1
|
Niu R, Liu X, Yang X, Du X, Wang S, Ma X, Yin S, Shao L, Zhang J. Advances in Pure Drug Self-Assembled Nanosystems: A Novel Strategy for Combined Cancer Therapy. Pharmaceutics 2025; 17:68. [PMID: 39861716 PMCID: PMC11768559 DOI: 10.3390/pharmaceutics17010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/27/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Nanoparticle-based drug delivery systems hold great promise for improving the effectiveness of anti-tumor therapies. However, their clinical translation remains hindered by several significant challenges, including intricate preparation processes, limited drug loading capacity, and concerns regarding potential toxicity. In this context, pure drug-assembled nanosystems (PDANSs) have emerged as a promising alternative, attracting extensive research interest due to their simple preparation methods, high drug loading efficiency, and suitability for large-scale industrial production. This innovative approach presents new opportunities to enhance both the safety and therapeutic efficacy of cancer treatments. This review comprehensively explores recent progress in the application of PDANSs for cancer therapy. It begins by detailing the self-assembly mechanisms and fundamental principles underlying PDANS formation. The discussion then advances to strategies for assembling single pure drug nanoparticles, as well as the co-assembly of multiple drugs. Subsequently, the review addresses the therapeutic potential of PDANSs in combination treatment modalities, encompassing diagnostic and therapeutic applications. These include combinations of chemotherapeutic agents, phototherapeutic approaches, the integration of chemotherapy with phototherapy, and the synergistic use of immunotherapy with other treatment methods. Finally, the review highlights the potential of PDANSs in advancing tumor therapy and their prospects for clinical application, providing key insights for future research aimed at optimizing this technology and broadening its utility in cancer treatment.
Collapse
Affiliation(s)
- Runyan Niu
- Nanjing Medical Center for Clinical Pharmacy, Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (R.N.); (X.Y.); (X.D.); (S.W.)
- Department of Pharmacy, Nanjing Drum Tower Hospital, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210008, China
| | - Xuexue Liu
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China;
| | - Xian Yang
- Nanjing Medical Center for Clinical Pharmacy, Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (R.N.); (X.Y.); (X.D.); (S.W.)
| | - Xiao Du
- Nanjing Medical Center for Clinical Pharmacy, Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (R.N.); (X.Y.); (X.D.); (S.W.)
| | - Siliang Wang
- Nanjing Medical Center for Clinical Pharmacy, Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (R.N.); (X.Y.); (X.D.); (S.W.)
| | - Xiaolong Ma
- Department of Colorectal Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China;
| | - Shaoping Yin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210008, China;
| | - Lihua Shao
- Department of Colorectal Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China;
| | - Jinping Zhang
- Nanjing Medical Center for Clinical Pharmacy, Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (R.N.); (X.Y.); (X.D.); (S.W.)
| |
Collapse
|
2
|
Shabnum SS, Siranjeevi R, Raj CK, Saravanan A, Vickram AS, Chopra H, Malik T. Advancements in nanotechnology-driven photodynamic and photothermal therapies: mechanistic insights and synergistic approaches for cancer treatment. RSC Adv 2024; 14:38952-38995. [PMID: 39659608 PMCID: PMC11629304 DOI: 10.1039/d4ra07114j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/01/2024] [Indexed: 12/12/2024] Open
Abstract
Cancer is a disease that involves uncontrolled cell division triggered by genetic damage to the genes that control cell growth and division. Cancer starts as a localized illness, but subsequently spreads to other areas in the human body (metastasis), making it incurable. Cancer is the second most prevalent cause of mortality worldwide. Every year, almost ten million individuals get diagnosed with cancer. Although different cancer treatment options exist, such as chemotherapy, radiation, surgery and immunotherapy, their clinical efficacy is limited due to their significant side effects. New cancer treatment options, such as phototherapy, which employs light for the treatment of cancer, have sparked a growing fascination in the cancer research community. Phototherapies are classified into two types: photodynamic treatment (PDT) and photothermal therapy (PTT). PDT necessitates the use of a photosensitizing chemical and exposure to light at a certain wavelength. Photodynamic treatment (PDT) is primarily based on the creation of singlet oxygen by the stimulation of a photosensitizer, which is then used to kill tumor cells. PDT can be used to treat a variety of malignancies. On the other hand, PTT employs a photothermal molecule that activates and destroys cancer cells at the longer wavelengths of light, making it less energetic and hence less hazardous to other cells and tissues. While PTT is a better alternative to standard cancer therapy, in some irradiation circumstances, it can cause cellular necrosis, which results in pro-inflammatory reactions that can be harmful to therapeutic effectiveness. Latest research has revealed that PTT may be adjusted to produce apoptosis instead of necrosis, which is attractive since apoptosis reduces the inflammatory response.
Collapse
Affiliation(s)
- S Sameera Shabnum
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai-602105 Tamil Nadu India
| | - R Siranjeevi
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai-602105 Tamil Nadu India
| | - C Krishna Raj
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai-602105 Tamil Nadu India
| | - A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS Chennai-602105 Tamil Nadu India
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai-602105 Tamil Nadu India
| | - Hitesh Chopra
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University Rajpura 140401 Punjab India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University 378 Jimma Ethiopia
- Division of Research & Development, Lovely Professional University Phagwara 144411 India
| |
Collapse
|
3
|
Xia Y, Li X, Liu F. Targeted redox-responsive peptide for arterial chemoembolization therapy of orthotropic hepatocellular carcinoma. Abdom Radiol (NY) 2024; 49:3925-3934. [PMID: 38990300 PMCID: PMC11519146 DOI: 10.1007/s00261-024-04481-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 07/12/2024]
Abstract
OBJECTIVE Transcatheter Arterial Chemoembolization (TACE) is the first choice for the treatment of advanced-stage hepatocellular carcinoma (HCC). However, TACE suffers from a lack of specificity and rapid drug release. Herein, a targeted redox-responsive peptide (TRRP) was synthesized and used as a carrier of doxorubicin (DOX) to enhance the efficacy of TACE through tumor cells targeting and controlled drug release. METHODS TRRP has a high loading capacity of DOX and a sensitive drug release behavior at high glutathione (GSH) concentration. Moreover, TRRP could bind to the transferrin receptor on the surface of tumor cells, which enhanced the efficacy of TACE and reduced side effects of TACE. TACE with TRRP@DOX dispersed in lipiodol shows an enhanced therapeutic outcome compared to the treatment with DOX + lipiodol emulsion in orthotopic rat HCC models. RESULTS TRRP has a high loading capacity of DOX and a sensitive drug release behavior at GSH concentration. Moreover, TRRP could bind to the transferrin receptor on the surface of tumor cells, which enhanced the efficacy of TACE and reduced side effects of TACE. TACE with TRRP@DOX dispersed in lipiodol shows an enhanced therapeutic outcome compared to the treatment with DOX + lipiodol emulsion in orthotopic rat HCC models. CONCLUSIONS This study demonstrated that TRRP was a promising therapeutic agent for enhancing TACE therapy for HCC treatment.
Collapse
Affiliation(s)
- Yimao Xia
- Chinese PLA Medical School, Beijing, 100853, China
| | - Xin Li
- Department of Interventional Radiology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Fengyong Liu
- Chinese PLA Medical School, Beijing, 100853, China.
- Department of Interventional Radiology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
4
|
Singh R, Yadav D, Ingole PG, Ahn YH. Magnetic engineering nanoparticles: Versatile tools revolutionizing biomedical applications. BIOMATERIALS ADVANCES 2024; 163:213948. [PMID: 38959651 DOI: 10.1016/j.bioadv.2024.213948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/18/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
The use of nanoparticles has increased significantly over the past few years in a number of fields, including diagnostics, biomedicine, environmental remediation, and water treatment, generating public interest. Among various types of nanoparticles, magnetic nanoparticles (MNPs) have emerged as an essential tool for biomedical applications due to their distinct physicochemical properties compared to other nanoparticles. This review article focuses on the recent growth of MNPs and comprehensively reviews the advantages, multifunctional approaches, biomedical applications, and latest research on MNPs employed in various biomedical techniques. Biomedical applications of MNPs hold on to their ability to rapidly switch magnetic states under an external field at room temperature. Ideally, these MNPs should be highly susceptible to magnetization when the field is applied and then lose that magnetization just as quickly once the field is removed. This unique property allows MNPs to generate heat when exposed to high-frequency magnetic fields, making them valuable tools in developing treatments for hyperthermia and other heat-related illnesses. This review underscores the role of MNPs as tools that hold immense promise in transforming various aspects of healthcare, from diagnostics and imaging to therapeutic treatments, with discussion on a wide range of peer-reviewed articles published on the subject. At the conclusion of this work, challenges and potential future advances of MNPs in the biomedical field are highlighted.
Collapse
Affiliation(s)
- Randeep Singh
- Department of Civil Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Diksha Yadav
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Pravin G Ingole
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| | - Young-Ho Ahn
- Department of Civil Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
5
|
Song B, Wang X, Qin L, Hussain S, Liang W. Brain gliomas: Diagnostic and therapeutic issues and the prospects of drug-targeted nano-delivery technology. Pharmacol Res 2024; 206:107308. [PMID: 39019336 DOI: 10.1016/j.phrs.2024.107308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Glioma is the most common intracranial malignant tumor, with severe difficulty in treatment and a low patient survival rate. Due to the heterogeneity and invasiveness of tumors, lack of personalized clinical treatment design, and physiological barriers, it is often difficult to accurately distinguish gliomas, which dramatically affects the subsequent diagnosis, imaging treatment, and prognosis. Fortunately, nano-delivery systems have demonstrated unprecedented capabilities in diagnosing and treating gliomas in recent years. They have been modified and surface modified to efficiently traverse BBB/BBTB, target lesion sites, and intelligently release therapeutic or contrast agents, thereby achieving precise imaging and treatment. In this review, we focus on nano-delivery systems. Firstly, we provide an overview of the standard and emerging diagnostic and treatment technologies for glioma in clinical practice. After induction and analysis, we focus on summarizing the delivery methods of drug delivery systems, the design of nanoparticles, and their new advances in glioma imaging and treatment in recent years. Finally, we discussed the prospects and potential challenges of drug-delivery systems in diagnosing and treating glioma.
Collapse
Affiliation(s)
- Baoqin Song
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China
| | - Xiu Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China.
| | - Lijing Qin
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China
| | - Shehbaz Hussain
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China
| | - Wanjun Liang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China.
| |
Collapse
|
6
|
Pan X, Huang W, Nie G, Wang C, Wang H. Ultrasound-Sensitive Intelligent Nanosystems: A Promising Strategy for the Treatment of Neurological Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303180. [PMID: 37871967 DOI: 10.1002/adma.202303180] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/26/2023] [Indexed: 10/25/2023]
Abstract
Neurological diseases are a major global health challenge, affecting hundreds of millions of people worldwide. Ultrasound therapy plays an irreplaceable role in the treatment of neurological diseases due to its noninvasive, highly focused, and strong tissue penetration capabilities. However, the complexity of brain and nervous system and the safety risks associated with prolonged exposure to ultrasound therapy severely limit the applicability of ultrasound therapy. Ultrasound-sensitive intelligent nanosystems (USINs) are a novel therapeutic strategy for neurological diseases that bring greater spatiotemporal controllability and improve safety to overcome these challenges. This review provides a detailed overview of therapeutic strategies and clinical advances of ultrasound in neurological diseases, focusing on the potential of USINs-based ultrasound in the treatment of neurological diseases. Based on the physical and chemical effects induced by ultrasound, rational design of USINs is a prerequisite for improving the efficacy of ultrasound therapy. Recent developments of ultrasound-sensitive nanocarriers and nanoagents are systemically reviewed. Finally, the challenges and developing prospects of USINs are discussed in depth, with a view to providing useful insights and guidance for efficient ultrasound treatment of neurological diseases.
Collapse
Affiliation(s)
- Xueting Pan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Wenping Huang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changyong Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Wang L, He S, Liu R, Xue Y, Quan Y, Shi R, Yang X, Lin Q, Sun X, Zhang Z, Zhang L. A pH/ROS dual-responsive system for effective chemoimmunotherapy against melanoma via remodeling tumor immune microenvironment. Acta Pharm Sin B 2024; 14:2263-2280. [PMID: 38799639 PMCID: PMC11119573 DOI: 10.1016/j.apsb.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 05/29/2024] Open
Abstract
Chemotherapeutics can induce immunogenic cell death (ICD) in tumor cells, offering new possibilities for cancer therapy. However, the efficiency of the immune response generated is insufficient due to the inhibitory nature of the tumor microenvironment (TME). Here, we developed a pH/reactive oxygen species (ROS) dual-response system to enhance chemoimmunotherapy for melanoma. The system productively accumulated in tumors by specific binding of phenylboronic acid (PBA) to sialic acids (SA). The nanoparticles (NPs) rapidly swelled and released quercetin (QUE) and doxorubicin (DOX) upon the stimulation of tumor microenvironment (TME). The in vitro and in vivo results consistently demonstrated that the NPs improved anti-tumor efficacy and prolonged survival of mice, significantly enhancing the effects of the combination. Our study revealed DOX was an ICD inducer, stimulating immune responses and promoting maturation of dendritic cells (DCs). Additionally, QUE served as a TME regulator by inhibiting the cyclooxygenase-2 (COX2)-prostaglandin E2 (PGE2) axis, which influenced various immune cells, including increasing cytotoxic T cells (CLTs) infiltration, promoting M1 macrophage polarization, and reducing regulatory T cells (Tregs) infiltration. The combination synergistically facilitated chemoimmunotherapy efficacy by remodeling the immunosuppressive microenvironment. This work presents a promising strategy to increase anti-tumor efficiency of chemotherapeutic agents.
Collapse
Affiliation(s)
- Leilei Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shanshan He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Rong Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuan Xue
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuan Quan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Rongying Shi
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xueying Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qing Lin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ling Zhang
- Med-X Center for Materials, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
8
|
Joe A, Han HW, Lim YR, Manivasagan P, Jang ES. Triphenylphosphonium-Functionalized Gold Nanorod/Zinc Oxide Core-Shell Nanocomposites for Mitochondrial-Targeted Phototherapy. Pharmaceutics 2024; 16:284. [PMID: 38399337 PMCID: PMC10893051 DOI: 10.3390/pharmaceutics16020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Phototherapies, such as photothermal therapy (PTT) and photodynamic therapy (PDT), combined with novel all-in-one light-responsive nanocomposites have recently emerged as new therapeutic modalities for the treatment of cancer. Herein, we developed novel all-in-one triphenylphosphonium-functionalized gold nanorod/zinc oxide core-shell nanocomposites (CTPP-GNR@ZnO) for mitochondrial-targeted PTT/PDT owing to their good biocompatibility, tunable and high optical absorption, photothermal conversion efficiency, highest reactive oxygen species (ROS) generation, and high mitochondrial-targeting capability. Under laser irradiation of 780 nm, the CTPP-GNR@ZnO core-shell nanocomposites effectively produced heat in addition to generating ROS to induce cell death, implying a synergistic effect of mild PTT and PDT in combating cancer. Notably, the in vitro PTT/PDT effect of CTPP-GNR@ZnO core-shell nanocomposites exhibited effective cell ablation (95%) and induced significant intracellular ROS after the 780 nm laser irradiation for 50 min, indicating that CTPP in CTPP-GNR@ZnO core-shell nanocomposites can specifically target the mitochondria of CT-26 cells, as well as generate heat and ROS to completely kill cancer cells. Overall, this light-responsive nanocomposite-based phototherapy provides a new approach for cancer synergistic therapy.
Collapse
Affiliation(s)
| | | | | | | | - Eue-Soon Jang
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi 730-701, Gyeongbuk, Republic of Korea; (A.J.); (H.-W.H.); (Y.-R.L.) (P.M.)
| |
Collapse
|
9
|
Song M, Aipire A, Dilxat E, Li J, Xia G, Jiang Z, Fan Z, Li J. Research Progress of Polysaccharide-Gold Nanocomplexes in Drug Delivery. Pharmaceutics 2024; 16:88. [PMID: 38258099 PMCID: PMC10820823 DOI: 10.3390/pharmaceutics16010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/25/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Clinical drug administration aims to deliver drugs efficiently and safely to target tissues, organs, and cells, with the objective of enabling their therapeutic effects. Currently, the main approach to enhance a drug's effectiveness is ensuring its efficient delivery to the intended site. Due to the fact that there are still various drawbacks of traditional drug delivery methods, such as high toxicity and side effects, insufficient drug specificity, poor targeting, and poor pharmacokinetic performance, nanocarriers have emerged as a promising alternative. Nanocarriers possess significant advantages in drug delivery due to their size tunability and surface modifiability. Moreover, nano-drug delivery systems have demonstrated strong potential in terms of prolonging drug circulation time, improving bioavailability, increasing drug retention at the tumor site, decreasing drug resistance, as well as reducing the undesirable side effects of anticancer drugs. Numerous studies have focused on utilizing polysaccharides as nanodelivery carriers, developing delivery systems based on polysaccharides, or exploiting polysaccharides as tumor-targeting ligands to enhance the precision of nanoparticle delivery. These types of investigations have become commonplace in the academic literature. This review aims to elucidate the preparation methods and principles of polysaccharide gold nanocarriers. It also provides an overview of the factors that affect the loading of polysaccharide gold nanocarriers with different kinds of drugs. Additionally, it outlines the strategies employed by polysaccharide gold nanocarriers to improve the delivery efficiency of various drugs. The objective is to provide a reference for further development of research on polysaccharide gold nanodelivery systems.
Collapse
Affiliation(s)
- Ming Song
- Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (M.S.); (A.A.); (E.D.); (J.L.); (G.X.)
| | - Adila Aipire
- Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (M.S.); (A.A.); (E.D.); (J.L.); (G.X.)
| | - Elzira Dilxat
- Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (M.S.); (A.A.); (E.D.); (J.L.); (G.X.)
| | - Jianmin Li
- Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (M.S.); (A.A.); (E.D.); (J.L.); (G.X.)
| | - Guoyu Xia
- Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (M.S.); (A.A.); (E.D.); (J.L.); (G.X.)
| | - Ziwen Jiang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China;
| | - Zhongxiong Fan
- Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (M.S.); (A.A.); (E.D.); (J.L.); (G.X.)
| | - Jinyao Li
- Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (M.S.); (A.A.); (E.D.); (J.L.); (G.X.)
| |
Collapse
|
10
|
Sharma P, Otto M. Multifunctional nanocomposites modulating the tumor microenvironment for enhanced cancer immunotherapy. Bioact Mater 2024; 31:440-462. [PMID: 37701452 PMCID: PMC10494322 DOI: 10.1016/j.bioactmat.2023.08.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/09/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023] Open
Abstract
Cancer immunotherapy has gained momentum for treating malignant tumors over the past decade. Checkpoint blockade and chimeric antigen receptor cell therapy (CAR-T) have shown considerable potency against liquid and solid cancers. However, the tumor microenvironment (TME) is highly immunosuppressive and hampers the effect of currently available cancer immunotherapies on overall treatment outcomes. Advancements in the design and engineering of nanomaterials have opened new avenues to modulate the TME. Progress in the current nanocomposite technology can overcome immunosuppression and trigger robust immunotherapeutic responses by integrating synergistic functions of different molecules. We will review recent advancements in nanomedical applications and discuss specifically designed nanocomposites modulating the TME for cancer immunotherapy. In addition, we provide information on the current landscape of clinical-stage nanocomposites for cancer immunotherapy.
Collapse
Affiliation(s)
- Prashant Sharma
- Department of Child Health, University of Arizona College of Medicine-Phoenix, ABC1 Building, 425 N 5th Street, Phoenix, AZ, 85004, USA
| | - Mario Otto
- Department of Child Health, University of Arizona College of Medicine-Phoenix, ABC1 Building, 425 N 5th Street, Phoenix, AZ, 85004, USA
- Center for Cancer and Blood Disorders (CCBD), Phoenix Children's, 1919 E Thomas Rd, Phoenix, AZ, 85016, USA
| |
Collapse
|
11
|
Yadav R, Das PP, Sharma S, Sengupta S, Kumar D, Sagar R. Recent advancement of nanomedicine-based targeted delivery for cervical cancer treatment. Med Oncol 2023; 40:347. [PMID: 37930458 DOI: 10.1007/s12032-023-02195-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/11/2023] [Indexed: 11/07/2023]
Abstract
Cervical cancer is a huge worldwide health burden, impacting women in impoverished nations in particular. Traditional therapeutic approaches, such as surgery, radiation therapy, and chemotherapy, frequently result in systemic toxicity and ineffectiveness. Nanomedicine has emerged as a viable strategy for targeted delivery of therapeutic drugs to cancer cells while decreasing off-target effects and increasing treatment success in recent years. Nanomedicine for cervical cancer introduces several novel aspects that distinguish it from previous treatment options such as tailored delivery system, precision targeting, combination therapies, real-time monitoring and diverse nanocarriers to overcome the limitations of one another. This abstract presents recent advances in nanomedicine-based tailored delivery systems for the treatment of cervical cancer. Liposomes, polymeric nanoparticles, dendrimers, and carbon nanotubes have all been intensively studied for their ability to transport chemotherapeutic medicines, nucleic acids, and imaging agents to cervical cancer cells. Because of the way these nanocarriers are designed, they may cross biological barriers and preferentially aggregate at the tumor site, boosting medicine concentration and lowering negative effects on healthy tissues. Surface modification of nanocarriers with targeting ligands like antibodies, peptides, or aptamers improves specificity for cancer cells by identifying overexpressed receptors or antigens on the tumor surface. Furthermore, nanomedicine-based techniques have made it possible to co-deliver numerous therapeutic drugs, allowing for synergistic effects and overcoming drug resistance. In preclinical and clinical investigations, combination treatments comprising chemotherapeutic medicines, gene therapy, immunotherapy, and photodynamic therapy have showed encouraging results, opening up new avenues for individualized and multimodal treatment regimens. Furthermore, the inclusion of contrast agents and imaging probes into nanocarrier systems has enabled real-time monitoring and imaging of treatment response. This enables the assessment of therapy efficacy, the early diagnosis of recurrence, and the optimization of treatment regimens.
Collapse
Affiliation(s)
- Rakhi Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Priyanku Pradip Das
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sunil Sharma
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sounok Sengupta
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Ram Sagar
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
12
|
Ding J, Sun T, Wu H, Zheng H, Wang S, Wang D, Shan W, Ling Y, Zhang Y. Novel Canthin-6-one Derivatives: Design, Synthesis, and Their Antiproliferative Activities via Inducing Apoptosis, Deoxyribonucleic Acid Damage, and Ferroptosis. ACS OMEGA 2023; 8:31215-31224. [PMID: 37663479 PMCID: PMC10468838 DOI: 10.1021/acsomega.3c03358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/26/2023] [Indexed: 09/05/2023]
Abstract
A series of novel canthin-6-one (CO) derivatives (8a-l) were designed and synthesized by introducing different amide side chains at the C-2 position, and their water solubility, antiproliferative activity, and preliminary mechanism were investigated. Most compounds displayed high cytotoxicity exhibiting low-micromolar IC50 values against four human cancer cell lines, especially HT29 cells. Meanwhile, the water solubility of active CO derivatives was significantly improved. Among these compounds, compound 8h with the N-methyl piperazine group exhibiting the highest antiproliferative capability with an IC50 value of 1.0 μM against HT29 cells, which was 8.6-fold lower than that of CO. Furthermore, 8h could upregulate the levels of reactive oxygen species, leading to mitochondrial damage. In addition, 8h could promote cell apoptosis and DNA damage by regulating the expression of apoptosis-associated proteins (Bcl-2 and cleaved-caspase 3) and the DNA damage-associated protein (H2AX). Most importantly, 8h also exerted ferroptosis by reducing the GSH level and GPX4 expression as well as increasing the lipid peroxidation level. Thus, the novel CO derivative 8h with N-methylpiperazine represents a promising anticancer candidate and warrants a more intensive study.
Collapse
Affiliation(s)
- Jinfeng Ding
- Department
of Pharmacy, Jiangsu Vocational College
of Medicine, Yancheng 224005, China
- School
of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and
Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Tiantian Sun
- School
of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and
Molecular Drug Target, Nantong University, Nantong 226001, China
- Nantong
Key Laboratory of Small Molecular Drug Innovation, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Hongmei Wu
- School
of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and
Molecular Drug Target, Nantong University, Nantong 226001, China
- Nantong
Key Laboratory of Small Molecular Drug Innovation, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Hongwei Zheng
- School
of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and
Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Sijia Wang
- School
of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and
Molecular Drug Target, Nantong University, Nantong 226001, China
- Nantong
Key Laboratory of Small Molecular Drug Innovation, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Dezhi Wang
- School
of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and
Molecular Drug Target, Nantong University, Nantong 226001, China
- Nantong
Key Laboratory of Small Molecular Drug Innovation, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Wenpei Shan
- School
of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and
Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Yong Ling
- School
of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and
Molecular Drug Target, Nantong University, Nantong 226001, China
- Nantong
Key Laboratory of Small Molecular Drug Innovation, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Yanan Zhang
- School
of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and
Molecular Drug Target, Nantong University, Nantong 226001, China
- Nantong
Key Laboratory of Small Molecular Drug Innovation, School of Pharmacy, Nantong University, Nantong 226001, China
| |
Collapse
|
13
|
Ma Z, Han H, Zhao Y. Mitochondrial dysfunction-targeted nanosystems for precise tumor therapeutics. Biomaterials 2023; 293:121947. [PMID: 36512861 DOI: 10.1016/j.biomaterials.2022.121947] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/16/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Mitochondria play critical roles in the regulation of the proliferation and apoptosis of cancerous cells. Targeted induction of mitochondrial dysfunction in cancer cells by multifunctional nanosystems for cancer treatment has attracted increasing attention in the past few years. Numerous therapeutic nanosystems have been designed for precise tumor therapy by inducing mitochondrial dysfunction, including reducing adenosine triphosphate, breaking redox homeostasis, inhibiting glycolysis, regulating proteins, membrane potential depolarization, mtDNA damage, mitophagy dysregulation and so on. Understanding the mechanisms of mitochondrial dysfunction would be helpful for efficient treatment of diseases and accelerating the translation of these therapeutic strategies into the clinic. Then, various strategies to construct mitochondria-targeted nanosystems and induce mitochondrial dysfunction are summarized, and the recent research progress regarding precise tumor therapeutics is highlighted. Finally, the major challenges and an outlook in this rapidly developing field are discussed. This review is expected to inspire further development of novel mitochondrial dysfunction-based strategies for precise treatments of cancer and other human diseases.
Collapse
Affiliation(s)
- Zhaoyu Ma
- The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, PR China; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Heyou Han
- The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| |
Collapse
|
14
|
Farjadian F, Ghasemi S, Akbarian M, Hoseini-Ghahfarokhi M, Moghoofei M, Doroudian M. Physically stimulus-responsive nanoparticles for therapy and diagnosis. Front Chem 2022; 10:952675. [PMID: 36186605 PMCID: PMC9515617 DOI: 10.3389/fchem.2022.952675] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Nanoparticles offer numerous advantages in various fields of science, particularly in medicine. Over recent years, the use of nanoparticles in disease diagnosis and treatments has increased dramatically by the development of stimuli-responsive nano-systems, which can respond to internal or external stimuli. In the last 10 years, many preclinical studies were performed on physically triggered nano-systems to develop and optimize stable, precise, and selective therapeutic or diagnostic agents. In this regard, the systems must meet the requirements of efficacy, toxicity, pharmacokinetics, and safety before clinical investigation. Several undesired aspects need to be addressed to successfully translate these physical stimuli-responsive nano-systems, as biomaterials, into clinical practice. These have to be commonly taken into account when developing physically triggered systems; thus, also applicable for nano-systems based on nanomaterials. This review focuses on physically triggered nano-systems (PTNSs), with diagnostic or therapeutic and theranostic applications. Several types of physically triggered nano-systems based on polymeric micelles and hydrogels, mesoporous silica, and magnets are reviewed and discussed in various aspects.
Collapse
Affiliation(s)
- Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- *Correspondence: Fatemeh Farjadian, , Soheila Ghasemi, , Mohammad Doroudian,
| | - Soheila Ghasemi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
- *Correspondence: Fatemeh Farjadian, , Soheila Ghasemi, , Mohammad Doroudian,
| | - Mohsen Akbarian
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan
| | | | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
- *Correspondence: Fatemeh Farjadian, , Soheila Ghasemi, , Mohammad Doroudian,
| |
Collapse
|
15
|
Sikder A, Vambhurkar G, Amulya E, Bagasariya D, Famta P, Shah S, Khatri DK, Singh SB, Sinha VR, Srivastava S. Advancements in redox-sensitive micelles as nanotheranostics: A new horizon in cancer management. J Control Release 2022; 349:1009-1030. [PMID: 35961470 DOI: 10.1016/j.jconrel.2022.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 12/24/2022]
Abstract
World Health Organisation (WHO) delineated cancer as one of the foremost reasons for mortality with 10 million deaths in the year 2020. Early diagnosis and effective drug delivery are of utmost importance in cancer management. The entrapment of both bio-imaging dyes and drugs will open novel avenues in the area of tumor theranostics. Elevated levels of reactive oxygen species (ROS) and glutathione (GSH) are the characteristic features of the tumor microenvironment (TME). Researchers have taken advantage of these specific TME features in recent years to develop micelle-based theranostic nanosystems. This review focuses on the advantages of redox-sensitive micelles (RSMs) and supramolecular self-assemblies for tumor theranostics. Key chemical linkers employed for the tumor-specific release of the cargo have been discussed. In vitro characterisation techniques used for the characterization of RSMs have been deliberated. Potential bottlenecks that may present themselves in the bench-to-bedside translation of this technology and the regulatory considerations have been deliberated.
Collapse
Affiliation(s)
- Anupama Sikder
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ganesh Vambhurkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Etikala Amulya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Deepkumar Bagasariya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - V R Sinha
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
16
|
Zhao B, Chen S, Hong Y, Jia L, Zhou Y, He X, Wang Y, Tian Z, Yang Z, Gao D. Research Progress of Conjugated Nanomedicine for Cancer Treatment. Pharmaceutics 2022; 14:1522. [PMID: 35890416 PMCID: PMC9315807 DOI: 10.3390/pharmaceutics14071522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 12/05/2022] Open
Abstract
The conventional cancer therapeutic modalities include surgery, chemotherapy and radiotherapy. Although immunotherapy and targeted therapy are also widely used in cancer treatment, chemotherapy remains the cornerstone of tumor treatment. With the rapid development of nanotechnology, nanomedicine is believed to be an emerging field to further improve the efficacy of chemotherapy. Until now, there are more than 17 kinds of nanomedicine for cancer therapy approved globally. Thereinto, conjugated nanomedicine, as an important type of nanomedicine, can not only possess the targeted delivery of chemotherapeutics with great precision but also achieve controlled drug release to avoid adverse effects. Meanwhile, conjugated nanomedicine provides the platform for combining several different therapeutic approaches (chemotherapy, photothermal therapy, photodynamic therapy, thermodynamic therapy, immunotherapy, etc.) with the purpose of achieving synergistic effects during cancer treatment. Therefore, this review focuses on conjugated nanomedicine and its various applications in synergistic chemotherapy. Additionally, the further perspectives and challenges of the conjugated nanomedicine are also addressed, which clarifies the design direction of a new generation of conjugated nanomedicine and facilitates the translation of them from the bench to the bedside.
Collapse
Affiliation(s)
- Bin Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (B.Z.); (S.C.); (L.J.); (Y.Z.); (X.H.); (Y.W.); (Z.T.)
- Department of Epidemiology, Shaanxi Provincial Cancer Hospital, Xi’an 710061, China
| | - Sa Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (B.Z.); (S.C.); (L.J.); (Y.Z.); (X.H.); (Y.W.); (Z.T.)
- Shaanxi Provincial Centre for Disease Control and Prevention, Xi’an 710054, China
| | - Ye Hong
- Center of Digestive Endoscopy, Shaanxi Provincial Cancer Hospital, Xi’an 710061, China;
| | - Liangliang Jia
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (B.Z.); (S.C.); (L.J.); (Y.Z.); (X.H.); (Y.W.); (Z.T.)
| | - Ying Zhou
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (B.Z.); (S.C.); (L.J.); (Y.Z.); (X.H.); (Y.W.); (Z.T.)
| | - Xinyu He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (B.Z.); (S.C.); (L.J.); (Y.Z.); (X.H.); (Y.W.); (Z.T.)
| | - Ying Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (B.Z.); (S.C.); (L.J.); (Y.Z.); (X.H.); (Y.W.); (Z.T.)
| | - Zhongmin Tian
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (B.Z.); (S.C.); (L.J.); (Y.Z.); (X.H.); (Y.W.); (Z.T.)
| | - Zhe Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (B.Z.); (S.C.); (L.J.); (Y.Z.); (X.H.); (Y.W.); (Z.T.)
- Research Institute of Xi’an Jiaotong University, Hangzhou 311200, China
| | - Di Gao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (B.Z.); (S.C.); (L.J.); (Y.Z.); (X.H.); (Y.W.); (Z.T.)
| |
Collapse
|
17
|
|
18
|
Effects and Mechanisms of Rhus chinensis Mill. Fruits on Suppressing RANKL-Induced Osteoclastogenesis by Network Pharmacology and Validation in RAW264.7 Cells. Nutrients 2022; 14:nu14051020. [PMID: 35267996 PMCID: PMC8912277 DOI: 10.3390/nu14051020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 01/11/2023] Open
Abstract
Rhus chinensis Mill. fruits are a kind of widely distributed edible seasoning, which have been documented to possess a variety of biological activities. However, its inhibitory effect on osteoclast formation has not been determined. The objective of this study was to evaluate the effect of the fruits on osteoclast differentiation of RAW264.7 cells, induced by receptor activator of nuclear factor-κB ligand (RANKL) and to illuminate the potential mechanisms using network pharmacology and western blots. Results showed that the extract containing two organic acids and twelve phenolic substances could effectively inhibit osteoclast differentiation in RANKL-induced RAW264.7 cells. Network pharmacology examination and western blot investigation showed that the concentrate essentially decreased the expression levels of osteoclast-specific proteins, chiefly through nuclear factor kappa-B, protein kinase B, and mitogen-activated protein kinase signaling pathways, particularly protein kinase B α and mitogen-activated protein kinase 1 targets. Moreover, the extract likewise directly down regulated the expression of cellular oncogene Fos and nuclear factor of activated T-cells cytoplasmic 1 proteins. Citric acid, quercetin, myricetin-3-O-galactoside, and quercetin-3-O-rhamnoside were considered as the predominant bioactive ingredients. Results of this work may provide a scientific basis for the development and utilization of R. chinensis fruits as a natural edible material to prevent and/or alleviate osteoporosis-related diseases.
Collapse
|
19
|
Liu L, Zhuang J, Tan J, Liu T, Fan W, Zhang Y, Li J. Doxorubicin-Loaded UiO-66/Bi 2S 3 Nanocomposite-Enhanced Synergistic Transarterial Chemoembolization and Photothermal Therapy against Hepatocellular Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7579-7591. [PMID: 35129950 DOI: 10.1021/acsami.1c19121] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Transcatheter arterial chemoembolization (TACE) is the first choice for patients with intermediate hepatocellular carcinoma (HCC), but clinical applications still face some problems, such as the difficulties in clearing all cancer cells and lack of targeting, which would damage normal liver cells. Recently, photothermal therapy (PTT) and nanodelivery systems have been used to improve the efficacy of TACE. However, most of these strategies achieve only a single function, and the synthesis process is complicated. Here, a simple one-step solvothermal method was used to develop multifunctional nanoparticles (UiO-66/Bi2S3@DOX), which can simultaneously achieve photothermal effects and low pH-triggered DOX release. UiO-66/Bi2S3 exhibited a pH-responsive release behavior and an excellent photothermal effect in a series of in vitro and in vivo studies. Biocompatibility was confirmed by cytotoxicity and hemocompatibility evaluations. The rat N1S1 liver tumor model was established to investigate the therapeutic effect and biosafety of the nanoplatforms using TACE. The results revealed that the combination of TACE and PTT resulted in remarkable tumor growth inhibition, and the histopathological assay further revealed extensive necrosis, downregulated angiogenesis, increased apoptosis, and proliferation in the tumor response. These results demonstrated that this nanosystem platform was a promising therapeutic agent for enhancing TACE therapy for HCC treatment.
Collapse
Affiliation(s)
- Lingwei Liu
- Department of Interventional Oncology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Jialang Zhuang
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Jizhou Tan
- Department of Interventional Oncology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Ting Liu
- Department of Interventional Oncology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Wenzhe Fan
- Department of Interventional Oncology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Yuanqing Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Jiaping Li
- Department of Interventional Oncology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
20
|
Miao Y, Yang T, Yang S, Yang M, Mao C. Protein nanoparticles directed cancer imaging and therapy. NANO CONVERGENCE 2022; 9:2. [PMID: 34997888 PMCID: PMC8742799 DOI: 10.1186/s40580-021-00293-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/29/2021] [Indexed: 05/10/2023]
Abstract
Cancer has been a serious threat to human health. Among drug delivery carriers, protein nanoparticles are unique because of their mild and environmentally friendly preparation methods. They also inherit desired characteristics from natural proteins, such as biocompatibility and biodegradability. Therefore, they have solved some problems inherent to inorganic nanocarriers such as poor biocompatibility. Also, the surface groups and cavity of protein nanoparticles allow for easy surface modification and drug loading. Besides, protein nanoparticles can be combined with inorganic nanoparticles or contrast agents to form multifunctional theranostic platforms. This review introduces representative protein nanoparticles applicable in cancer theranostics, including virus-like particles, albumin nanoparticles, silk protein nanoparticles, and ferritin nanoparticles. It also describes the common methods for preparing them. It then critically analyzes the use of a variety of protein nanoparticles in improved cancer imaging and therapy.
Collapse
Affiliation(s)
- Yao Miao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Tao Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Shuxu Yang
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China.
| | - Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, Zhejiang, China.
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019-5251, USA.
| |
Collapse
|
21
|
Liu Y, Li Q, Gu M, Lu D, Xiong X, Zhang Z, Pan Y, Liao Y, Ding Q, Gong W, Chen DS, Guan M, Wu J, Tian Z, Deng H, Gu L, Hong X, Xiao Y. A Second Near-Infrared Ru(II) Polypyridyl Complex for Synergistic Chemo-Photothermal Therapy. J Med Chem 2022; 65:2225-2237. [PMID: 34994554 DOI: 10.1021/acs.jmedchem.1c01736] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The clinical success of cisplatin ushered in a new era of the application of metallodrugs. When it comes to practice, however, drug resistance, tumor recurrence, and drug systemic toxicity make it implausible to completely heal the patients. Herein, we successfully transform an electron acceptor [1, 2, 5]thiadiazolo[3,4-g]quinoxaline into a novel second near-infrared (NIR-II) fluorophore H7. After PEGylation and chelation, HL-PEG2k exhibits a wavelength bathochromic shift, enhanced photothermal conversion efficiency (41.77%), and an antineoplastic effect against glioma. Its potential for in vivo tumor tracking and image-guided chemo-photothermal therapy is explored. High levels of uptake and high-resolution NIR-II imaging results are thereafter obtained. The hyperthermia effect could disrupt the lysosomal membranes, which in turn aggravate the mitochondria dysfunction, arrest the cell cycle in the G2 phase, and finally lead to cancer cell apoptosis. HL-PEG2k displays a superior biocompatibility and thus can be a potential theranostic platform to combat the growth and recurrence of tumors.
Collapse
Affiliation(s)
- Yishen Liu
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,College of Science, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, Tibet University, Lhasa 850000, China.,Shenzhen Institute of Wuhan University, Shenzhen 518057, China.,Center for Experimental Basic Medical Education, Hubei Provincial Key Laboratory of Developmentally Originated Disease and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan 430071, China
| | - Qianqian Li
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000, China.,Shenzhen Institute of Wuhan University, Shenzhen 518057, China
| | - Meijia Gu
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Disheng Lu
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,College of Science, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, Tibet University, Lhasa 850000, China.,Shenzhen Institute of Wuhan University, Shenzhen 518057, China.,Center for Experimental Basic Medical Education, Hubei Provincial Key Laboratory of Developmentally Originated Disease and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan 430071, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Zhiyun Zhang
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Center for Experimental Basic Medical Education, Hubei Provincial Key Laboratory of Developmentally Originated Disease and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan 430071, China
| | - Yanna Pan
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Center for Experimental Basic Medical Education, Hubei Provincial Key Laboratory of Developmentally Originated Disease and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan 430071, China
| | - Yuqin Liao
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Center for Experimental Basic Medical Education, Hubei Provincial Key Laboratory of Developmentally Originated Disease and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan 430071, China
| | - Qihang Ding
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Center for Experimental Basic Medical Education, Hubei Provincial Key Laboratory of Developmentally Originated Disease and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan 430071, China
| | - Wanxia Gong
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Center for Experimental Basic Medical Education, Hubei Provincial Key Laboratory of Developmentally Originated Disease and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan 430071, China
| | - Dean Shuailin Chen
- Department of Chemistry, Pennsylvania State University, Philadelphia, Pennsylvania 19104, United States
| | - Mengting Guan
- Center for Experimental Basic Medical Education, Hubei Provincial Key Laboratory of Developmentally Originated Disease and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan 430071, China
| | - Junzhu Wu
- Center for Experimental Basic Medical Education, Hubei Provincial Key Laboratory of Developmentally Originated Disease and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan 430071, China
| | - Zhiquan Tian
- College of Science, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, Tibet University, Lhasa 850000, China
| | - Hai Deng
- Department of Chemistry, University of Aberdeen, Aberdeen AB24 3FX, U.K
| | - Lijuan Gu
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Xuechuan Hong
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,College of Science, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, Tibet University, Lhasa 850000, China.,Center for Experimental Basic Medical Education, Hubei Provincial Key Laboratory of Developmentally Originated Disease and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan 430071, China
| | - Yuling Xiao
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Shenzhen Institute of Wuhan University, Shenzhen 518057, China
| |
Collapse
|
22
|
Liao Y, Xie L, Ye J, Chen T, Huang T, Shi L, Yuan M. Sprayable Hydrogel for Biomedical Applications. Biomater Sci 2022; 10:2759-2771. [PMID: 35445676 DOI: 10.1039/d2bm00338d] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymeric hydrogels have extraordinary potential to be utilized for biomedical applications. Recently, sprayable hydrogels have received increasing attention for their biocompatibility, degradability, tunable mechanical properties and rapid spray-filming abilities. In...
Collapse
Affiliation(s)
- Yingying Liao
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Luoyijun Xie
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Jiahui Ye
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Tong Chen
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Tong Huang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Leilei Shi
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Miaomiao Yuan
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
23
|
Wang A, Fang J, Ye S, Mao Q, Zhao Y, Cui C, Zhang Y, Feng Y, Li J, He L, Qiu L, Shi H. Assembly Transformation Jointly Driven by the LAP Enzyme and GSH Boosting Theranostic Capability for Effective Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59787-59802. [PMID: 34894664 DOI: 10.1021/acsami.1c21062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Developing intelligent and morphology-transformable nanomaterials that can spatiotemporally undergo stimulus-responsive size transformation holds great promise for improving the tumor delivery efficiency of drugs in vivo. Here, we report a smart size-transformable theranostic probe Ce6-Leu consisting of a leucine amino peptidase (LAP) and glutathione (GSH) dual-responsive moiety, an 1,2-aminothiol group, and a clinically used photosensitizer Ce6. This probe tends to self-assemble into uniform nanoparticles with an initial size of ∼80 nm in aqueous solution owing to the amphiphilic feature. Surprisingly, taking advantage of the biocompatible CBT-Cys condensation reaction, the large nanoprobes can be transformed into tiny nanoparticles (∼23 nm) under the joint action of LAP and GSH in a tumor microenvironment, endowing them with great tumor accumulation and deep tissue penetration. Concomitantly, this LAP/GSH-driven disassembly and size shrinkage of Ce6-Leu can also activate the fluorescence/magnetic resonance signals and the photodynamic effect for enhanced multimodal imaging-guided photodynamic therapy of human liver HepG2 tumors in vivo. More excitingly, the Mn2+-chelating probe (Ce6-Leu@Mn2+) was demonstrated to have the capability to catalyze endogenous H2O2 to persistently release O2 at the hypoxic tumor site, as a consequence improving the oxygen supply to boost the radiotherapy effect. We thus believe that this LAP/GSH-driven size-transformable nanosystem would offer a novel advanced technology to improve the drug delivery efficiency for achieving precise tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Anna Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Jing Fang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Shuyue Ye
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Qiulian Mao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Yan Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Chaoxiang Cui
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Yuqi Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Yali Feng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Jiachen Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Lei He
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Ling Qiu
- Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
| | - Haibin Shi
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
24
|
Ma W, Ma H, Qiu P, Zhang H, Yang Z, Ma B, Chang J, Shi X, Wu C. Sprayable β-FeSi 2 composite hydrogel for portable skin tumor treatment and wound healing. Biomaterials 2021; 279:121225. [PMID: 34739984 DOI: 10.1016/j.biomaterials.2021.121225] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/30/2021] [Accepted: 10/22/2021] [Indexed: 12/16/2022]
Abstract
The development of a rapid-forming in-situ sprayable hydrogel with the functions of tumor treatment and wound healing is essential for eliminating residual tumor tissue and promoting wound healing caused by surgical resection. On account of its semiconductor properties, β-FeSi2 (FS) was widely explored as a thermoelectric material. In this work, FS was first applied as a bioactive material for the application of tissue engineering. Excitedly, we found that FS could be used as a novel antitumor agent. It exhibited excellent photothermal performance, and the released Fe ions could generate •OH under the acidic conditions and excessive H2O2 in the tumor microenvironment. Moreover, the sprayable β-FeSi2-incorporated sodium alginate (FS/SA) hydrogel was prepared as an instant gelation after spraying in situ, contributing to timely tumor-induced skin wound healing and efficiently suppressing tumors through photothermal and chemodynamic therapy (PTT and CDT). Furthermore, the released bioactive Fe and Si ions could promote the migration and differentiation of endothelial cells and the pro-angiogenesis of skin wounds. Accordingly, such sprayable hydrogel played an effective role in emergency wound treatment with the advantage of convenience and portability. Overall, with incorporation of FS into the sprayable FS/SA hydrogel, the composite hydrogel possessed dual functions of tumor therapy and skin wound healing.
Collapse
Affiliation(s)
- Wenping Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, People's Republic of China
| | - Hongshi Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, People's Republic of China.
| | - Pengfei Qiu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, People's Republic of China
| | - Hongjian Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, People's Republic of China
| | - Zhibo Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, People's Republic of China
| | - Bing Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, People's Republic of China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, People's Republic of China
| | - Xun Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, People's Republic of China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, People's Republic of China.
| |
Collapse
|
25
|
Xin X, Zhang Z, Zhang X, Chen J, Lin X, Sun P, Liu X. Bioresponsive nanomedicines based on dynamic covalent bonds. NANOSCALE 2021; 13:11712-11733. [PMID: 34227639 DOI: 10.1039/d1nr02836g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Trends in the development of modern medicine necessitate the efficient delivery of therapeutics to achieve the desired treatment outcomes through precise spatiotemporal accumulation of therapeutics at the disease site. Bioresponsive nanomedicine is a promising platform for this purpose. Dynamic covalent bonds (DCBs) have attracted much attention in studies of the fabrication of bioresponsive nanomedicines with an abundance of combinations of therapeutic modules and carrier function units. DCB-based nanomedicines could be designed to maintain biological friendly synthesis and site-specific release for optimal therapeutic effects, allowing the complex to retain an integrated structure before accumulating at the disease site, but disassembling into individual active components without compromising function in the targeted organs or tissues. In this review, we focus on responsive nanomedicines containing dynamic chemical bonds that can be cleaved by various specific stimuli, enabling achievement of targeted drug release for optimal therapy in various diseases.
Collapse
Affiliation(s)
- Xiaoqian Xin
- Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, PR China.
| | | | | | | | | | | | | |
Collapse
|
26
|
Jin W, Dong C, Yang D, Zhang R, Jiang T, Wu D. Nano-Carriers of Combination Tumor Physical Stimuli-Responsive Therapies. Curr Drug Deliv 2021; 17:577-587. [PMID: 32448102 DOI: 10.2174/1567201817666200525004225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/09/2019] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
Abstract
With the development of nanotechnology, Tumor Physical Stimuli-Responsive Therapies (TPSRTs) have reached a new stage because of the remarkable characteristics of nanocarriers. The nanocarriers enable such therapies to overcome the drawbacks of traditional therapies, such as radiotherapy or chemotherapy. To further explore the possibility of the nanocarrier-assisted TPSRTs, scientists have combined different TPSRTs via; the platform of nanocarriers into combination TPSRTs, which include Photothermal Therapy (PTT) with Magnetic Hyperthermia Therapy (MHT), PTT with Sonodynamic Therapy (SDT), MHT with Photodynamic Therapy (PDT), and PDT with PTT. To achieve such therapies, it requires to fully utilize the versatile functions of a specific nanocarrier, which depend on a pellucid understanding of the traits of those nanocarriers. This review covers the principles of different TPSRTs and their combinations, summarizes various types of combination TPSRTs nanocarriers and their therapeutic effects on tumors, and discusses the current disadvantages and future developments of these nanocarriers in the application of combination TPSRTs.
Collapse
Affiliation(s)
- Weiqiu Jin
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Changzi Dong
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Dengtian Yang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Ruotong Zhang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Tianshu Jiang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
27
|
Chang D, Ma Y, Xu X, Xie J, Ju S. Stimuli-Responsive Polymeric Nanoplatforms for Cancer Therapy. Front Bioeng Biotechnol 2021; 9:707319. [PMID: 34249894 PMCID: PMC8267819 DOI: 10.3389/fbioe.2021.707319] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Polymeric nanoparticles have been widely used as carriers of drugs and bioimaging agents due to their excellent biocompatibility, biodegradability, and structural versatility. The principal application of polymeric nanoparticles in medicine is for cancer therapy, with increased tumor accumulation, precision delivery of anticancer drugs to target sites, higher solubility of pharmaceutical properties and lower systemic toxicity. Recently, the stimuli-responsive polymeric nanoplatforms attracted more and more attention because they can change their physicochemical properties responding to the stimuli conditions, such as low pH, enzyme, redox agents, hypoxia, light, temperature, magnetic field, ultrasound, and so on. Moreover, the unique properties of stimuli-responsive polymeric nanocarriers in target tissues may significantly improve the bioactivity of delivered agents for cancer treatment. This review introduces stimuli-responsive polymeric nanoparticles and their applications in tumor theranostics with the loading of chemical drugs, nucleic drugs and imaging molecules. In addition, we discuss the strategy for designing multifunctional polymeric nanocarriers and provide the perspective for the clinical applications of these stimuli-responsive polymeric nanoplatforms.
Collapse
Affiliation(s)
- Di Chang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Yuanyuan Ma
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Xiaoxuan Xu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Jinbing Xie
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Shenghong Ju
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
28
|
Liu P, Peng Y, Zhou Y, Shi X, Li Q, Ding J, Gao Y, Zhou W. Rapamycin as a "One-Stone-Three-Birds" Agent for Cooperatively Enhanced Phototherapies Against Metastatic Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25674-25684. [PMID: 34042422 DOI: 10.1021/acsami.1c03312] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cooperative photothermal therapy (PTT) and photodynamic therapy (PDT) represents a promising strategy to conquer tumor with synergistic effect, while their long-term efficacy has been strictly limited by the multiple resistances of tumor. Here, we reported a core-shell nanoplatform for enhanced PTT/PDT combination against metastatic breast cancer. The nanosystem had photosensitizer chlorin e6 (Ce6) and rapamycin (RAP) pure drugs core and the polydopamine (PDA) shell, with surface PEGylation. Notably, we found that RAP was a highly robust sensitizer to boost the efficacy of both PTT and PDT by inhibiting the expression of heat shock protein 70 (HSP 70) and hypoxia inducible factor-1α (HIF-1α), respectively, resulting in cooperatively enhanced antitumor efficiency. Moreover, metastasis, the fatal risk of breast cancer, was also inhibited by virtue of RAP-mediated matrix metalloproteinases-2 (MMP-2) suppression. Upon intravenous injection, the nanosystem could passively accumulate into the tumor and impose potent phototherapies upon dual laser irradiations for complete tumor elimination and metastasis inhibition, giving rise to 100% mice survival over a long observation period. Collectively, this work offers a general solution to address the key limitations of tumor-resistant phototherapies and provides a highly promising nanoplatform for the management of metastatic cancer.
Collapse
Affiliation(s)
- Peng Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Ying Peng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Yanbin Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Xinyi Shi
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Qingnian Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Yang Gao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
29
|
Cheng Z, Li M, Dey R, Chen Y. Nanomaterials for cancer therapy: current progress and perspectives. J Hematol Oncol 2021; 14:85. [PMID: 34059100 PMCID: PMC8165984 DOI: 10.1186/s13045-021-01096-0] [Citation(s) in RCA: 520] [Impact Index Per Article: 130.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is a disease with complex pathological process. Current chemotherapy faces problems such as lack of specificity, cytotoxicity, induction of multi-drug resistance and stem-like cells growth. Nanomaterials are materials in the nanorange 1–100 nm which possess unique optical, magnetic, and electrical properties. Nanomaterials used in cancer therapy can be classified into several main categories. Targeting cancer cells, tumor microenvironment, and immune system, these nanomaterials have been modified for a wide range of cancer therapies to overcome toxicity and lack of specificity, enhance drug capacity as well as bioavailability. Although the number of studies has been increasing, the number of approved nano-drugs has not increased much over the years. To better improve clinical translation, further research is needed for targeted drug delivery by nano-carriers to reduce toxicity, enhance permeability and retention effects, and minimize the shielding effect of protein corona. This review summarizes novel nanomaterials fabricated in research and clinical use, discusses current limitations and obstacles that hinder the translation from research to clinical use, and provides suggestions for more efficient adoption of nanomaterials in cancer therapy.
Collapse
Affiliation(s)
- Zhe Cheng
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Maoyu Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Raja Dey
- Department of Nucleotide Metabolism and Drug Discovery, The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
30
|
Chen Y, Li Y, Liu J, Zhu Q, Ma J, Zhu X. Erythrocyte membrane bioengineered nanoprobes via indocyanine green-directed assembly for single NIR laser-induced efficient photodynamic/photothermal theranostics. J Control Release 2021; 335:345-358. [PMID: 34029633 DOI: 10.1016/j.jconrel.2021.05.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/01/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022]
Abstract
Traditional combinational photodynamic therapy (PDT) and photothermal therapy (PTT) were limited in clinical therapy of cancer due to exceptionally low drug payload and activation by light with separate wavelengths. We have accidentally discovered that zinc phthalocyanine (ZNPC, a typical hydrophobic photosensitizer) and indocyanine green (ICG, a clinically approved fluorescence probe) could be co-assembled into carrier-free nanodrugs (almost 100 wt%) for single NIR laser-induced efficient PDT/PTT. Interestingly, ICG could act as "transformers" for modulating the geometric shape of ZNPC/ICG co-assembling structures from needle-like/spindle-like structure via cubic structure finally to spherical structure. Unfortunately, the nanodrugs suffered from rapid immune clearance. The ZNPC-ICG nanoprobes were further embedded into the erythrocyte membrane (RBC)-camouflaged framework. The designed ZNPC-ICG@RBC could be efficiently accumulated within the tumor sites (continue for ~60 h) and rapidly internalized into cancer cells upon laser irradiation rather than macrophage RAW264.7 cells. Compared with the free ZnPC or ICG, the biomimetic ZNPC-ICG@RBC nanoprobes exhibited amplified therapeutic effects by simultaneously producing ROS and hyperthermia, thereby synergistically improving antitumor efficiency and eliminating the tumors without any regrowth under the guidance of fluorescence imaging. The co-delivery of ZnPC and ICG via a biomimetic carrier-free system might be a promising strategy for bimodal phototherapy of cancer.
Collapse
Affiliation(s)
- Yilin Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, PR China
| | - Yang Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China; The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China; Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361024, PR China.
| | - Jinxue Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, PR China
| | - Qixin Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, PR China
| | - Jinyuan Ma
- Department of Pharmacy, Shanghai Skin Diseases Hospital, Tongji University School of Medicine, Shanghai 200443, PR China
| | - Xuan Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, PR China.
| |
Collapse
|
31
|
Zhang H, Li M, Zhu X, Zhang Z, Huang H, Hou L. Artemisinin co-delivery system based on manganese oxide for precise diagnosis and treatment of breast cancer. NANOTECHNOLOGY 2021; 32:325101. [PMID: 33910182 DOI: 10.1088/1361-6528/abfc6f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Tumor microenvironment (TME) responsive intelligent system can realize the specific release and uniform distribution of chemotherapy drugs in tumor tissues, to achieve high-efficiency and low-toxic treatment of tumors. In this paper, drug delivery system TKD@RBCm-Mn2O3-ART with the above characteristics was constructed. We synthesized hollow mesoporous manganese trioxide (Mn2O3) nanoparticles and firstly found that they owned time-dependent size transformation feature in simulated TME. The particle size decreased from 318 nm to 50 nm and 6 nm at 1 h and 4 h in simulated TME, respectively. Then artemisinin (ART) was loaded into Mn2O3to realize the co-delivery of Mn2+and ART. The modification of homologous red cell membrane (RBCm) and TKD peptide was aimed at long circulation and tumor targeting in the body.In vitroresults demonstrated that in the presence of GSH, the cumulative drug release percentage could achieve 97.5%. Meanwhile, Mn2O3exhibited a good imaging capability in tumor, with the relaxation rate of 6.3113 mM-1s-1. After entering into MCF-7 cells, TKD@RBCm-Mn2O3/ART synchronously released Mn2+and ART to generate large amount of ROS and induce DNA damage.In vivoresults proved TKD@RBCm-Mn2O3/ART could arrive the deep area of solid tumors and achieve accurate diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Huijuan Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, Zhengzhou, People's Republic of China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou, People's Republic of China
| | - Mengting Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xing Zhu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, Zhengzhou, People's Republic of China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou, People's Republic of China
| | - Heqing Huang
- Department of Pharmacy, Hefei Changhai Hospital, Hefei, People's Republic of China
| | - Lin Hou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, Zhengzhou, People's Republic of China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou, People's Republic of China
| |
Collapse
|
32
|
|
33
|
Gao J, Qiao Z, Liu S, Xu J, Wang S, Yang X, Wang X, Tang R. A small molecule nanodrug consisting of pH-sensitive ortho ester-dasatinib conjugate for cancer therapy. Eur J Pharm Biopharm 2021; 163:188-197. [PMID: 33864903 DOI: 10.1016/j.ejpb.2021.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/20/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
The main objective of this paper is to develop a self-delivered prodrug system with nanoscale characteristics to enhance the efficacy of tumor therapy. The pH-sensitive prodrug was composed of ortho ester-linked dasatinib (DAS-OE), which was further self-assembled with or without doxorubicin (DOX) to obtain two carrier-free nanoparticles (DOX/DAS-OE NPs or DAS-OE NPs). The prodrug-based nanoparticles united the superiorities of small molecules and nano-assemblies together and displayed well-defined structure, uniform spherical shape, high drug loading ratio and on-demand drug release behavior. The drug loading content of DAS and DOX was 61.6% and 21.9%, respectively, and more than 80.2% of DAS and 60.2% DOX were released from DOX/DAS-OE NPs within 20 h at pH 5.0. Both in vitro and in vivo studies demonstrated that the pH-sensitive ortho ester bonds in the prodrug underwent hydrolysis to release DAS and DOX simultaneously after cellular internalization, resulting in remarkable antitumor effect. Tumor growth inhibition rate was 19.9% (free DAS), 35.5% (free DOX), 66.3% (DAS-OE NPs) and 82.8% (DOX/DAS-OE NPs), respectively. Thus, the ortho ester-linked prodrug system shows great potentials in cancer therapy.
Collapse
Affiliation(s)
- Jialu Gao
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Zhen Qiao
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Shuo Liu
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Jiaxi Xu
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Shi Wang
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Xia Yang
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Xin Wang
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Rupei Tang
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China.
| |
Collapse
|
34
|
Wu Y, Liang Y, Liu Y, Hao Y, Tao N, Li J, Sun X, Zhou M, Liu YN. A Bi 2S 3-embedded gellan gum hydrogel for localized tumor photothermal/antiangiogenic therapy. J Mater Chem B 2021; 9:3224-3234. [PMID: 33885626 DOI: 10.1039/d1tb00257k] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An injectable gellan gum-based nanocomposite hydrogel (Bi2S3@GG) was designed for X-ray computed tomography (CT) imaging and photothermal/antiangiogenic therapy. The linear anionic polysaccharide gellan gum (GG) was used as a stabilizer, embedded with ultra-small bismuth sulfide (Bi2S3) nanodots (∼2 nm) through a one-pot synthesis method. The as-prepared Bi2S3@GG hydrogel displays excellent capability for both photothermal therapy (PTT) (with a photothermal conversion efficiency of 44.3%) and X-ray computed tomography (with an X-ray absorption coefficient of 51.5 HU L g-1), integrated with real-time monitoring drug retention and tunable therapeutic functions. After the incorporation of sorafenib (SF), the hydrogel shows a sustained release of SF over 15 days. A tumor suppression rate of 98.2% is shown at day 22 postinjection in the mice received the combined treatments of photothermal/antiangiogenic therapy. In contrast, tumor growth and recurrence are observed in the single treatment. Our work presents a new strategy to construct a multifunctional hydrogel platform for a safe and precise antitumor therapy.
Collapse
Affiliation(s)
- Yingjiao Wu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zheng Z, Jia Z, Qu C, Dai R, Qin Y, Rong S, Liu Y, Cheng Z, Zhang R. Biodegradable Silica-Based Nanotheranostics for Precise MRI/NIR-II Fluorescence Imaging and Self-Reinforcing Antitumor Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006508. [PMID: 33569918 DOI: 10.1002/smll.202006508] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Multi-modality cancer diagnosis techniques based on the second near-infrared window fluorescence (NIR-II FL, 1000-1700 nm) imaging have become the focus of research attention. For such multimodality probes, how to take advantage of the tumor microenvironments (TME) characteristics to better image diseases and combine efficient therapeutics to achieve theranostics is still a big challenge. Herein, a novel TME-activated nanosystem (FMSN-MnO2 -BCQ) employing degradable silica-based nanoplatform is designed, adjusting the ratio of intratumoral hydrogen peroxide (H2 O2 )/glutathione (GSH) for magnetic resonance imaging (MRI)/NIR-II FL imaging and self-reinforcing chemodynamic therapy (CDT). Innovative bovine serum albumin (BSA)-modified fusiform-like mesoporous silica nanoparticles (FMSN) is fabricated as a carrier for NIR-II small molecule (CQ4T) and MRI reporter MnO2 . Remarkably, the BSA modification helped to achieve the dual-functions of high biocompatibility and enhance NIR-II fluorescence. The FMSN-MnO2 -BCQ with FMSN framework featuring a stepwise degradability in tumor interior released MnO2 and BCQ nanoparticles. Through the specific degradation of MnO2 by the TME, the produced Mn2+ ions are effectively exerted Fenton-like activity to generate hydroxyl radical (•OH) from endogenous H2 O2 to eradicate tumor cells. More importantly, the GSH depletion due to the synergistic effect of tetrasulfide bond and MnO2 in turn induced the oxidative cytotoxicity for self-reinforcing CDT.
Collapse
Affiliation(s)
- Ziliang Zheng
- Center for Translational Medicine Research, Shanxi Medical University, Taiyuan, 030001, China
| | - Zhuo Jia
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Chunrong Qu
- Molecular Imaging Program at Stanford (MIPS) Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, 94305-5344, USA
| | - Rong Dai
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yufei Qin
- Center for Translational Medicine Research, Shanxi Medical University, Taiyuan, 030001, China
| | - Shuo Rong
- Center for Translational Medicine Research, Shanxi Medical University, Taiyuan, 030001, China
| | - Yulong Liu
- Department of Radiology, third hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS) Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, 94305-5344, USA
| | - Ruiping Zhang
- Department of Radiology, third hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
| |
Collapse
|
36
|
Du X, Li L, Wei S, Wang S, Li Y. A tumor-targeted, intracellular activatable and theranostic nanodiamond drug platform for strongly enhanced in vivo antitumor therapy. J Mater Chem B 2021; 8:1660-1671. [PMID: 32011619 DOI: 10.1039/c9tb02259g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enhancing tumor homing and improving the efficacy of drugs are urgent needs for cancer treatment. Herein a novel targeted, intracellularly activatable fluorescence and cytotoxicity nanodiamond (ND) drug system (ND-PEG-HYD-FA/DOX, NPHF/D) was successfully prepared based on doxorubicin (DOX) and folate (FA) covalently bound to PEGylated NDs, in which the DOX was covalently coupled via an intracellularly hydrolyzable hydrazone bond that was stable in the physiological environment to ensure minimal drug release in circulation. Cell uptake studies demonstrated the selective internalization of NPHF/D by folate receptor (FR) mediated endocytosis in the order MCF-7 > HeLa > HepG2 ≫ CHO, using confocal laser scanning microscopy (CLSM) and flow cytometry. Interestingly, the DOX fluorescence of NPHF/D was significantly quenched, while the fluorescence recovery and cytotoxicity took place by low pH regulation in intracellular lysosomes, which made NPHF/D act as a fluorescence OFF-ON messenger for activatable imaging and cancer therapy. Of note, NPHF/D significantly inhibited the growth of tumors. Simultaneously, it was demonstrated that the introduction of FA and the cleavability of the hydrazone greatly enhanced the therapeutic performance of NPHF/D. In addition, toxicity studies in mice verified that the composites were devoid of any detected hepatotoxicity, cardiotoxicity, and nephrotoxicity using histopathology and blood biochemistry studies. Our work provides a novel strategy for cancer therapy, using ND-conjugated cancer drugs, and the exploration of theranostic drug-delivery systems.
Collapse
Affiliation(s)
- Xiangbin Du
- Department of Chemistry, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Lin Li
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China. and Department of Chemistry, Taiyuan Normal University, Jinzhong, 030619, P. R. China
| | - Shiguo Wei
- Department of Chemistry, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Songbai Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Yingqi Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China and Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China.
| |
Collapse
|
37
|
Zhao J, Chen X, Ho KH, Cai C, Li CW, Yang M, Yi C. Nanotechnology for diagnosis and therapy of rheumatoid arthritis: Evolution towards theranostic approaches. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Hejmady S, Pradhan R, Alexander A, Agrawal M, Singhvi G, Gorain B, Tiwari S, Kesharwani P, Dubey SK. Recent advances in targeted nanomedicine as promising antitumor therapeutics. Drug Discov Today 2020; 25:2227-2244. [DOI: 10.1016/j.drudis.2020.09.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/29/2020] [Accepted: 09/26/2020] [Indexed: 12/18/2022]
|
39
|
Li Y, Lu J, Zhang J, Zhu X, Liu J, Zhang Y. Phase-Change Nanotherapeutic Agents Based on Mesoporous Carbon for Multimodal Imaging and Tumor Therapy. ACS APPLIED BIO MATERIALS 2020; 3:8705-8713. [DOI: 10.1021/acsabm.0c01102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yong Li
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, 200444 Shanghai, China
- School of Life Sciences, Shanghai University, 99 Shangda Road, 200444 Shanghai, China
| | - Jialin Lu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, 200444 Shanghai, China
| | - Jing Zhang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, 200444 Shanghai, China
| | - Xiaohui Zhu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, 200444 Shanghai, China
| | - Jinliang Liu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, 200444 Shanghai, China
| | - Yong Zhang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, 200444 Shanghai, China
| |
Collapse
|
40
|
Prilepskii AY, Serov NS, Kladko DV, Vinogradov VV. Nanoparticle-Based Approaches towards the Treatment of Atherosclerosis. Pharmaceutics 2020; 12:E1056. [PMID: 33167402 PMCID: PMC7694323 DOI: 10.3390/pharmaceutics12111056] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/18/2022] Open
Abstract
Atherosclerosis, being an inflammation-associated disease, represents a considerable healthcare problem. Its origin remains poorly understood, and at the same time, it is associated with extensive morbidity and mortality worldwide due to myocardial infarctions and strokes. Unfortunately, drugs are unable to effectively prevent plaque formation. Systemic administration of pharmaceuticals for the inhibition of plaque destabilization bears the risk of adverse effects. At present, nanoscience and, in particular, nanomedicine has made significant progress in both imaging and treatment of atherosclerosis. In this review, we focus on recent advances in this area, discussing subjects such as nanocarriers-based drug targeting principles, approaches towards the treatment of atherosclerosis, utilization of theranostic agents, and future prospects of nanoformulated therapeutics against atherosclerosis and inflammatory diseases. The focus is placed on articles published since 2015 with additional attention to research completed in 2019-2020.
Collapse
Affiliation(s)
| | | | | | - Vladimir V. Vinogradov
- International Institute “Solution Chemistry of Advanced Materials and Technologies”, ITMO University, 191002 Saint Petersburg, Russia; (A.Y.P.); (N.S.S.); (D.V.K.)
| |
Collapse
|
41
|
Bai H, Peng R, Wang D, Sawyer M, Fu T, Cui C, Tan W. A minireview on multiparameter-activated nanodevices for cancer imaging and therapy. NANOSCALE 2020; 12:21571-21582. [PMID: 33108432 DOI: 10.1039/d0nr04080k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tumor microenvironment (TME)-responsive nanodevices are essential tools for cancer imaging and therapy. Exploiting the advantages of molecular engineering, nanodevices are emerging for biomedical applications. In order to reach targeted cancer areas, activated nanodevices first respond to the TME and then serve as an actuator for sensing, imaging and therapy. Most nanodevices depend on a single parameter as an input for their downstream activation, potentially leading to inaccurate diagnostic results and poor therapeutic outcomes. However, in the TME, some biomarkers are cross-linked, and such correlated biomarkers are potentially useful for cancer imaging and theranostic applications. Based on this phenomenon, researchers have developed approaches for the construction of multiparameter-activated nanodevices (MANs) to improve accuracy. This minireview summarizes the recent advances in the development of MANs for cancer imaging including fluorescence imaging, photoacoustic (PA) imaging, magnetic resonance imaging (MRI) and computed tomography (CT) imaging, as well as cancer therapy including radiotherapy, chemotherapy, photoinduced therapy and immunotherapy. We highlight different approaches for improving the specificity and precision of cancer imaging and therapy. In the future, MANs will show promise for clinical work in multimodal diagnosis and therapeutics.
Collapse
Affiliation(s)
- Huarong Bai
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
42
|
Hou J, Sun X, Huang Y, Yang S, Liu J, Feng C, Ma J, Chen B. The Design and Application of Nanomaterials as Drug Carriers in Cancer Treatment. Curr Med Chem 2020; 27:6112-6135. [PMID: 31419927 DOI: 10.2174/0929867326666190816231409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/31/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022]
Abstract
The development of new medical cancer treatment technologies is of great significance in
reducing cancer mortality. Traditional clinical cancer therapy has a short drug action time, difficulty
in accurately targeting tumour tissues and high levels of toxicity in normal tissues. With the development
of nanotechnology, nanomaterials have been used as drug carriers to specifically target cancer
cells and release drugs into the tumour environment. This technique has become an important
research hotspot in cancer treatment. There are several advantages of using nanomaterials for cancer
treatment that improve the efficacy of drug delivery, including increased drug concentrations in the
targeted tumour area, reduced toxicity in normal tissues and controlled drug release. In this work,
we describe the latest research development on the use of nanomaterials for drug delivery in cancer
treatment and explore related mechanistic pathways. In addition, the methods used to control drug
release into the targeted area using nanocarriers are reviewed in detail. Overall, we present current
achievements using nanomaterials and nanotechnologies in cancer treatment, followed by current
challenges and future prospects.
Collapse
Affiliation(s)
- Jia Hou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Chongqing Key Laboratory of Non-linear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China
| | - Xiaoyan Sun
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Chongqing Key Laboratory of Non-linear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China
| | - Ying Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Chongqing Key Laboratory of Non-linear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China
| | - Shaohua Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Chongqing Key Laboratory of Non-linear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China
| | - Junjie Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Chongqing Key Laboratory of Non-linear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China
| | - Changhao Feng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Chongqing Key Laboratory of Non-linear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China
| | - Jun Ma
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Department of Cardiology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Bin Chen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Chongqing Key Laboratory of Non-linear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
43
|
Xu Y, Zhang Y, Li J, An J, Li C, Bai S, Sharma A, Deng G, Kim JS, Sun Y. NIR-II emissive multifunctional AIEgen with single laser-activated synergistic photodynamic/photothermal therapy of cancers and pathogens. Biomaterials 2020; 259:120315. [DOI: 10.1016/j.biomaterials.2020.120315] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 12/28/2022]
|
44
|
Chandan R, Mehta S, Banerjee R. Ultrasound-Responsive Carriers for Therapeutic Applications. ACS Biomater Sci Eng 2020; 6:4731-4747. [PMID: 33455210 DOI: 10.1021/acsbiomaterials.9b01979] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ultrasound (US)-responsive carriers have emerged as promising theranostic candidates because of their ability to enhance US-contrast, promote image-guided drug delivery, cause on-demand pulsatile release of drugs in response to ultrasound stimuli, as well as to enhance the permeability of physiological barriers such as the stratum corneum, the vascular endothelium, and the blood-brain barrier (BBB). US-responsive carriers include microbubbles MBs, liposomes, droplets, hydrogels, and nanobubble-nanoparticle complexes and have been explored for cavitation-mediated US-responsive drug delivery. Recently, a transient increase in the permeability of the BBB by microbubble (MB)-assisted low-frequency US has shown promise in enhancing the delivery of therapeutic agents in the case of neurological disorders. Further, the periodic mechanical stimulus generated by US-responsive MBs have also been explored in tissue engineering and has directly influenced the differentiation of mesenchymal stem cells into cartilage. This Review discusses the various types of US-responsive carriers and explores their emerging roles in therapeutics ranging from drug delivery to tissue engineering.
Collapse
Affiliation(s)
- Rajeet Chandan
- Nanomedicine Lab, Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sourabh Mehta
- Nanomedicine Lab, Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.,IIT Bombay-Monash Research Academy, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rinti Banerjee
- Nanomedicine Lab, Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
45
|
He X, Yang X, Li D, Cao Z. Red and NIR Light-Responsive Polymeric Nanocarriers for On-Demand Drug Delivery. Curr Med Chem 2020; 27:3877-3887. [DOI: 10.2174/0929867326666190215113522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/16/2018] [Accepted: 12/04/2018] [Indexed: 11/22/2022]
Abstract
Red and NIR light-responsive polymeric nanocarriers capable of on-demand drug delivery
have gained tremendous attention for their great potential in cancer therapy. Various strategies have
been applied to fabricate such nanocarriers, and they have demonstrated significant therapeutic efficacy
and minimal toxicity to normal tissues. Here, we will review the current developments in various
red and NIR light-responsive polymeric nanocarriers with respect to their use in on-demand drug
delivery, including facilitation of drug internalization and boosting of drug release at targeted sites.
We summarize their components and design strategies, and highlight the mechanisms by which the
photoactivatable variations enhance drug uptake and drug release. We attempt to provide new insights
into the fabrication of red and NIR light-responsive polymeric nanocarriers for on-demand
drug delivery.
Collapse
Affiliation(s)
- Xinyu He
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Xianzhu Yang
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Dongdong Li
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Ziyang Cao
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| |
Collapse
|
46
|
Liu B, Ma R, Zhao J, Zhao Y, Li L. A smart DNA nanodevice for ATP-activatable bioimaging and photodynamic therapy. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9764-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Tao N, Liu Y, Wu Y, Li X, Li J, Sun X, Chen S, Liu YN. Minimally Invasive Antitumor Therapy Using Biodegradable Nanocomposite Micellar Hydrogel with Functionalities of NIR-II Photothermal Ablation and Vascular Disruption. ACS APPLIED BIO MATERIALS 2020; 3:4531-4542. [DOI: 10.1021/acsabm.0c00465] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Na Tao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Yandi Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Yingjiao Wu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Xilong Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Juan Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Xiaoyi Sun
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Shu Chen
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, P.R. China
| | - You-Nian Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| |
Collapse
|
48
|
Gu W, Zhang T, Gao J, Wang Y, Li D, Zhao Z, Jiang B, Dong Z, Liu H. Albumin-bioinspired iridium oxide nanoplatform with high photothermal conversion efficiency for synergistic chemo-photothermal of osteosarcoma. Drug Deliv 2020; 26:918-927. [PMID: 31526064 PMCID: PMC6758616 DOI: 10.1080/10717544.2019.1662513] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Protein-based nanocarriers with inherent biocompatibility have been widely served as building blocks to construct versatile therapeutic nanoplatforms. Herein, bovine serum albumin-iridium oxide nanoparticles (denoted BSA-IrO2 NPs) are successfully synthesized via one-step biomineralization approach. The BSA-IrO2 NPs exhibits uniform size (40 nm), superb biocompatibility and high drug loading capacity for doxorubicin (27.4 wt%). Under near-infrared (NIR) laser irradiation, the as-prepared BSA-IrO2 NPs exhibited high photothermal conversion ability (54.3%) and good photostability. The in vitro drug release experiments displayed pH and NIR laser -triggered DOX release profiles, which could enhance the therapeutic anticancer effect. By utilizing this DOX loaded nanoplatform, effective synergistic chemo-photothermal therapy against human osteosarcoma can be realized, which has been systematically verified both in vitro and in vivo. Notably, in vivo pharmacokinetics studies showed that BSA-IrO2@DOX had prolonged blood circulation time due to the BSA component can improve the stealthiness of the nanoparticles during the blood circulation. Meanwhile, in vitro and in vivo toxicity studies demonstrated that the BSA-IrO2 NPs can act as biocompatible agents for drug delivery and cancer therapy. Therefore, this work presents a biomineralized iridium-based NPs with remarkable features and be used as a very potential therapeutic nanoplatform for cancer treatment.
Collapse
Affiliation(s)
- Wenguang Gu
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Tao Zhang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Junsheng Gao
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Yi Wang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Dejian Li
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center , Shanghai , China
| | - Ziwen Zhao
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Bo Jiang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Zhiwei Dong
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Hui Liu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University , Harbin , China
| |
Collapse
|
49
|
Emerging Trends in Nanotheranostics. Nanobiomedicine (Rij) 2020. [DOI: 10.1007/978-981-32-9898-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
50
|
Wu Y, Xu L, Qian J, Shi L, Su Y, Wang Y, Li D, Zhu X. Methotrexate–Mn2+ based nanoscale coordination polymers as a theranostic nanoplatform for MRI guided chemotherapy. Biomater Sci 2020; 8:712-719. [DOI: 10.1039/c9bm01584a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Methotrexate–Mn2+ based NCPs with uniform size and easy fabrication exhibited good MRI and excellent antitumor effects as a novel theranostic nanoplatform.
Collapse
Affiliation(s)
- Yan Wu
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai 200240
- PR China
| | - Li Xu
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- PR China
| | - Jiwen Qian
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- PR China
| | - Leilei Shi
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- PR China
| | - Yue Su
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- PR China
| | - Youfu Wang
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- PR China
| | - Dawei Li
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai 200240
- PR China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- PR China
| |
Collapse
|