1
|
Liu K, He Y, Yao Y, Zhang Y, Cai Z, Ru J, Zhang X, Jin X, Xu M, Li Y, Ma Q, Gao J, Lu F. Methoxy polyethylene glycol modification promotes adipogenesis by inducing the production of regulatory T cells in xenogeneic acellular adipose matrix. Mater Today Bio 2021; 12:100161. [PMID: 34870140 PMCID: PMC8626673 DOI: 10.1016/j.mtbio.2021.100161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/22/2022] Open
Abstract
Acellular adipose matrix (AAM) has emerged as an important biomaterial for adipose tissue regeneration. Current decellularization methods damage the bioactive components of the extracellular matrix (ECM), and the residual immunogenic antigens may induce adverse immune responses. Here, we adopted a modified decellularization method which can protect more bioactive components with less immune reaction by methoxy polyethylene glycol (mPEG). Then, we determined the adipogenic mechanisms of mPEG-modified AAM after xenogeneic transplantation. AAM transplantation caused significantly lesser adipogenesis in the wild-type group than in the immune-deficient group. The mPEG-modified AAM showed significantly lower immunogenicity and higher adipogenesis than the AAM alone after xenogeneic transplantation. Furthermore, mPEG modification increased regulatory T (Treg) cell numbers in the AAM grafts, which in turn enhanced the M2/M1 macrophage ratio by secreting IL-10, IL-13, and TGF-β1. These findings suggest that mPEG modification effectively reduces the immunogenicity of xenogeneic AAM and promotes adipogenesis in the AAM grafts. Hence, mPEG-modified AAM can serve as an ideal biomaterial for xenogeneic adipose tissue engineering.
Collapse
Affiliation(s)
- Kaiyang Liu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yunfan He
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yao Yao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yuchen Zhang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Zihan Cai
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jiangjiang Ru
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xiangdong Zhang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoxuan Jin
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Mimi Xu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yibao Li
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Qizhuan Ma
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jianhua Gao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
2
|
Yang X, Toyofuku WM, Scott MD. Differential Leukocyte MicroRNA Responses Following Pan T Cell, Allorecognition and Allosecretome-Based Therapeutic Activation. Arch Immunol Ther Exp (Warsz) 2021; 69:30. [PMID: 34677693 PMCID: PMC8536625 DOI: 10.1007/s00005-021-00634-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022]
Abstract
Effective immunomodulation of T-cell responses is critical in treating both autoimmune diseases and cancer. Our previous studies have demonstrated that secretomes derived from control or methoxypolyethylene glycol mixed lymphocyte alloactivation assays exerted potent immunomodulatory activity that was mediated by microRNAs (miRNA). The immunomodulatory effects of biomanufactured miRNA-based allo-secretome therapeutics (SYN, TA1, IA1 and IA2) were compared to Pan T-cell activators (PHA and anti-CD3/CD28) and lymphocyte alloactivation. The differential effects of these activation strategies on resting peripheral blood mononuclear cells (PBMC) were assessed via T-cell proliferation, subset analysis and miRNA expression profiles. Mitogen-induced PBMC proliferation (> 85%) significantly exceeded that arising from either allostimulation (~ 30%) or the pro-inflammatory IA1 secretome product (~ 12%). Consequent to stimulation, the ratio of CD4 to CD8 cells of the resting PBMC (CD4:CD8; 1.7 ± 0.1) decreased in the Pan T cell, allrecognition and IA1 activated cells (averages of 1.1 ± 0.2; 1.2 ± 0.1 and 1.0 ± 0.1). These changes arose consequent to the expansion of both CD4+CD8+ and CD4–CD8– populations as well as the shrinkage of the CD4 subset and the expansion of the CD8 T cells. Importantly, these activation strategies induced vastly different miRNA expression profiles which were associated with significant differences in cellular differentiation and biological function. These findings support the concept that the “differential patterns of miRNA expression” regulate the biologic immune response in a “lock and key” manner. The biomanufacturing of miRNA-enriched secretome biotherapeutics may be a successful therapeutic approach for the systemic treatment of autoimmune diseases (TA1) and cancer (IA1).
Collapse
Affiliation(s)
- Xining Yang
- Terry Fox Laboratory, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | - Wendy M Toyofuku
- University of British Columbia Centre for Blood Research, Vancouver, BC, V6T 1Z3, Canada.,Canadian Blood Services and the Centre for Blood Research, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Mark D Scott
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada. .,University of British Columbia Centre for Blood Research, Vancouver, BC, V6T 1Z3, Canada. .,Canadian Blood Services and the Centre for Blood Research, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
3
|
De Groot AS, Desai AK, Lelias S, Miah SMS, Terry FE, Khan S, Li C, Yi JS, Ardito M, Martin WD, Kishnani PS. Immune Tolerance-Adjusted Personalized Immunogenicity Prediction for Pompe Disease. Front Immunol 2021; 12:636731. [PMID: 34220802 PMCID: PMC8242953 DOI: 10.3389/fimmu.2021.636731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/20/2021] [Indexed: 11/13/2022] Open
Abstract
Infantile-onset Pompe disease (IOPD) is a glycogen storage disease caused by a deficiency of acid alpha-glucosidase (GAA). Treatment with recombinant human GAA (rhGAA, alglucosidase alfa) enzyme replacement therapy (ERT) significantly improves clinical outcomes; however, many IOPD children treated with rhGAA develop anti-drug antibodies (ADA) that render the therapy ineffective. Antibodies to rhGAA are driven by T cell responses to sequences in rhGAA that differ from the individuals' native GAA (nGAA). The goal of this study was to develop a tool for personalized immunogenicity risk assessment (PIMA) that quantifies T cell epitopes that differ between nGAA and rhGAA using information about an individual's native GAA gene and their HLA DR haplotype, and to use this information to predict the risk of developing ADA. Four versions of PIMA have been developed. They use EpiMatrix, a computational tool for T cell epitope identification, combined with an HLA-restricted epitope-specific scoring feature (iTEM), to assess ADA risk. One version of PIMA also integrates JanusMatrix, a Treg epitope prediction tool to identify putative immunomodulatory (regulatory) T cell epitopes in self-proteins. Using the JanusMatrix-adjusted version of PIMA in a logistic regression model with data from 48 cross-reactive immunological material (CRIM)-positive IOPD subjects, those with scores greater than 10 were 4-fold more likely to develop ADA (p<0.03) than those that had scores less than 10. We also confirmed the hypothesis that some GAA epitopes are immunomodulatory. Twenty-one epitopes were tested, of which four were determined to have an immunomodulatory effect on T effector response in vitro. The implementation of PIMA V3J on a secure-access website would allow clinicians to input the individual HLA DR haplotype of their IOPD patient and the GAA pathogenic variants associated with each GAA allele to calculate the patient's relative risk of developing ADA, enhancing clinical decision-making prior to initiating treatment with ERT. A better understanding of immunogenicity risk will allow the implementation of targeted immunomodulatory approaches in ERT-naïve settings, especially in CRIM-positive patients, which may in turn improve the overall clinical outcomes by minimizing the development of ADA. The PIMA approach may also be useful for other types of enzyme or factor replacement therapies.
Collapse
Affiliation(s)
- Anne S De Groot
- EpiVax, Inc., Providence, RI, United States.,Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Ankit K Desai
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | | | | | | | | | - Cindy Li
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - John S Yi
- Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | | | | | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
4
|
Kim M, Kim H, Lee YS, Lee S, Kim SE, Lee UJ, Jung S, Park CG, Hong J, Doh J, Lee DY, Kim BG, Hwang NS. Novel enzymatic cross-linking-based hydrogel nanofilm caging system on pancreatic β cell spheroid for long-term blood glucose regulation. SCIENCE ADVANCES 2021; 7:eabf7832. [PMID: 34162541 PMCID: PMC8221614 DOI: 10.1126/sciadv.abf7832] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/10/2021] [Indexed: 05/17/2023]
Abstract
Pancreatic β cell therapy for type 1 diabetes is limited by low cell survival rate owing to physical stress and aggressive host immune response. In this study, we demonstrate a multilayer hydrogel nanofilm caging strategy capable of protecting cells from high shear stress and reducing immune response by interfering cell-cell interaction. Hydrogel nanofilm is fabricated by monophenol-modified glycol chitosan and hyaluronic acid that cross-link each other to form a nanothin hydrogel film on the cell surface via tyrosinase-mediated reactions. Furthermore, hydrogel nanofilm formation was conducted on mouse β cell spheroids for the islet transplantation application. The cytoprotective effect against physical stress and the immune protective effect were evaluated. Last, caged mouse β cell spheroids were transplanted into the type 1 diabetes mouse model and successfully regulated its blood glucose level. Overall, our enzymatic cross-linking-based hydrogel nanofilm caging method will provide a new platform for clinical applications of cell-based therapies.
Collapse
Affiliation(s)
- Minji Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunbum Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Sun Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangjun Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Seong-Eun Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Uk-Jae Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungwon Jung
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Chung-Gyu Park
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Junsang Doh
- Department of Materials Science and Engineering, Research of Advanced Materials (RIAM), Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea
- BioMAX/N-Bio Institute, Institute of Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
- BioMAX/N-Bio Institute, Institute of Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
- BioMAX/N-Bio Institute, Institute of Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
5
|
De Groot AS, Rosenberg AS, Miah SMS, Skowron G, Roberts BJ, Lélias S, Terry FE, Martin WD. Identification of a potent regulatory T cell epitope in factor V that modulates CD4+ and CD8+ memory T cell responses. Clin Immunol 2021; 224:108661. [PMID: 33412295 DOI: 10.1016/j.clim.2020.108661] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023]
Abstract
Identification of T cell epitopes that are recognized by Tregs may elucidate the relative contributions of thymic Tregs and induced Tregs to control of autoimmune diseases and allergy. One such T regulatory cell epitope or 'Tregitope', derived from blood Factor V, is described here. Tregs responding to Tregitope FV621 are potent suppressors of CD4+ T effector responses to Tetanus Toxoid in an in vitro bystander suppression assay, strongly inhibit proliferation of effector CD8+ T cells, down-modulate CD86 and HLA DR on antigen-presenting cells, and enhance expression of granzyme B in Tregs. Tregitope FV621 also suppresses anti-OVA immune responses in vivo. The immunomodulatory effect of Tregitope FV621 is enhanced when conjugated to albumin, suggesting that the short half-life of Tregitope peptides can be prolonged. The in silico tools used to prospectively identify the FV Tregitope described here, when combined with in vitro /in vivo validating assays, may facilitate future Tregitope discoveries.
Collapse
Affiliation(s)
- Anne S De Groot
- EpiVax, Inc., Providence, RI, USA; Center for Vaccines and Immunology, University of Georgia, USA.
| | - Amy S Rosenberg
- Center for Drug Evaluation and Research, FDA, White Oak, MD, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Smith TA, Ghergherehchi CL, Mikesh M, Shores JT, Tucker HO, Bittner GD. Polyethylene glycol-fusion repair of sciatic allografts in female rats achieves immunotolerance via attenuated innate and adaptive responses. J Neurosci Res 2020; 98:2468-2495. [PMID: 32931034 DOI: 10.1002/jnr.24720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 07/31/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022]
Abstract
Ablation/segmental loss peripheral nerve injuries (PNIs) exhibit poor functional recovery due to slow and inaccurate outgrowth of regenerating axons. Viable peripheral nerve allografts (PNAs) as growth-guide conduits are immunologically rejected and all anucleated donor/host axonal segments undergo Wallerian degeneration. In contrast, we report that ablation-type sciatic PNIs repaired by neurorrhaphy of viable sciatic PNAs and a polyethylene glycol (PEG)-fusion protocol using PEG immediately restored axonal continuity for many axons, reinnervated/maintained their neuromuscular junctions, and prevented much Wallerian degeneration. PEG-fused PNAs permanently restored many sciatic-mediated behaviors within 2-6 weeks. PEG-fused PNAs were not rejected even though host/donors were neither immunosuppressed nor tissue-matched in outbred female Sprague Dawley rats. Innate and adaptive immune responses to PEG-fused sciatic PNAs were analyzed using electron microscopy, immunohistochemistry, and quantitative reverse transcription polymerase chain reaction for morphological features, T cell and macrophage infiltration, major histocompatibility complex (MHC) expression, apoptosis, expression of cytokines, chemokines, and cytotoxic effectors. PEG-fused PNAs exhibited attenuated innate and adaptive immune responses by 14-21 days postoperatively, as evidenced by (a) many axons and cells remaining viable, (b) significantly reduced infiltration of cytotoxic and total T cells and macrophages, (c) significantly reduced expression of inflammatory cytokines, chemokines, and MHC proteins, (d) consistently low apoptotic response. Morphologically and/or biochemically, PEG-fused sciatic PNAs often resembled sciatic autografts or intact sciatic nerves. In brief, PEG-fused PNAs are an unstudied, perhaps unique, example of immune tolerance of viable allograft tissue in a nonimmune-privileged environment and could greatly improve the clinical outcomes for PNIs relative to current protocols.
Collapse
Affiliation(s)
- Tyler A Smith
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | | | - Michelle Mikesh
- Department of Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - Jaimie T Shores
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Haley O Tucker
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - George D Bittner
- Department of Neuroscience, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
7
|
Liebrecht LK, Newton J, Martin EJ, Wickramaratne N, Jayaraman S, Han J, Aboutanos M, Brophy DF, Mangino MJ. Effects of a novel low volume resuscitation solutions on coagulation and platelet function. PLoS One 2019; 14:e0215386. [PMID: 31042735 PMCID: PMC6493729 DOI: 10.1371/journal.pone.0215386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/01/2019] [Indexed: 11/18/2022] Open
Abstract
Background Novel crystalloid solutions containing polyethylene glycol polymers (PEG-20k) produce dramatic resuscitation effects but dose-dependently produce a hypocoagulative state. The objective of this study was to examine possible mechanisms of this effect. Based on previous thromboelastography data, we hypothesize the effect is largely due to platelet interactions with the polymers. Methods Whole citrated blood from healthy volunteers was diluted ex-vivo 10% with crystalloids and tested for coagulation and platelet function. The specific tests included prothrombin time (PT), activated partial thromboplastin time (aPTT), fibrinogen and von Willebrand factor (vWf) activity, thrombin generation, thromboelastography with and without platelet mapping, platelet flow cytometry, and erythrocyte sedimentation rate. Findings Fibrinogen and vWF activities, PT, and aPTT were not affected by PEG-20k dilutions. Thrombin activity was mildly suppressed with PEG-20k (TTP- 20%). Platelet mapping demonstrated significantly greater % inhibition of both ADP and arachidonic acid-induced platelet aggregation with PEG-20k, but direct ADP-activated gpIIa/IIIb (PAC1) and P-selectin (CD62P) binding site expression was not altered. Mild dose-dependent suppression of TEG-MA was seen with PEG-20k using platelet poor plasma. Erythrocyte Sedimentation Rates (ESR) were dramatically accelerated after dilution with 10% PEG-20k, which was competitively blocked by smaller PEG polymers, suggesting nonspecific PEG-20k cell binding effects. Conclusions PEG-20k creates a mild hypocoagulative state in whole blood at concentrations ≥10%, which may be due to platelet-PEG interactions at the IIb/IIIa interface with lesser effects on fibrin polymerization. This interaction may cause a functional thrombasthenia induced by nonspecific platelet surface passivation by the PEG polymer.
Collapse
Affiliation(s)
- Loren K. Liebrecht
- Department of Surgery, Division of Acute Care Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, United States of America
| | - Jason Newton
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States of America
| | - Erika J. Martin
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University School of Pharmacy, Richmond, VA, United States of America
| | - Niluka Wickramaratne
- Department of Surgery, Division of Acute Care Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, United States of America
| | - Sudha Jayaraman
- Department of Surgery, Division of Acute Care Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, United States of America
| | - Jinfeng Han
- Department of Surgery, Division of Acute Care Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, United States of America
| | - Michel Aboutanos
- Department of Surgery, Division of Acute Care Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, United States of America
| | - Donald F. Brophy
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University School of Pharmacy, Richmond, VA, United States of America
| | - Martin J. Mangino
- Department of Surgery, Division of Acute Care Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, United States of America
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, United States of America
- Department of Emergency Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, United States of America
- * E-mail:
| |
Collapse
|
8
|
Yang X, Kang N, Toyofuku WM, Scott MD. Enhancing the pro-inflammatory anti-cancer T cell response via biomanufactured, secretome-based, immunotherapeutics. Immunobiology 2019; 224:270-284. [PMID: 30711357 DOI: 10.1016/j.imbio.2018.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/24/2022]
Abstract
T lymphocytes play a critical role in the pro-inflammatory anti-cancer response; hence, significant pharmacologic efforts have been made to enhance the endogenous T cell response. Unfortunately, significant toxicity arises consequent to pan T cell activation. In contrast, the less robust T cell alloresponse has also demonstrated an anti-cancer effect, but poses an inherent risk of GvHD. To overcome the GvHD risk, an acellular pro-inflammatory agent (IA1) has been biomanufactured from the secretome of the allorecognition response. To assess IA1's immunomodulatory activity, T cell proliferation and differentiation were determined in vitro. The pro-inflammatory properties of the IA1 therapeutic were mediated by the miRNA-enriched fractions. Moreover, cross-species efficacy was observed consequent to the evolutionary conservation of miRNA. IA1 exerted no toxicity to resting PBMC but induced significant proliferation of resting CD3+ (CD4+ and CD8+) T cells and skewed the response towards a pro-inflammatory state (i.e., increased Teff:Treg ratio). Crucially, IA1-activated PBMC demonstrated a potent inhibition of cancer cell (HeLa and SH-4 melanoma) proliferation relative to the resting PBMC. The anti-proliferation effect of IA1-activated PBMC was noted within ˜12 h versus 4-5 days for resting cells. A second biomanufactured therapeutic (IA2; produced using HeLa cells) surprisingly demonstrated direct toxicity to cancer cells but was less effective than IA1 in inducing a cell-mediated response. This study demonstrates that miRNA-enriched therapeutics can be biomanufactured from the secretome and can induce a potent pro-inflammatory, anti-cancer, effect on resting lymphocytes.
Collapse
Affiliation(s)
- Xining Yang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada; University of British Columbia Centre for Blood Research, Canada
| | - Ning Kang
- University of British Columbia Centre for Blood Research, Canada; Canadian Blood Services, Canada
| | - Wendy M Toyofuku
- University of British Columbia Centre for Blood Research, Canada; Canadian Blood Services, Canada
| | - Mark D Scott
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada; University of British Columbia Centre for Blood Research, Canada; Canadian Blood Services, Canada.
| |
Collapse
|
9
|
Modeling of inhomogeneous electromagnetic fields in the nervous system: a novel paradigm in understanding cell interactions, disease etiology and therapy. Sci Rep 2018; 8:12909. [PMID: 30150694 PMCID: PMC6110729 DOI: 10.1038/s41598-018-31054-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/10/2018] [Indexed: 12/23/2022] Open
Abstract
All major processes in the nervous system depend on interactions between cells and nerve fibers. In this work we present a novel model of inhomogeneous electromagnetic fields originating from nerve fibers and delineate their influence on cells. By expanding Hodgkin-Huxley's applied current into axial current, governed by[Formula: see text], we reveal that cell-with-neuron interactions are regulated by the strength of the electromagnetic fields, which are homogeneous up to 2.066 μm or 6.606 μm away from neurilemma and axolemma, respectively. At the nodes of Ranvier, these fields reach strengths of 3.0 × 10-12T, while at the myelinated segments they only peak at 2.3 × 10-12T. These are the same fields which are, due to inhomogeneity, detected as 1,000 times weaker by magnetoencephalography. Considering the widespread occurrence of neurodegenerative disorders, our model reveals that a 50% demyelination increases the field strength by 0.35 × 10-12T, while a complete demyelination increases it by 0.7 × 10-12T. Since this suggests that the inhomogeneous electromagnetic fields around neurons play a role in physiological and pathological processes, including cell-to-neuron and cell-to-cell communication, their improved understanding opens up new therapeutic strategies based on electromagnetic field modulation or cell's surface charge alteration.
Collapse
|
10
|
Interaction of drugs amlodipine and paroxetine with the metabolizing enzyme CYP2B4: a molecular dynamics simulation study. J Mol Model 2018; 24:67. [DOI: 10.1007/s00894-018-3617-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/08/2018] [Indexed: 12/26/2022]
|
11
|
Kang N, Guo Q, Islamzada E, Ma H, Scott MD. Microfluidic determination of lymphocyte vascular deformability: effects of intracellular complexity and early immune activation. Integr Biol (Camb) 2018; 10:207-217. [DOI: 10.1039/c7ib00191f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Despite the critical importance of mechanical (rheological + extrudability) deformability in the vascular flow of lymphocytes, it has been poorly investigated due to the limitations of existing technological tools.
Collapse
Affiliation(s)
- Ning Kang
- Centre for Innovation
- Canadian Blood Services
- Life Sciences Centre
- Vancouver
- Canada
| | - Quan Guo
- Department of Mechanical Engineering
- University of British Columbia
- Vancouver
- Canada
| | - Emel Islamzada
- Department of Mechanical Engineering
- University of British Columbia
- Vancouver
- Canada
| | - Hongshen Ma
- Centre for Innovation
- Canadian Blood Services
- Life Sciences Centre
- Vancouver
- Canada
| | - Mark D. Scott
- Centre for Innovation
- Canadian Blood Services
- Life Sciences Centre
- Vancouver
- Canada
| |
Collapse
|
12
|
Abbina S, Siren EMJ, Moon H, Kizhakkedathu JN. Surface Engineering for Cell-Based Therapies: Techniques for Manipulating Mammalian Cell Surfaces. ACS Biomater Sci Eng 2017; 4:3658-3677. [DOI: 10.1021/acsbiomaterials.7b00514] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Kang N, Toyofuku WM, Yang X, Scott MD. Inhibition of allogeneic cytotoxic T cell (CD8 +) proliferation via polymer-induced Treg (CD4 +) cells. Acta Biomater 2017; 57:146-155. [PMID: 28442414 DOI: 10.1016/j.actbio.2017.04.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/13/2017] [Accepted: 04/21/2017] [Indexed: 01/16/2023]
Abstract
T cell-mediated immune rejection remains a barrier to successful transplantation. Polymer-based bioengineering of cells may provide an effective means of preventing allorecognition and the proliferation of cytotoxic (CD8+) T lymphocytes (CTL). Using MHC-disparate murine splenocytes modified with succinimidyl valerate activated methoxypoly(ethylene glycol) [SVA-mPEG] polymers, the effects of leukocyte immunocamouflage on CD8+ and CD4+ alloproliferation and T regulatory (Treg) cell induction were assessed in a mixed lymphocyte reaction (MLR) model. Polymer-grafting effectively camouflaged multiple leukocyte markers (MHC class I and II, TCR and CD3) essential for effective allorecognition. Consequent to the polymer-induced immunocamouflage of the cell membrane, both CD8+ and CD4+ T cell alloproliferation were significantly inhibited in a polymer dose-dependent manner. The loss of alloproliferation correlated with the induction of Treg cells (CD4+CD25+Foxp3+). The Tregs, surprisingly, arose primarily via differentiation of naive, non-proliferating, CD4+ cells. Of biologic importance, the polymer-induced Treg were functional and exhibited potent immunosuppressive activity on allogeneic CTL proliferation. These results suggest that immunocamouflage-mediated attenuation of alloantigen-TCR recognition can prevent the tissue destructive allogeneic CD8+ T cell response, both directly and indirectly, through the generation/differentiation of functional Tregs. Immunocamouflage induced tolerance could be clinically valuable in attenuating T cell-mediated transplant rejection and in the treatment of autoimmune diseases. STATEMENT OF SIGNIFICANCE While our previous studies have demonstrated that polymer-grafting to MHC disparate leukocytes inhibits CD4+ cell proliferation, the effects of PEGylation on the alloproliferation of CD8+ cytotoxic T cells (CTL) was not examined. As shown here, PEGylation of allogeneic leukocytes prevents the generation of the CTL response responsible for acute rejection. The loss of CTL proliferation is consequent to the polymer-based attenuation of allorecognition and the induction of T regulatory cells (Tregs). Interestingly, the Tregs are primarily generated via the differentiation of non-proliferating naive T cells. Importantly, the Tregs are functional and effectively induce a tolerogenic environment when transferred to an alloresponsive environment. The use of polymer-modified leukocytes provides a unique approach to effectively maximize the biologic production of functional Tregs both in vitro and in vivo. By using this approach it may be possible to attenuate unwanted alloresponses (e.g., graft rejection) or to treat autoimmune diseases.
Collapse
Affiliation(s)
- Ning Kang
- Canadian Blood Services, Life Sciences Centre, University of British Columbia, 2350 Health Science Mall, Vancouver, BC V6T 1Z3, Canada; University of British Columbia Centre for Blood Research, Life Sciences Centre, University of British Columbia, 2350 Health Science Mall, Vancouver, BC V6T 1Z3, Canada.
| | - Wendy M Toyofuku
- Canadian Blood Services, Life Sciences Centre, University of British Columbia, 2350 Health Science Mall, Vancouver, BC V6T 1Z3, Canada; University of British Columbia Centre for Blood Research, Life Sciences Centre, University of British Columbia, 2350 Health Science Mall, Vancouver, BC V6T 1Z3, Canada.
| | - Xining Yang
- University of British Columbia Centre for Blood Research, Life Sciences Centre, University of British Columbia, 2350 Health Science Mall, Vancouver, BC V6T 1Z3, Canada; Department of Pathology and Laboratory Medicine, Life Sciences Centre, University of British Columbia, 2350 Health Science Mall, Vancouver, BC V6T 1Z3, Canada.
| | - Mark D Scott
- Canadian Blood Services, Life Sciences Centre, University of British Columbia, 2350 Health Science Mall, Vancouver, BC V6T 1Z3, Canada; University of British Columbia Centre for Blood Research, Life Sciences Centre, University of British Columbia, 2350 Health Science Mall, Vancouver, BC V6T 1Z3, Canada; Department of Pathology and Laboratory Medicine, Life Sciences Centre, University of British Columbia, 2350 Health Science Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
14
|
Yousefpour A, Modarress H, Goharpey F, Amjad-Iranagh S. Combination of anti-hypertensive drugs: a molecular dynamics simulation study. J Mol Model 2017; 23:158. [DOI: 10.1007/s00894-017-3333-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/27/2017] [Indexed: 01/03/2023]
|
15
|
Cell based therapeutics in type 1 diabetes mellitus. Int J Pharm 2017; 521:346-356. [DOI: 10.1016/j.ijpharm.2017.02.063] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 12/21/2022]
|
16
|
Le Y, Toyofuku WM, Scott MD. Immunogenicity of murine mPEG-red blood cells and the risk of anti-PEG antibodies in human blood donors. Exp Hematol 2016; 47:36-47.e2. [PMID: 27864153 DOI: 10.1016/j.exphem.2016.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/20/2016] [Accepted: 11/06/2016] [Indexed: 10/20/2022]
Abstract
The immunocamouflage of non-ABO blood group antigens by membrane-grafted methoxypoly(ethylene glycol) (mPEG) may attenuate the risk of red blood cell (RBC) alloimmunization. However, concerns have been raised over the immunogenic risk of PEG and PEG-RBCs. To assess this risk, murine and human studies were performed. Mice were exposed to soluble PEG prior to, or between, multiple transfusions (∼60-day intervals) of control or mPEG-RBCs, and cell survival was determined by flow cytometry. In some studies, the control and mPEG-RBC groups were reversed after one or more transfusions. Furthermore, human blood donors and commercial intravenous immunoglobulin products were examined to detect anti-PEG antibodies and to assess the risk for false positives. Naïve mice receiving chronic mPEG-RBC transfusions had normal RBC survival curves with no evidence of anti-PEG antibodies. Similarly, challenge with soluble PEG did not elicit anti-PEG antibodies in mice. Studies in humans revealed no evidence of a high prevalence of anti-PEG antibodies in either blood donors or commercial intravenous immunoglobulin. However, by use of the methods employed by studies identifying high levels of anti-PEG antibodies, a significant level (∼15%) of "false positives" were detected in commercial antibodies of known (non-PEG) specificities. These findings suggest that methodologic problems yielded a high rate of false positives in these earlier studies. These data continue to support the clinical utility of cellular PEGylation and the low immunogenic risk of grafted mPEG.
Collapse
Affiliation(s)
- Yevgeniya Le
- Canadian Blood Services, Vancouver, BC, Canada; Canadian Nuclear Laboratories, Chalk River, ON, Canada
| | - Wendy M Toyofuku
- Canadian Blood Services, Vancouver, BC, Canada; Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Mark D Scott
- Canadian Blood Services, Vancouver, BC, Canada; Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
17
|
Charan H, Kinzel J, Glebe U, Anand D, Garakani TM, Zhu L, Bocola M, Schwaneberg U, Böker A. Grafting PNIPAAm from β-barrel shaped transmembrane nanopores. Biomaterials 2016; 107:115-23. [PMID: 27614163 DOI: 10.1016/j.biomaterials.2016.08.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 02/08/2023]
Abstract
The research on protein-polymer conjugates by grafting from the surface of proteins has gained significant interest in the last decade. While there are many studies with globular proteins, membrane proteins have remained untouched to the best of our knowledge. In this study, we established the conjugate formation with a class of transmembrane proteins and grow polymer chains from the ferric hydroxamate uptake protein component A (FhuA; a β-barrel transmembrane protein of Escherichia coli). As the lysine residues of naturally occurring FhuA are distributed over the whole protein, FhuA was reengineered to have up to 11 lysines, distributed symmetrically in a rim on the membrane exposed side (outside) of the protein channel and exclusively above the hydrophobic region. Reengineering of FhuA ensures a polymer growth only on the outside of the β-barrel and prevents blockage of the channel as a result of the polymerization. A water-soluble initiator for controlled radical polymerization (CRP) was consecutively linked to the lysine residues of FhuA and N-isopropylacrylamide (NIPAAm) polymerized under copper-mediated CRP conditions. The conjugate formation was analyzed by using MALDI-ToF mass spectrometry, SDS-PAGE, circular dichroism spectroscopy, analytical ultracentrifugation, dynamic light scattering, transmission electron microscopy and size exclusion chromatography. Such conjugates combine the specific functions of the transmembrane proteins, like maintaining membrane potential gradients or translocation of substrates with the unique properties of synthetic polymers such as temperature and pH stimuli handles. FhuA-PNIPAAm conjugates will serve as functional nanosized building blocks for applications in targeted drug delivery, self-assembly systems, functional membranes and transmembrane protein gated nanoreactors.
Collapse
Affiliation(s)
- Himanshu Charan
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany; Lehrstuhl für Polymermaterialien und Polymertechnologie, Universität Potsdam, 14476, Potsdam-Golm, Germany
| | - Julia Kinzel
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074, Aachen, Germany
| | - Ulrich Glebe
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany
| | - Deepak Anand
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074, Aachen, Germany
| | - Tayebeh Mirzaei Garakani
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074, Aachen, Germany; DWI - Leibniz Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Leilei Zhu
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074, Aachen, Germany
| | - Marco Bocola
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074, Aachen, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074, Aachen, Germany; DWI - Leibniz Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52056, Aachen, Germany.
| | - Alexander Böker
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany; Lehrstuhl für Polymermaterialien und Polymertechnologie, Universität Potsdam, 14476, Potsdam-Golm, Germany.
| |
Collapse
|
18
|
The mechanism and modulation of complement activation on polymer grafted cells. Acta Biomater 2016; 31:252-263. [PMID: 26593783 DOI: 10.1016/j.actbio.2015.11.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/22/2015] [Accepted: 11/14/2015] [Indexed: 12/15/2022]
Abstract
Cell surface engineering using polymers is a promising approach to address unmet needs and adverse immune reactions in the fields of transfusion, transplantation, and cell-based therapies. Furthermore, cell surface modification may minimize or prevent adverse immune reactions to homologous incompatible cells as the interface between the host immune system and the cell surface is modified. In this report, we investigate the immune system reaction, precisely the complement binding and activation on cell surfaces modified with a functional polymer, hyperbranched polyglycerol (HPG). We used red blood cells (RBCs) as a model system to investigate the mechanism of complement activation on cell surfaces modified with various forms of HPG. Using a battery of in vitro assays including: traditional diagnostic hemolytic assays involving sheep and rabbit erythrocytes, ELISAs and flow cytometry, we show that HPG modified RBCs at certain concentrations and molecular weights activate complement via the alternative pathway. We show that by varying the grafting concentration, molecular weight and the number of cell surface reactive groups of HPG, the complement activity on the cell surface can be modulated. HPGs with molecular weights greater than 28kDa and grafting concentrations greater than 1.0mM, as well as a high degree of HPG functionalization with cell surface reactive groups result in the activation of the complement system via the alternative pathway. No complement activation observed when these threshold levels are not exceeded. These insights may have an impact on devising key strategies in developing novel next generation cell-surface engineered therapeutic products for applications in the fields of cell therapy, transfusion and drug delivery. STATEMENT OF SIGNIFICANCE Cell-surface engineering using functional polymers is a fast emerging area of research. Importantly modified cells are used in many experimental therapeutics, transplantation and in transfusion. The success of such therapies depend on the ability of modified products to avoid immune detection and subsequent rejection or removal. Polymer grafting has been shown to modulate immune response, however, there is limited knowledge available. Thus in this manuscript, we investigated the interaction of human complement, part of our innate immune system, by polymer modified cells. Our results provide important evidences on the mechanism of complement activation by the modified cells and also found ways to modulate the innate immune response. These results will have implications in development of next generation cell-based therapies.
Collapse
|
19
|
Li L, Noumsi GT, Kwok YYE, Moulds JM, Scott MD. Inhibition of phagocytic recognition of anti-D opsonized Rh D+ RBC by polymer-mediated immunocamouflage. Am J Hematol 2015; 90:1165-70. [PMID: 26440218 PMCID: PMC4738408 DOI: 10.1002/ajh.24211] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 11/23/2022]
Abstract
The Rh D antigen posed both a significant clinical risk and inventory supply issue in transfusion medicine. The successful development of the immunocamouflaged RBC has the potential to address both the risk of acute anti‐D transfusion reactions and to improve D− blood inventory in geographic locations where D− blood is rare (e.g., China). The immunocamouflage of RBC was mediated by the covalent grafting of methoxy(polyethylene glycol) to the cell membrane thereby obscuring the D protein from the immune system. To determine the potential efficacy of mPEG‐D+ RBC in D− recipients, anti‐D alloantibodies from previously alloimmunized individuals were utilized. The effects of polymer chain size (2–30 kDa) and grafting concentration (0–4 mM) on antibody binding and erythrophagocytosis were determined using the clinically validated monocyte monolayer assay (MMA) and flow cytometry. The immunocamouflage of D was polymer size and grafting concentration dependent as determined using human anti‐D alloantibodies (both pooled [RhoGAM] and single donors). Importantly, the 20 kDa polymer provided excellent immunocamouflage of D and reached a clinically significant level of protection, as measured by the MMA, at grafting concentrations of ≥1.5 mM. These findings further support the potential use of immunocamouflaged RBC to reduce the risk of acute transfusion reactions following administration of D+ blood to D− recipients in situations where D− units are unavailable or supply is geographically constrained. Am. J. Hematol. 90:1165–1170, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Li Li
- Canadian Blood Services; Ottawa Ontario Canada
- Centre for Blood Research; University of British Columbia; Vancouver British Columbia Canada
| | - Ghislain T. Noumsi
- LifeShare Blood Centers; Shreveport Louisiana
- Grifols ImmunoHematology Center; San Marcos Texas
| | - Yin Yu Eunice Kwok
- Centre for Blood Research; University of British Columbia; Vancouver British Columbia Canada
| | - Joann M. Moulds
- LifeShare Blood Centers; Shreveport Louisiana
- Grifols ImmunoHematology Center; San Marcos Texas
| | - Mark D. Scott
- Canadian Blood Services; Ottawa Ontario Canada
- Centre for Blood Research; University of British Columbia; Vancouver British Columbia Canada
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver British Columbia Canada
| |
Collapse
|