1
|
Higuera GA, Ramos T, Gloria A, Ambrosio L, Di Luca A, Pechkov N, de Wijn JR, van Blitterswijk CA, Moroni L. PEOT/PBT Polymeric Pastes to Fabricate Additive Manufactured Scaffolds for Tissue Engineering. Front Bioeng Biotechnol 2021; 9:704185. [PMID: 34595158 PMCID: PMC8476768 DOI: 10.3389/fbioe.2021.704185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
The advantages of additive manufactured scaffolds, as custom-shaped structures with a completely interconnected and accessible pore network from the micro- to the macroscale, are nowadays well established in tissue engineering. Pore volume and architecture can be designed in a controlled fashion, resulting in a modulation of scaffold’s mechanical properties and in an optimal nutrient perfusion determinant for cell survival. However, the success of an engineered tissue architecture is often linked to its surface properties as well. The aim of this study was to create a family of polymeric pastes comprised of poly(ethylene oxide therephthalate)/poly(butylene terephthalate) (PEOT/PBT) microspheres and of a second biocompatible polymeric phase acting as a binder. By combining microspheres with additive manufacturing technologies, we produced 3D scaffolds possessing a tailorable surface roughness, which resulted in improved cell adhesion and increased metabolic activity. Furthermore, these scaffolds may offer the potential to act as drug delivery systems to steer tissue regeneration.
Collapse
Affiliation(s)
- Gustavo A Higuera
- Institute for BioMedical Technology and Technical Medicine (MIRA), Tissue Regeneration Department, University of Twente, Enschede, Netherlands
| | - Tiago Ramos
- Institute of Ophthalmology, University College of London, London, United Kingdom
| | - Antonio Gloria
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Naples, Italy
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Naples, Italy
| | - Andrea Di Luca
- Institute for BioMedical Technology and Technical Medicine (MIRA), Tissue Regeneration Department, University of Twente, Enschede, Netherlands
| | - Nicholas Pechkov
- Institute for BioMedical Technology and Technical Medicine (MIRA), Tissue Regeneration Department, University of Twente, Enschede, Netherlands
| | - Joost R de Wijn
- Institute for BioMedical Technology and Technical Medicine (MIRA), Tissue Regeneration Department, University of Twente, Enschede, Netherlands
| | - Clemens A van Blitterswijk
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, Maastricht, Netherlands
| | - Lorenzo Moroni
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
2
|
Bachmann J, Ehlert E, Becker M, Otto C, Radeloff K, Blunk T, Bauer-Kreisel P. Ischemia-Like Stress Conditions Stimulate Trophic Activities of Adipose-Derived Stromal/Stem Cells. Cells 2020; 9:cells9091935. [PMID: 32825678 PMCID: PMC7566001 DOI: 10.3390/cells9091935] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/31/2020] [Accepted: 08/19/2020] [Indexed: 01/02/2023] Open
Abstract
Adipose-derived stromal/stem cells (ASCs) have been shown to exert regenerative functions, which are mainly attributed to the secretion of trophic factors. Upon transplantation, ASCs are facing an ischemic environment characterized by oxygen and nutrient deprivation. However, current knowledge on the secretion capacity of ASCs under such conditions is limited. Thus, the present study focused on the secretory function of ASCs under glucose and oxygen deprivation as major components of ischemia. After exposure to glucose/oxygen deprivation, ASCs maintained distinct viability, but the metabolic activity was greatly reduced by glucose limitation. ASCs were able to secrete a broad panel of factors under glucose/oxygen deprivation as revealed by a cytokine antibody array. Quantification of selected factors by ELISA demonstrated that glucose deprivation in combination with hypoxia led to markedly higher secretion levels of the angiogenic and anti-apoptotic factors IL-6, VEGF, and stanniocalcin-1 as compared to the hypoxic condition alone. A conditioned medium of glucose/oxygen-deprived ASCs promoted the viability and tube formation of endothelial cells, and the proliferation and migration of fibroblasts. These findings indicate that ASCs are stimulated by ischemia-like stress conditions to secrete trophic factors and would be able to exert their beneficial function in an ischemic environment.
Collapse
Affiliation(s)
- Julia Bachmann
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University of Wuerzburg, 97080 Wuerzburg, Germany; (J.B.); (E.E.); (T.B.)
| | - Elias Ehlert
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University of Wuerzburg, 97080 Wuerzburg, Germany; (J.B.); (E.E.); (T.B.)
| | - Matthias Becker
- Institute for Medical Radiation and Cell Research, University of Wuerzburg, 97078 Wuerzburg, Germany;
| | - Christoph Otto
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University of Wuerzburg, 97080 Wuerzburg, Germany;
| | - Katrin Radeloff
- Department of Otorhinolaryngology, Head and Neck Surgery, Carl von Ossietzky-University of Oldenburg, 26133 Oldenburg, Germany;
| | - Torsten Blunk
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University of Wuerzburg, 97080 Wuerzburg, Germany; (J.B.); (E.E.); (T.B.)
| | - Petra Bauer-Kreisel
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University of Wuerzburg, 97080 Wuerzburg, Germany; (J.B.); (E.E.); (T.B.)
- Correspondence: ; Tel.: +49-931-201-37115
| |
Collapse
|
3
|
Zonderland J, Gomes DB, Pallada Y, Moldero IL, Camarero‐Espinosa S, Moroni L. Mechanosensitive regulation of stanniocalcin-1 by zyxin and actin-myosin in human mesenchymal stromal cells. Stem Cells 2020; 38:948-959. [PMID: 32379914 PMCID: PMC7497098 DOI: 10.1002/stem.3198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/29/2020] [Accepted: 04/16/2020] [Indexed: 12/16/2022]
Abstract
Stanniocalcin-1 (STC1) secreted by mesenchymal stromal cells (MSCs) has anti-inflammatory functions, reduces apoptosis, and aids in angiogenesis, both in vitro and in vivo. However, little is known about the molecular mechanisms of its regulation. Here, we show that STC1 secretion is increased only under specific cell-stress conditions. We find that this is due to a change in actin stress fibers and actin-myosin tension. Abolishment of stress fibers by blebbistatin and knockdown of the focal adhesion protein zyxin leads to an increase in STC1 secretion. To also study this connection in 3D, where few focal adhesions and actin stress fibers are present, STC1 expression was analyzed in 3D alginate hydrogels and 3D electrospun scaffolds. Indeed, STC1 secretion was increased in these low cellular tension 3D environments. Together, our data show that STC1 does not directly respond to cell stress, but that it is regulated through mechanotransduction. This research takes a step forward in the fundamental understanding of STC1 regulation and can have implications for cell-based regenerative medicine, where cell survival, anti-inflammatory factors, and angiogenesis are critical.
Collapse
Affiliation(s)
- Jip Zonderland
- Complex Tissue Regeneration Department, MERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastrichtThe Netherlands
| | - David B. Gomes
- Complex Tissue Regeneration Department, MERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastrichtThe Netherlands
| | - Yves Pallada
- Complex Tissue Regeneration Department, MERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastrichtThe Netherlands
| | - Ivan L. Moldero
- Complex Tissue Regeneration Department, MERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastrichtThe Netherlands
| | - Sandra Camarero‐Espinosa
- Complex Tissue Regeneration Department, MERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastrichtThe Netherlands
| | - Lorenzo Moroni
- Complex Tissue Regeneration Department, MERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
4
|
Moldero IL, Chandra A, Cavo M, Mota C, Kapsokalyvas D, Gigli G, Moroni L, Del Mercato LL. Probing the pH Microenvironment of Mesenchymal Stromal Cell Cultures on Additive-Manufactured Scaffolds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002258. [PMID: 32656904 DOI: 10.1002/smll.202002258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/05/2020] [Indexed: 05/22/2023]
Abstract
Despite numerous advances in the field of tissue engineering and regenerative medicine, monitoring the formation of tissue regeneration and its metabolic variations during culture is still a challenge and mostly limited to bulk volumetric assays. Here, a simple method of adding capsules-based optical sensors in cell-seeded 3D scaffolds is presented and the potential of these sensors to monitor the pH changes in space and time during cell growth is demonstrated. It is shown that the pH decreased over time in the 3D scaffolds, with a more prominent decrease at the edges of the scaffolds. Moreover, the pH change is higher in 3D scaffolds compared to monolayered 2D cell cultures. The results suggest that this system, composed by capsules-based optical sensors and 3D scaffolds with predefined geometry and pore architecture network, can be a suitable platform for monitoring pH variations during 3D cell growth and tissue formation. This is particularly relevant for the investigation of 3D cellular microenvironment alterations occurring both during physiological processes, such as tissue regeneration, and pathological processes, such as cancer evolution.
Collapse
Affiliation(s)
- Ivan Lorenzo Moldero
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229ER, The Netherlands
| | - Anil Chandra
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| | - Marta Cavo
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| | - Carlos Mota
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229ER, The Netherlands
| | - Dimitrios Kapsokalyvas
- Department of Molecular Cell Biology, Maastricht University Medical Center, UNS 50, Maastricht, 6229ER, The Netherlands
| | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, via Arnesano, Lecce, 73100, Italy
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229ER, The Netherlands
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| | - Loretta L Del Mercato
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| |
Collapse
|
5
|
Hedegaard CL, Mata A. Integrating self-assembly and biofabrication for the development of structures with enhanced complexity and hierarchical control. Biofabrication 2020; 12:032002. [DOI: 10.1088/1758-5090/ab84cb] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Ho N, Chua M, Chui CK. Optimization of cell seeding in a 2D bio-scaffold system using computational models. Comput Biol Med 2017; 84:98-113. [PMID: 28359960 DOI: 10.1016/j.compbiomed.2017.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 01/24/2023]
Abstract
The cell expansion process is a crucial part of generating cells on a large-scale level in a bioreactor system. Hence, it is important to set operating conditions (e.g. initial cell seeding distribution, culture medium flow rate) to an optimal level. Often, the initial cell seeding distribution factor is neglected and/or overlooked in the design of a bioreactor using conventional seeding distribution methods. This paper proposes a novel seeding distribution method that aims to maximize cell growth and minimize production time/cost. The proposed method utilizes two computational models; the first model represents cell growth patterns whereas the second model determines optimal initial cell seeding positions for adherent cell expansions. Cell growth simulation from the first model demonstrates that the model can be a representation of various cell types with known probabilities. The second model involves a combination of combinatorial optimization, Monte Carlo and concepts of the first model, and is used to design a multi-layer 2D bio-scaffold system that increases cell production efficiency in bioreactor applications. Simulation results have shown that the recommended input configurations obtained from the proposed optimization method are the most optimal configurations. The results have also illustrated the effectiveness of the proposed optimization method. The potential of the proposed seeding distribution method as a useful tool to optimize the cell expansion process in modern bioreactor system applications is highlighted.
Collapse
Affiliation(s)
- Nicholas Ho
- Department of Mechanical Engineering, National University of Singapore, Singapore.
| | - Matthew Chua
- Institute of Systems Science, National University of Singapore, Singapore.
| | - Chee-Kong Chui
- Department of Mechanical Engineering, National University of Singapore, Singapore.
| |
Collapse
|
7
|
Ohkouchi S, Ono M, Kobayashi M, Hirano T, Tojo Y, Hisata S, Ichinose M, Irokawa T, Ogawa H, Kurosawa H. Myriad Functions of Stanniocalcin-1 (STC1) Cover Multiple Therapeutic Targets in the Complicated Pathogenesis of Idiopathic Pulmonary Fibrosis (IPF). CLINICAL MEDICINE INSIGHTS-CIRCULATORY RESPIRATORY AND PULMONARY MEDICINE 2015; 9:91-6. [PMID: 26740747 PMCID: PMC4696838 DOI: 10.4137/ccrpm.s23285] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/14/2015] [Accepted: 11/05/2015] [Indexed: 12/29/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an intractable disease for which the pathological findings are characterized by temporal and spatial heterogeneity. The pathogenesis is composed of myriad factors, including repetitive injuries to epithelial cells, alterations in immunity, the formation of vascular leakage and coagulation, abnormal wound healing, fibrogenesis, and collagen accumulation. Therefore, the molecular target drugs that are used or attempted for treatment or clinical trials may not cover the myriad therapeutic targets of IPF. In addition, the complicated pathogenesis results in a lack of informative biomarkers to diagnose accurately the status of IPF. These facts point out the necessity of using a combination of drugs, that is, each single drug with molecular targets or a single drug with multiple therapeutic targets. In this review, we introduce a humoral factor, stanniocalcin-1 (STC1), which has myriad functions, including the maintenance of calcium homeostasis, the promotion of early wound healing, uncoupling respiration (aerobic glycolysis), reepithelialization in damaged tissues, the inhibition of vascular leakage, and the regulation of macrophage functions to keep epithelial and endothelial homeostasis, which may adequately cover the myriad therapeutic targets of IPF.
Collapse
Affiliation(s)
- Shinya Ohkouchi
- Department of Respiratory Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan; Department of Occupational Health, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Manabu Ono
- Department of Respiratory Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Makoto Kobayashi
- Department of Respiratory Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Taizou Hirano
- Department of Respiratory Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yutaka Tojo
- Department of Respiratory Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Shu Hisata
- Department of Respiratory Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital, New York, NY, USA; Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Masakazu Ichinose
- Department of Respiratory Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Toshiya Irokawa
- Department of Occupational Health, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Hiromasa Ogawa
- Department of Occupational Health, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Hajime Kurosawa
- Department of Occupational Health, Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
8
|
Higuera GA, Fernandes H, Spitters TWGM, van de Peppel J, Aufferman N, Truckenmueller R, Escalante M, Stoop R, van Leeuwen JP, de Boer J, Subramaniam V, Karperien M, van Blitterswijk C, van Boxtel A, Moroni L. Supporting data of spatiotemporal proliferation of human stromal cells adjusts to nutrient availability and leads to stanniocalcin-1 expression in vitro and in vivo. Data Brief 2015; 5:84-94. [PMID: 26484359 PMCID: PMC4573092 DOI: 10.1016/j.dib.2015.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 08/16/2015] [Indexed: 11/24/2022] Open
Abstract
This data article contains seven figures and two tables supporting the research article entitled: spatiotemporal proliferation of human stromal cells adjusts to nutrient availability and leads to stanniocalcin-1 expression in vitro and in vivo[1]. The data explain the culture of stromal cells in vitro in three culture systems: discs, scaffolds and scaffolds in a perfusion bioreactor system. Also, quantification of extracellular matrix components (ECM) in vitro and staining of ECM components in vivo can be found here. Finally the quantification of blood vessels dimensions from CD31 signals and representative histograms of stanniocalcin-1 fluorescent signals in negative controls and experimental conditions in vivo are presented.
Collapse
Affiliation(s)
- Gustavo A Higuera
- Department of Tissue Regeneration, MIRA - Institute for Biomedical Technology, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - Hugo Fernandes
- Department of Tissue Regeneration, MIRA - Institute for Biomedical Technology, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - Tim W G M Spitters
- Department of Tissue Regeneration, MIRA - Institute for Biomedical Technology, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - Jeroen van de Peppel
- Erasmus Medical Center, Internal Medicine, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Nils Aufferman
- Department of Tissue Regeneration, MIRA - Institute for Biomedical Technology, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - Roman Truckenmueller
- Department of Tissue Regeneration, MIRA - Institute for Biomedical Technology, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands ; Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Universiteitsingel 40, 6229ER Maastricht, The Netherlands
| | - Maryana Escalante
- Biophysical Engineering Group, Mesa Institute for Nanotechnology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Reinout Stoop
- TNO, Metabolic Health Research, Zernikedreef 9, 2333 CK Leiden, The Netherlands
| | - Johannes P van Leeuwen
- Erasmus Medical Center, Internal Medicine, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Jan de Boer
- Department of Tissue Regeneration, MIRA - Institute for Biomedical Technology, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands ; Department of cell biology inspired tissue engineering, MERLN Institute for Technology Inspired Regenerative Medicine, Universiteitsingel 40, 6229ER Maastricht, The Netherlands
| | - Vinod Subramaniam
- Biophysical Engineering Group, Mesa Institute for Nanotechnology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Marcel Karperien
- Department of Tissue Regeneration, MIRA - Institute for Biomedical Technology, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - Clemens van Blitterswijk
- Department of Tissue Regeneration, MIRA - Institute for Biomedical Technology, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands ; Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Universiteitsingel 40, 6229ER Maastricht, The Netherlands
| | - Anton van Boxtel
- Systems and Control Group, Wageningen University, PO Box 17, 6700 AA Wageningen, The Netherlands
| | - Lorenzo Moroni
- Department of Tissue Regeneration, MIRA - Institute for Biomedical Technology, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands ; Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Universiteitsingel 40, 6229ER Maastricht, The Netherlands
| |
Collapse
|