1
|
Wang Y, Li X, Wu X, Meng F, Li Z, Guo W, Gao Z, Zhu C, Peng Y. Functional poly(e-caprolactone)/SerMA hybrid dressings with dimethyloxalylglycine-releasing property improve cutaneous wound healing. Biomed Mater 2024; 19:065011. [PMID: 39208842 DOI: 10.1088/1748-605x/ad7563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Medical dressings with multifunctional properties, including potent regeneration capability and good biocompatibility, are increasingly needed in clinical practice. In this study, we reported a novel hybrid wound dressing (PCL/SerMA/DMOG) that combines electrospun PCL membranes with DMOG-loaded methacrylated sericin (SerMA) hydrogel. In such a design, DMOG molecules are released from the hybrid dressing in a sustained mannerin vitro. A series ofin vitroassays demonstrated that DMOG-loaded hybrid dressing has multiple biological functions, including promotion of human umbilical vein endothelial cells proliferation and migration,in vitrovascularization, and the generation of intracellular NO. When applied to the cutaneous wound, the PCL/SerMA/DMOG dressing significantly accelerated wound closure and tissue regeneration by promoting angiogenesis in the wound area, collagen deposition, and cell proliferation within the wound bed. These results highlight the potential clinical application of PCL/SerMA/DMOG hybrid dressings as promising alternatives for accelerating wound healing via improved biocompatibility and angiogenesis amelioration.
Collapse
Affiliation(s)
- Yajie Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Xinyi Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Xinyue Wu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Fei Meng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin 300050, People's Republic of China
| | - Ziming Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin 300050, People's Republic of China
| | - Wengeng Guo
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin 300050, People's Republic of China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin 300050, People's Republic of China
| | - Changjun Zhu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin 300050, People's Republic of China
| |
Collapse
|
2
|
Choudhury S, Madhu Krishna M, Sen D, Ghosh S, Basak P, Das A. 3D Porous Polymer Scaffold-Conjugated KGF-Mimetic Peptide Promotes Functional Skin Regeneration in Chronic Diabetic Wounds. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37418-37434. [PMID: 38980153 DOI: 10.1021/acsami.4c02633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The re-epithelialization process gets severely dysregulated in chronic nonhealing diabetic foot ulcers/wounds. Keratinocyte growth factor (KGF or FGF-7) is the major modulator of the re-epithelialization process, which regulates the physiological phenotypes of cutaneous keratinocytes. The existing therapeutic strategies of growth factor administration have several limitations. To overcome these, we have designed a KGF-mimetic peptide (KGFp, 13mer) based on the receptor interaction sites in murine KGF. KGFp enhanced migration and transdifferentiation of mouse bone marrow-derived MSCs toward keratinocyte-like cells (KLCs). A significant increase in the expression of skin-specific markers Bnc1 (28.5-fold), Ck5 (14.6-fold), Ck14 (26.1-fold), Ck10 (187.7-fold), and epithelial markers EpCam (23.3-fold) and Cdh1 (64.2-fold) was associated with the activation of ERK1/2 and STAT3 molecular signaling in the KLCs. Further, to enhance the stability of KGFp in the wound microenvironment, it was conjugated to biocompatible 3D porous polymer scaffolds without compromising its active binding sites followed by chemical characterization using Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, dynamic mechanical analysis, and thermogravimetry. In vitro evaluation of the KGFp-conjugated 3D polymer scaffolds revealed its potential for transdifferentiation of MSCs into KLCs. Transplantation of allogeneic MSCGFP using KGFp-conjugated 3D polymer scaffolds in chronic nonhealing type 2 diabetic wounds (db/db transgenic, 50-52 weeks old male mice) significantly enhanced re-epithelialization-mediated wound closure rate (79.3%) as compared to the control groups (Untransplanted -22.4%, MSCGFP-3D polymer scaffold -38.5%). Thus, KGFp-conjugated 3D porous polymer scaffolds drive the fate of the MSCs toward keratinocytes that may serve as potential stem cell delivery platform technology for tissue engineering and transplantation.
Collapse
Affiliation(s)
- Subholakshmi Choudhury
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Mangali Madhu Krishna
- Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
- Department of Polymers and Functional Materials, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India
| | - Debanjan Sen
- BCDA College of Pharmacy and Technology, Hridaypur, Kolkata 700127, West Bengal, India
| | - Subhash Ghosh
- Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
- Department of Organic Synthesis and Process Chemistry, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India
| | - Pratyay Basak
- Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
- Department of Polymers and Functional Materials, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India
| | - Amitava Das
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
3
|
Chawla S, Choudhury S, Das A. Bioengineered MSC GFPCxcr2-Mmp13 Transplantation Alleviates Hepatic Fibrosis by Regulating Mammalian Target of Rapamycin Signaling. Antioxid Redox Signal 2024; 41:110-137. [PMID: 38183635 DOI: 10.1089/ars.2023.0390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
Aims: Hepatic fibrosis is the pathological change during chronic liver diseases (CLD) that turns into cirrhosis if not reversed timely. Allogenic mesenchymal stem cell (MSC) therapy is an alternative to liver transplantation for CLD. However, poor engraftment of the transplanted MSCs limits their therapeutic efficacy. MSCs express chemokine receptors that regulate their physiology. We observed several-fold increased expressions of Cxcl3 and decreased expression of Mmp13 in the fibrotic liver. Therefore, we bioengineered MSCs with stable overexpression of Cxcr2 (CXCL3-cognate receptor) and Mmp13, collagenase (MSCGFPCxcr2-Mmp13). Results: The CXCL3/CXCR2 axis significantly increased migration through the activation of AKT/ERK/mTOR signaling. These bioengineered MSCs transdifferentiated into hepatocyte-like cells (MSCGFPCxcr2-Mmp13-HLCs) that endured the drug-/hepatotoxicant-induced toxicity by significantly increasing the antioxidants-Nrf2 and Sod2, while decreasing the apoptosis-Cyt C, Casp3, Casp9, and drug-metabolizing enzyme-Cyp1A1, Cyp1A2, Cyp2E1 markers. Therapeutic transplantation of MSCGFPCxcr2-Mmp13 abrogated AAP-/CCl4-induced hepatic fibrosis in mice by CXCR2-mediated targeted engraftment and MMP-13-mediated reduction in collagen. Mechanistically, induction of CXCL3/CXCR2 axis-activated mTOR-p70S6K signaling led to increased targeted engraftment and modulation of the oxidative stress by increasing the expression and activity of nuclear Nrf2 and SOD2 expression in the regenerated hepatic tissues. A marked change in the fate of transplanted MSCGFPCxcr2-Mmp13 toward hepatocyte lineage demonstrated by co-immunostaining of GFP/HNF4α along with reduced COL1α1 facilitated the regeneration of the fibrotic liver. Innovation and Conclusions: Our study suggests the therapeutic role of allogenic Cxcr2/Mmp13-bioengineered MSC transplantation decreases the hepatic oxidative stress as an effective translational therapy for hepatic fibrosis mitigation-mediated liver regeneration.
Collapse
Affiliation(s)
- Shilpa Chawla
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Subholakshmi Choudhury
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Amitava Das
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Ye S, Jin N, Liu N, Cheng F, Hu L, Zhang G, Li Q, Jing J. Gases and gas-releasing materials for the treatment of chronic diabetic wounds. Biomater Sci 2024; 12:3273-3292. [PMID: 38727636 DOI: 10.1039/d4bm00351a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Chronic non-healing wounds are a common consequence of skin ulceration in diabetic patients, with severe cases such as diabetic foot even leading to amputations. The interplay between pathological factors like hypoxia-ischemia, chronic inflammation, bacterial infection, impaired angiogenesis, and accumulation of advanced glycosylation end products (AGEs), resulting from the dysregulation of the immune microenvironment caused by hyperglycemia, establishes an unending cycle that hampers wound healing. However, there remains a dearth of sufficient and effective approaches to break this vicious cycle within the complex immune microenvironment. Consequently, numerous scholars have directed their research efforts towards addressing chronic diabetic wound repair. In recent years, gases including Oxygen (O2), Nitric oxide (NO), Hydrogen (H2), Hydrogen sulfide (H2S), Ozone (O3), Carbon monoxide (CO) and Nitrous oxide (N2O), along with gas-releasing materials associated with them have emerged as promising therapeutic solutions due to their ability to regulate angiogenesis, intracellular oxygenation levels, exhibit antibacterial and anti-inflammatory effects while effectively minimizing drug residue-induced damage and circumventing drug resistance issues. In this review, we discuss the latest advances in the mechanisms of action and treatment of these gases and related gas-releasing materials in diabetic wound repair. We hope that this review can provide different ideas for the future design and application of gas therapy for chronic diabetic wounds.
Collapse
Affiliation(s)
- Shuming Ye
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Neng Jin
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Nan Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Feixiang Cheng
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Liang Hu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Guiyang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| | - Qi Li
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Juehua Jing
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
5
|
Hu XQ, Zhu JZ, Hao Z, Tang L, Sun J, Sun WR, Hu J, Wang PY, Basmadji NP, Pedraz JL, Vairo C, Lafuente EG, Ramalingam M, Xie S, Wang R. Renewable Electroconductive Hydrogels for Accelerated Diabetic Wound Healing and Motion Monitoring. Biomacromolecules 2024; 25:3566-3582. [PMID: 38780026 DOI: 10.1021/acs.biomac.4c00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Diabetic foot ulcers (DFUs), a prevalent complication of diabetes mellitus, may result in an amputation. Natural and renewable hydrogels are desirable materials for DFU dressings due to their outstanding biosafety and degradability. However, most hydrogels are usually only used for wound repair and cannot be employed to monitor motion because of their inherent poor mechanical properties and electrical conductivity. Given that proper wound stretching is beneficial for wound healing, the development of natural hydrogel patches integrated with wound repair properties and motion monitoring was expected to achieve efficient and accurate wound healing. Here, we designed a dual-network (chitosan and sodium alginate) hydrogel embedded with lignin-Ag and quercetin-melanin nanoparticles to achieve efficient wound healing and motion monitoring. The double network formed by the covalent bond and electrostatic interaction confers the hydrogel with superior mechanical properties. Instead of the usual chemical reagents, genipin extracted from Gardenia was used as a cross-linking agent for the hydrogel and consequently improved its biosafety. Furthermore, the incorporation of lignin-Ag nanoparticles greatly enhanced the mechanical strength, antibacterial efficacy, and conductivity of the hydrogel. The electrical conductivity of hydrogels gives them the capability of motion monitoring. The motion sensing mechanism is that stretching of the hydrogel induced by motion changes the conductivity of the hydrogel, thus converting the motion into an electrical signal. Meanwhile, quercetin-melanin nanoparticles confer exceptional adhesion, antioxidant, and anti-inflammatory properties to the hydrogels. The system ultimately achieved excellent wound repair and motion monitoring performance and was expected to be used for stretch-assisted safe and accurate wound repair in the future.
Collapse
Affiliation(s)
- Xiao Qian Hu
- Institute of Rehabilitation Medicine, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 264000, People's Republic of China
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Jia Zhi Zhu
- Institute of Rehabilitation Medicine, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Zhaokun Hao
- Institute of Rehabilitation Medicine, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Letian Tang
- Institute of Rehabilitation Medicine, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Jian Sun
- Institute of Rehabilitation Medicine, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Wan Ru Sun
- Institute of Rehabilitation Medicine, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Jiaxiang Hu
- Institute of Rehabilitation Medicine, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Ping Yu Wang
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Nicola Paccione Basmadji
- NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - José Luis Pedraz
- NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Claudia Vairo
- BIOSASUN S.A., Ctra. Allo-Arroniz Km1, Navarra 31263, Spain
| | | | - Murugan Ramalingam
- NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma Development, A Joint Venture of TECNALIA and University of the Basque Country, Centro de investigación Lascaray ikergunea, 01006 Vitoria-Gasteiz, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Shuyang Xie
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 264000, People's Republic of China
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Ranran Wang
- Institute of Rehabilitation Medicine, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
| |
Collapse
|
6
|
Choudhury S, Dhoke NR, Chawla S, Das A. Bioengineered MSC Cxcr2 transdifferentiated keratinocyte-like cell-derived organoid potentiates skin regeneration through ERK1/2 and STAT3 signaling in diabetic wound. Cell Mol Life Sci 2024; 81:172. [PMID: 38597972 PMCID: PMC11006766 DOI: 10.1007/s00018-023-05057-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 04/11/2024]
Abstract
Skin regeneration is severely compromised in diabetic foot ulcers. Allogeneic mesenchymal stem cell (MSC) transplantation is limited due to the poor engraftment, mitogenic, and differentiation potential in the harsh wound microenvironment. Thus, to improve the efficacy of cell therapy, the chemokine receptor Cxcr2 was overexpressed in MSCs (MSCCxcr2). CXCL2/CXCR2 axis induction led to the enhanced proliferation of MSCs through the activation of STAT3 and ERK1/2 signaling. Transcriptional upregulation of FGFR2IIIb (KGF Receptor) promoter by the activated STAT3 and ERK1/2 suggested trans-differentiation of MSCs into keratinocytes. These stable MSCCxcr2 in 2D and 3D (spheroid) cell cultures efficiently transdifferentiated into keratinocyte-like cells (KLCs). An in vivo therapeutic potential of MSCCxcr2 transplantation and its keratinocyte-specific cell fate was observed by accelerated skin tissue regeneration in an excisional splinting wound healing murine model of streptozotocin-induced type 1 diabetes. Finally, 3D skin organoids generated using MSCCxcr2-derived KLCs upon grafting in a relatively avascular and non-healing wounds of type 2 diabetic db/db transgenic old mice resulted in a significant enhancement in the rate of wound closure by increased epithelialization (epidermal layer) and endothelialization (dermal layer). Our findings emphasize the therapeutic role of the CXCL2/CXCR2 axis in inducing trans-differentiation of the MSCs toward KLCs through the activation of ERK1/2 and STAT3 signaling and enhanced skin regeneration potential of 3D organoids grafting in chronic diabetic wounds.
Collapse
Affiliation(s)
- Subholakshmi Choudhury
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, 500007, TS, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Neha R Dhoke
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, 500007, TS, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shilpa Chawla
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, 500007, TS, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amitava Das
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, 500007, TS, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Kar T, Dugam P, Shivhare S, Shetty SR, Choudhury S, Sen D, Deb B, Majumdar S, Debnath S, Das A. Epidermal growth factor receptor inhibition potentiates chemotherapeutics-mediated sensitization of metastatic breast cancer stem cells. Cancer Rep (Hoboken) 2024; 7:e2049. [PMID: 38522013 PMCID: PMC10961089 DOI: 10.1002/cnr2.2049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/19/2024] [Accepted: 03/05/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Metastasis has been a cause of the poor prognosis and cancer relapse of triple-negative breast cancer (TNBC) patients. The metastatic nature of TNBC is contributed by the breast cancer stem cells (CSCs) which have been implicated in tumorigenesis. Higher expression of epidermal growth factor receptor (EGFR) in breast CSCs has been used as a molecular target for breast cancer therapeutics. Thus, it necessitates the design and generation of efficacious EGFR inhibitors to target the downstream signaling associated with the cellular proliferation and tumorigenesis of breast cancer. AIM To generate efficacious EGFR inhibitors that can potentiate the chemotherapeutic-mediated mitigation of breast cancer tumorigenesis. METHODS AND RESULTS We identified small molecule EGFR inhibitors using molecular docking studies. In-vitro screening of the compounds was undertaken to identify the cytotoxicity profile of the small-molecule EGFR inhibitors followed by evaluation of the non-cytotoxic compounds in modulating the doxorubicin-induced migration, in-vitro tumorigenesis potential, and their effect on the pro-apoptotic genes' and protein markers' expression in TNBC cells. Compound 1e potentiated the doxorubicin-mediated inhibitory effect on proliferation, migration, in-vitro tumorigenesis capacity, and induction of apoptosis in MDA-MB-231 cells, and in the sorted CD24+-breast cancer cells and CD24-/CD44+-breast CSC populations. Orthotopic xenotransplantation of the breast CSCs-induced tumors in C57BL/6J mice was significantly inhibited by the low dose of Doxorubicin in the presence of compound 1e as depicted by molecular and immunohistochemical analysis. CONCLUSION Thus, the study suggests that EGFR inhibition-mediated sensitization of the aggressive and metastatic breast CSCs in TNBCs toward chemotherapeutics may reduce the relapse of the disease.
Collapse
Affiliation(s)
- Trisha Kar
- Department of Applied BiologyCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Technology (CSIR‐IICT)HyderabadTelanganaIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Prachi Dugam
- Department of Applied BiologyCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Technology (CSIR‐IICT)HyderabadTelanganaIndia
| | - Surbhi Shivhare
- Department of Applied BiologyCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Technology (CSIR‐IICT)HyderabadTelanganaIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Swathi R. Shetty
- Department of Applied BiologyCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Technology (CSIR‐IICT)HyderabadTelanganaIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Subholakshmi Choudhury
- Department of Applied BiologyCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Technology (CSIR‐IICT)HyderabadTelanganaIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Debanjan Sen
- Department of Pharmaceutical ChemistryBCDA College of Pharmacy and TechnologyKolkataWest BengalIndia
| | - Barnali Deb
- Department of ChemistryTripura UniversityAgartalaTripuraIndia
| | - Swapan Majumdar
- Department of ChemistryTripura UniversityAgartalaTripuraIndia
| | - Sudhan Debnath
- Department of ChemistryNetaji Subhash MahavidyalayaUdaipurTripuraIndia
| | - Amitava Das
- Department of Applied BiologyCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Technology (CSIR‐IICT)HyderabadTelanganaIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| |
Collapse
|
8
|
Mekala S, Sukumar G, Chawla S, Geesala R, Prashanth J, Reddy BJM, Mainkar P, Das A. Therapeutic Potential of Benzimidazoisoquinoline Derivatives in Alleviating Murine Hepatic Fibrosis. Chem Biodivers 2024; 21:e202301429. [PMID: 38221801 DOI: 10.1002/cbdv.202301429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Short Title: Benzimidazoisoquinoline derivatives as potent antifibrotics Hepatic fibrosis is a pathological condition of liver disease with an increasing number of cases worldwide. Therapeutic strategies are warranted to target the activated hepatic stellate cells (HSCs), the collagen-producing cells, an effective strategy for controlling the disease progression. Benzimidazoisoquinoline derivatives were synthesized as hybrid molecules by the combination of benzimidazoles and isoquinolines to evaluate their anti-fibrotic potential using an in-vitro and in-vivo model of hepatic fibrosis. A small library of benzimidazoisoquinoline derivatives (1-17 and 18-21) was synthesized from 2-aryl benzimidazole and acetylene functionalities through C-H and N-H activation. Compounds (10 and its recently synthesized derivatives 18-21) depicted a significant decrease in PDGF-BB and/or TGFβ-induced proliferation (1.7-1.9 -fold), migration (3.5-5.0 -fold), and fibrosis-related gene expressions in HSCs. These compounds could revert the hepatic damage caused by chronic exposure to hepatotoxicants, ethanol, and/or carbon tetrachloride as evident from the histological, biochemical, and molecular analysis. Anti-fibrotic effect of the compounds was supported by the decrease in the malondialdehyde level, collagen deposition, and gene expression levels of fibrosis-related markers such as α-SMA, COL1α1, PDGFRβ, and TGFRIIβ in the preclinical models of hepatic fibrosis. In conclusion, the synthesized benzimidazoisoquinoline derivatives (compounds 18, 19, 20, and 21) possess anti-fibrotic therapeutic potential against liver fibrosis.
Collapse
Affiliation(s)
- Sowmya Mekala
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500 007, INDIA
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
| | - Genji Sukumar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500007, INDIA
- Department of Chemistry, Adikavi Nannaya University, Rajamahendravaram, AP-533 296, INDIA
| | - Shilpa Chawla
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500 007, INDIA
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
| | - Ramasatyaveni Geesala
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500 007, INDIA
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
| | - Jupally Prashanth
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
- Centre for X-ray Crystallography, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500 007, INDIA
| | - B Jagan Mohan Reddy
- Department of Chemistry, Adikavi Nannaya University, Rajamahendravaram, AP-533 296, INDIA
| | - Prathama Mainkar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500007, INDIA
| | - Amitava Das
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500 007, INDIA
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
| |
Collapse
|
9
|
Wu M, Zhao Y, Tao M, Fu M, Wang Y, Liu Q, Lu Z, Guo J. Malate-Based Biodegradable Scaffolds Activate Cellular Energetic Metabolism for Accelerated Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50836-50853. [PMID: 37903387 DOI: 10.1021/acsami.3c09394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
The latest advancements in cellular bioenergetics have revealed the potential of transferring chemical energy to biological energy for therapeutic applications. Despite efforts, a three-dimensional (3D) scaffold that can induce long-term bioenergetic effects and facilitate tissue regeneration remains a big challenge. Herein, the cellular energetic metabolism promotion ability of l-malate, an important intermediate of the tricarboxylic acid (TCA) cycle, was proved, and a series of bioenergetic porous scaffolds were fabricated by synthesizing poly(diol l-malate) (PDoM) prepolymers via a facial one-pot polycondensation of l-malic acid and aliphatic diols, followed by scaffold fabrication and thermal-cross-linking. The degradation products of the developed PDoM scaffolds can regulate the metabolic microenvironment by entering mitochondria and participating in the TCA cycle to elevate intracellular adenosine triphosphate (ATP) levels, thus promoting the cellular biosynthesis, including the production of collagen type I (Col1a1), fibronectin 1 (Fn1), and actin alpha 2 (Acta2/α-Sma). The porous PDoM scaffold was demonstrated to support the growth of the cocultured mesenchymal stem cells (MSCs) and promote their secretion of bioactive molecules [such as vascular endothelial growth factor (VEGF), transforming growth factor-β1 (TGF-β1), and basic fibroblast growth factor (bFGF)], and this stem cells-laden scaffold architecture was proved to accelerate wound healing in a critical full-thickness skin defect model on rats.
Collapse
Affiliation(s)
- Min Wu
- Department of Histology and Embryology, GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yitao Zhao
- Department of Histology and Embryology, GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Meihan Tao
- Department of Histology and Embryology, GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Meimei Fu
- Department of Histology and Embryology, GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yue Wang
- Department of Histology and Embryology, GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Qi Liu
- Regenerative Medicine and Tissue Repair Research Center, Huangpu Institute of Materials, Guangzhou 511363, P. R. China
| | - Zhihui Lu
- Department of Histology and Embryology, GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
- Regenerative Medicine and Tissue Repair Research Center, Huangpu Institute of Materials, Guangzhou 511363, P. R. China
| | - Jinshan Guo
- Department of Histology and Embryology, GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| |
Collapse
|
10
|
Shivhare S, Choudhury S, Singh D, Das A. ZEB1 potentiates chemoresistance in breast cancer stem cells by evading apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119528. [PMID: 37356459 DOI: 10.1016/j.bbamcr.2023.119528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
Chemoresistance renders a challenge to the clinics to treat breast cancer patients. Current treatment strategies are effective in mitigating tumor growth but remain largely ineffective against cancer-initiating cells or breast Cancer Stem Cells (CSCs). Epithelial-to-mesenchymal-transition (EMT) regulates breast CSC physiology. Zinc finger E-box binding homeobox 1 (ZEB1) is a key EMT-transcription factor that regulates breast CSC - differentiation and metastasis. However, its potential role in modulating tumor chemoresistance has not yet been fully understood. In-silico analysis revealed a higher ZEB1 expression in breast cancer patients that leads to decreased overall and relapse-free survival. We generated sorted breast CSC with stable ZEB1 overexpression (CD24-/CD44+GFP-ZEB1) and/or silencing (CD24-/CD44+ZEB1 shRNA) as well as breast cancer cells with stable ZEB1 overexpression (CD24+GFP-ZEB1) and/or silencing (CD24+ZEB1 shRNA). An increased colony-forming efficiency and doxorubicin accumulation correlated with decreased promoter activity and expression profile of ABCC1 drug-efflux ABC transporter in CD24-/CD44+GFP-ZEB1. Additionally, CD24-/CD44+GFP-ZEB1 demonstrated doxorubicin-induced higher anti-apoptotic and lower pro-apoptotic protein expressions in the mitochondrial and cytosolic fractions. Chemoresistant CD24-/CD44+GFP-ZEB1 cells depicted 1000-fold higher IC-50 values of doxorubicin and decreased activation of JNK-p38 stress kinase molecular signaling-dependent mammosphere forming efficiency to evade apoptosis. Thus, ZEB1 and its downstream effectors are plausible therapeutic targets for the mitigation of breast cancer chemoresistance in patients.
Collapse
Affiliation(s)
- Surbhi Shivhare
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500 007, TS, India; Academy of Scientific and Innovative Research, Ghaziabad, UP 201 002, India
| | - Subholakshmi Choudhury
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500 007, TS, India; Academy of Scientific and Innovative Research, Ghaziabad, UP 201 002, India
| | - Digvijay Singh
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500 007, TS, India; Academy of Scientific and Innovative Research, Ghaziabad, UP 201 002, India
| | - Amitava Das
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500 007, TS, India; Academy of Scientific and Innovative Research, Ghaziabad, UP 201 002, India.
| |
Collapse
|
11
|
Chinnasami H, Dey MK, Devireddy R. Three-Dimensional Scaffolds for Bone Tissue Engineering. Bioengineering (Basel) 2023; 10:759. [PMID: 37508786 PMCID: PMC10376773 DOI: 10.3390/bioengineering10070759] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Immobilization using external or internal splints is a standard and effective procedure to treat minor skeletal fractures. In the case of major skeletal defects caused by extreme trauma, infectious diseases or tumors, the surgical implantation of a bone graft from external sources is required for a complete cure. Practical disadvantages, such as the risk of immune rejection and infection at the implant site, are high in xenografts and allografts. Currently, an autograft from the iliac crest of a patient is considered the "gold standard" method for treating large-scale skeletal defects. However, this method is not an ideal solution due to its limited availability and significant reports of morbidity in the harvest site (30%) as well as the implanted site (5-35%). Tissue-engineered bone grafts aim to create a mechanically strong, biologically viable and degradable bone graft by combining a three-dimensional porous scaffold with osteoblast or progenitor cells. The materials used for such tissue-engineered bone grafts can be broadly divided into ceramic materials (calcium phosphates) and biocompatible/bioactive synthetic polymers. This review summarizes the types of materials used to make scaffolds for cryo-preservable tissue-engineered bone grafts as well as the distinct methods adopted to create the scaffolds, including traditional scaffold fabrication methods (solvent-casting, gas-foaming, electrospinning, thermally induced phase separation) and more recent fabrication methods (fused deposition molding, stereolithography, selective laser sintering, Inkjet 3D printing, laser-assisted bioprinting and 3D bioprinting). This is followed by a short summation of the current osteochondrogenic models along with the required scaffold mechanical properties for in vivo applications. We then present a few results of the effects of freezing and thawing on the structural and mechanical integrity of PLLA scaffolds prepared by the thermally induced phase separation method and conclude this review article by summarizing the current regulatory requirements for tissue-engineered products.
Collapse
Affiliation(s)
| | | | - Ram Devireddy
- Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; (H.C.)
| |
Collapse
|
12
|
Xu N, Gao Y, Li Z, Chen Y, Liu M, Jia J, Zeng R, Luo G, Li J, Yu Y. Immunoregulatory hydrogel decorated with Tannic acid/Ferric ion accelerates diabetic wound healing via regulating Macrophage polarization. CHEMICAL ENGINEERING JOURNAL 2023; 466:143173. [DOI: 10.1016/j.cej.2023.143173] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Liu H, Yang R, Zhao S, Zhou F, Liu Y, Zhou Z, Chen L, Xie J. Collagen scaffolds derived from bovine skin loaded with MSC optimized M1 macrophages remodeling and chronic diabetic wounds healing. Bioeng Transl Med 2023; 8:e10467. [PMID: 37206210 PMCID: PMC10189465 DOI: 10.1002/btm2.10467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/25/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Owing to the persistent inflammatory microenvironment and unsubstantial dermal tissues, chronic diabetic wounds do not heal easily and their recurrence rate is high. Therefore, a dermal substitute that can induce rapid tissue regeneration and inhibit scar formation is urgently required to address this concern. In this study, we established biologically active dermal substitutes (BADS) by combining novel animal tissue-derived collagen dermal-replacement scaffolds (CDRS) and bone marrow mesenchymal stem cells (BMSCs) for the healing and recurrence treatments of chronic diabetic wounds. The collagen scaffolds derived from bovine skin (CBS) displayed good physicochemical properties and superior biocompatibility. CBS loaded with BMSCs (CBS-MCSs) could inhibit M1 macrophage polarization in vitro. Decreased MMP-9 and increased Col3 at the protein level were detected in CBS-MSCs-treated M1 macrophages, which may be attributed to the suppression of the TNF-α/NF-κB signaling pathway (downregulating phospho-IKKα/β/total IKKα/β, phospho-IκB/total IκB, and phospho-NFκB/total NFκB) in M1 macrophages. Moreover, CBS-MSCs could benefit the transformation of M1 (downregulating iNOS) to M2 (upregulating CD206) macrophages. Wound-healing evaluations demonstrated that CBS-MSCs regulated the polarization of macrophages and the balance of inflammatory factors (pro-inflammatory: IL-1β, TNF-α, and MMP-9; anti-inflammatory: IL-10 and TGF-β3) in db/db mice. Furthermore, CBS-MSCs facilitated the noncontractile and re-epithelialized processes, granulation tissue regeneration, and neovascularization of chronic diabetic wounds. Thus, CBS-MSCs have a potential value for clinical application in promoting the healing of chronic diabetic wounds and preventing the recurrence of ulcers.
Collapse
Affiliation(s)
- Hengdeng Liu
- Department of Burns, Laboratory of General SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of ProductsSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Institute of Precision Medicine, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Ronghua Yang
- Department of Burn and Plastic SurgeryGuangzhou First People's Hospital, South China University of TechnologyGuangzhouGuangdongChina
| | - Shixin Zhao
- Department of Burns, Laboratory of General SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of ProductsSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Institute of Precision Medicine, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Fei Zhou
- Department of Burns, Laboratory of General SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of ProductsSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Institute of Precision Medicine, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Yiling Liu
- Department of Burns, Laboratory of General SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of ProductsSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Institute of Precision Medicine, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Ziheng Zhou
- Department of Burns, Laboratory of General SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of ProductsSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Institute of Precision Medicine, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Lei Chen
- Department of Burns, Laboratory of General SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of ProductsSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Institute of Precision Medicine, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Julin Xie
- Department of Burns, Laboratory of General SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of ProductsSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Institute of Precision Medicine, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
| |
Collapse
|
14
|
Daniele E, Bosio L, Hussain NA, Ferrari B, Ferrari S, Barbaro V, McArdle B, Rassu N, Mura M, Parmeggiani F, Ponzin D. Denuded Descemet's membrane supports human embryonic stem cell-derived retinal pigment epithelial cell culture. PLoS One 2023; 18:e0281404. [PMID: 36745611 PMCID: PMC9901769 DOI: 10.1371/journal.pone.0281404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/22/2023] [Indexed: 02/07/2023] Open
Abstract
Recent clinical studies suggest that retinal pigment epithelial (RPE) cell replacement therapy may preserve vision in retinal degenerative diseases. Scaffold-based methods are being tested in ongoing clinical trials for delivering pluripotent-derived RPE cells to the back of the eye. The aim of this study was to investigate human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cells survival and behaviour on a decellularized Descemet's Membrane (DM), which may be of clinical relevance in retinal transplantation. DMs were isolated from human donor corneas and treated with thermolysin. The DM surface topology and the efficiency of the denudation method were evaluated by atomic force microscope, scanning electron microscopy and histology. hESC-RPE cells were seeded onto the endothelial-side surface of decellularized DM in order to determine the potential of the membrane to support hESC-RPE cell culture, alongside maintaining their viability. Integrity of the hESC-RPE monolayer was assessed by measuring transepithelial resistance. RPE-specific gene expression and growth factors secretion were assessed to confirm maturation and functionality of the cells over the new substrate. Thermolysin treatment did not affect the integrity of the tissue, thus ensuring a reliable method to standardize the preparation of decellularized DM. 24 hours post-seeding, hESC-RPE cell attachment and initial proliferation rate over the denuded DM were higher than hESC-RPE cells cultured on tissue culture inserts. On the new matrix, hESC-RPE cells succeeded in forming an intact monolayer with mature tight junctions. The resulting cell culture showed characteristic RPE cell morphology and proper protein localization. Gene expression analysis and VEGF secretion demonstrate DM provides supportive scaffolding and inductive properties to enhance hESC-RPE cells maturation. Decellularized DM was shown to be capable of sustaining hESC-RPE cells culture, thus confirming to be potentially a suitable candidate for retinal cell therapy.
Collapse
Affiliation(s)
- Elena Daniele
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Veneto Eye Bank Foundation, Venice, Italy
- * E-mail:
| | | | - Noor Ahmed Hussain
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | | | | | - Brian McArdle
- The Eye-Bank for Sight Restoration, Inc., New York City, New York, United States of America
| | - Nicolò Rassu
- Ophthalmic Unit, Ospedale dell’Angelo, Venice, Italy
| | - Marco Mura
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Francesco Parmeggiani
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- ERN-EYE Network - Center for Retinitis Pigmentosa of Veneto Region, Camposampiero Hospital, Padua, Italy
| | | |
Collapse
|
15
|
Chatterjee S, Ghosal K, Kumar M, Mahmood S, Thomas S. A detailed discussion on interpenetrating polymer network (IPN) based drug delivery system for the advancement of health care system. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Liu S, Yang H, Zhang L, Bianco A, Ma B, Ge S. Multifunctional barrier membranes promote bone regeneration by scavenging H2O2, generating O2, eliminating inflammation, and regulating immune response. Colloids Surf B Biointerfaces 2023. [DOI: 10.1016/j.colsurfb.2023.113147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
17
|
Zhang X, Wei P, Yang Z, Liu Y, Yang K, Cheng Y, Yao H, Zhang Z. Current Progress and Outlook of Nano-Based Hydrogel Dressings for Wound Healing. Pharmaceutics 2022; 15:pharmaceutics15010068. [PMID: 36678696 PMCID: PMC9864871 DOI: 10.3390/pharmaceutics15010068] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Wound dressing is an important tool for wound management. Designing wound dressings by combining various novel materials and drugs to optimize the peri-wound environment and promote wound healing is a novel concept. Hydrogels feature good ductility, high water content, and favorable oxygen transport, which makes them become some of the most promising materials for wound dressings. In addition, nanomaterials exhibit superior biodegradability, biocompatibility, and colloidal stability in wound healing and can play a role in promoting healing through their nanoscale properties or as carriers of other drugs. By combining the advantages of both technologies, several outstanding and efficient wound dressings have been developed. In this paper, we classify nano-based hydrogel dressings into four categories: hydrogel dressings loaded with a nanoantibacterial drug; hydrogel dressings loaded with oxygen-delivering nanomedicines; hydrogel dressings loaded with nanonucleic acid drugs; and hydrogel dressings loaded with other nanodelivered drugs. The design ideas, advantages, and challenges of these nano-based hydrogel wound dressings are reviewed and analyzed. Finally, we envisaged possible future directions for wound dressings in the context of relevant scientific and technological advances, which we hope will inform further research in wound management.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Pengyu Wei
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Zhengyang Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Yishan Liu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Kairui Yang
- Jun Skincare Co., Ltd., Jiangsu Life Science & Technology Innovation Park, Nanjing 210093, China
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuhao Cheng
- Jun Skincare Co., Ltd., Jiangsu Life Science & Technology Innovation Park, Nanjing 210093, China
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing 210093, China
- Correspondence: (Y.C.); (H.Y.)
| | - Hongwei Yao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
- Correspondence: (Y.C.); (H.Y.)
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| |
Collapse
|
18
|
Lipozyme® TL IM Biocatalyst for Castor Oil FAME and Triacetin Production by Interesterification: Activity, Stability, and Kinetics. Catalysts 2022. [DOI: 10.3390/catal12121673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Global climate change and present geopolitical tensions call for novel, renewable, and, ideally, sustainable resources and processes that, in the end, will be integrated in the natural cycles of carbon and water, progressively replacing non-renewable feedstocks. In this context, the production of biofuels and, in consequence, of biodiesel plays a notable role. This work is focused on the production of fatty acid methyl esters (FAME) from castor oil, an abundant non-edible oil, using a sustainable technology approach based on industrial lipases and methyl acetate as a methylating reagent to reduce biocatalyst inactivation. We have selected a stable industrial enzyme preparation to determine its suitability for FAME production: Lipozyme® TL IM (an inexpensive lipase from Thermomyces lanuginosus immobilized by agglomeration in silica gel). Several operational variables affecting the enzyme activity have been studied: methanol excess (6:1 to 13:1), temperature (from 40 to 60 °C), and enzyme concentration (10 and 30% w/w). At all temperatures and reagent ratios, we have also tested the enzyme stability for six cycles, showing its low to negligible inactivation under operational conditions. Finally, a novel multivariable kinetic model has been proposed and fitted to experimental data obtained in a wide experimental range for the first time, showing that direct and reverse in-series reactions are present. We have estimated the values of the kinetic constants and their standard errors, and goodness-of-fit parameters, observing that the kinetic model fitted very reasonably to all retrieved experimental data at the same time.
Collapse
|
19
|
Khan HM, Liao X, Sheikh BA, Wang Y, Su Z, Guo C, Li Z, Zhou C, Cen Y, Kong Q. Smart biomaterials and their potential applications in tissue engineering. J Mater Chem B 2022; 10:6859-6895. [PMID: 36069198 DOI: 10.1039/d2tb01106a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Smart biomaterials have been rapidly advancing ever since the concept of tissue engineering was proposed. Interacting with human cells, smart biomaterials can play a key role in novel tissue morphogenesis. Various aspects of biomaterials utilized in or being sought for the goal of encouraging bone regeneration, skin graft engineering, and nerve conduits are discussed in this review. Beginning with bone, this study summarizes all the available bioceramics and materials along with their properties used singly or in conjunction with each other to create scaffolds for bone tissue engineering. A quick overview of the skin-based nanocomposite biomaterials possessing antibacterial properties for wound healing is outlined along with skin regeneration therapies using infrared radiation, electrospinning, and piezoelectricity, which aid in wound healing. Furthermore, a brief overview of bioengineered artificial skin grafts made of various natural and synthetic polymers has been presented. Finally, by examining the interactions between natural and synthetic-based biomaterials and the biological environment, their strengths and drawbacks for constructing peripheral nerve conduits are highlighted. The description of the preclinical outcome of nerve regeneration in injury healed with various natural-based conduits receives special attention. The organic and synthetic worlds collide at the interface of nanomaterials and biological systems, producing a new scientific field including nanomaterial design for tissue engineering.
Collapse
Affiliation(s)
- Haider Mohammed Khan
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Xiaoxia Liao
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Bilal Ahmed Sheikh
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Yixi Wang
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Zhixuan Su
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.,National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Chuan Guo
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Changchun Zhou
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.,National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Ying Cen
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Qingquan Kong
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
20
|
Chen J, Wu X, Zhang Y, Xu Y, Ge H, Ning X. Bioinspired All-in-One Three-Dimensional Dynamic CellMatrix Improves the Manufacture of Therapeutically Qualified Cells for Cell Therapy. NANO LETTERS 2022; 22:5723-5734. [PMID: 35787105 DOI: 10.1021/acs.nanolett.2c00760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Despite the great promise, cell therapy still faces practical challenges because of the scarcity of a reliable cell source. Herein, a bioinspired 3D dynamic culture system (CellMatrix) with rational structure, composite and function, was developed for improving cell supply. CellMatrix was composed of unique core-shell fibers with a core of black phosphorus-incorporated fibroin and a shell of sericin, which together formed a 3D silkworm cocoon-mimicking structure via a bottom-up fabrication technique. CellMatrix not only provided optimal engineered biomimetic niche to facilitate cell growth but exhibited good photothermal conversion to dynamically regulate cell fates. Importantly, cell-CellMatrix construct could be directly implanted into defected tissues and improved tissue remodeling. Meanwhile, CellMatrix displayed good ice resistance and thermal conductivity, which maximally maintained cell viability and proliferation after the freeze-thawing process, allowing for storing precious cells and cell-CellMatrix construct. Thus, CellMatrix represents an all-in-one biomimetic platform for the culture-production-storage of therapeutically qualified cells.
Collapse
Affiliation(s)
- Jianmei Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Xiaotong Wu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Yu Zhang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Yurui Xu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Haixiong Ge
- National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| |
Collapse
|
21
|
Heras KL, Igartua M, Santos-Vizcaino E, Hernandez RM. Cell-based dressings: A journey through chronic wound management. BIOMATERIALS ADVANCES 2022; 135:212738. [PMID: 35929212 DOI: 10.1016/j.bioadv.2022.212738] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 06/15/2023]
Abstract
The field of regenerative medicine has undergone a paradigm shift in recent decades thanks to the emergence of novel therapies based on the use of living organisms. The development of cell-based strategies has become a trend for the treatment of different conditions and pathologies. In this sense, the need for more adequate, biomimetic and well-planned treatments for chronic wounds has found different and innovative strategies, based on the combination of cells with dressings, which seek to revolutionize the wound healing management. Therefore, the objective of this review is to analyze the current state and the latest advances in the research of cell-based dressings for chronic wounds, ranging from traditional and "second generation" bioengineered living skin equivalents to mesenchymal stem cell dressings; the latter include biopolymeric porous scaffolds, electrospun nanofiber meshes, hydrogels and 3D printed bio-printed dressings. Finally, this review updates the completed and ongoing clinical trials in this field and encourages researchers to rethink these new approaches, manufacturing processes and mechanisms of action, as well as their administration strategies and timings.
Collapse
Affiliation(s)
- Kevin Las Heras
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Manoli Igartua
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| |
Collapse
|
22
|
Ziauddin, Hussain T, Nazir A, Mahmood U, Hameed M, Ramakrishna S, Abid S. Nanoengineered therapeutic scaffolds for burn wound management. Curr Pharm Biotechnol 2022; 23:1417-1435. [PMID: 35352649 DOI: 10.2174/1389201023666220329162910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/05/2021] [Accepted: 11/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Wound healing is a complex process, and selecting an appropriate treatment is crucial and varies from one wound to another. Among injuries, burn wounds are more challenging to treat. Different dressings and scaffolds come into play when skin is injured. These scaffolds provide the optimum environment for wound healing. With the advancements of nanoengineering, scaffolds have been engineered to improve wound healing with lower fatality rates. OBJECTIVES Nanoengineered systems have emerged as one of the promising candidates for burn wound management. This review paper aims to provide an in-depth understanding of burn wounds and the role of nanoengineering in burn wound management. The advantages of nanoengineered scaffolds, their properties, and their proven effectiveness have been discussed. Nanoparticles and nanofibers-based nanoengineered therapeutic scaffolds provide optimum protection, infection management, and accelerated wound healing due to their unique characteristics. These scaffolds increase cell attachment and proliferation for desired results. RESULTS The literature review suggested that the utilization of nanoengineered scaffolds has accelerated burn wound healing. Nanofibers provide better cell attachment and proliferation among different nanoengineered scaffolds due to their 3D structure mimics the body's extracellular matrix. CONCLUSION With the application of these advanced nanoengineered scaffolds, better burn wound management is possible due to sustained drug delivery, better cell attachment, and an infection-free environment.
Collapse
Affiliation(s)
- Ziauddin
- Electrospun Materials & Polymeric Membranes Research Group, National Textile University, Pakistan
| | - Tanveer Hussain
- Electrospun Materials & Polymeric Membranes Research Group, National Textile University, Pakistan
| | - Ahsan Nazir
- Electrospun Materials & Polymeric Membranes Research Group, National Textile University, Pakistan
| | - Urwa Mahmood
- Electrospun Materials & Polymeric Membranes Research Group, National Textile University, Pakistan
| | - Misbah Hameed
- Department of Pharmaceutics, Faculty of pharmaceutical science, Government College University, Faisalabad, Pakistan
| | - Seeram Ramakrishna
- Center for Nanofibers & Nanotechnology (CNN), National University of Singapore (NUS), Singapore
| | - Sharjeel Abid
- Electrospun Materials & Polymeric Membranes Research Group, National Textile University, Pakistan
| |
Collapse
|
23
|
|
24
|
Mirzadegan E, Golshahi H, Saffarian Z, Darzi M, Khorasani S, Edalatkhah H, Saliminejad K, Kazemnejad S. The remarkable effect of menstrual blood stem cells seeded on bilayer scaffold composed of amniotic membrane and silk fibroin aiming to promote wound healing in diabetic mice. Int Immunopharmacol 2021; 102:108404. [PMID: 34863653 DOI: 10.1016/j.intimp.2021.108404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/10/2021] [Accepted: 11/22/2021] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Impaired chronic wound healing frequently occurs in diabetic patients. We hypothesized that menstrual blood-derived mesenchymal stem cells (MenSCs) in combination with bilayer scaffold consisted of human amniotic membrane (AM) and electrospun silk fibroin nanofibers could potentially promote wound healing in diabetic mice. METHODS & METHODS Two bilateral full-thickness wounds were created on dorsal skin of type-1 diabetic mice model and animals were equally divided in four groups including: no-treatment group (NT), amniotic membrane treated group (AM), bilayer scaffold treated group (bSC), and MenSCs-seeded bilayer scaffold treated group (bSC + MenSCs). Wound healing evaluations were performed at 3, 7, and 14 days after their treatment. The wound healing was analyzed by macroscopic and microscopic evaluations, and immunofluorescence staining of involucrin (IVL), type III collagen, CD31/ von Willebrand factor (vWF), and PGP9.5 were performed. Furthermore, number of neutrophils and macrophages and subpopulation of macrophages were assessed. In addition, the expression of Egr2, Mmp9, CXCL12, IDO1, Ptgs2 and VEGFA transcripts involved in wound repair were also analyzed. RESULTS After 14 days, the best epidermal and dermal regeneration belonged to the cases received bSC + MenSCs as wound dressing. Moreover, the wound healing was typically faster in this group compared to other groups. Immunofluorescence evaluation represented higher levels of CD31 and VWF, higher ratio of M2/M1 macrophages, greater expression of IVL, and higher levels of the PGP9.5 in the bSC + MenSCs group in comparison with other groups. Expression analysis of assessed genes also supported assumption of more regeneration and healing in the bSC + MenSCs group versus other groups. CONCLUSION These results indicate that enhanced immunomodulatory and reparative properties of MenSCs in conjunction with bilayer scaffold specified this cellular skin substitute for modulating wound chronicity and contribution to resolution of wound healing process in diabetic ulcer.
Collapse
Affiliation(s)
- Ebrahim Mirzadegan
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Hannaneh Golshahi
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Zahra Saffarian
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Maryam Darzi
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Somayeh Khorasani
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Haleh Edalatkhah
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Kioomars Saliminejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Somaieh Kazemnejad
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| |
Collapse
|
25
|
Deng P, Chen F, Zhang H, Chen Y, Zhou J. Conductive, Self-Healing, Adhesive, and Antibacterial Hydrogels Based on Lignin/Cellulose for Rapid MRSA-Infected Wound Repairing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52333-52345. [PMID: 34723459 DOI: 10.1021/acsami.1c14608] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The abuse of antibiotics induces the emergence of drug-resistant bacteria, which greatly increases the difficulty of clinical treatment of infected wounds. It is urgent to design a multifunctional wound dressing independent of antibiotics. In this work, we designed multifunctional hydrogels based on lignin and cellulose in natural polymers. Lignin with antioxidant properties could reduce silver nanoparticles in situ and could also be used as a crosslinking agent to construct hydrogels between hydroxypropyl cellulose modified with phenylboric acid by a dynamic borate bond. Hydrogels have excellent properties such as self-healing, shape adaptability, biocompatibility, blood compatibility, antioxidant properties, excellent broad-spectrum antimicrobial properties, good tissue adhesion, and electrical conductivity. The tissue adhesion of hydrogels endows them with an excellent hemostasis property in a rat liver injury model. In vivo experiments demonstrated that hydrogels can maintain a moist healing environment, reduce inflammatory cell infiltration, promote M2 macrophage polarization, accelerate collagen deposition, promote the regeneration of new blood vessels, and significantly speed up the wound healing of methicillin-resistant Staphylococcus aureus (MRSA)-infected wounds. Therefore, these multifunctional hydrogels are an excellent candidate to treat multiple stages of wound healing and have a broad application prospect in the medical field.
Collapse
Affiliation(s)
- Pengpeng Deng
- Hubei Engineering Center of Natural Polymers-based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, and Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Feixiang Chen
- Department of Biomedical Engineering, Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Science, Wuhan University, Wuhan 430071, China
| | - Haodong Zhang
- Hubei Engineering Center of Natural Polymers-based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, and Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yun Chen
- Department of Biomedical Engineering, Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Science, Wuhan University, Wuhan 430071, China
| | - Jinping Zhou
- Hubei Engineering Center of Natural Polymers-based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, and Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
26
|
Shiohara A, Prieto-Simon B, Voelcker NH. Porous polymeric membranes: fabrication techniques and biomedical applications. J Mater Chem B 2021; 9:2129-2154. [PMID: 33283821 DOI: 10.1039/d0tb01727b] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Porous polymeric membranes have shown great potential in biological and biomedical applications such as tissue engineering, bioseparation, and biosensing, due to their structural flexibility, versatile surface chemistry, and biocompatibility. This review outlines the advantages and limitations of the fabrication techniques commonly used to produce porous polymeric membranes, with especial focus on those featuring nano/submicron scale pores, which include track etching, nanoimprinting, block-copolymer self-assembly, and electrospinning. Recent advances in membrane technology have been key to facilitate precise control of pore size, shape, density and surface properties. The review provides a critical overview of the main biological and biomedical applications of these porous polymeric membranes, especially focusing on drug delivery, tissue engineering, biosensing, and bioseparation. The effect of the membrane material and pore morphology on the role of the membranes for each specific application as well as the specific fabrication challenges, and future prospects of these membranes are thoroughly discussed.
Collapse
Affiliation(s)
- Amane Shiohara
- Drug Delivery, Deposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and Melbourne Centre of Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Beatriz Prieto-Simon
- Drug Delivery, Deposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. and Department of Electronic Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain and ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Nicolas H Voelcker
- Drug Delivery, Deposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and Melbourne Centre of Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| |
Collapse
|
27
|
Xu Z, Liang B, Tian J, Wu J. Anti-inflammation biomaterial platforms for chronic wound healing. Biomater Sci 2021; 9:4388-4409. [PMID: 34013915 DOI: 10.1039/d1bm00637a] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nowadays, there has been an increase in the number of people with chronic wounds, which has resulted in serious health problems worldwide. The rate-limiting stage of chronic wound healing has been found to be the inflammation stage, and strategies for shortening the prolonged inflammatory response have proven to be effective for increasing the healing rate. Recently, various anti-inflammatory strategies (such as anti-inflammatory drugs, antioxidant, NO regulation, antibacterial, immune regulation and angiogenesis) have attracted attention as potential therapeutic pathways. Moreover, various biomaterial platforms based on anti-inflammation therapy strategies have also emerged in the spotlight as potential therapies to accelerate the repair of chronic wounds. In this review, we systematically investigated the advances of various biomaterial platforms based on anti-inflammation strategies for chronic wound healing, to provide valuable guidance for future breakthroughs in chronic wound treatment.
Collapse
Affiliation(s)
- Zejun Xu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, P. R. China.
| | - Biao Liang
- Center of Digestive Endoscopy, Guangdong Second Provincial general Hospital, No. 466, Xingang Middle Road, Guangzhou 510317, Haizhu District, China.
| | - Junzhang Tian
- Center of Digestive Endoscopy, Guangdong Second Provincial general Hospital, No. 466, Xingang Middle Road, Guangzhou 510317, Haizhu District, China.
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, P. R. China.
| |
Collapse
|
28
|
Li M, Hou Q, Zhong L, Zhao Y, Fu X. Macrophage Related Chronic Inflammation in Non-Healing Wounds. Front Immunol 2021; 12:681710. [PMID: 34220830 PMCID: PMC8242337 DOI: 10.3389/fimmu.2021.681710] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/27/2021] [Indexed: 12/14/2022] Open
Abstract
Persistent hyper-inflammation is a distinguishing pathophysiological characteristic of chronic wounds, and macrophage malfunction is considered as a major contributor thereof. In this review, we describe the origin and heterogeneity of macrophages during wound healing, and compare macrophage function in healing and non-healing wounds. We consider extrinsic and intrinsic factors driving wound macrophage dysregulation, and review systemic and topical therapeutic approaches for the restoration of macrophage response. Multidimensional analysis is highlighted through the integration of various high-throughput technologies, used to assess the diversity and activation states as well as cellular communication of macrophages in healing and non-healing wound. This research fills the gaps in current literature and provides the promising therapeutic interventions for chronic wounds.
Collapse
Affiliation(s)
- Meirong Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4 Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, PLA General Hospital, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
- Central Laboratory, Trauma Treatment Center, Central Laboratory, Chinese PLA General Hospital, Hainan Hospital, Sanya, China
| | - Qian Hou
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4 Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, PLA General Hospital, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Lingzhi Zhong
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4 Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, PLA General Hospital, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Yali Zhao
- Central Laboratory, Trauma Treatment Center, Central Laboratory, Chinese PLA General Hospital, Hainan Hospital, Sanya, China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4 Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, PLA General Hospital, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
29
|
Jayme CC, Souza C, Fernandes DS, Tedesco AC. Tailoring the growth and proliferation of human dermal fibroblasts by DNA-based polymer films for skin regeneration. J Biomed Mater Res A 2021; 109:2381-2391. [PMID: 34008307 DOI: 10.1002/jbm.a.37220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 04/28/2021] [Accepted: 05/07/2021] [Indexed: 12/18/2022]
Abstract
The use of DNA as a functional biomaterial for therapeutic, diagnostic, and drug delivery applications has been prominent in recent years, but its use as a scaffold for tissue regeneration is still limited. This study aimed to evaluate the biocompatibility and interaction of DNA-based polymeric films (DNA-PFs) with primary human fibroblasts (PHF) for regenerative medicine and wound healing purposes. The morphological characterization of the films was performed by scanning electron microscopy, SEM-energy-dispersive X-ray spectroscopy, and atomic force microscopy analysis. Cell viability, cell cycle kinetics, oxidative stress, and migration studies were carried out at 48 and 72 hr of incubation and compared to control cells. Cell adhesion was impaired in the first 24 hr, DNA-PFs with higher concentrations of DNA (1.0 and 2.0 g/L) this effect was not seen in DNA-PFs (0.5 g/L), explained by the difference in topography and roughness of DNA-PFs, but it was overcome after 48 hr of incubation. PHF seeded on DNA films showed higher proliferation and migration rates than the control after 48 hr of incubation, with the maintenance of cell morphology and lower cytotoxicity and oxidative stress during the evaluation time. Therefore, these results indicate that DNA-PFs are highly biocompatible and provide a suitable microenvironment for dermal fibroblasts to maintain their activity, helping build new and more complex biomaterials suitable for future tissue repair applications.
Collapse
Affiliation(s)
- Cristiano Ceron Jayme
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto-FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carla Souza
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto-FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Daniela Silvestrini Fernandes
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto-FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto-FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
30
|
Wang Z, Liu C, Chen B, Luo Y. Magnetically-driven drug and cell on demand release system using 3D printed alginate based hollow fiber scaffolds. Int J Biol Macromol 2020; 168:38-45. [PMID: 33301844 DOI: 10.1016/j.ijbiomac.2020.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 12/19/2022]
Abstract
Local delivery of drugs, proteins and living cells with on demand release manner using porous scaffolds has been widely used in the field of tissue engineering and cancer therapies. Drugs directly loaded in the porous scaffolds, are generally prone to free diffuse especially for long term incubation. Herein, in this study, hollow fiber alginate/iron oxide nanoparticles scaffolds were prepared by coaxial 3D printing with drugs, protein or living cells encapsulating in the core part (low concentration of alginate gels). Magnetically-driven on demand release was realized by extruding the loaded drugs, proteins and cells from the core part of the hollow fibers due to the deformation of the scaffolds under magnetic field. Additionally, the hollow fibers could sever as diffusion barriers to reduce uncontrolled diffusion of drugs, proteins and cells from scaffolds in the conditions of no required stimulation. The factors influencing the deformation of the scaffolds, as well as the release behavior were investigated. The data indicated that the scaffolds prepared by 10 wt% of alginate with 13% of iron oxide nanoparticles after crosslinking using 0.1 M CaCl2 solution for 10 s showed repeated on demand release capability in vitro and in vivo under intermittently magnetic stimulation. Thus, this 3D printed alginate/iron oxide nanoparticles hollow scaffolds with on demand controlled delivery capability may prove useful for tissue engineering and disease therapies.
Collapse
Affiliation(s)
- Zhiyong Wang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Chunyang Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Birui Chen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Yongxiang Luo
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
31
|
Advances in generation of three-dimensional skin equivalents: pre-clinical studies to clinical therapies. Cytotherapy 2020; 23:1-9. [PMID: 33189572 DOI: 10.1016/j.jcyt.2020.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/30/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022]
Abstract
The inability of two-dimensional cell culture systems to adequately map the structure and function of complex organs like skin necessitates the development of three-dimensional (3D) skin models. A diverse range of 3D skin equivalents have been developed over the last few decades for studying complex properties of skin as well as for drug discovery and clinical applications for skin regeneration in chronic wounds, such as diabetic foot ulcers, where the normal mechanism of wound healing is compromised. These 3D skin substitutes also serve as a suitable alternative to animal models in industrial applications and fundamental research. With the emergence of tissue engineering, new scaffolds and matrices have been integrated into 3D cell culture systems, along with gene therapy approaches, to increase the efficacy of transplanted cells in skin regeneration. This review summarizes recent approaches to the development of skin equivalents as well as different models for studying skin diseases and properties and current therapeutic applications of skin substitutes.
Collapse
|
32
|
Andrabi SM, Majumder S, Gupta KC, Kumar A. Dextran based amphiphilic nano-hybrid hydrogel system incorporated with curcumin and cerium oxide nanoparticles for wound healing. Colloids Surf B Biointerfaces 2020; 195:111263. [DOI: 10.1016/j.colsurfb.2020.111263] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/17/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022]
|
33
|
Mirzadegan E, Golshahi H, Kazemnejad S. Current evidence on immunological and regenerative effects of menstrual blood stem cells seeded on scaffold consisting of amniotic membrane and silk fibroin in chronic wound. Int Immunopharmacol 2020; 85:106595. [DOI: 10.1016/j.intimp.2020.106595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/03/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022]
|
34
|
Kaushik K, Das A. TWIST1-Reprogrammed Endothelial Cell Transplantation Potentiates Neovascularization-Mediated Diabetic Wound Tissue Regeneration. Diabetes 2020; 69:1232-1247. [PMID: 32234721 DOI: 10.2337/db20-0138] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/23/2020] [Indexed: 11/13/2022]
Abstract
Hypovascularized diabetic nonhealing wounds are due to reduced number and impaired physiology of endogenous endothelial progenitor cell (EPC) population that limits their recruitment and mobilization at the wound site. For enrichment of the EPC repertoire from nonendothelial precursors, abundantly available mesenchymal stromal cells (MSC) were reprogrammed into induced endothelial cells (iEC). We identified cell signaling molecular targets by meta-analysis of microarray data sets. BMP-2 induction leads to the expression of inhibitory Smad 6/7-dependent negative transcriptional regulation of ID1, rendering the latter's reduced binding to TWIST1 during transdifferentiation of Wharton jelly-derived MSC (WJ-MSC) into iEC. TWIST1, in turn, regulates endothelial gene transcription, positively of proangiogenic KDR and negatively, in part, of antiangiogenic SFRP4 Twist1 reprogramming enhanced the endothelial lineage commitment of WJ-MSC and increased the vasculogenic potential of reprogrammed endothelial cells (rEC). Transplantation of stable TWIST1 rEC into a type 1 and 2 diabetic full-thickness splinted wound healing murine model enhanced the microcirculatory blood flow and accelerated the wound tissue regeneration. An increased or decreased colocalization of GFP with KDR/SFRP4 and CD31 in the regenerated diabetic wound bed with TWIST1 overexpression or silencing (piLenti-TWIST1-shRNA-GFP), respectively, further confirmed improved neovascularization. This study depicted the reprogramming of WJ-MSC into rEC using unique transcription factor TWIST1 for an efficacious cell transplantation therapy to induce neovascularization-mediated diabetic wound tissue regeneration.
Collapse
Affiliation(s)
- Komal Kaushik
- Department of Applied Biology, Council of Scientific and Industrial Research-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research-Indian Institute of Chemical Technology Campus, Hyderabad, India
| | - Amitava Das
- Department of Applied Biology, Council of Scientific and Industrial Research-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research-Indian Institute of Chemical Technology Campus, Hyderabad, India
| |
Collapse
|
35
|
Wathoni N, Rusdiana T, Hasanah AN, Pratama AR, Okajima M, Kaneko T, Mohammed AFA, Putera BW, Arima H. Epidermal growth factor in sacran hydrogel film accelerates fibroblast migration. J Adv Pharm Technol Res 2020; 11:74-80. [PMID: 32587820 PMCID: PMC7305779 DOI: 10.4103/japtr.japtr_147_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/16/2019] [Accepted: 02/13/2020] [Indexed: 01/09/2023] Open
Abstract
Epidermal growth factor (EGF) accelerates epidermal regeneration, and it is widely studied as a wound-healing agent. However, the special carrier for the topical administration of EGF is urgently needed to deliver EGF on the wound site. In a preceding study, sacran hydrogel film (Sac-HF) showed a possible use as a dressing material for wound healing, as well as a good capability as a drug carrier. In the current study, we prepared Sac-HF containing EGF (Sac/EGF-HF) and then characterized their physicochemical properties, including thickness, swelling ratio, degradability, tensile strength, and morphology. In addition, we have also conducted thermal and crystallography studies using differential scanning calorimetry (DSC) and X-ray diffraction, respectively. Furthermore, we investigated the in vitro influence of Sac/EGF-HF on cell migration using a fibroblast cell line. Morphology study confirmed that the casting method used for the film preparation resulted in a homogeneous film of Sac/EGF-HF. Furthermore, EGF significantly increased the thickness, tensile strength, and degradability of Sac/EGF-HF compared to Sac-HF. Sac/EGF-HF had a lower swelling ability compared to Sac-HF; this result corroborated the tensile strength result. Interestingly, X-ray diffraction and DSC results showed that Sac/EGF-HF had an amorphous shape. The in vitro studies revealed that Sac/EGF-HF induced the fibroblast migration activity. These results conclude that Sac/EGF-HF has the potential properties of HF for biomedical applications.
Collapse
Affiliation(s)
- Nasrul Wathoni
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Taofik Rusdiana
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Aliya Nur Hasanah
- Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Arvenda Rezky Pratama
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Maiko Okajima
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, Ishikawa, Japan
| | - Tatsuo Kaneko
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, Ishikawa, Japan
| | | | - Bayu Winata Putera
- Department of Operational, PT Prodia StemCell Indonesia, Jakarta, Indonesia
| | - Hidetoshi Arima
- Laboratory of Evidence-Based Pharmacotherapy, Daiichi University of Pharmacy, Fukuoka, Japan
| |
Collapse
|
36
|
Liufu R, Shi G, He X, Lv J, Liu W, Zhu F, Wen C, Zhu Z, Chen H. The therapeutic impact of human neonatal BMSC in a right ventricular pressure overload model in mice. Stem Cell Res Ther 2020; 11:96. [PMID: 32122393 PMCID: PMC7052971 DOI: 10.1186/s13287-020-01593-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 01/07/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Objective To determine the impact of donor age on the therapeutic effect of bone marrow-derived mesenchymal stem cells (BMSCs) in treating adverse remodeling as the result of right ventricle (RV) pressure overload. Methods BMSCs were isolated from neonatal (< 1 month), infant (1 month to 1 year), and young children (1 year to 5 years) and were compared in their migration potential, surface marker expression, VEGF secretion, and matrix metalloprotein (MMP) 9 expression. Four-week-old male C57 mice underwent pulmonary artery banding and randomized to treatment and untreated control groups. During the surgery, BMSCs were administered to the mice by intramyocardial injection into the RV free wall. Four weeks later, RV function and tissue were analyzed by echocardiography, histology, and quantitative real-time polymerase chain reaction. Results Human neonatal BMSCs demonstrated the greatest migration capacity and secretion of vascular endothelial growth factor but no difference in expression of surface markers. Neonate BMSCs administration resulted in increasing expression of VEGF, a significant reduction in RV wall thickness, and internal diameter in mice after PA banding. These beneficial effects were probably associated with paracrine secretion as no cardiomyocyte transdifferentiation was observed. Conclusions Human BMSCs from different age groups have different characteristics, and the youngest BMSCs may favorably impact the application of stem cell-based therapy to alleviate adverse RV remodeling induced by pressure overload.
Collapse
Affiliation(s)
- Rong Liufu
- Cardiovascular Intensive Care Unit, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guocheng Shi
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Dongfang Road No. 1678, Shanghai, China
| | - Xiaomin He
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Dongfang Road No. 1678, Shanghai, China
| | - Jingjing Lv
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Dongfang Road No. 1678, Shanghai, China
| | - Wei Liu
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Dongfang Road No. 1678, Shanghai, China
| | - Fang Zhu
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Dongfang Road No. 1678, Shanghai, China
| | - Chen Wen
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Dongfang Road No. 1678, Shanghai, China
| | - Zhongqun Zhu
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Dongfang Road No. 1678, Shanghai, China.
| | - Huiwen Chen
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Dongfang Road No. 1678, Shanghai, China.
| |
Collapse
|
37
|
Zimnyakov DA, Bagratashvili VN, Yuvchenko SA, Slavnetskov IO, Kalacheva AV, Ushakova OV, Markova NS. Quasi-Adiabatic Expansion of the Polylactide Foam: Features of the Porous Matrices Formation in the Region of Transition between Sub- and Supercritical States of Plasticizing Carbon Dioxide. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2020. [DOI: 10.1134/s1990793119070303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
38
|
Dhoke NR, Kaushik K, Das A. Cxcr6-Based Mesenchymal Stem Cell Gene Therapy Potentiates Skin Regeneration in Murine Diabetic Wounds. Mol Ther 2020; 28:1314-1326. [PMID: 32112713 DOI: 10.1016/j.ymthe.2020.02.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/14/2020] [Accepted: 02/10/2020] [Indexed: 01/09/2023] Open
Abstract
Mesenchymal stem cell (MSC) therapies for wound healing are often compromised due to low recruitment and engraftment of transplanted cells, as well as delayed differentiation into cell lineages for skin regeneration. An increased expression of chemokine ligand CXCL16 in wound bed and its cognate receptor, CXCR6, on murine bone-marrow-derived MSCs suggested a putative therapeutic relevance of exogenous MSC transplantation therapy. Induction of the CXCL16-CXCR6 axis led to activation of focal adhesion kinase (FAK), Src, and extracellular signal-regulated kinases 1/2 (ERK1/2)-mediated matrix metalloproteinases (MMP)-2 promoter regulation and expression, the migratory signaling pathways in MSC. CXCL16 induction also increased the transdifferentiation of MSCs into endothelial-like cells and keratinocytes. Intravenous transplantation of allogenic stable MSCs with Cxcr6 gene therapy potentiated skin tissue regeneration by increasing recruitment and engraftment as well as neovascularization and re-epithelialization at the wound site in excisional splinting wounds of type I and II diabetic mice. This study suggests that activation of the CXCL16-CXCR6 axis in bioengineered MSCs with Cxcr6 overexpression provides a promising therapeutic approach for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Neha R Dhoke
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Hyderabad 500 007, TS, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IICT Campus, Hyderabad 500 007, TS, India
| | - Komal Kaushik
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Hyderabad 500 007, TS, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IICT Campus, Hyderabad 500 007, TS, India
| | - Amitava Das
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Hyderabad 500 007, TS, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IICT Campus, Hyderabad 500 007, TS, India.
| |
Collapse
|
39
|
Wu J, Chen A, Zhou Y, Zheng S, Yang Y, An Y, Xu K, He H, Kang J, Luckanagul JA, Xian M, Xiao J, Wang Q. Novel H2S-Releasing hydrogel for wound repair via in situ polarization of M2 macrophages. Biomaterials 2019; 222:119398. [DOI: 10.1016/j.biomaterials.2019.119398] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 02/09/2023]
|
40
|
Zimnyakov D, Yuvchenko S, Isaeva A, Isaeva E, Tsypin D. Growth/collapse kinetics of the surface bubbles in fresh constrained foams: Transition to self-similar evolution. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Qu H, Fu H, Han Z, Sun Y. Biomaterials for bone tissue engineering scaffolds: a review. RSC Adv 2019; 9:26252-26262. [PMID: 35531040 PMCID: PMC9070423 DOI: 10.1039/c9ra05214c] [Citation(s) in RCA: 371] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022] Open
Abstract
Bone tissue engineering has been continuously developing since the concept of "tissue engineering" has been proposed. Biomaterials that are used as the basic material for the fabrication of scaffolds play a vital role in bone tissue engineering. This paper first introduces a strategy for literature search. Then, it describes the structure, mechanical properties and materials of natural bone and the strategies of bone tissue engineering. Particularly, it focuses on the current knowledge about biomaterials used in the fabrication of bone tissue engineering scaffolds, which includes the history, types, properties and applications of biomaterials. The effects of additives such as signaling molecules, stem cells, and functional materials on the performance of the scaffolds are also discussed.
Collapse
Affiliation(s)
- Huawei Qu
- School of Mechatronics Engineering, Harbin Institute of Technology Harbin 150001 China
| | - Hongya Fu
- School of Mechatronics Engineering, Harbin Institute of Technology Harbin 150001 China
| | - Zhenyu Han
- School of Mechatronics Engineering, Harbin Institute of Technology Harbin 150001 China
| | - Yang Sun
- School of Basic Medicine, Heilongjiang University of Chinese Medicine Harbin 150030 China
| |
Collapse
|
42
|
Deng X, Jing D, Liang H, Zheng D, Shao Z. H₂O₂ Damages the Stemness of Rat Bone Marrow-Derived Mesenchymal Stem Cells: Developing a "Stemness Loss" Model. Med Sci Monit 2019; 25:5613-5620. [PMID: 31353362 PMCID: PMC6683726 DOI: 10.12659/msm.914011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background The number of patients with spinal cord injury caused by motor vehicle accidents, violent injuries, and other types of trauma increases year by year, and bone marrow mesenchymal stem cell (BMSC) transplants are being widely investigated to treat this condition. However, the success rate of BMSCs transplants is relatively low due to the presence of oxidative stress in the new microenvironment. Our main goals in the present study were to evaluate the damaging effects of H2O2 on BMSCs and to develop a model of “stemness loss” using rat BMSCs. Material/Methods Bone marrow-derived mesenchymal stem cells were obtained from the bone marrow of young rats reared under sterile conditions. The stem cells were used after 2 passages following phenotypic identification. BMSCs were divided into 4 groups to evaluate the damaging effects of H2O2: A. blank control; B. 100 uM H2O2; C. 200 uM H2O2 and D. 300 uM H2O2. The ability of the BMSCs to differentiate into 3 cell lineages and their colony formation and migration capacities were analyzed by gene expression, colony formation, and scratch assays. Results The cells we obtained complied with international stem cell standards demonstrated by their ability to differentiate into 3 cell lineages. We found that 200–300 uM H2O2 had a significant effect on the biological behavior of BMSCs, including their ability to differentiate into 3 cell lineages, the expression of stemness-related proteins, and their migration and colony formation capacities. Conclusions H2O2 can damage the stemness ability of BMSCs at a concentration of 200–300 uM.
Collapse
Affiliation(s)
- Xiangyu Deng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Doudou Jing
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Hang Liang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Dong Zheng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| |
Collapse
|
43
|
Zhang F, Peng W, Zhang J, Dong W, Yuan D, Zheng Y, Wang Z. New strategy of bone marrow mesenchymal stem cells against oxidative stress injury via Nrf2 pathway: oxidative stress preconditioning. J Cell Biochem 2019; 120:19902-19914. [PMID: 31347718 PMCID: PMC6852471 DOI: 10.1002/jcb.29298] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/05/2019] [Indexed: 12/25/2022]
Abstract
Clinically, bone marrow mesenchymal stem cells (BMSCs) have been used in treatment of many diseases, but the local oxidative stress (OS) of lesion severely limits the survival of BMSCs, which reduces the efficacy of BMSCs transplantation. Therefore, enhancing the anti‐OS stress ability of BMSCs is a key breakthrough point. Preconditioning is a common protective mechanism for cells or body. Here, the aim of this study was to investigate the effects of OS preconditioning on the anti‐OS ability of BMSCs and its mechanism. Fortunately, OS preconditioning can increase the expression of superoxide dismutase, catalase, NQO1, and heme oxygenase 1 through the nuclear factor erythroid 2‐related factor 2 pathway, thereby decreased the intracellular reactive oxygen species (ROS) levels, relieved the damage of ROS to mitochondria, DNA and cell membrane, enhanced the anti‐OS ability of BMSCs, and promoted the survival of BMSCs under OS.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Trauma orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.,Trauma Teaching and Research Department, Guizhou Medical University, Guiyang, Guizhou, China
| | - Wuxun Peng
- Department of Trauma orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.,Trauma Teaching and Research Department, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jian Zhang
- Department of Trauma orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.,Trauma Teaching and Research Department, Guizhou Medical University, Guiyang, Guizhou, China
| | - Wentao Dong
- Department of Trauma orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.,Trauma Teaching and Research Department, Guizhou Medical University, Guiyang, Guizhou, China
| | - Dajiang Yuan
- Trauma Teaching and Research Department, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yinggang Zheng
- Trauma Teaching and Research Department, Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhenwen Wang
- Trauma Teaching and Research Department, Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
44
|
Wang W, Lu KJ, Yu CH, Huang QL, Du YZ. Nano-drug delivery systems in wound treatment and skin regeneration. J Nanobiotechnology 2019; 17:82. [PMID: 31291960 PMCID: PMC6617859 DOI: 10.1186/s12951-019-0514-y] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022] Open
Abstract
Skin damages are defined as one of most common lesions people suffer from, some of wounds are notoriously difficult to eradicate such as chronic wounds and deep burns. Existing wound therapies have been proved to be inadequate and far from satisfactory. The cutting-edge nanotechnology offers an unprecedented opportunity to revolutionize and invent new therapies or boost the effectiveness of current medical treatments. In particular, the nano-drug delivery systems anchor bioactive molecules to applied area, sustain the drug release and explicitly enhance the therapeutic efficacies of drugs, thus making a fine figure in field relevant to skin regeneration. This review summarized and discussed the current nano-drug delivery systems holding pivotal potential for wound healing and skin regeneration, with a special emphasis on liposomes, polymeric nanoparticles, inorganic nanoparticles, lipid nanoparticles, nanofibrous structures and nanohydrogel.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmaceutics, Hangzhou Third Hospital, Hangzhou, 310009, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Kong-Jun Lu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chao-Heng Yu
- Department of Burn, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Qiao-Ling Huang
- Department of Pharmaceutics, Hangzhou Third Hospital, Hangzhou, 310009, China.
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
45
|
Rezaie F, Momeni-Moghaddam M, Naderi-Meshkin H. Regeneration and Repair of Skin Wounds: Various Strategies for Treatment. INT J LOW EXTR WOUND 2019; 18:247-261. [PMID: 31257948 DOI: 10.1177/1534734619859214] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Skin as a mechanical barrier between the inner and outer environment of our body protects us against infection and electrolyte loss. This organ consists of 3 layers: the epidermis, dermis, and hypodermis. Any disruption in the integrity of skin leads to the formation of wounds, which are divided into 2 main categories: acute wounds and chronic wounds. Generally, acute wounds heal relatively faster. In contrast to acute wounds, closure of chronic wounds is delayed by 3 months after the initial insult. Treatment of chronic wounds has been one of the most challenging issues in the field of regenerative medicine, promoting scientists to develop various therapeutic strategies for a fast, qualified, and most cost-effective treatment modality. Here, we reviewed more recent approaches, including the development of stem cell therapy, tissue-engineered skin substitutes, and skin equivalents, for the healing of complex wounds.
Collapse
Affiliation(s)
- Fahimeh Rezaie
- Hakim Sabzevari University, Sabzevar, Iran.,Iranian Academic Center for Education, Culture Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | | | - Hojjat Naderi-Meshkin
- Iranian Academic Center for Education, Culture Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| |
Collapse
|
46
|
Veith AP, Henderson K, Spencer A, Sligar AD, Baker AB. Therapeutic strategies for enhancing angiogenesis in wound healing. Adv Drug Deliv Rev 2019; 146:97-125. [PMID: 30267742 DOI: 10.1016/j.addr.2018.09.010] [Citation(s) in RCA: 481] [Impact Index Per Article: 80.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 09/15/2018] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
Abstract
The enhancement of wound healing has been a goal of medical practitioners for thousands of years. The development of chronic, non-healing wounds is a persistent medical problem that drives patient morbidity and increases healthcare costs. A key aspect of many non-healing wounds is the reduced presence of vessel growth through the process of angiogenesis. This review surveys the creation of new treatments for healing cutaneous wounds through therapeutic angiogenesis. In particular, we discuss the challenges and advancement that have been made in delivering biologic, pharmaceutical and cell-based therapies as enhancers of wound vascularity and healing.
Collapse
|
47
|
Yang BY, Deng GY, Zhao RZ, Dai CY, Jiang CY, Wang XJ, Jing YF, Liu XJ, Xia SJ, Han BM. Porous Se@SiO 2 nanosphere-coated catheter accelerates prostatic urethra wound healing by modulating macrophage polarization through reactive oxygen species-NF-κB pathway inhibition. Acta Biomater 2019; 88:392-405. [PMID: 30753941 DOI: 10.1016/j.actbio.2019.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/28/2019] [Accepted: 02/07/2019] [Indexed: 12/15/2022]
Abstract
Benign prostatic hyperplasia (BPH) patients experience complications after surgery. We studied oxidative stress scavenging by porous Se@SiO2 nanospheres in prostatic urethra wound healing after transurethral resection of the prostate (TURP). Beagle dogs were randomly distributed into two groups after establishing TURP models. Wound recovery and oxidative stress levels were evaluated. Re-epithelialization and the macrophage distribution at the wound site were assessed by histology. The mechanism by which porous Se@SiO2 nanospheres regulated macrophage polarization was investigated by qRT-PCR, western blotting, flow cytometry, immunofluorescence and dual luciferase reporter gene assays. Our results demonstrated that Porous Se@SiO2 nanosphere-coated catheters advance re-epithelization of the prostatic urethra, accelerating wound healing in beagle dogs after TURP, and improve the antioxidant capacity to inhibit oxidative stress and induced an M2 phenotype transition of macrophages at the wound. By restraining the function of reactive oxygen species (ROS), porous Se@SiO2 nanospheres downregulated Ikk, IκB and p65 phosphorylation to block the downstream NF-κB pathway in macrophages in vitro. Since activation of NF-κB signaling cascades drives macrophage polarization, porous Se@SiO2 nanospheres promoted macrophage phenotype conversion from M1 to M2. Our findings suggest that porous Se@SiO2 nanosphere-coated catheters promote postoperative wound recovery in the prostatic urethra by promoting macrophage polarization toward the M2 phenotype through suppression of the ROS-NF-κB pathway, attenuating the inflammatory response. STATEMENT OF SIGNIFICANCE: The inability to effectively control post-operative inflammatory responses after surgical treatment of benign prostatic hyperplasia (BPH) remains a challenge to researchers and surgeons, as it can lead to indirect cell death and ultimately delay wound healing. Macrophages at the wound site work as pivotal regulators of local inflammatory response. Here, we designed and produced a new type of catheter with a coating of porous Se@SiO2 nanosphere and demonstrated its role in promoting prostatic urethra wound repair by shifting macrophage polarization toward the anti-inflammatory M2 phenotype via suppressing ROS-NF-κB pathway. These results indicate that the use of porous Se@SiO2 nanosphere-coated catheter may provide a therapeutic strategy for postoperative complications during prostatic urethra wound healing to improve patient quality of life.
Collapse
|
48
|
Zhu J, Han H, Li F, Wang X, Yu J, Chu CC, Wu D. Self-assembly of amino acid-based random copolymers for antibacterial application and infection treatment as nanocarriers. J Colloid Interface Sci 2019; 540:634-646. [DOI: 10.1016/j.jcis.2018.12.091] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/05/2018] [Accepted: 12/26/2018] [Indexed: 11/24/2022]
|
49
|
Cycloxygenase-2 inhibition potentiates trans-differentiation of Wharton's jelly–mesenchymal stromal cells into endothelial cells: Transplantation enhances neovascularization-mediated wound repair. Cytotherapy 2019; 21:260-273. [DOI: 10.1016/j.jcyt.2019.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/23/2018] [Accepted: 01/12/2019] [Indexed: 01/08/2023]
|
50
|
Zhang S, Ou Q, Xin P, Yuan Q, Wang Y, Wu J. Polydopamine/puerarin nanoparticle-incorporated hybrid hydrogels for enhanced wound healing. Biomater Sci 2019; 7:4230-4236. [DOI: 10.1039/c9bm00991d] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxidative damage generated would disrupt the oxidant/antioxidant balance in cells, causing slow wound healing and tissue regeneration. Hydrogel dressing with antioxidant properties can promote wound healing, however, its design is still a challenge.
Collapse
Affiliation(s)
- Shaohan Zhang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- China
| | - Qianmin Ou
- Guanghua School of Stomatology
- Hospital of Stomatology
- Guangdong Provincial Key Laboratory of Stomatology
- Sun Yat-sen University
- Guangzhou 510055
| | - Peikun Xin
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- China
| | - Qijuan Yuan
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- China
| | - Yan Wang
- Guanghua School of Stomatology
- Hospital of Stomatology
- Guangdong Provincial Key Laboratory of Stomatology
- Sun Yat-sen University
- Guangzhou 510055
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- China
| |
Collapse
|