1
|
Zheng S, Li G, Shi J, Liu X, Li M, He Z, Tian C, Kamei KI. Emerging platinum(IV) prodrug nanotherapeutics: A new epoch for platinum-based cancer therapy. J Control Release 2023; 361:819-846. [PMID: 37597809 DOI: 10.1016/j.jconrel.2023.08.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Owing to the unique DNA damaging cytotoxicity, platinum (Pt)-based chemotherapy has long been the first-line choice for clinical oncology. Unfortunately, Pt drugs are restricted by the severe dose-dependent toxicity and drug resistance. Correspondingly, Pt(IV) prodrugs are developed with the aim to improve the antitumor performance of Pt drugs. However, as "free" molecules, Pt(IV) prodrugs are still subject to unsatisfactory in vivo destiny and antitumor efficacy. Recently, Pt(IV) prodrug nanotherapeutics, inheriting both the merits of Pt(IV) prodrugs and nanotherapeutics, have emerged and demonstrated the promise to address the underexploited dilemma of Pt-based cancer therapy. Herein, we summarize the latest fronts of emerging Pt(IV) prodrug nanotherapeutics. First, the basic outlines of Pt(IV) prodrug nanotherapeutics are overviewed. Afterwards, how versatile Pt(IV) prodrug nanotherapeutics overcome the multiple biological barriers of antitumor drug delivery is introduced in detail. Moreover, advanced combination therapies based on multimodal Pt(IV) prodrug nanotherapeutics are discussed with special emphasis on the synergistic mechanisms. Finally, prospects and challenges of Pt(IV) prodrug nanotherapeutics for future clinical translation are spotlighted.
Collapse
Affiliation(s)
- Shunzhe Zheng
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Guanting Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jianbin Shi
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinying Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Meng Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chutong Tian
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, Hangzhou 310058, China.
| | - Ken-Ichiro Kamei
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
2
|
Liu H, Liu M, Zhao Y, Mo R. Nanomedicine strategies to counteract cancer stemness and chemoresistance. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:630-656. [PMID: 37720349 PMCID: PMC10501898 DOI: 10.37349/etat.2023.00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/07/2023] [Indexed: 09/19/2023] Open
Abstract
Cancer stem-like cells (CSCs) identified by self-renewal ability and tumor-initiating potential are responsible for tumor recurrence and metastasis in many cancers. Conventional chemotherapy fails to eradicate CSCs that hold a state of dormancy and possess multi-drug resistance. Spurred by the progress of nanotechnology for drug delivery and biomedical applications, nanomedicine has been increasingly developed to tackle stemness-associated chemotherapeutic resistance for cancer therapy. This review focuses on advances in nanomedicine-mediated therapeutic strategies to overcome chemoresistance by specifically targeting CSCs, the combination of chemotherapeutics with chemopotentiators, and programmable controlled drug release. Perspectives from materials and formulations at the nano-scales are specifically surveyed. Future opportunities and challenges are also discussed.
Collapse
Affiliation(s)
- Huayu Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Mingqi Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Yanan Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Ran Mo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| |
Collapse
|
3
|
Yin X, Harmancey R, McPherson DD, Kim H, Huang SL. Liposome-Based Carriers for CRISPR Genome Editing. Int J Mol Sci 2023; 24:12844. [PMID: 37629024 PMCID: PMC10454197 DOI: 10.3390/ijms241612844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
The CRISPR-based genome editing technology, known as clustered regularly interspaced short palindromic repeats (CRISPR), has sparked renewed interest in gene therapy. This interest is accompanied by the development of single-guide RNAs (sgRNAs), which enable the introduction of desired genetic modifications at the targeted site when used alongside the CRISPR components. However, the efficient delivery of CRISPR/Cas remains a challenge. Successful gene editing relies on the development of a delivery strategy that can effectively deliver the CRISPR cargo to the target site. To overcome this obstacle, researchers have extensively explored non-viral, viral, and physical methods for targeted delivery of CRISPR/Cas9 and a guide RNA (gRNA) into cells and tissues. Among those methods, liposomes offer a promising approach to enhance the delivery of CRISPR/Cas and gRNA. Liposomes facilitate endosomal escape and leverage various stimuli such as light, pH, ultrasound, and environmental cues to provide both spatial and temporal control of cargo release. Thus, the combination of the CRISPR-based system with liposome delivery technology enables precise and efficient genetic modifications in cells and tissues. This approach has numerous applications in basic research, biotechnology, and therapeutic interventions. For instance, it can be employed to correct genetic mutations associated with inherited diseases and other disorders or to modify immune cells to enhance their disease-fighting capabilities. In summary, liposome-based CRISPR genome editing provides a valuable tool for achieving precise and efficient genetic modifications. This review discusses future directions and opportunities to further advance this rapidly evolving field.
Collapse
Affiliation(s)
- Xing Yin
- Division of Cardiovascular Medicine, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Romain Harmancey
- Division of Cardiovascular Medicine, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - David D McPherson
- Division of Cardiovascular Medicine, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hyunggun Kim
- Department of Biomechatronic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Shao-Ling Huang
- Division of Cardiovascular Medicine, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
4
|
The role of Platinum(IV)-based antitumor drugs and the anticancer immune response in medicinal inorganic chemistry. A systematic review from 2017 to 2022. Eur J Med Chem 2022; 243:114680. [PMID: 36152386 DOI: 10.1016/j.ejmech.2022.114680] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/29/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022]
Abstract
Platinum-based antitumor drugs have been used in many types of tumors due to its broad antitumor spectrum in clinic. Encouraged by the cisplatin's (CDDP) worldwide success in cancer chemotherapy, the research in platinum-based antitumor drugs has evolved from traditional platinum drug to multi-ligand and multifunctional platinum prodrugs over half a century. With the rapid development of metal drugs and the anticancer immune response, challenges and opportunities in platinum drug research have been shifted from traditional platinum-based drugs to platinum-based hybrids and the direction of development is tending toward photodynamic therapy, nano-delivery therapy, drug combination, targeted therapy, diagnostic therapy, immune-combination therapy and tumor stem cell therapy. In this review, we first exhaustively overviewed the role of platinum-based antitumor prodrugs and the anticancer immune response in medicinal inorganic chemistry based on the special nanomaterials, the modification of specific ligands, and the multiple functions obtained that are beneficial for tumor therapy in the last five years. We also categorized them according to drug potency and function. There hasn't been a comprehensive evaluation of precursor platinum drugs in prior articles. And a multifarious approach to distinguish and detail the variety of alterations of platinum-based precursors in various valence states also hasn't been summarized. In addition, this review points out the main problems at the interface of chemistry, biology, and medicine from their action mechanisms for current platinum drug development, and provides up-to-date potential strategies from drug design perspectives to circumvent those drawbacks. And a promising idea is also enlightened for researchers in the development and discovery of platinum prodrugs.
Collapse
|
5
|
Tang Y, Chen Y, Zhang Z, Tang B, Zhou Z, Chen H. Nanoparticle-Based RNAi Therapeutics Targeting Cancer Stem Cells: Update and Prospective. Pharmaceutics 2021; 13:pharmaceutics13122116. [PMID: 34959397 PMCID: PMC8708448 DOI: 10.3390/pharmaceutics13122116] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/19/2021] [Accepted: 12/02/2021] [Indexed: 02/05/2023] Open
Abstract
Cancer stem cells (CSCs) are characterized by intrinsic self-renewal and tumorigenic properties, and play important roles in tumor initiation, progression, and resistance to diverse forms of anticancer therapy. Accordingly, targeting signaling pathways that are critical for CSC maintenance and biofunctions, including the Wnt, Notch, Hippo, and Hedgehog signaling cascades, remains a promising therapeutic strategy in multiple cancer types. Furthermore, advances in various cancer omics approaches have largely increased our knowledge of the molecular basis of CSCs, and provided numerous novel targets for anticancer therapy. However, the majority of recently identified targets remain ‘undruggable’ through small-molecule agents, whereas the implications of exogenous RNA interference (RNAi, including siRNA and miRNA) may make it possible to translate our knowledge into therapeutics in a timely manner. With the recent advances of nanomedicine, in vivo delivery of RNAi using elaborate nanoparticles can potently overcome the intrinsic limitations of RNAi alone, as it is rapidly degraded and has unpredictable off-target side effects. Herein, we present an update on the development of RNAi-delivering nanoplatforms in CSC-targeted anticancer therapy and discuss their potential implications in clinical trials.
Collapse
Affiliation(s)
- Yongquan Tang
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu 610041, China;
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (Z.Z.)
| | - Yan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (Z.Z.)
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (Z.Z.)
| | - Bo Tang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Zongguang Zhou
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (Z.Z.)
- Correspondence: (Z.Z.); (H.C.)
| | - Haining Chen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (Z.Z.)
- Correspondence: (Z.Z.); (H.C.)
| |
Collapse
|
6
|
Cao J, Bhatnagar S, Wang J, Qi X, Prabha S, Panyam J. Cancer stem cells and strategies for targeted drug delivery. Drug Deliv Transl Res 2021; 11:1779-1805. [PMID: 33095384 PMCID: PMC8062588 DOI: 10.1007/s13346-020-00863-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 12/23/2022]
Abstract
Cancer stem cells (CSCs) are a small proportion of cancer cells with high tumorigenic activity, self-renewal ability, and multilineage differentiation potential. Standard anti-tumor therapies including conventional chemotherapy, radiation therapy, and molecularly targeted therapies are not effective against CSCs, and often lead to enrichment of CSCs that can result in tumor relapse. Therefore, it is hypothesized that targeting CSCs is key to increasing the efficacy of cancer therapies. In this review, CSC properties including CSC markers, their role in tumor growth, invasiveness, metastasis, and drug resistance, as well as CSC microenvironment are discussed. Further, CSC-targeted strategies including the use of targeted drug delivery systems are examined.
Collapse
Affiliation(s)
- Jin Cao
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Shubhmita Bhatnagar
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
- School of Pharmacy, Temple University, Philadelphia, PA, 19140, USA
| | - Jiawei Wang
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
- College of Pharmacy, University of Texas at Austin, Austin, TX, 78712, USA
| | - Xueyong Qi
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Swayam Prabha
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
- Cancer Research & Molecular Biology and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jayanth Panyam
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA.
- School of Pharmacy, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
7
|
Jia C, Deacon GB, Zhang Y, Gao C. Platinum(IV) antitumor complexes and their nano-drug delivery. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213640] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Duan H, Liu Y, Gao Z, Huang W. Recent advances in drug delivery systems for targeting cancer stem cells. Acta Pharm Sin B 2021; 11:55-70. [PMID: 33532180 PMCID: PMC7838023 DOI: 10.1016/j.apsb.2020.09.016] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/25/2020] [Accepted: 07/12/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) are a subpopulation of cancer cells with functions similar to those of normal stem cells. Although few in number, they are capable of self-renewal, unlimited proliferation, and multi-directional differentiation potential. In addition, CSCs have the ability to escape immune surveillance. Thus, they play an important role in the occurrence and development of tumors, and they are closely related to tumor invasion, metastasis, drug resistance, and recurrence after treatment. Therefore, specific targeting of CSCs may improve the efficiency of cancer therapy. A series of corresponding promising therapeutic strategies based on CSC targeting, such as the targeting of CSC niche, CSC signaling pathways, and CSC mitochondria, are currently under development. Given the rapid progression in this field and nanotechnology, drug delivery systems (DDSs) for CSC targeting are increasingly being developed. In this review, we summarize the advances in CSC-targeted DDSs. Furthermore, we highlight the latest developmental trends through the main line of CSC occurrence and development process; some considerations about the rationale, advantages, and limitations of different DDSs for CSC-targeted therapies were discussed.
Collapse
Key Words
- ABC, ATP binding cassette
- AFN, apoferritin
- ALDH, aldehyde dehydrogenase
- BM-MSCs-derived Exos, bone marrow mesenchymal stem cells-derived exosomes
- Biomarker
- CAFs, cancer-associated fibroblasts
- CL-siSOX2, cationic lipoplex of SOX2 small interfering RNA
- CMP, carbonate-mannose modified PEI
- CQ, chloroquine
- CSCs, cancer stem cells
- Cancer stem cells
- Cancer treatment
- Cellular level
- DCLK1, doublecortin-like kinase 1
- DDSs, drug delivery systems
- DLE, drug loading efficiency
- DOX, doxorubicin
- DQA-PEG2000-DSPE, dequlinium and carboxyl polyethylene glycol-distearoylphosphatidylethanolamine
- Dex, dexamethasone
- Drug delivery systems
- ECM, extracellular matrix
- EMT, epithelial–mesenchymal transition
- EPND, nanodiamond-Epirubicin drug complex
- EpCAM, epithelial cell adhesion molecule
- GEMP, gemcitabine monophosphate
- GLUT1, glucose ligand to the glucose transporter 1
- Glu, glucose
- HCC, hepatocellular carcinoma
- HH, Hedgehog
- HIF1α, hypoxia-inducible factor 1-alpha
- HNSCC, head and neck squamous cell carcinoma
- IONP, iron oxide nanoparticle
- LAC, lung adenocarcinoma
- LNCs, lipid nanocapsules
- MAPK, mitogen-activated protein kinase
- MB, methylene blue
- MDR, multidrug resistance
- MNP, micellar nanoparticle
- MSNs, mesoporous silica nanoparticles
- Molecular level
- NF-κB, nuclear factor-kappa B
- Nav, navitoclax
- Niche
- PBAEs, poly(β-aminoester)
- PDT, photodynamic therapy
- PEG-PCD, poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylene carbonate-graft-dodecanol)
- PEG-PLA, poly(ethylene glycol)-b-poly(d,l-lactide)
- PEG-b-PLA, poly(ethylene glycol)-block-poly(d,l-lactide)
- PLGA, poly(ethylene glycol)-poly(d,l-lactide-co-glycolide)
- PTX, paclitaxel
- PU-PEI, polyurethane-short branch-polyethylenimine
- SLNs, solid lipid nanoparticles
- SSCs, somatic stem cells
- Sali-ABA, 4-(aminomethyl) benzaldehyde-modified Sali
- TNBC, triple negative breast cancer
- TPZ, tirapazamine
- Targeting strategies
- cRGD, cyclic Arg-Gly-Asp
- iTEP, immune-tolerant, elastin-like polypeptide
- mAbs, monoclonal antibodies
- mPEG-b-PCC-g-GEM-g-DC-g-CAT, poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylenecarbonate-graft-dodecanol-graft-cationic ligands)
- ncRNA, non-coding RNAs
- uPAR, urokinase plasminogen activator receptor
Collapse
Affiliation(s)
- Hongxia Duan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yanhong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
9
|
Wang Z, Sun M, Li W, Fan L, Zhou Y, Hu Z. A Novel CD133- and EpCAM-Targeted Liposome With Redox-Responsive Properties Capable of Synergistically Eliminating Liver Cancer Stem Cells. Front Chem 2020; 8:649. [PMID: 32850663 PMCID: PMC7431664 DOI: 10.3389/fchem.2020.00649] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/22/2020] [Indexed: 12/23/2022] Open
Abstract
Cancer stem cells (CSCs) are a small subset of cells that sit atop the hierarchical ladder in many cancer types. Liver CSCs have been associated with high chemoresistance and recurrence rates in hepatocellular carcinoma (HCC). However, as of yet, no satisfactorily effective liver CSC-targeted treatment is available, which drove us to design and investigate the efficacy of a liposome-based delivery system. Here, we introduce a redox-triggered dual-targeted liposome, CEP-LP@S/D, capable of co-delivering doxorubicin (Dox) and salinomycin (Sal) for the synergistic treatment of liver cancer. This system is based on the association of CD133- and EpCAM-targeted peptides to form Y-shaped CEP ligands that were anchored to the surface of the liposome and allowed the selective targeting of CD133+ EpCAM+ liver CSCs. After arriving to the CSCs, the CEP-LP@S/D liposome undergoes endocytosis to the cytoplasm, where a high concentration of glutathione (GSH) breaks its disulfide bonds, thereby degrading the liposome. This then induces a rapid release of Dox and Sal to synergistically inhibit tumor growth. Notably, this effect occurs through Dox-induced apoptosis and concurrent lysosomal iron sequestration by Sal. Interestingly, both in vitro and in vivo studies indicated that our GSH-responsive co-delivery system not only effectively enhanced CSC targeting but also eliminated the non-CSC faction, thereby exhibiting high antitumor efficacy. We believe that the smart liposome nanocarrier-based co-delivery system is a promising strategy to combat liver cancer, which may also lay the groundwork for more enhanced approaches to target other cancer types as well.
Collapse
Affiliation(s)
- Zihua Wang
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Provincial Universities and Colleges, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Mengqi Sun
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Provincial Universities and Colleges, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for BiomedicalEffects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Wang Li
- Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry Chinese Academy of Sciences, Beijing, China
| | - Linyang Fan
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for BiomedicalEffects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Ying Zhou
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Provincial Universities and Colleges, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zhiyuan Hu
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Provincial Universities and Colleges, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for BiomedicalEffects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China.,School of Nanoscience and Technology, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Nanomedicine in osteosarcoma therapy: Micelleplexes for delivery of nucleic acids and drugs toward osteosarcoma-targeted therapies. Eur J Pharm Biopharm 2020; 148:88-106. [PMID: 31958514 DOI: 10.1016/j.ejpb.2019.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/09/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023]
Abstract
Osteosarcoma(OS) represents the main cancer affecting bone tissue, and one of the most frequent in children. In this review we discuss the major pathological hallmarks of this pathology, its current therapeutics, new active biomolecules, as well as the nanotechnology outbreak applied to the development of innovative strategies for selective OS targeting. Small RNA molecules play a role as key-regulator molecules capable of orchestrate different responses in what concerns cancer initiation, proliferation, migration and invasiveness. Frequently associated with lung metastasis, new strategies are urgent to upgrade the therapeutic outcomes and the life-expectancy prospects. Hence, the prominent rise of micelleplexes as multifaceted and efficient structures for nucleic acid delivery and selective drug targeting is revisited here with special emphasis on ligand-mediated active targeting. Future landmarks toward the development of novel nanostrategies for both OS diagnosis and OS therapy improvements are also discussed.
Collapse
|
11
|
Zhang F, Jia Y, Zheng X, Shao D, Zhao Y, Wang Z, Dawulieti J, Liu W, Sun M, Sun W, Pan Y, Cui L, Wang Y, He K, Zhang M, Li J, Dong WF, Chen L. Janus nanocarrier-based co-delivery of doxorubicin and berberine weakens chemotherapy-exacerbated hepatocellular carcinoma recurrence. Acta Biomater 2019; 100:352-364. [PMID: 31563690 DOI: 10.1016/j.actbio.2019.09.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 12/24/2022]
Abstract
Despite the rapid progress which has been made in hepatocellular carcinoma (HCC) chemotherapeutics, recurrence of liver cancer still remains a barrier to achieve satisfying prognosis. Herein, we aimed to decipher the role of berberine (BER) in chemotherapy-exacerbated HCC repopulation via developing a nanocarrier co-deliveries doxorubicin (DOX) and BER to achieve a synergic effect in HCC treatment. The underlying fact of chemotherapy that promotes HCC repopulation was firstly examined and corroborated by clinical samples and murine repopulation model. Then, hyaluronic acid (HA)-conjugated Janus nanocarrier (HA-MSN@DB) was developed to load DOX and BER simultaneously. The HCC targeting efficiency, pH-controlled drug-release and anti-cancer property of HA-MSN@DB were assessed in CD44-overexpressed HCCs and normal liver cells. Magnet resonance imaging, bio-distribution, biocompatibility, tumor and recurrence inhibition studies were performed in H22 tumor-bearing mice. BER significantly reduced doxorubicin (DOX)-triggered HCC repopulation in vitro and in vivo through inhibiting Caspase-3-iPLA2-COX-2 pathway. The delivery of HA-MSN@DB into HCCs through CD44 receptor-mediated targeting effect was demonstrated. The controlled release of DOX and BER in response to acidic tumor microenvironment was validated. Importantly, HA-MSN@DB drastically enhanced the antitumor activity of DOX and suppressed DOX-exacerbated HCC repopulation in vitro and in vivo. Furthermore, HA-MSN@DB exhibited enhanced tumor accumulation and biocompatibility. Our findings revealed the pivotal role of BER in overcoming chemotherapy-exacerbated HCC repopulation through Caspase-3-iPLA2-COX-2 pathway, thereby providing a promising and stable nanocarrier integrating DOX and BER for effective HCC chemotherapy without repopulation. STATEMENT OF SIGNIFICANCE: In this work, we have first demonstrated the fact that berberine (Ber) reduces chemotherapy-exacerbated HCC recurrence and studied its mechanism by the aid of a doxorubicin-induced mice HCC relapse model. We then developed a promising strategy that simultaneously inhibits HCC and its recurrence with an HCC-targeted co-delivery nanocarrier HA-MSN@DB and revealed that such an inhibition was related with the suppression of Caspase-3-iPLA2-COX-2 pathway by berberine.
Collapse
|
12
|
Abstract
Liposomes are one of the most widely investigated carriers for CRISPR/Cas9 delivery. The surface properties of liposomal carriers, including the surface charge, PEGylation, and ligand modification can significantly affect the gene silencing efficiency. Three barriers of systemic CRISPR/Cas9 delivery (long blood circulation, efficient tumor penetration, and efficient cellular uptake/endosomal escape) are analyzed on liposomal carriers with different surface charges, PEGylations, and ligand modifications. Cationic formulations dominate CRISPR/Cas9 delivery and neutral formulations also have good performance while anionic formulations are generally not proper for CRISPR/Cas9 delivery. The PEG dilemma (prolonged blood circulation vs. reduced cellular uptake/endosomal escape) and the side effect of repeated PEGylated formulation (accelerated blood clearance) were discussed. Effects of ligand modification on cationic and neutral formulations were analyzed. Finally, we summarized the achievements in liposomal CRISPR/Cas9 delivery, outlined existing problems, and provided some future perspectives. Liposomes are one of the most widely investigated carriers for CRISPR/Cas9 delivery. The surface properties of liposomal carriers, including the surface charge, PEGylation, and ligand modification can significantly affect the gene silencing efficiency. Three barriers of systemic siRNA delivery (long blood circulation, efficient tumor penetration, and efficient cellular uptake/endosomal escape) are analyzed on liposomal carriers with different surface charges, PEGylations, and ligand modifications. Cationic formulations dominate CRISPR/Cas9 delivery and neutral formulations also have good performance while anionic formulations are generally not proper for CRISPR/Cas9 delivery. The PEG dilemma (prolonged blood circulation vs. reduced cellular uptake/endosomal escape) and the side effect of repeated PEGylated formulation (accelerated blood clearance) were discussed. Effects of ligand modification on cationic and neutral formulations were analyzed. Finally, we summarized the achievements in liposomal CRISPR/Cas9 delivery, outlined existing problems, and provided some future perspectives.
Collapse
|
13
|
Reghupaty SC, Sarkar D. Current Status of Gene Therapy in Hepatocellular Carcinoma. Cancers (Basel) 2019; 11:cancers11091265. [PMID: 31466358 PMCID: PMC6770843 DOI: 10.3390/cancers11091265] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer and the second leading cause of cancer related deaths world-wide. Liver transplantation, surgical resection, trans-arterial chemoembolization, and radio frequency ablation are effective strategies to treat early stage HCC. Unfortunately, HCC is usually diagnosed at an advanced stage and there are not many treatment options for late stage HCC. First-line therapy for late stage HCC includes sorafenib and lenvatinib. However, these treatments provide only an approximate three month increase in survival. Besides, they cannot specifically target cancer cells that lead to a wide array of side effects. Patients on these drugs develop resistance within a few months and have to rely on second-line therapy that includes regorafenib, pembrolizumab, nivolumab, and cabometyx. These disadvantages make gene therapy approach to treat HCC an attractive option. The two important questions that researchers have been trying to answer in the last 2-3 decades are what genes should be targeted and what delivery systems should be used. The objective of this review is to analyze the changing landscape of HCC gene therapy, with a focus on these two questions.
Collapse
Affiliation(s)
- Saranya Chidambaranathan Reghupaty
- Department of Human and Molecular Genetics, Massey Cancer Center, VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Massey Cancer Center, VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
14
|
Ma Y, Zhao Y, Bejjanki NK, Tang X, Jiang W, Dou J, Khan MI, Wang Q, Xia J, Liu H, You YZ, Zhang G, Wang Y, Wang J. Nanoclustered Cascaded Enzymes for Targeted Tumor Starvation and Deoxygenation-Activated Chemotherapy without Systemic Toxicity. ACS NANO 2019; 13:8890-8902. [PMID: 31291092 DOI: 10.1021/acsnano.9b02466] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Intratumoral glucose depletion-induced cancer starvation represents an important strategy for anticancer therapy, but it is often limited by systemic toxicity, nonspecificity, and adaptive development of parallel energy supplies. Herein, we introduce a concept of cascaded catalytic nanomedicine by combining targeted tumor starvation and deoxygenation-activated chemotherapy for an efficient cancer treatment with reduced systemic toxicity. Briefly, nanoclustered cascaded enzymes were synthesized by covalently cross-linking glucose oxidase (GOx) and catalase (CAT) via a pH-responsive polymer. The release of the enzymes can be first triggered by the mildly acidic tumor microenvironment and then be self-accelerated by the subsequent generation of gluconic acid. Once released, GOx can rapidly deplete glucose and molecular oxygen in tumor cells while the toxic side product, i.e., H2O2, can be readily decomposed by CAT for site-specific and low-toxicity tumor starvation. Furthermore, the enzymatic cascades also created a local hypoxia with the oxygen consumption and reductase-activated prodrugs for an additional chemotherapy. The current report represents a promising combinatorial approach using cascaded catalytic nanomedicine to reach concurrent selectivity and efficiency of cancer therapeutics.
Collapse
Affiliation(s)
- Yinchu Ma
- Intelligent Nanomedicine Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine , University of Science and Technology of China , Hefei , Anhui 230001 , China
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences , University of Science and Technology of China , Hefei 230027 , China
| | - Yangyang Zhao
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences , University of Science and Technology of China , Hefei 230027 , China
| | - Naveen Kumar Bejjanki
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences , University of Science and Technology of China , Hefei 230027 , China
| | - Xinfeng Tang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences , University of Science and Technology of China , Hefei 230027 , China
| | - Wei Jiang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences , University of Science and Technology of China , Hefei 230027 , China
| | - Jiaxiang Dou
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences , University of Science and Technology of China , Hefei 230027 , China
| | - Malik Ihsanullah Khan
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences , University of Science and Technology of China , Hefei 230027 , China
| | - Qin Wang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences , University of Science and Technology of China , Hefei 230027 , China
| | - Jinxing Xia
- The First Affiliated Hospital of Anhui Medical University , Hefei 230022 , China
| | - Hang Liu
- Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei 230027 , China
| | - Ye-Zi You
- Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei 230027 , China
| | - Guoqing Zhang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences , University of Science and Technology of China , Hefei 230027 , China
| | - Yucai Wang
- Intelligent Nanomedicine Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine , University of Science and Technology of China , Hefei , Anhui 230001 , China
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences , University of Science and Technology of China , Hefei 230027 , China
| | - Jun Wang
- School of Biomedical Science and Engineering, South China University of Technology , Guangzhou International Campus , Guangzhou 510006 , China
| |
Collapse
|
15
|
Li C, Li T, Huang L, Yang M, Zhu G. Self‐assembled Lipid Nanoparticles for Ratiometric Codelivery of Cisplatin and siRNA Targeting XPF to Combat Drug Resistance in Lung Cancer. Chem Asian J 2019; 14:1570-1576. [DOI: 10.1002/asia.201900005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/16/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Cai Li
- Department of ChemistryCity University of Hong Kong 83 Tat Chee Ave Kowloon Tong, Hong Kong SAR China
- City University of Hong Kong Shenzhen Research Institute China
| | - Tianzhong Li
- Department of Biomedical SciencesCity University of Hong Kong 83 Tat Chee Ave Kowloon Tong, Hong Kong SAR China
- City University of Hong Kong Shenzhen Research Institute China
| | - Linfeng Huang
- Department of Biomedical SciencesCity University of Hong Kong 83 Tat Chee Ave Kowloon Tong, Hong Kong SAR China
- City University of Hong Kong Shenzhen Research Institute China
| | - Mengsu Yang
- Department of Biomedical SciencesCity University of Hong Kong 83 Tat Chee Ave Kowloon Tong, Hong Kong SAR China
- City University of Hong Kong Shenzhen Research Institute China
| | - Guangyu Zhu
- Department of ChemistryCity University of Hong Kong 83 Tat Chee Ave Kowloon Tong, Hong Kong SAR China
- City University of Hong Kong Shenzhen Research Institute China
| |
Collapse
|
16
|
Huang Q, Li J, Zheng J, Wei A. The Carcinogenic Role of the Notch Signaling Pathway in the Development of Hepatocellular Carcinoma. J Cancer 2019; 10:1570-1579. [PMID: 31031867 PMCID: PMC6485212 DOI: 10.7150/jca.26847] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 01/12/2019] [Indexed: 12/11/2022] Open
Abstract
The Notch signaling pathway, known to be a highly conserved signaling pathway in embryonic development and adult tissue homeostasis, participates in cell fate decisions that include cellular differentiation, cell survival and cell death. However, other studies have shown that aberrant in Notch signaling is pro-tumorigenic, particularly in hepatocellular carcinoma (HCC). HCC is one of the most common malignant tumors in the world and has a high mortality rate. Growing evidence supports that Notch signaling plays a critical role in the development of HCC by regulating the tumor microenvironment, tumorigenesis, progression, angiogenesis, invasion and metastasis. Accordingly, overexpression of Notch is closely associated with poor prognosis in HCC. In this review, we focus on the pro-tumorigenic role of Notch signaling in HCC, summarize the current knowledge of Notch signaling and its role in HCC development, and outline the therapeutic potential of targeting Notch signaling in HCC.
Collapse
Affiliation(s)
- Qinfeng Huang
- Graduate School, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Junhong Li
- The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, China
| | - Jinghui Zheng
- Discipline Construction Office, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China
| | - Ailing Wei
- The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, China
| |
Collapse
|
17
|
Li Y, Guo M, Lin Z, Zhao M, Xia Y, Wang C, Xu T, Zhu B. Multifunctional selenium nanoparticles with Galangin-induced HepG2 cell apoptosis through p38 and AKT signalling pathway. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180509. [PMID: 30564384 PMCID: PMC6281927 DOI: 10.1098/rsos.180509] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 10/23/2018] [Indexed: 05/24/2023]
Abstract
The morbidity and mortality of hepatocellular carcinoma, the most common cancer, are increasing continuously worldwide. Galangin (Ga) has been demonstrated to possess anti-cancer effect, but the efficacy of Ga was limited by its low permeability and poor solubility. To develop aqueous formulation and improve the anti-cancer activity of Ga, surface decoration of functionalized selenium nanoparticles with Ga (Se@Ga) was synthesized in the present study. The aim of this study was to evaluate the anti-cancer effect of Se@Ga and the mechanism on HepG2 cells. Se@Ga-induced HepG2 cell apoptosis was confirmed by depletion of mitochondrial membrane potential, translocation of phosphatidylserine and caspase-3 activation. Furthermore, Se@Ga enhanced the anti-cancer activity of HepG2 cells through ROS-mediated AKT and p38 signalling pathways. In summary, these results suggest that Se@Ga might be potential candidate chemotherapy for cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bing Zhu
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, People's Republic of China
| |
Collapse
|
18
|
Xu HL, Fan ZL, ZhuGe DL, Tong MQ, Shen BX, Lin MT, Zhu QY, Jin BH, Sohawon Y, Yao Q, Zhao YZ. Ratiometric delivery of two therapeutic candidates with inherently dissimilar physicochemical property through pH-sensitive core-shell nanoparticles targeting the heterogeneous tumor cells of glioma. Drug Deliv 2018; 25:1302-1318. [PMID: 29869524 PMCID: PMC6060705 DOI: 10.1080/10717544.2018.1474974] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Currently, combination drug therapy is one of the most effective approaches to glioma treatment. However, due to the inherent dissimilar pharmacokinetics of individual drugs and blood brain barriers, it was difficult for the concomitant drugs to simultaneously be delivered to glioma in an optimal dose ratio manner. Herein, a cationic micellar core (Cur-M) was first prepared from d-α-tocopherol-grafted-ε-polylysine polymer to encapsulate the hydrophobic curcumin, followed by dopamine-modified-poly-γ-glutamic acid polymer further deposited on its surface as a anion shell through pH-sensitive linkage to encapsulate the hydrophilic doxorubicin (DOX) hydrochloride. By controlling the combinational Cur/DOX molar ratio at 3:1, a pH-sensitive core-shell nanoparticle (PDCP-NP) was constructed to simultaneously target the cancer stem cells (CSCs) and the differentiated tumor cells. PDCP-NP exhibited a dynamic diameter of 160.8 nm and a zeta-potential of -30.5 mV, while its core-shell structure was further confirmed by XPS and TEM. The ratiometric delivery capability of PDCP-NP was confirmed by in vitro and in vivo studies, in comparison with the cocktail Cur/DOX solution. Meanwhile, the percentage of CSCs in tumors was significantly decreased from 4.16% to 0.95% after treatment with PDCP-NP. Overall, PDCP-NP may be a promising carrier for the combination therapy with drug candidates having dissimilar physicochemical properties.
Collapse
Affiliation(s)
- He-Lin Xu
- a Department of Pharmaceutics, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou City , China
| | - Zi-Liang Fan
- a Department of Pharmaceutics, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou City , China
| | - De-Li ZhuGe
- a Department of Pharmaceutics, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou City , China
| | - Meng-Qi Tong
- a Department of Pharmaceutics, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou City , China
| | - Bi-Xin Shen
- a Department of Pharmaceutics, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou City , China
| | - Meng-Ting Lin
- a Department of Pharmaceutics, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou City , China
| | - Qun-Yan Zhu
- a Department of Pharmaceutics, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou City , China
| | - Bing-Hui Jin
- a Department of Pharmaceutics, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou City , China
| | - Yasin Sohawon
- b School of International Studies , Wenzhou Medical University , Wenzhou City , China.,c First Affiliated Hospital of Wenzhou Medical University , Wenzhou City , China
| | - Qing Yao
- a Department of Pharmaceutics, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou City , China
| | - Ying-Zheng Zhao
- a Department of Pharmaceutics, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou City , China
| |
Collapse
|
19
|
Feng B, Zhou F, Lu W, Wang D, Wang T, Luo C, Wang H, Li Y, Yu H. Phospholipid-mimic oxaliplatin prodrug liposome for treatment of the metastatic triple negative breast cancer. Biomater Sci 2018; 5:1522-1525. [PMID: 28406499 DOI: 10.1039/c7bm00058h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A phospholipid-mimic oxaliplatin prodrug (Oxalipid) was synthesized, which could self-assemble into a liposomal nanostructure with a drug loading ratio as high as 27 wt%. Compared to free oxaliplatin, the resulting Oxalipid liposome displayed elongated blood circulation, increased tumor accumulation and improved anticancer efficacy against the metastatic triple negative breast cancer (TNBC).
Collapse
Affiliation(s)
- Bing Feng
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangyuan Zhou
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Wenchao Lu
- University of Chinese Academy of Sciences, Beijing 100049, China and Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dangge Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hao Wang
- National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
20
|
Wang Y, Li SY, Shen S, Wang J. Protecting neurons from cerebral ischemia/reperfusion injury via nanoparticle-mediated delivery of an siRNA to inhibit microglial neurotoxicity. Biomaterials 2018; 161:95-105. [PMID: 29421566 DOI: 10.1016/j.biomaterials.2018.01.039] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/18/2018] [Accepted: 01/25/2018] [Indexed: 01/14/2023]
Abstract
Complement component C3 (C3) plays a central role in microglial neurotoxicity following cerebral ischemia/reperfusion (I/R) injury. In this study, we focused on the role of nanoparticles loaded with C3 siRNA (NPsiC3) in inhibiting microglial neurotoxicity after brain (I/R) injury. NPsiC3 inhibited the hypoxia/re-oxygenation-induced increase in C3 expression in microglia in vitro. Importantly, treatment with NPsiC3 decreased C3b deposition on neurons and reduced microglia-mediated neuronal damage under hypoxia/re-oxygen conditions. Nanoparticles could effectively deliver C3-siRNA from the blood into ischemic penumbra across the blood-brain barrier (BBB) and significantly decrease C3 expression in microglia and ischemic brain tissue, while reducing the number of infiltrating inflammatory cells and the concentration of pro-inflammatory factors in the penumbra. Furthermore, NPsiC3 also prevented neuronal apoptosis, reduced the volume of the ischemic zone, and substantially improved functional recovery after I/R injury. Therefore, the NPsiC3-induced inhibition of microglial neurotoxicity represents a novel therapeutic strategy for treating brain I/R injury.
Collapse
Affiliation(s)
- Ye Wang
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Shi-Yong Li
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, PR China; Department of Cardiology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Song Shen
- Institutes for Life Sciences, School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, Guangdong 510006, PR China
| | - Jun Wang
- Institutes for Life Sciences, School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, Guangdong 510006, PR China; Research Institute for Food Nutrition and Human Health, Guangzhou, Guangdong 510006, PR China.
| |
Collapse
|
21
|
Ando H, Abu Lila AS, Tanaka M, Doi Y, Terada Y, Yagi N, Shimizu T, Okuhira K, Ishima Y, Ishida T. Intratumoral Visualization of Oxaliplatin within a Liposomal Formulation Using X-ray Fluorescence Spectrometry. Mol Pharm 2018; 15:403-409. [PMID: 29287147 DOI: 10.1021/acs.molpharmaceut.7b00762] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Microsynchrotron radiation X-ray fluorescence spectrometry (μ-SR-XRF) is an X-ray procedure that utilizes synchrotron radiation as an excitation source. μ-SR-XRF is a rapid, nondestructive technique that allows mapping and quantification of metals and biologically important elements in cell or tissue samples. Generally, the intratumor distribution of nanocarrier-based therapeutics is assessed by tracing the distribution of a labeled nanocarrier within tumor tissue, rather than by tracing the encapsulated drug. Instead of targeting the delivery vehicle, we employed μ-SR-XRF to visualize the intratumoral microdistribution of oxaliplatin (l-OHP) encapsulated within PEGylated liposomes. Tumor-bearing mice were intravenously injected with either l-OHP-containing PEGylated liposomes (l-OHP liposomes) or free l-OHP. The intratumor distribution of l-OHP within tumor sections was determined by detecting the fluorescence of platinum atoms, which are the main elemental components of l-OHP. The l-OHP in the liposomal formulation was localized near the tumor vessels and accumulated in tumors at concentrations greater than those seen with the free form, which is consistent with the results of our previous study that focused on fluorescent labeling of PEGylated liposomes. In addition, repeated administration of l-OHP liposomes substantially enhanced the tumor accumulation and/or intratumor distribution of a subsequent dose of l-OHP liposomes, presumably via improvements in tumor vascular permeability, which is also consistent with our previous results. In conclusion, μ-SR-XRF imaging efficiently and directly traced the intratumor distribution of the active pharmaceutical ingredient l-OHP encapsulated in liposomes within tumor tissue. μ-SR-XRF imaging could be a powerful means for estimating tissue distribution and even predicting the pharmacological effect of nanocarrier-based anticancer metal compounds.
Collapse
Affiliation(s)
- Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University , 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Amr S Abu Lila
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University , 1-78-1, Sho-machi, Tokushima 770-8505, Japan.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University , Zagazig 44519, Egypt.,Department of Pharmaceutics, College of Pharmacy, Hail University , Hail 81442, Saudi Arabia
| | - Masao Tanaka
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University , 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Yusuke Doi
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University , 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Yasuko Terada
- Japan Synchrotron Radiation Research Institute (JASRI) , 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Naoto Yagi
- Japan Synchrotron Radiation Research Institute (JASRI) , 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University , 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Keiichiro Okuhira
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University , 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University , 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University , 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| |
Collapse
|
22
|
Fang Y, Yang W, Cheng L, Meng F, Zhang J, Zhong Z. EGFR-targeted multifunctional polymersomal doxorubicin induces selective and potent suppression of orthotopic human liver cancer in vivo. Acta Biomater 2017; 64:323-333. [PMID: 29030307 DOI: 10.1016/j.actbio.2017.10.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/13/2017] [Accepted: 10/09/2017] [Indexed: 02/07/2023]
Abstract
Liver cancer is a globally leading malignancy that has a poor five-year survival rate of less than 20%. The systemic chemotherapeutics are generally ineffective for liver cancers partly due to fast clearance and low tumor uptake. Here, we report that GE11 peptide functionalized polymersomal doxorubicin (GE11-PS-DOX) effectively targets and inhibits epidermal growth factor receptor (EGFR)-positive SMMC7721 orthotopic human liver tumor xenografts in mice. GE11-PS-DOX with a GE11 surface density of 10% displayed a high drug loading of 15.4 wt%, a small size of 78 nm, and glutathione-triggered release of DOX. MTT assays, flow cytometry and confocal microscopy studies revealed that GE11-PS-DOX mediated obviously more efficient DOX delivery into SMMC7721 cells than the non-targeting PS-DOX and clinically used liposomal doxorubicin (Lipo-DOX) controls. The in vivo studies showed that GE11-PS-DOX had a long circulation time and an extraordinary accumulation in the tumors (13.3 %ID/g). Interestingly, GE11-PS-DOX caused much better treatment of SMMC7721 orthotopic liver tumor-bearing mice as compared to PS-DOX and Lipo-DOX. The mice treated with GE11-PS-DOX (12 mg DOX equiv./kg) exhibited a significantly improved survival rate (median survival time: 130 days versus 70 and 38 days for PS-DOX at 12 mg DOX equiv./kg and Lipo-DOX at 6 mg DOX equiv./kg, respectively) and achieved 50% complete regression. Notably, GE11-PS-DOX induced obviously lower systemic toxicity than Lipo-DOX. EGFR-targeted multifunctional polymersomal doxorubicin with improved efficacy and safety has a high potential for treating human liver cancers. STATEMENT OF SIGNIFICANCE Liver cancer is one of the top five leading causes of cancer death worldwide. The systemic chemotherapeutics and biotherapeutics generally have a low treatment efficacy for hepatocellular carcinoma partly due to fast clearance and/or low tumor uptake. Nanomedicines based on biodegradable micelle and polymersomes offer a most promising treatment for malignant liver cancers. Their clinical effectiveness remains, however, suboptimal owing to issues like inadequate systemic stability, low tumor accumulation and selectivity, and poor control over drug release. Here we report that GE11 peptide-functionalized, disulfide-crosslinked multifunctional polymersomal doxorubicin (GE11-PS-DOX) can effectively suppress the growth of orthotopic SMMC7721 human liver tumors in nude mice. They showed significantly decreased systemic toxicity and improved mouse survival rate with 3.4-fold longer median survival time as compared to clinically used pegylated liposomal doxorubicin (Lipo-DOX) and achieving 50% complete regression. GE11-PS-DOX, based on PEG-PTMC is biodegradable, nontoxic, and easy to prepare, appears as a safe, robust, versatile and all-function-in-one nanoplatform that has a high potential in targeted chemotherapy of EGFR expressed hepatocellular carcinoma.
Collapse
|
23
|
Wang M, Wang J, Li B, Meng L, Tian Z. Recent advances in mechanism-based chemotherapy drug-siRNA pairs in co-delivery systems for cancer: A review. Colloids Surf B Biointerfaces 2017; 157:297-308. [DOI: 10.1016/j.colsurfb.2017.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 12/18/2022]
|
24
|
Shen S, Li HJ, Chen KG, Wang YC, Yang XZ, Lian ZX, Du JZ, Wang J. Spatial Targeting of Tumor-Associated Macrophages and Tumor Cells with a pH-Sensitive Cluster Nanocarrier for Cancer Chemoimmunotherapy. NANO LETTERS 2017; 17:3822-3829. [PMID: 28488871 DOI: 10.1021/acs.nanolett.7b01193] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Chemoimmunotherapy, which combines chemotherapeutics with immune-modulating agents, represents an appealing approach for improving cancer therapy. To optimize its therapeutic efficacy, differentially delivering multiple therapeutic drugs to target cells is desirable. Here we developed an immunostimulatory nanocarrier (denoted as BLZ-945SCNs/Pt) that could spatially target tumor-associated macrophages (TAMs) and tumor cells for cancer chemoimmunotherapy. BLZ-945SCNs/Pt undergo supersensitive structure collapse in the prevascular regions of tumor tissues and enable the simultaneous release of platinum (Pt)-prodrug conjugated small particles and BLZ-945, a small molecule inhibitor of colony stimulating factor 1 receptor (CSF-1R) of TAMs. The released BLZ-945 can be preferentially taken up by TAMs to cause TAMs depletion from tumor tissues, while the small particles carrying Pt-prodrug enable deep tumor penetration as well as intracellularly specific drug release to kill more cancer cells. Our studies demonstrate that BLZ-945SCNs/Pt outperform their monotherapy counterparts in multiple tumor models. The underlying mechanism studies suggest that the designer pH-sensitive codelivery nanocarrier not only induces apoptosis of tumor cells but also modulates the tumor immune environment to eventually augment the antitumor effect of CD8+ cytotoxic T cells through TAMs depletion.
Collapse
Affiliation(s)
- Song Shen
- Institutes for Life Sciences, and School of Medicine, South China University of Technology , Guangzhou, Guangdong 510006, China
- CAS Center for Excellence in Nanoscience, School of Life Sciences, University of Science and Technology of China , Hefei, Anhui 230027, China
| | - Hong-Jun Li
- Institutes for Life Sciences, and School of Medicine, South China University of Technology , Guangzhou, Guangdong 510006, China
- CAS Center for Excellence in Nanoscience, School of Life Sciences, University of Science and Technology of China , Hefei, Anhui 230027, China
| | - Kai-Ge Chen
- CAS Center for Excellence in Nanoscience, School of Life Sciences, University of Science and Technology of China , Hefei, Anhui 230027, China
| | - Yu-Cai Wang
- CAS Center for Excellence in Nanoscience, School of Life Sciences, University of Science and Technology of China , Hefei, Anhui 230027, China
| | - Xian-Zhu Yang
- Institutes for Life Sciences, and School of Medicine, South China University of Technology , Guangzhou, Guangdong 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction , Guangzhou, Guangdong 510006, China
- Key Laboratory of Biomedical Materials of Ministry of Education, South China University of Technology , Guangzhou 510641, China
| | - Zhe-Xiong Lian
- Institutes for Life Sciences, and School of Medicine, South China University of Technology , Guangzhou, Guangdong 510006, China
| | - Jin-Zhi Du
- Institutes for Life Sciences, and School of Medicine, South China University of Technology , Guangzhou, Guangdong 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction , Guangzhou, Guangdong 510006, China
- Key Laboratory of Biomedical Materials of Ministry of Education, South China University of Technology , Guangzhou 510641, China
| | - Jun Wang
- Institutes for Life Sciences, and School of Medicine, South China University of Technology , Guangzhou, Guangdong 510006, China
- CAS Center for Excellence in Nanoscience, School of Life Sciences, University of Science and Technology of China , Hefei, Anhui 230027, China
- National Engineering Research Center for Tissue Restoration and Reconstruction , Guangzhou, Guangdong 510006, China
- Key Laboratory of Biomedical Materials of Ministry of Education, South China University of Technology , Guangzhou 510641, China
| |
Collapse
|
25
|
Abstract
Anticancer therapy has always been a vital challenge for the development of nanomedicine. Repeated single therapeutic agent may lead to undesirable and severe side effects, unbearable toxicity and multidrug resistance due to complex nature of tumor. Nanomedicine-based combination anticancer therapy can synergistically improve antitumor outcomes through multiple-target therapy, decreasing the dose of each therapeutic agent and reducing side effects. There are versatile combinational anticancer strategies such as chemotherapeutic combination, nucleic acid-based co-delivery, intrinsic sensitive and extrinsic stimulus combinational patterns. Based on these combination strategies, various nanocarriers and drug delivery systems were engineered to carry out the efficient co-delivery of combined therapeutic agents for combination anticancer therapy. This review focused on illustrating nanomedicine-based combination anticancer therapy between nucleic acids and small-molecular drugs for synergistically improving anticancer efficacy.
Collapse
|
26
|
Hou Y, Wang Y, Wang R, Bao W, Xi X, Sun Y, Yang S, Wei W, Lu H. Harnessing Phosphato-Platinum Bonding Induced Supramolecular Assembly for Systemic Cisplatin Delivery. ACS APPLIED MATERIALS & INTERFACES 2017; 9:17757-17768. [PMID: 28481085 DOI: 10.1021/acsami.7b03686] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To improve the therapeutic index of cisplatin (CDDP), we present here a new paradigm of drug-induced self-assembly by harnessing phosphato-platinum complexation. Specifically, we show that a phosphato-platinum cross-linked micelle (PpY/Pt) can be generated by using a block copolymer methoxy-poly(ethylene glycol)-block-poly(l-phosphotyrosine) (mPEG-b-PpY). Coating of PpY/Pt with a R9-iRGD peptide by simple mixing affords a targeting micelle with near neutral-charged surface (iPpY/Pt). The micelles feature in well-controlled sizes below 50 nm and high stability under physiological conditions, and can withstand various environmental stresses. Importantly, the micelles demonstrate on-demand drug release profiles in response to pathological cues such as high ATP concentration and acidic pH. In vitro, the micelles are efficiently internalized and almost equally potent compared to CDDP. Moreover, iPpY/Pt induce greater cytotoxicity than PpY/Pt in a 3D tumor spheroid model likely due to its deeper tumor penetration. In vivo, the micelles exhibit prolonged circulation half-lives, enhanced tumor accumulation, excellent tumor growth inhibition in a xenograft HeLa model and an orthotropic mammary 4T1 model, and improved safety profiles evidenced by the reduced nephrotoxicity. Together, this work demonstrates for the first time that phosphato-platinum complexation can be exploited for effective delivery of CDDP, and suggests a paradigm shift of constructing nanosystems for other anticancer metallodrugs.
Collapse
Affiliation(s)
- Yingqin Hou
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, People's Republic of China
| | - Yaoyi Wang
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, People's Republic of China
| | - Ruijue Wang
- College of Chemistry and Environment Protection Engineering, Southwest University for Nationalities , Chengdu 610041, People's Republic of China
| | - Weier Bao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 10090, People's Republic of China
| | - Xiaobo Xi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 10090, People's Republic of China
| | - Yunlong Sun
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, People's Republic of China
| | - Shengtao Yang
- College of Chemistry and Environment Protection Engineering, Southwest University for Nationalities , Chengdu 610041, People's Republic of China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 10090, People's Republic of China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, People's Republic of China
| |
Collapse
|
27
|
Xiao H, Qi R, Li T, Awuah SG, Zheng Y, Wei W, Kang X, Song H, Wang Y, Yu Y, Bird MA, Jing X, Yaffe MB, Birrer MJ, Ghoroghchian PP. Maximizing Synergistic Activity When Combining RNAi and Platinum-Based Anticancer Agents. J Am Chem Soc 2017; 139:3033-3044. [PMID: 28166401 DOI: 10.1021/jacs.6b12108] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RNAi approaches have been widely combined with platinum-based anticancer agents to elucidate cellular responses and to target gene products that mediate acquired resistance. Recent work has demonstrated that platination of siRNA prior to transfection may negatively influence RNAi efficiency based on the position and sequence of its guanosine nucleosides. Here, we used detailed spectroscopic characterization to demonstrate rapid formation of Pt-guanosine adducts within 30 min after coincubation of oxaliplatin [OxaPt(II)] or cisplatin [CisPt(II)] with either guanosine monophosphate or B-cell lymphoma 2 (BCL-2) siRNA. After 3 h of exposure to these platinum(II) agents, >50% of BCL-2 siRNA transcripts were platinated and unable to effectively suppress mRNA levels. Platinum(IV) analogues [OxaPt(IV) or CisPt(IV)] did not form Pt-siRNA adducts but did display decreased in vitro uptake and reduced potency. To overcome these challenges, we utilized biodegradable methoxyl-poly(ethylene glycol)-block-poly(ε-caprolactone)-block-poly(l-lysine) (mPEG-b-PCL-b-PLL) to generate self-assembled micelles that covalently conjugated OxaPt(IV) and/or electrostatically complexed siRNA. We then compared multiple strategies by which to combine BCL-2 siRNA with either OxaPt(II) or OxaPt(IV). Overall, we determined that the concentrations of siRNA (nM) and platinum(II)-based anticancer agents (μM) that are typically used for in vitro experiments led to rapid Pt-siRNA adduct formation and ineffective RNAi. Coincorporation of BCL-2 siRNA and platinum(IV) analogues in a single micelle enabled maximal suppression of BCL-2 mRNA levels (to <10% of baseline), augmented the intracellular levels of platinum (by ∼4×) and the numbers of resultant Pt-DNA adducts (by >5×), increased the cellular fractions that underwent apoptosis (by ∼4×), and enhanced the in vitro antiproliferative activity of the corresponding platinum(II) agent (by 10-100×, depending on the cancer cell line). When combining RNAi and platinum-based anticancer agents, this generalizable strategy may be adopted to maximize synergy during screening or for therapeutic delivery.
Collapse
Affiliation(s)
- Haihua Xiao
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Ruogu Qi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Ting Li
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Samuel G Awuah
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Yaorong Zheng
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Wei Wei
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School , Boston, Massachusetts 02114, United States
| | - Xiang Kang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Haiqin Song
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Yongheng Wang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Yingjie Yu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Molly A Bird
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Michael B Yaffe
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Michael J Birrer
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School , Boston, Massachusetts 02114, United States
| | - P Peter Ghoroghchian
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States.,Dana-Farber Cancer Institute , Boston, Massachusetts 02115, United States
| |
Collapse
|
28
|
Li SL, Hou Y, Hu Y, Yu J, Wei W, Lu H. Phosphatase-triggered cell-selective release of a Pt(iv)-backboned prodrug-like polymer for an improved therapeutic index. Biomater Sci 2017; 5:1558-1566. [DOI: 10.1039/c6bm00935b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A Pt(iv)-backboned prodrug-like polymer was synthesized and formulated to a phosphatase-responsive polyion complex for cell-selective delivery.
Collapse
Affiliation(s)
- Shao-Lu Li
- Beijing National Laboratory for Molecular Sciences
- Center for Soft Matter Science and Engineering
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
| | - Yingqin Hou
- Beijing National Laboratory for Molecular Sciences
- Center for Soft Matter Science and Engineering
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
| | - Yali Hu
- Beijing National Laboratory for Molecular Sciences
- Center for Soft Matter Science and Engineering
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
| | - Jin Yu
- Beijing National Laboratory for Molecular Sciences
- Center for Soft Matter Science and Engineering
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing, 10090
- People's Republic of China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences
- Center for Soft Matter Science and Engineering
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
| |
Collapse
|
29
|
Li SL, Wang Y, Zhang J, Wei W, Lu H. Targeted delivery of a guanidine-pendant Pt(iv)-backboned poly-prodrug by an anisamide-functionalized polypeptide. J Mater Chem B 2017; 5:9546-9557. [DOI: 10.1039/c7tb02513k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A guanidine-pendant Pt(iv)-backboned prodrug-like polymer was synthesized and formulated with an anisamide-functionalized polypeptide for targeted delivery and enhanced cellular uptake.
Collapse
Affiliation(s)
- Shao-Lu Li
- State Key Laboratory of Separation Membranes and Membrane Processes
- School of Materials Science and Engineering
- Tianjin Polytechnic University
- Tianjin 300387
- People's Republic of China
| | - Yaoyi Wang
- Beijing National Laboratory for Molecular Sciences
- Center for Soft Matter Science and Engineering
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
| | - Jingfang Zhang
- Beijing National Laboratory for Molecular Sciences
- Center for Soft Matter Science and Engineering
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing
- People's Republic of China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences
- Center for Soft Matter Science and Engineering
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
| |
Collapse
|
30
|
Zhu B, Li Y, Lin Z, Zhao M, Xu T, Wang C, Deng N. Silver Nanoparticles Induce HePG-2 Cells Apoptosis Through ROS-Mediated Signaling Pathways. NANOSCALE RESEARCH LETTERS 2016; 11:198. [PMID: 27075340 PMCID: PMC4830774 DOI: 10.1186/s11671-016-1419-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/05/2016] [Indexed: 05/19/2023]
Abstract
Recently, silver nanoparticles (AgNPs) have been shown to provide a novel approach to overcome tumors, especially those of hepatocarcinoma. However, the anticancer mechanism of silver nanoparticles is unclear. Thus, the purpose of this study was to estimate the effect of AgNPs on proliferation and activation of ROS-mediated signaling pathway on human hepatocellular carcinoma HePG-2 cells. A simple chemical method for preparing AgNPs with superior anticancer activity has been showed in this study. AgNPs were detected by transmission electronic microscopy (TEM) and energy dispersive X-ray (EDX). The size distribution and zeta potential of silver nanoparticles were detected by Zetasizer Nano. The average size of AgNPs (2 nm) observably increased the cellular uptake by endocytosis. AgNPs markedly inhibited the proliferation of HePG-2 cells through induction of apoptosis with caspase-3 activation and PARP cleavage. AgNPs with dose-dependent manner significantly increased the apoptotic cell population (sub-G1). Furthermore, AgNP-induced apoptosis was found dependent on the overproduction of reactive oxygen species (ROS) and affecting of MAPKs and AKT signaling and DNA damage-mediated p53 phosphorylation to advance HePG-2 cells apoptosis. Therefore, our results show that the mechanism of ROS-mediated signaling pathways may provide useful information in AgNP-induced HePG-2 cell apoptosis.
Collapse
Affiliation(s)
- Bing Zhu
- Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, Guangdong, 510632, People's Republic of China
- Virus Laboratory of Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Yinghua Li
- Virus Laboratory of Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Zhengfang Lin
- Virus Laboratory of Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Mingqi Zhao
- Virus Laboratory of Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Tiantian Xu
- Virus Laboratory of Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Changbing Wang
- Virus Laboratory of Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Ning Deng
- Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, Guangdong, 510632, People's Republic of China.
| |
Collapse
|
31
|
Fang XB, Xu YQ, Chan HF, Wang CM, Zheng Q, Xiao F, Chen MW. A Redox-Sensitive and RAGE-Targeting Nanocarrier for Hepatocellular Carcinoma Therapy. Mol Pharm 2016; 13:3613-3625. [PMID: 27768322 DOI: 10.1021/acs.molpharmaceut.6b00116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive malignancy and the second leading cause of cancer death worldwide. Most current therapeutic agents lack the tumor-targeting efficiency and result in a nonselective biodistribution in the body. In our previous study, we identified a peptide Ala-Pro-Asp-Thr-Lys-Thr-Gln (APDTKTQ) that can selectively bind to the receptor of advanced glycation end-products (RAGE), an immunoglobulin superfamily cell surface molecule overexpressed during HCC malignant progression. Here, we report the design of a mixed micelles system modified with this peptide to target HCC cells. Specifically, we modified Pluronic F68 (F68) with APDTKTQ (F68-APDTKTQ), and we conjugated d-α-tocopheryl polyethylene glycol succinate (TPGS) with poly(lactic-co-glycolic acid) (PLGA) by a disulfide linker (TPGS-S-S-PLGA). We mixed TPGS-S-S-PLGA and F68-APDTKTQ (TSP/FP) to form a micelle, followed by the loading of oridonin (ORI). The prepared micelles showed a homogeneously spherical shape without aggregation, triggered an increased cellular uptake, and induced apoptosis in more cells than did the free ORI. Taken together, these results demonstrate the potential of this APDTKTQ-modified ORI-loaded TSP/FP mixed micelle system as a promising strategy for HCC-targeting therapy.
Collapse
Affiliation(s)
- Xiao-Bin Fang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macau 999078, China
| | - Ying-Qi Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macau 999078, China
| | - Hon-Fai Chan
- Department of Biomedical Engineering, Columbia University , New York, New York 10027, United States
| | - Chun-Ming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macau 999078, China
| | | | | | - Mei-Wan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macau 999078, China
| |
Collapse
|
32
|
Xie FY, Xu WH, Yin C, Zhang GQ, Zhong YQ, Gao J. Nanomedicine strategies for sustained, controlled, and targeted treatment of cancer stem cells of the digestive system. World J Gastrointest Oncol 2016; 8:735-744. [PMID: 27795813 PMCID: PMC5064051 DOI: 10.4251/wjgo.v8.i10.735] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/24/2016] [Accepted: 08/08/2016] [Indexed: 02/05/2023] Open
Abstract
Cancer stem cells (CSCs) constitute a small proportion of the cancer cells that have self-renewal capacity and tumor-initiating ability. They have been identified in a variety of tumors, including tumors of the digestive system. CSCs exhibit some unique characteristics, which are responsible for cancer metastasis and recurrence. Consequently, the development of effective therapeutic strategies against CSCs plays a key role in increasing the efficacy of cancer therapy. Several potential approaches to target CSCs of the digestive system have been explored, including targeting CSC surface markers and signaling pathways, inducing the differentiation of CSCs, altering the tumor microenvironment or niche, and inhibiting ATP-driven efflux transporters. However, conventional therapies may not successfully eradicate CSCs owing to various problems, including poor solubility, stability, rapid clearance, poor cellular uptake, and unacceptable cytotoxicity. Nanomedicine strategies, which include drug, gene, targeted, and combinational delivery, could solve these problems and significantly improve the therapeutic index. This review briefly summarizes the ongoing development of strategies and nanomedicine-based therapies against CSCs of the digestive system.
Collapse
|
33
|
Nanoparticle-facilitated autophagy inhibition promotes the efficacy of chemotherapeutics against breast cancer stem cells. Biomaterials 2016; 103:44-55. [DOI: 10.1016/j.biomaterials.2016.06.038] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 06/16/2016] [Accepted: 06/19/2016] [Indexed: 12/16/2022]
|
34
|
Meng F, Han N, Yeo Y. Organic nanoparticle systems for spatiotemporal control of multimodal chemotherapy. Expert Opin Drug Deliv 2016; 14:427-446. [PMID: 27476442 DOI: 10.1080/17425247.2016.1218464] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Chemotherapeutic drugs are used in combination to target multiple mechanisms involved in cancer cell survival and proliferation. Carriers are developed to deliver drug combinations to common target tissues in optimal ratios and desirable sequences. Nanoparticles (NP) have been a popular choice for this purpose due to their ability to increase the circulation half-life and tumor accumulation of a drug. Areas covered: We review organic NP carriers based on polymers, proteins, peptides, and lipids for simultaneous delivery of multiple anticancer drugs, drug/sensitizer combinations, drug/photodynamic therapy or drug/photothermal therapy combinations, and drug/gene therapeutics with examples in the past three years. Sequential delivery of drug combinations, based on either sequential administration or built-in release control, is introduced with an emphasis on the mechanistic understanding of such control. Expert opinion: Recent studies demonstrate how a drug carrier can contribute to co-localizing drug combinations in optimal ratios and dosing sequences to maximize the synergistic effects. We identify several areas for improvement in future research, including the choice of drug combinations, circulation stability of carriers, spatiotemporal control of drug release, and the evaluation and clinical translation of combination delivery.
Collapse
Affiliation(s)
- Fanfei Meng
- a Department of Industrial and Physical Pharmacy , Purdue University , West Lafayette , IN , USA.,b Department of Pharmaceutics, State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , China
| | - Ning Han
- a Department of Industrial and Physical Pharmacy , Purdue University , West Lafayette , IN , USA.,c Department of Pharmaceutics, School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , China
| | - Yoon Yeo
- a Department of Industrial and Physical Pharmacy , Purdue University , West Lafayette , IN , USA.,d Weldon School of Biomedical Engineering , Purdue University , West Lafayette , IN , USA
| |
Collapse
|
35
|
Cheng Q, Liu Y. Multifunctional platinum-based nanoparticles for biomedical applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [DOI: 10.1002/wnan.1410] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/07/2016] [Accepted: 03/17/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Qinqin Cheng
- CAS Key Laboratory of Soft Matter Chemistry, CAS High Magnetic Field Laboratory, Department of Chemistry; University of Science and Technology of China; Hefei China
| | - Yangzhong Liu
- CAS Key Laboratory of Soft Matter Chemistry, CAS High Magnetic Field Laboratory, Department of Chemistry; University of Science and Technology of China; Hefei China
| |
Collapse
|
36
|
Long-circulating and liver-targeted nanoassemblies of cyclic phosphoryl N -dodecanoyl gemcitabine for the treatment of hepatocellular carcinoma. Biomed Pharmacother 2016; 79:208-14. [DOI: 10.1016/j.biopha.2016.02.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 02/23/2016] [Accepted: 02/23/2016] [Indexed: 01/11/2023] Open
|
37
|
Roy A, Li SD. Modifying the tumor microenvironment using nanoparticle therapeutics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 8:891-908. [PMID: 27038329 DOI: 10.1002/wnan.1406] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 02/24/2016] [Accepted: 03/04/2016] [Indexed: 12/21/2022]
Abstract
Treatment of cancer has come a long way from the initial 'radical surgeries' to the multimodality treatments. For the major part of the last century, cancer was considered as a monocellular disorder, and treatment strategies were designed according to that hypothesis. However, the mortality rate from cancer continued to be high and a comprehensive treatment remained elusive. Recent progress in research has demonstrated that tumors are a complex network of neoplastic and non-neoplastic cells. The non-neoplastic cells, which are collectively called stroma, assist in tumor survival and progression. It has been shown that disrupting the tumor-stromal balance leads to significant effects on the tumor survival, and effective treatment can be achieved by targeting one or more of the stromal components. In this review, we summarize the roles of various stromal components in promoting tumor progression, and discuss innovative nanoparticle-mediated drug targeting strategies for stromal depletion and the subsequent effects on the tumors. Perspectives and the future directions are also provided. WIREs Nanomed Nanobiotechnol 2016, 8:891-908. doi: 10.1002/wnan.1406 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Aniruddha Roy
- Department of Pharmacy, Birla Institute of Technology & Science (BITS), Pilani, India.
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
38
|
Zhang JL, Gong JH, Xing L, Cui PF, Qiao JB, He YJ, Lyu JY, Che S, jin T, Jiang HL. Poly[platinum(iv)-alt-PEI]/Akt1 shRNA complexes for enhanced anticancer therapy. RSC Adv 2016. [DOI: 10.1039/c6ra16435h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Co-delivery of Akt1 shRNA and platinum(iv) prodrug using DP/Akt1 shRNA complexes for synergetic cancer inhibition.
Collapse
|