque, NM. 87131
| | - Julia Hammond
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM. 87131
- Rose-Hulman Institute of Technology, Terre Haute, IN 47803
| | - Fahimeh Maghsoodi
- Nanoscience and Microsystems Engineering Graduate Program, University of New Mexico, Albuquerque, NM 87131
| | - Tye D. Martin
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131
- Biomedical Engineering Graduate Program, University of New Mexico, Albuquerque, NM. 87131
| | - Gabriella Brinkley
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM. 87131
- Chemical Engineering Department, University of Minnesota, Duluth, MN 55812
| | - M. Lisa Phipps
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Deborah G. Evans
- Department of Chemistry and Chemical Biology, University of New Mexico, NM 87131
| | - Jennifer S. Martinez
- Center for Materials Interfaces in Research and Applications, Northern Arizona University, Flagstaff, AZ 86011
- Department of Applied Physics and Materials Science, Northern Arizona University, Flagstaff, AZ 86011
| | - David G. Whitten
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM. 87131
| | - Eva Y. Chi
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM. 87131
| |
Collapse
|
17
|
Wu H, Liu Z, Shao Y, Li G, Pan Y, Wang L, Akkaya EU. Degradation of amyloid peptide aggregates by targeted singlet oxygen delivery from a benzothiazole functionalized naphthalene endoperoxide. Chem Commun (Camb) 2022; 58:3747-3750. [PMID: 35072189 DOI: 10.1039/d1cc07133e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aggregate structures formed by amyloid-β (Aβ) are correlated with the progression of pathogenesis in Alzheimer's disease. Previous works have shown that photodynamic photosensitizers were effective in oxidatively degrading amyloid-β aggregates and thus decreasing their cytotoxicity under various conditions. In this work, we designed and synthesized a benzothiazole-naphthalene conjugate, with high level of structural analogy to Thioflavin T which is known to have high affinities for the amyloid peptide aggregates. The endoperoxide form (BZTN-O2) of this compound, which releases singlet oxygen with a half-life of 77 minutes at 37 °C, successfully inhibited and/or reversed amyloid aggregation. The endoperoxide is capable of singlet oxygen release without any need for light, and its charge-neutral form could allow blood-brain barrier (BBB) permeability. The therapeutic potential of such endoperoxide compounds with amyloid binding affinity is exciting.
Collapse
Affiliation(s)
- Hao Wu
- State Key Laboratory of Fine Chemicals, and Department of Pharmaceutical Science, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China.
| | - Ziang Liu
- State Key Laboratory of Fine Chemicals, and Department of Pharmaceutical Science, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China.
| | - Yujie Shao
- State Key Laboratory of Fine Chemicals, and Department of Pharmaceutical Science, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China.
| | - Guangzhe Li
- State Key Laboratory of Fine Chemicals, and Department of Pharmaceutical Science, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China.
| | - Yue Pan
- State Key Laboratory of Fine Chemicals, and Department of Pharmaceutical Science, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China.
| | - Lei Wang
- State Key Laboratory of Fine Chemicals, and Department of Pharmaceutical Science, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China.
| | - Engin U Akkaya
- State Key Laboratory of Fine Chemicals, and Department of Pharmaceutical Science, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China.
| |
Collapse
|
18
|
Dubey T, Chinnathambi S. Photodynamic treatment modulates various GTPase and cellular signalling pathways in Tauopathy. Small GTPases 2022; 13:183-195. [PMID: 34138681 PMCID: PMC9707546 DOI: 10.1080/21541248.2021.1940722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The application of photo-excited dyes for treatment is known as photodynamic therapy (PDT). PDT is known to target GTPase proteins in cells, which are the key proteins of diverse signalling cascades which ultimately modulate cell proliferation and death. Cytoskeletal proteins play critical roles in maintaining cell integrity and cell division. Whereas, it was also observed that in neuronal cells PDT modulated actin and tubulin resulting in increased neurite growth and filopodia. Recent studies supported the role of PDT in dissolving the extracellular amyloid beta aggregates and intracellular Tau aggregates, which indicated the potential role of PDT in neurodegeneration. The advancement in the field of PDT led to its clinical approval in treatment of cancers, brain tumour, and dermatological acne. Although several question need to be answered for application of PDT in neuronal cells, but the primary studies gave a hint that it can emerge as potential therapy in neural cells.
Collapse
Affiliation(s)
- Tushar Dubey
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (Acsir), Ghaziabad, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (Acsir), Ghaziabad, India
| |
Collapse
|
19
|
Sohma Y, Sawazaki T, Kanai M. Chemical catalyst-promoted photooxygenation of amyloid proteins. Org Biomol Chem 2021; 19:10017-10029. [PMID: 34787628 DOI: 10.1039/d1ob01677f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Misfolded proteins produce aberrant fibrillar aggregates, called amyloids, which contain cross-β-sheet higher order structures. The species generated in the aggregation process (i.e., oligomers, protofibrils, and fibrils) are cytotoxic and can cause various diseases. Interfering with the amyloid formation of proteins could be a drug development target for treating diseases caused by aberrant protein aggregation. In this review, we introduce a variety of chemical catalysts that oxygenate amyloid proteins under light irradiation using molecular oxygen as the oxygen atom donor (i.e., photooxygenation catalysts). Catalytic photooxygenation strongly inhibits the aggregation of amyloid proteins due to covalent installation of hydrophilic oxygen atoms and attenuates the neurotoxicity of the amyloid proteins. Recent in vivo studies in disease model animals using photooxygenation catalysts showed promising therapeutic effects, such as memory improvement and lifespan extension. Moreover, photooxygenation catalysts with new modes of action, including interference with the propagation of amyloid core seeds and enhancement in the metabolic clearance of amyloids in the brain, have begun to be identified. Manipulation of catalytic photooxygenation with secured amyloid selectivity is indispensable for minimizing the side effects in clinical application. Here we describe several strategies for designing catalysts that selectively photooxygenate amyloids without reacting with other non-amyloid biomolecules.
Collapse
Affiliation(s)
- Youhei Sohma
- School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichiban-cho, Wakayama 640-8156, Japan.
| | - Taka Sawazaki
- School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichiban-cho, Wakayama 640-8156, Japan. .,Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
20
|
Lechner VM, Nappi M, Deneny PJ, Folliet S, Chu JCK, Gaunt MJ. Visible-Light-Mediated Modification and Manipulation of Biomacromolecules. Chem Rev 2021; 122:1752-1829. [PMID: 34546740 DOI: 10.1021/acs.chemrev.1c00357] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemically modified biomacromolecules-i.e., proteins, nucleic acids, glycans, and lipids-have become crucial tools in chemical biology. They are extensively used not only to elucidate cellular processes but also in industrial applications, particularly in the context of biopharmaceuticals. In order to enable maximum scope for optimization, it is pivotal to have a diverse array of biomacromolecule modification methods at one's disposal. Chemistry has driven many significant advances in this area, and especially recently, numerous novel visible-light-induced photochemical approaches have emerged. In these reactions, light serves as an external source of energy, enabling access to highly reactive intermediates under exceedingly mild conditions and with exquisite spatiotemporal control. While UV-induced transformations on biomacromolecules date back decades, visible light has the unmistakable advantage of being considerably more biocompatible, and a spectrum of visible-light-driven methods is now available, chiefly for proteins and nucleic acids. This review will discuss modifications of native functional groups (FGs), including functionalization, labeling, and cross-linking techniques as well as the utility of oxidative degradation mediated by photochemically generated reactive oxygen species. Furthermore, transformations at non-native, bioorthogonal FGs on biomacromolecules will be addressed, including photoclick chemistry and DNA-encoded library synthesis as well as methods that allow manipulation of the activity of a biomacromolecule.
Collapse
Affiliation(s)
- Vivian M Lechner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Manuel Nappi
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Patrick J Deneny
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Sarah Folliet
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - John C K Chu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Matthew J Gaunt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
21
|
Zeng F, Peng K, Han L, Yang J. Photothermal and Photodynamic Therapies via NIR-Activated Nanoagents in Combating Alzheimer's Disease. ACS Biomater Sci Eng 2021; 7:3573-3585. [PMID: 34279071 DOI: 10.1021/acsbiomaterials.1c00605] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
It is well established that the polymerization of amyloid-β peptides into fibrils/plaques is a critical step during the development of Alzheimer's disease (AD). Phototherapy, which includes photodynamic therapy and photothermal therapy, is a highly attractive strategy in AD treatment due to its merits of operational flexibility, noninvasiveness, and high spatiotemporal resolution. Distinct from traditional chemotherapies or immunotherapies, phototherapies capitalize on the interaction between photosensitizers or photothermal transduction agents and light to trigger photochemical reactions to generate either reactive oxygen species or heat effects to modulate Aβ aggregation, ultimately restoring nerve damage and ameliorating memory deficits. In this Review, we provide an overview of the recent advances in the development of near-infrared-activated nanoagents for AD phototherapies and discuss the potential challenges of and perspectives on this emerging field with a special focus on how to improve the efficiency and utility of such treatment. We hope that this Review will spur preclinical research and the clinical translation of AD treatment through phototherapy.
Collapse
Affiliation(s)
- Fantian Zeng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Kewen Peng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ling Han
- Center for Drug Evaluation, National Medical Products Administration, Beijing 100022, China
| | - Jian Yang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| |
Collapse
|
22
|
Huang Y, Chang Y, Liu L, Wang J. Nanomaterials for Modulating the Aggregation of β-Amyloid Peptides. Molecules 2021; 26:4301. [PMID: 34299575 PMCID: PMC8305396 DOI: 10.3390/molecules26144301] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/13/2022] Open
Abstract
The aberrant aggregation of amyloid-β (Aβ) peptides in the brain has been recognized as the major hallmark of Alzheimer's disease (AD). Thus, the inhibition and dissociation of Aβ aggregation are believed to be effective therapeutic strategiesforthe prevention and treatment of AD. When integrated with traditional agents and biomolecules, nanomaterials can overcome their intrinsic shortcomings and boost their efficiency via synergistic effects. This article provides an overview of recent efforts to utilize nanomaterials with superior properties to propose effective platforms for AD treatment. The underlying mechanismsthat are involved in modulating Aβ aggregation are discussed. The summary of nanomaterials-based modulation of Aβ aggregation may help researchers to understand the critical roles in therapeutic agents and provide new insight into the exploration of more promising anti-amyloid agents and tactics in AD theranostics.
Collapse
Affiliation(s)
- Yaliang Huang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China;
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China;
| | - Yong Chang
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China;
| | - Lin Liu
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China;
| | - Jianxiu Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China;
| |
Collapse
|
23
|
Cao Y, He Z, Gao Y, Xin Y, Luo L, Meng F. Boosting the Photodynamic Degradation of Islet Amyloid Polypeptide Aggregates Via a "Bait-Hook-Devastate" Strategy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14911-14919. [PMID: 33764749 DOI: 10.1021/acsami.1c00082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photosensitizers that can generate reactive oxygen species (ROS) upon irradiation have emerged as promising agents for photodynamic degradation of toxic amyloid aggregates that are linked to many amyloidogenic diseases. However, due to the ultrastable β-sheet structure in amyloid aggregates and inefficient utilization of the generated ROS, it usually requires high stoichiometric concentration of the photosensitizer and/or intensive light irradiation to fully dissociate aggregates. In this work, we have developed a "bait-hook-devastate" strategy to boost the efficiency of the photodynamic degradation of amyloid aggregates. This strategy employs anionic polyacrylic acid as a bait to accumulate cationic human islet amyloid polypeptide (IAPP) aggregates and positively charged photosensitizer TPCI in a confined area through electronic interactions. Multiple characterization studies proved that the utilization rate of ROS generated by TPCI was remarkably improved via this strategy, which amplified the ability of TPCI to dissociate IAPP aggregates. Rapid and complete degradation of IAPP aggregates could be achieved by irradiating the system under very mild conditions for less than 30 min, and the IAPP-mediated cytotoxicity was also largely alleviated, providing a new paradigm to accelerate photodynamic degradation of amyloid aggregates for further practical applications.
Collapse
Affiliation(s)
- Yujuan Cao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhenyan He
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuting Gao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yanru Xin
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
24
|
Interrogating biological systems using visible-light-powered catalysis. Nat Rev Chem 2021; 5:322-337. [PMID: 37117838 DOI: 10.1038/s41570-021-00265-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2021] [Indexed: 12/12/2022]
Abstract
Light-powered catalysis has found broad utility as a chemical transformation strategy, with widespread impact on energy, environment, drug discovery and human health. A noteworthy application impacting human health is light-induced sensitization of cofactors for photodynamic therapy in cancer treatment. The clinical adoption of this photosensitization approach has inspired the search for other photochemical methods, such as photoredox catalysis, to influence biological discovery. Over the past decade, light-mediated catalysis has enabled the discovery of valuable synthetic transformations, propelling it to become a highly utilized chemical synthesis strategy. The reaction components required to achieve a photoredox reaction are identical to photosensitization (catalyst, light source and substrate), making it ideally suited for probing biological environments. In this Review, we discuss the therapeutic application of photosensitization and advancements made in developing next-generation catalysts. We then highlight emerging uses of photoredox catalytic methods for protein bioconjugation and probing complex cellular environments in living cells.
Collapse
|
25
|
Liu W, Dong X, Liu Y, Sun Y. Photoresponsive materials for intensified modulation of Alzheimer's amyloid-β protein aggregation: A review. Acta Biomater 2021; 123:93-109. [PMID: 33465508 DOI: 10.1016/j.actbio.2021.01.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/29/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022]
Abstract
The abnormal self-assembly of amyloid-β protein (Aβ) into toxic aggregates is a major pathological hallmark of Alzheimer's disease (AD). Modulation of Aβ fibrillization with pharmacological modalities has become an active field of research, which aims to mitigate Aβ-induced neurotoxicity and ameliorate impaired recognition. Among the various strategies for AD treatment, phototherapy, including photothermal therapy (PTT), photodynamic therapy (PDT), and photoresponsive release systems have attracted increased attention because of the spatiotemporal controllability. Under the irradiation of light, the heat or reactive oxygen species generated by photothermal or photodynamic processes significantly enhances the efficacy of the inhibitor or modulator, and the "caged" drug can be accurately released at the intended site, thus avoiding adverse effects. This review, from a viewpoint of materials, focuses on the recent advances in modulating Aβ aggregation by light that irradiates on the materials that function on modulating Aβ aggregation. Representative examples of PTT, PDT, and photoresponsive drug release systems are discussed in terms of inhibitory mechanism, the unique properties of materials, and the design of modulators. The major challenges of phototherapy against AD are addressed and the promising prospects are proposed. It is concluded that the noninvasive light-assisted approaches will become a promising strategy for intensifying the modulation of Aβ aggregation and thus facilitating AD treatment. STATEMENT OF SIGNIFICANCE: Alzheimer's disease (AD) with the hallmark of amyloid-β protein (Aβ) deposition is affecting more than 50 million people globally. It is urgent to explore intelligent materials to modulate Aβ aggregation. This review summarizes the intensified modulation of Aβ aggregation by a variety of photoresponsive materials including photothermal, photosensitizing and photoresponsive release materials, focusing on their characteristics and functionalities. We believe this review would arouse more interest in the research field of stimuli-responsive materials and promote their clinical applications in AD therapy.
Collapse
Affiliation(s)
- Wei Liu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yang Liu
- Department of Biology & Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, College of Science, Shantou University, Shantou, Guangdong 515063, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
26
|
Dubey T, Chinnathambi S. Photodynamic sensitizers modulate cytoskeleton structural dynamics in neuronal cells. Cytoskeleton (Hoboken) 2021; 78:232-248. [DOI: 10.1002/cm.21655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 01/10/2023]
Affiliation(s)
- Tushar Dubey
- Neurobiology Group, Division of Biochemical Sciences CSIR‐National Chemical Laboratory Pune India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences CSIR‐National Chemical Laboratory Pune India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| |
Collapse
|
27
|
Nagashima N, Ozawa S, Furuta M, Oi M, Hori Y, Tomita T, Sohma Y, Kanai M. Catalytic photooxygenation degrades brain Aβ in vivo. SCIENCE ADVANCES 2021; 7:7/13/eabc9750. [PMID: 33762329 PMCID: PMC7990327 DOI: 10.1126/sciadv.abc9750] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Protein degradation induced by small molecules by recruiting endogenous protein degradation systems, such as ubiquitin-proteasome systems, to disease-related proteins is an emerging concept to inhibit the function of undruggable proteins. Protein targets without reliable ligands and/or existing outside the cells where ubiquitin-proteasome systems do not exist, however, are beyond the scope of currently available protein degradation strategies. Here, we disclose photooxygenation catalyst 7 that permeates the blood-brain barrier and selectively and directly degrades an extracellular Alzheimer's disease-related undruggable protein, amyloid-β protein (Aβ). Key was the identification of a compact but orange color visible light-activatable chemical catalyst whose activity can be switched on/off according to its molecular mobility, thereby ensuring high selectivity for aggregated Aβ. Chemical catalyst-promoted protein degradation can be applied universally for attenuating extracellular amyloids and various pathogenic proteins and is thus a new entry to induced protein degradation strategies.
Collapse
Affiliation(s)
- Nozomu Nagashima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shuta Ozawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masahiro Furuta
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Miku Oi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yukiko Hori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Taisuke Tomita
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Youhei Sohma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
28
|
Zhang Y, Ding C, Li C, Wang X. Advances in fluorescent probes for detection and imaging of amyloid-β peptides in Alzheimer's disease. Adv Clin Chem 2021; 103:135-190. [PMID: 34229849 DOI: 10.1016/bs.acc.2020.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Amyloid plaques generated from the accumulation of amyloid-β peptides (Aβ) fibrils in the brain is one of the main hallmarks of Alzheimer's disease (AD), a most common neurodegenerative disorder. Aβ aggregation can produce neurotoxic oligomers and fibrils, which has been widely accepted as the causative factor in AD pathogenesis. Accordingly, both soluble oligomers and insoluble fibrils have been considered as diagnostic biomarkers for AD. Among the existing analytical methods, fluorometry using fluorescent probes has exhibited promising potential in quantitative detection and imaging of both soluble and insoluble Aβ species, providing a valuable approach for the diagnosis and drug development of AD. In this review, the most recent advances in the fluorescent probes for soluble or insoluble Aβ aggregates are discussed in terms of design strategy, probing mechanism, and potential applications. In the end, future research directions of fluorescent probes for Aβ species are also proposed.
Collapse
Affiliation(s)
- Yunhua Zhang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, PR China
| | - Cen Ding
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, PR China
| | - Changhong Li
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, PR China
| | - Xiaohui Wang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, PR China; State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, PR China.
| |
Collapse
|
29
|
Yoo SW, Oh G, Ahn JC, Chung E. Non-Oncologic Applications of Nanomedicine-Based Phototherapy. Biomedicines 2021; 9:113. [PMID: 33504015 PMCID: PMC7911939 DOI: 10.3390/biomedicines9020113] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Phototherapy is widely applied to various human diseases. Nanomedicine-based phototherapy can be classified into photodynamic therapy (PDT) and photothermal therapy (PTT). Activated photosensitizer kills the target cells by generating radicals or reactive oxygen species in PDT while generating heat in PTT. Both PDT and PTT have been employed for treating various diseases, from preclinical to randomized controlled clinical trials. However, there are still hurdles to overcome before entering clinical practice. This review provides an overview of nanomedicine-based phototherapy, especially in non-oncologic diseases. Multiple clinical trials were undertaken to prove the therapeutic efficacy of PDT in dermatologic, ophthalmologic, cardiovascular, and dental diseases. Preclinical studies showed the feasibility of PDT in neurologic, gastrointestinal, respiratory, and musculoskeletal diseases. A few clinical studies of PTT were tried in atherosclerosis and dry eye syndrome. Although most studies have shown promising results, there have been limitations in specificity, targeting efficiency, and tissue penetration using phototherapy. Recently, nanomaterials have shown promising results to overcome these limitations. With advanced technology, nanomedicine-based phototherapy holds great potential for broader clinical practice.
Collapse
Affiliation(s)
- Su Woong Yoo
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Jeollanam-do 58128, Korea;
| | - Gyungseok Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea;
| | - Jin Chul Ahn
- Medical Laser Research Center and Department of Biomedical Science, Dankook University, Cheonan 31116, Korea;
| | - Euiheon Chung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea;
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- AI Graduate School, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| |
Collapse
|
30
|
Chung YJ, Lee CH, Lim J, Jang J, Kang H, Park CB. Photomodulating Carbon Dots for Spatiotemporal Suppression of Alzheimer's β-Amyloid Aggregation. ACS NANO 2020; 14:16973-16983. [PMID: 33236883 DOI: 10.1021/acsnano.0c06078] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Extracellular deposition of β-amyloid (Aβ) peptide aggregates is a major characteristic of Alzheimer's disease (AD) brain. Because Aβ peptide aggregates aggravate neuropathy and cognitive impairment for AD patients, numerous efforts have been devoted to suppressing Aβ self-assembly as a prospective AD treatment option. Here, we report Aβ-targeting, red-light-responsive carbon dots (CDs), and their therapeutic functions as a light-powered nanomodulator to spatiotemporally suppress toxic Aβ aggregation both in vitro and in vivo. Our aptamer-functionalized carbon dots (Apta@CDs) showed strong targeting ability toward Aβ42 species. Moreover, red LED irradiation induced Apta@CDs to irreversibly denature Aβ peptides, impeding the formation of β-sheet-rich Aβ aggregates and attenuating Aβ-associated cytotoxicity. Consequently, Apta@CDs-mediated photomodualtion modality achieved effective suppression of Aβ aggregation in vivo, which significantly reduced the Aβ burden at the targeted sites in the brain of 5xFAD mice by ∼40% and ∼25% according to imaging and ELISA analyses, respectively. Our work demonstrates the therapeutic potential of photomodulating CDs for light-driven suppression against Aβ self-assembly and related neurotoxicity.
Collapse
Affiliation(s)
- You Jung Chung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Chang Heon Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jinyeong Lim
- Gwangju Center, Korea Basic Science Institute (KBSI), 77 Yongbong-ro, Buk-Gu, Gwangju 61186, Republic of Korea
| | - Jinhyeong Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyuno Kang
- Division of Analytical Science, Korea Basic Science Institute (KBSI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon 34133, Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
31
|
Aziz AA, Siddiqui RA, Amtul Z. Engineering of fluorescent or photoactive Trojan probes for detection and eradication of β-Amyloids. Drug Deliv 2020; 27:917-926. [PMID: 32597244 PMCID: PMC8216438 DOI: 10.1080/10717544.2020.1785048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 11/04/2022] Open
Abstract
Trojan horse technology institutes a potentially promising strategy to bring together a diagnostic or cell-based drug design and a delivery platform. It provides the opportunity to re-engineer a novel multimodal, neurovascular detection probe, or medicine to fuse with blood-brain barrier (BBB) molecular Trojan horse. In Alzheimer's disease (AD) this could allow the targeted delivery of detection or therapeutic probes across the BBB to the sites of plaques and tangles development to image or decrease amyloid load, enhance perivascular Aβ clearance, and improve cerebral blood flow, owing principally to the significantly improved cerebral permeation. A Trojan horse can also be equipped with photosensitizers, nanoparticles, quantum dots, or fluorescent molecules to function as multiple targeting theranostic compounds that could be activated following changes in disease-specific processes of the diseased tissue such as pH and protease activity, or exogenous stimuli such as, light. This concept review theorizes the use of receptor-mediated transport-based platforms to transform such novel ideas to engineer systemic and smart Trojan detection or therapeutic probes to advance the neurodegenerative field.
Collapse
Affiliation(s)
- Amal A. Aziz
- Sir Wilfrid Laurier Secondary School, Thames Valley District School Board, London, Canada
| | - Rafat A. Siddiqui
- Nutrition Science and Food Chemistry Laboratory, Agricultural Research Station, Virginia State University, Petersburg, VA, USA
| | - Zareen Amtul
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Canada
| |
Collapse
|
32
|
Pandey G, Ramakrishnan V. Invasive and non-invasive therapies for Alzheimer's disease and other amyloidosis. Biophys Rev 2020; 12:1175-1186. [PMID: 32930962 PMCID: PMC7575678 DOI: 10.1007/s12551-020-00752-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Advancements in medical science have facilitated in extending human lives. The increased life expectancy, though, has come at a cost. The cases of an aging population suffering from degenerative diseases like Alzheimer's disease (AD) are presently at its all-time high. Amyloidosis disorders such as AD are triggered by an abnormal transition of soluble proteins into their highly ordered aggregated forms. The landscape of amyloidosis treatment remains unchanged, and there is no cure for such disorders. However, an increased understanding of the mechanism of amyloid self-assembly has given hope for a possible therapeutic solution. In this review, we will discuss the current state of molecular and non-molecular options for therapeutic intervention of amyloidosis. We highlight the efficacy of non-invasive physical therapies as possible alternatives to their molecular counterparts. Graphical abstract.
Collapse
Affiliation(s)
- Gaurav Pandey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Vibin Ramakrishnan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
| |
Collapse
|
33
|
Li C, Wang J, Liu L. Alzheimer's Therapeutic Strategy: Photoactive Platforms for Suppressing the Aggregation of Amyloid β Protein. Front Chem 2020; 8:509. [PMID: 32793545 PMCID: PMC7385073 DOI: 10.3389/fchem.2020.00509] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/18/2020] [Indexed: 01/09/2023] Open
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD) have become a public health problem. Progressive cerebral accumulation of amyloid protein (Aβ) was widely considered as the cause of AD. One promising strategy for AD preclinical study is to degrade and clear the deposited amyloid aggregates with β-sheet-rich secondary structure in the brain. Based on the requirement, photo-active materials with the specific excitation and the standardization of the photosensitizer preparation and application in clinics, have attracted increased attention in the study and treatment of neurodegenerative disease as a novel method termed as photodynamic therapy (PDT). This review will focus on the new photosensitizing materials and discuss the trend of PDT techniques for the possible application in the treatment strategy of amyloid-related diseases.
Collapse
Affiliation(s)
- Chenglong Li
- School of Material Science and Engineering, Institute for Advanced Materials, Jiangsu University, Zhenjiang, China
| | - Jie Wang
- School of Material Science and Engineering, Institute for Advanced Materials, Jiangsu University, Zhenjiang, China
| | - Lei Liu
- School of Material Science and Engineering, Institute for Advanced Materials, Jiangsu University, Zhenjiang, China
| |
Collapse
|
34
|
Dubey T, Gorantla NV, Chandrashekara KT, Chinnathambi S. Photodynamic exposure of Rose-Bengal inhibits Tau aggregation and modulates cytoskeletal network in neuronal cells. Sci Rep 2020; 10:12380. [PMID: 32704015 PMCID: PMC7378248 DOI: 10.1038/s41598-020-69403-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/29/2020] [Indexed: 01/24/2023] Open
Abstract
The intracellular Tau aggregates are known to be associated with Alzheimer’s disease. The inhibition of Tau aggregation is an important strategy for screening of therapeutic molecules in Alzheimer's disease. Several classes of dyes possess a unique property of photo-excitation, which is applied as a therapeutic measure against numerous neurological dysfunctions. Rose Bengal is a Xanthene dye, which has been widely used as a photosensitizer in photodynamic therapy. The aim of this work was to study the protective role of Rose Bengal against Tau aggregation and cytoskeleton modulations. The aggregation inhibition and disaggregation potency of Rose Bengal and photo-excited Rose Bengal were observed by in-vitro fluorescence, circular dichroism, and electron microscopy. Rose Bengal and photo-excited Rose Bengal induce minimal cytotoxicity in neuronal cells. In our studies, we observed that Rose Bengal and photo-excited Rose Bengal modulate the cytoskeleton network of actin and tubulin. The immunofluorescence studies showed the increased filopodia structures after photo-excited Rose Bengal treatment. Furthermore, Rose Bengal treatment increases the connections between the cells. Rose Bengal and photo-excited Rose Bengal treatment-induced actin-rich podosome-like structures associated with cell membranes. The in-vivo studies on UAS E-14 Tau mutant Drosophila suggested that exposure to Rose Bengal and photo-excited Rose Bengal efficiency rescues the behavioural and memory deficit in flies. Thus, the overall results suggest that Rose Bengal could have a therapeutic potency against Tau aggregation.
Collapse
Affiliation(s)
- Tushar Dubey
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India
| | - Nalini Vijay Gorantla
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India
| | | | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India.
| |
Collapse
|
35
|
Chung YJ, Kim J, Park CB. Photonic Carbon Dots as an Emerging Nanoagent for Biomedical and Healthcare Applications. ACS NANO 2020; 14:6470-6497. [PMID: 32441509 DOI: 10.1021/acsnano.0c02114] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As a class of carbon-based nanomaterials, carbon dots (CDs) have attracted enormous attention because of their tunable optical and physicochemical properties, such as absorptivity and photoluminescence from ultraviolet to near-infrared, high photostability, biocompatibility, and aqueous dispersity. These characteristics make CDs a promising alternative photonic nanoagent to conventional fluorophores in disease diagnosis, treatment, and healthcare managements. This review describes the fundamental photophysical properties of CDs and highlights their recent applications to bioimaging, photomedicine (e.g., photodynamic/photothermal therapies), biosensors, and healthcare devices. We discuss current challenges and future prospects of photonic CDs to give an insight into developing vibrant fields of CD-based biomedicine and healthcare.
Collapse
Affiliation(s)
- You Jung Chung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 34141, Republic of Korea
| | - Jinhyun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 34141, Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 34141, Republic of Korea
| |
Collapse
|
36
|
Bondia P, Torra J, Tone CM, Sawazaki T, del Valle A, Sot B, Nonell S, Kanai M, Sohma Y, Flors C. Nanoscale View of Amyloid Photodynamic Damage. J Am Chem Soc 2019; 142:922-930. [DOI: 10.1021/jacs.9b10632] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Patricia Bondia
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), C/Faraday 9, Madrid 28049, Spain
| | - Joaquim Torra
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), C/Faraday 9, Madrid 28049, Spain
| | - Caterina M. Tone
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), C/Faraday 9, Madrid 28049, Spain
| | - Taka Sawazaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Adrián del Valle
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), C/Faraday 9, Madrid 28049, Spain
| | - Begoña Sot
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), C/Faraday 9, Madrid 28049, Spain
| | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, Barcelona 08017, Spain
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Youhei Sohma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Cristina Flors
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), C/Faraday 9, Madrid 28049, Spain
| |
Collapse
|
37
|
Yang J, Zeng F, Ge Y, Peng K, Li X, Li Y, Xu Y. Development of Near-Infrared Fluorescent Probes for Use in Alzheimer’s Disease Diagnosis. Bioconjug Chem 2019; 31:2-15. [DOI: 10.1021/acs.bioconjchem.9b00695] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Jian Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Fantian Zeng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yiran Ge
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Kewen Peng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaofang Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuyan Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 21009, China
| | - Yungen Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 21009, China
| |
Collapse
|
38
|
Developing Trojan horses to induce, diagnose and suppress Alzheimer’s pathology. Pharmacol Res 2019; 149:104471. [DOI: 10.1016/j.phrs.2019.104471] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/17/2019] [Accepted: 09/30/2019] [Indexed: 01/05/2023]
|
39
|
Zhang Z, Wang J, Song Y, Wang Z, Dong M, Liu L. Disassembly of Alzheimer’s amyloid fibrils by functional upconversion nanoparticles under near-infrared light irradiation. Colloids Surf B Biointerfaces 2019; 181:341-348. [DOI: 10.1016/j.colsurfb.2019.05.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 10/26/2022]
|
40
|
Yang B, Chen Y, Shi J. Nanocatalytic Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901778. [PMID: 31328844 DOI: 10.1002/adma.201901778] [Citation(s) in RCA: 347] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/16/2019] [Indexed: 05/24/2023]
Abstract
Catalysis and medicine are often considered as two independent research fields with their own respective scientific phenomena. Promoted by recent advances in nanochemistry, large numbers of nanocatalysts, such as nanozymes, photocatalysts, and electrocatalysts, have been applied in vivo to initiate catalytic reactions and modulate biological microenvironments for generating therapeutic effects. The rapid growth of research in biomedical applications of nanocatalysts has led to the concept of "nanocatalytic medicine," which is expected to promote the further advance of such a subdiscipline in nanomedicine. The high efficiency and selectivity of catalysis that chemists strived to achieve in the past century can be ingeniously translated into high efficacy and mitigated side effects in theranostics by using "nanocatalytic medicine" to steer catalytic reactions for optimized therapeutic outcomes. Here, the rationale behind the construction of nanocatalytic medicine is eludicated based on the essential reaction factors of catalytic reactions (catalysts, energy input, and reactant). Recent advances in this burgeoning field are then comprehensively presented and the mechanisms by which catalytic nanosystems are conferred with theranostic functions are discussed in detail. It is believed that such an emerging catalytic therapeutic modality will play a more important role in the field of nanomedicine.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
41
|
Lv G, Shen Y, Zheng W, Yang J, Li C, Lin J. Fluorescence Detection and Dissociation of Amyloid‐β Species for the Treatment of Alzheimer's Disease. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Guanglei Lv
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Normal University Jinhua 321004 Zhejiang P. R. China
| | - Yang Shen
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Normal University Jinhua 321004 Zhejiang P. R. China
| | - Wubin Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Normal University Jinhua 321004 Zhejiang P. R. China
| | - Jiajia Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Normal University Jinhua 321004 Zhejiang P. R. China
| | - Chunxia Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Normal University Jinhua 321004 Zhejiang P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P. R. China
| |
Collapse
|
42
|
Vanerio N, Stijnen M, de Mol BA, Kock LM. Biomedical Applications of Photo- and Sono-Activated Rose Bengal: A Review. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2019; 37:383-394. [DOI: 10.1089/photob.2018.4604] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Noemi Vanerio
- LifeTec Group BV, Eindhoven, The Netherlands
- Department of Cardiothoracic Surgery & Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | | | - Bas A.J.M. de Mol
- Department of Cardiothoracic Surgery & Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Linda M. Kock
- LifeTec Group BV, Eindhoven, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
43
|
Xia Y, Padmanabhan P, Sarangapani S, Gulyás B, Vadakke Matham M. Bifunctional Fluorescent/Raman Nanoprobe for the Early Detection of Amyloid. Sci Rep 2019; 9:8497. [PMID: 31186449 PMCID: PMC6560097 DOI: 10.1038/s41598-019-43288-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 03/27/2019] [Indexed: 11/09/2022] Open
Abstract
One of the pathological hallmarks of Alzheimer's disease (AD) is the abnormal aggregation of amyloid beta (Aβ) peptides. Therefore the detection of Aβ peptides and imaging of amyloid plaques are considered as promising diagnostic methods for AD. Here we report a bifunctional nanoprobe prepared by conjugating gold nanoparticles (AuNPs) with Rose Bengal (RB) dye. RB is chosen due to its unique Raman fingerprints and affinity with Aβ peptides. After the conjugation, Raman signals of RB were significantly enhanced due to the surface-enhanced Raman scattering (SERS) effect. Upon binding with Aβ42 peptides, a spectrum change was detected, and the magnitude of the spectrum changes can be correlated with the concentration of target peptides. The peptide/probe interaction also induced a remarkable enhancement in the probes' fluorescence emission. This fluorescence enhancement was further utilized to image amyloid plaques in the brain slices from transgenic mice. In this study, the RB-AuNPs were used for both SERS-based detection of Aβ42 peptides and fluorescence-based imaging of amyloid plaques. Compared to monofunctional probes, the multifunctional probe is capable to provide more comprehensive pathophysiological information, and therefore, the implementation of such multifunctional amyloid probes is expected to help the investigation of amyloid aggregation and the early diagnosis of AD.
Collapse
Affiliation(s)
- Yang Xia
- School of Mechanical and Aerospace Engineering, Center for Optical and Laser Engineering (COLE), Nanyang Technological University (NTU), Singapore, 639798, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore, 637553, Singapore
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore, 637553, Singapore.
| | - Sreelatha Sarangapani
- School of Mechanical and Aerospace Engineering, Center for Optical and Laser Engineering (COLE), Nanyang Technological University (NTU), Singapore, 639798, Singapore
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore, 637553, Singapore
| | - Murukeshan Vadakke Matham
- School of Mechanical and Aerospace Engineering, Center for Optical and Laser Engineering (COLE), Nanyang Technological University (NTU), Singapore, 639798, Singapore.
| |
Collapse
|
44
|
Li Y, Du Z, Liu X, Ma M, Yu D, Lu Y, Ren J, Qu X. Near-Infrared Activated Black Phosphorus as a Nontoxic Photo-Oxidant for Alzheimer's Amyloid-β Peptide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901116. [PMID: 31069962 DOI: 10.1002/smll.201901116] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/01/2019] [Indexed: 05/28/2023]
Abstract
The inhibition of amyloid-β (Aβ) aggregation by photo-oxygenation has become an effective way of treating Alzheimer's disease (AD). New near-infrared (NIR) activated treatment agents, which not only possess high photo-oxygenation efficiency, but also show low biotoxicity, are urgently needed. Herein, for the first time, it is demonstrated that NIR activated black phosphorus (BP) could serve as an effective nontoxic photo-oxidant for amyloid-β peptide in vitro and in vivo. The nanoplatform BP@BTA (BTA: one of thioflavin-T derivatives) possesses high affinity to the Aβ peptide due to specific amyloid selectivity of BTA. Importantly, under NIR light, BP@BTA can significantly generate a high quantum yield of singlet oxygen (1 O2 ) to oxygenate Aβ, thereby resulting in inhibiting the aggregation and attenuating Aβ-induced cytotoxicity. In addition, BP could finally degrade into nontoxic phosphate, which guarantees the biosafety. Using transgenic Caenorhabditis elegans CL2006 as AD model, the results demonstrate that the 1 O2 -generation system could dramatically promote life-span extension of CL2006 strain by decreasing the neurotoxicity of Aβ.
Collapse
Affiliation(s)
- Yang Li
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Zhi Du
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Xinping Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Mengmeng Ma
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Dongqin Yu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Yao Lu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin, 130012, China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| |
Collapse
|
45
|
Sohma Y, Kanai M. Development of Artificial Catalysts that Selectively Photooxygenate Pathogenic Amyloid. J SYN ORG CHEM JPN 2019. [DOI: 10.5059/yukigoseikyokaishi.77.246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Youhei Sohma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
46
|
Yu D, Guan Y, Bai F, Du Z, Gao N, Ren J, Qu X. Metal–Organic Frameworks Harness Cu Chelating and Photooxidation Against Amyloid β Aggregation in Vivo. Chemistry 2019; 25:3489-3495. [DOI: 10.1002/chem.201805835] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/30/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Dongqin Yu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Yijia Guan
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Chinese Academy of Sciences Beijing 100039 P. R. China
| | - Fuquan Bai
- International Joint Research Laboratory of, Nano-Micro Architecture ChemistryInstitute of Theoretical ChemistryJilin University, Changchun Jilin 130021 P. R. China
| | - Zhi Du
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Chinese Academy of Sciences Beijing 100039 P. R. China
| | - Nan Gao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| |
Collapse
|
47
|
Zhan Q, Shi X, Wang T, Hu J, Zhou J, Zhou L, Wei S. Design and synthesis of thymine modified phthalocyanine for Aβ protofibrils photodegradation and Aβ peptide aggregation inhibition. Talanta 2019; 191:27-38. [DOI: 10.1016/j.talanta.2018.08.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/06/2018] [Accepted: 08/12/2018] [Indexed: 10/28/2022]
|
48
|
Lee BI, Chung YJ, Park CB. Photosensitizing materials and platforms for light-triggered modulation of Alzheimer's β-amyloid self-assembly. Biomaterials 2019; 190-191:121-132. [DOI: 10.1016/j.biomaterials.2018.10.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/12/2018] [Accepted: 10/28/2018] [Indexed: 12/12/2022]
|
49
|
Wang J, Fan Y, Tan Y, Zhao X, Zhang Y, Cheng C, Yang M. Porphyrinic Metal-Organic Framework PCN-224 Nanoparticles for Near-Infrared-Induced Attenuation of Aggregation and Neurotoxicity of Alzheimer's Amyloid-β Peptide. ACS APPLIED MATERIALS & INTERFACES 2018; 10:36615-36621. [PMID: 30338980 DOI: 10.1021/acsami.8b15452] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The aberrant aggregation of amyloid-β peptide (Aβ) in the brain has been considered as the major pathological hallmark of Alzheimer's diseases (AD). Inhibition of Aβ aggregation is considered as an attractive therapeutic intervention for alleviating amyloid-associated neurotoxicity. Here, we report the near-infrared light (NIR)-induced suppression of Aβ aggregation and reduction of Aβ-induced cytotoxicity via porphyrinic metal-organic framework (MOF) PCN-224 nanoparticles. PCN-224 nanoparticles are hydrothermally synthesized by coordinating tetra-kis(4-carboxyphenyl)porphyrin (TCPP) ligands with zirconium. The PCN-224 nanoparticles show high photo-oxygenation efficiency, good biocompatibility, and high stability. The study reveals that the porphyrinic MOF-based nanoprobe activated by NIR light could successfully inhibit self-assembly of monomeric Aβ into a β-sheet-rich structure. Furthermore, photoexcited PCN-224 nanoparticles also significantly reduce Aβ-induced cytotoxicity under NIR irradiation.
Collapse
Affiliation(s)
- Jiuhai Wang
- Department of Biomedical Engineering , The Hong Kong Polytechnic University , Hong Kong SAR , China
| | - Yadi Fan
- Department of Biomedical Engineering , The Hong Kong Polytechnic University , Hong Kong SAR , China
| | - Youhua Tan
- Department of Biomedical Engineering , The Hong Kong Polytechnic University , Hong Kong SAR , China
| | - Xin Zhao
- Department of Biomedical Engineering , The Hong Kong Polytechnic University , Hong Kong SAR , China
| | - Yu Zhang
- Department of Mechanical and Automotive Engineering , Royal Melbourne Institute of Technology University , Melbourne , Victoria 3000 , Australia
| | - Changming Cheng
- Department of Biomedical Engineering , The Hong Kong Polytechnic University , Hong Kong SAR , China
| | - Mo Yang
- Department of Biomedical Engineering , The Hong Kong Polytechnic University , Hong Kong SAR , China
| |
Collapse
|
50
|
Leshem G, Richman M, Lisniansky E, Antman-Passig M, Habashi M, Gräslund A, Wärmländer SKTS, Rahimipour S. Photoactive chlorin e6 is a multifunctional modulator of amyloid-β aggregation and toxicity via specific interactions with its histidine residues. Chem Sci 2018; 10:208-217. [PMID: 30713632 PMCID: PMC6333166 DOI: 10.1039/c8sc01992d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/03/2018] [Indexed: 11/23/2022] Open
Abstract
Photoactive chlorin e6 selectively damage the histidine residues of amyloid-β and reduce its aggregation and toxicity even in the presence of Cu ions.
The self-assembly of Aβ to β-sheet-rich neurotoxic oligomers is a main pathological event leading to Alzheimer's disease (AD). Selective targeting of Aβ oligomers without affecting other functional proteins is therefore an attractive approach to prevent the disease and its progression. In this study, we report that photodynamic treatment of Aβ in the presence of catalytic amounts of chlorin e6 can selectively damage Aβ and inhibit its aggregation and toxicity. Chlorin e6 also reversed the amyloid aggregation process in the dark by binding its soluble and low molecular weight oligomers, as shown by thioflavin T (ThT) fluorescence and photoinduced cross-linking of unmodified protein (PICUP) methods. Using HSQC NMR spectroscopy, ThT assays, amino acid analysis, SDS/PAGE, and EPR spectroscopy, we show that catalytic amounts of photoexcited chlorin e6 selectively damage the Aβ histidine residues H6, H13, and H14, and induce Aβ cross-linking by generating singlet oxygen. In contrast, photoexcited chlorin e6 was unable to cross-link ubiquitin and α-synuclein, demonstrating its high selectivity for Aβ. By binding to the Aβ histidine residues, catalytic amounts of chlorin e6 can also inhibit the Cu2+-induced aggregation and toxicity in darkness, while at stoichiometric amounts it acts as a chelator to reduce the amount of free Cu2+. This study demonstrates the great potential of chlorin e6 as a multifunctional agent for treatment of AD, and shows that the three N-terminal Aβ histidine residues are a suitable target for Aβ-specific drugs.
Collapse
Affiliation(s)
- Guy Leshem
- Department of Chemistry , Bar-Ilan University , Ramat-Gan 5290002 , Israel .
| | - Michal Richman
- Department of Chemistry , Bar-Ilan University , Ramat-Gan 5290002 , Israel .
| | - Elvira Lisniansky
- Department of Chemistry , Bar-Ilan University , Ramat-Gan 5290002 , Israel .
| | - Merav Antman-Passig
- Department of Chemistry , Bar-Ilan University , Ramat-Gan 5290002 , Israel .
| | - Maram Habashi
- Department of Chemistry , Bar-Ilan University , Ramat-Gan 5290002 , Israel .
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics , Arrhenius Laboratories , Stockholm University , S-106 91 Stockholm , Sweden .
| | - Sebastian K T S Wärmländer
- Department of Biochemistry and Biophysics , Arrhenius Laboratories , Stockholm University , S-106 91 Stockholm , Sweden .
| | - Shai Rahimipour
- Department of Chemistry , Bar-Ilan University , Ramat-Gan 5290002 , Israel .
| |
Collapse
|