1
|
Lama M, Merle M, Bessot E, Bussola Tovani C, Laurent G, Bouland N, Kerdjoudj H, Azaïs T, Ducouret G, Bortolotto T, Nassif N. Hierarchical Collagen/Apatite Co-assembly for Injection of Mineralized Fibrillar Tissue Analogues. ACS Biomater Sci Eng 2025; 11:564-576. [PMID: 39670834 DOI: 10.1021/acsbiomaterials.4c02115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Mineralized biological tissues rich in type I collagen (e.g., bone and dentin) exhibit complex anisotropic suprafibrillar organizations in which the organic and inorganic moieties are intimately coassembled over several length scales. Above a critical size, a defect in such tissue cannot be self-repaired. Biomimetic materials with a composition and microstructure similar to that of bone have been shown to favorably influence bone regeneration. This highlights the value of developing a similar formulation in an injectable form to enable minimally invasive techniques. Here, we report on the fabrication and application potential of an injectable collagen/CHA (carbonated hydroxyapatite) cell-free hydrogel. The organic part consists of spray-dried nondenatured and dense collagen microparticles, while the inorganic part consists of biomimetic apatite mineral. By mixing both powders at desired tissue-like ratios with an aqueous solvent in one step, spontaneous co-self-assembly occurs, leading to the formation of a mineralized matrix with suprafibrillar tissue-like features thanks to the induced liquid crystalline properties of collagen on one hand and apatite on the other hand. When injected into soft tissue, the mineralized collagen hydrogel free of chemical cross-linking agents exhibits suitable cohesion and is biocompatible. Preliminary in vitro tests in a tooth cavity model show its integration onto dentin with a biomimetic interface. Based on the results, this versatile injectable mineralized collagen hydrogel shows promising potential as a biomaterial for bone tissue repair and mineralized tissue-like ink for bioprinting applications.
Collapse
Affiliation(s)
- Milena Lama
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, F-75005 Paris, France
| | - Marion Merle
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, F-75005 Paris, France
| | - Elora Bessot
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, F-75005 Paris, France
| | - Camila Bussola Tovani
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, F-75005 Paris, France
| | - Guillaume Laurent
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, F-75005 Paris, France
| | - Nicole Bouland
- University of Reims Champagne-Ardennes, 3 avenue du Maréchal Juin, 51100 Reims, France
| | - Halima Kerdjoudj
- University of Reims Champagne-Ardennes, 3 avenue du Maréchal Juin, 51100 Reims, France
| | - Thierry Azaïs
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, F-75005 Paris, France
| | - Guylaine Ducouret
- Soft Matter Science and Engineering, ESPCI Paris, PSL University, CNRS, Sorbonne Université, 75005 Paris, France
| | - Tissiana Bortolotto
- Division of Cariology and Endodontology, University Clinic of Dental Medicine, Faculty of Medicine, University of Geneva, rue Michel-Servet 1, Genève 4, 1211 Geneva, Switzerland
| | - Nadine Nassif
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, F-75005 Paris, France
| |
Collapse
|
2
|
Mîrț AL, Ficai D, Oprea OC, Vasilievici G, Ficai A. Current and Future Perspectives of Bioactive Glasses as Injectable Material. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1196. [PMID: 39057873 PMCID: PMC11280465 DOI: 10.3390/nano14141196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
This review covers recent compositions of bioactive glass, with a specific emphasis on both inorganic and organic materials commonly utilized as matrices for injectable materials. The major objective is to highlight the predominant bioactive glass formulations and their clinical applications in the biomedical field. Previous studies have highlighted the growing interest among researchers in bioactive glasses, acknowledging their potential to yield promising outcomes in this field. As a result of this increased interest, investigations into bioactive glass have prompted the creation of composite materials and, notably, the development of injectable composites as a minimally invasive method for administering the material within the human body. Injectable materials have emerged as a promising avenue to mitigate various challenges. They offer several advantages, including minimizing invasive surgical procedures, reducing patient discomfort, lowering the risk of postoperative infection and decreasing treatment expenses. Additionally, injectable materials facilitate uniform distribution, allowing for the filling of defects of any shape.
Collapse
Affiliation(s)
- Andreea-Luiza Mîrț
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Gh. Polizu 1–7, 011061 Bucharest, Romania;
- National Center for Scientific Research for Food Safety, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (D.F.); (O.-C.O.)
- National Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania;
| | - Denisa Ficai
- National Center for Scientific Research for Food Safety, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (D.F.); (O.-C.O.)
- National Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Gh. Polizu 1–7, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Ovidiu-Cristian Oprea
- National Center for Scientific Research for Food Safety, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (D.F.); (O.-C.O.)
- National Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Gh. Polizu 1–7, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Gabriel Vasilievici
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania;
| | - Anton Ficai
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Gh. Polizu 1–7, 011061 Bucharest, Romania;
- National Center for Scientific Research for Food Safety, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (D.F.); (O.-C.O.)
- National Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| |
Collapse
|
3
|
Niu Y, Du T, Liu Y. Biomechanical Characteristics and Analysis Approaches of Bone and Bone Substitute Materials. J Funct Biomater 2023; 14:jfb14040212. [PMID: 37103302 PMCID: PMC10146666 DOI: 10.3390/jfb14040212] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
Bone has a special structure that is both stiff and elastic, and the composition of bone confers it with an exceptional mechanical property. However, bone substitute materials that are made of the same hydroxyapatite (HA) and collagen do not offer the same mechanical properties. It is important for bionic bone preparation to understand the structure of bone and the mineralization process and factors. In this paper, the research on the mineralization of collagen is reviewed in terms of the mechanical properties in recent years. Firstly, the structure and mechanical properties of bone are analyzed, and the differences of bone in different parts are described. Then, different scaffolds for bone repair are suggested considering bone repair sites. Mineralized collagen seems to be a better option for new composite scaffolds. Last, the paper introduces the most common method to prepare mineralized collagen and summarizes the factors influencing collagen mineralization and methods to analyze its mechanical properties. In conclusion, mineralized collagen is thought to be an ideal bone substitute material because it promotes faster development. Among the factors that promote collagen mineralization, more attention should be given to the mechanical loading factors of bone.
Collapse
Affiliation(s)
- Yumiao Niu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Tianming Du
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Youjun Liu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
4
|
Griffanti G, McKee MD, Nazhat SN. Mineralization of Bone Extracellular Matrix-like Scaffolds Fabricated as Silk Sericin-Functionalized Dense Collagen–Fibrin Hybrid Hydrogels. Pharmaceutics 2023; 15:pharmaceutics15041087. [PMID: 37111573 PMCID: PMC10142947 DOI: 10.3390/pharmaceutics15041087] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
The design of hydrogels that combine both the biochemical cues needed to direct seeded cellular functions and mineralization to provide the structural and mechanical properties approaching those of mineralized native bone extracellular matrix (ECM) represents a significant challenge in bone tissue engineering. While fibrous hydrogels constituting of collagen or fibrin (and their hybrids) can be considered as scaffolds that mimic to some degree native bone ECM, their insufficient mechanical properties limit their application. In the present study, an automated gel aspiration–ejection (automated GAE) method was used to generate collagen–fibrin hybrid gel scaffolds with micro-architectures and mechanical properties approaching those of native bone ECM. Moreover, the functionalization of these hybrid scaffolds with negatively charged silk sericin accelerated their mineralization under acellular conditions in simulated body fluid and modulated the proliferation and osteoblastic differentiation of seeded MC3T3-E1 pre-osteoblastic cells. In the latter case, alkaline phosphatase activity measurements indicated that the hybrid gel scaffolds with seeded cells showed accelerated osteoblastic differentiation, which in turn led to increased matrix mineralization. In summary, the design of dense collagen–fibrin hybrid gels through an automated GAE process can provide a route to tailoring specific biochemical and mechanical properties to different types of bone ECM-like scaffolds, and can provide a model to better understand cell–matrix interactions in vitro for bioengineering purposes.
Collapse
Affiliation(s)
- Gabriele Griffanti
- Department of Mining and Materials Engineering, McGill University, Montréal, QC H3A 0C5, Canada;
| | - Marc D. McKee
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada;
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada
| | - Showan N. Nazhat
- Department of Mining and Materials Engineering, McGill University, Montréal, QC H3A 0C5, Canada;
- Correspondence: ; Tel.: +514-398-5524; Fax: 514-398-4492
| |
Collapse
|
5
|
Rezabeigi E, Griffanti G, Nazhat SN. Effect of Fibrillization pH on Gelation Viscoelasticity and Properties of Biofabricated Dense Collagen Matrices via Gel Aspiration-Ejection. Int J Mol Sci 2023; 24:ijms24043889. [PMID: 36835306 PMCID: PMC9967780 DOI: 10.3390/ijms24043889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Reconstituted hydrogels based on the self-assembly of acid-solubilized collagen molecules have been extensively used as in vitro models and precursors in biofabrication processes. This study investigated the effect of fibrillization pH-ranging from 4 to 11-on real-time rheological property changes during the gelation of collagen hydrogels and its interplay with the properties of subsequently biofabricated dense collagen matrices generated via automated gel aspiration-ejection (GAE). A contactless, nondestructive technique was used to characterize the temporal progression in shear storage modulus (G', or stiffness) during collagen gelation. There was a relative increase in G' of the hydrogels from 36 to 900 Pa with an increase in gelation pH. Automated GAE, which simultaneously imparts collagen fibrillar compaction and alignment, was then applied to these precursor collagen hydrogels to biofabricate native extracellular matrix-like densified gels. In line with viscoelastic properties, only hydrogels fibrillized in the 6.5 < pH ≤ 10 range could be densified via GAE. There was an increase in both fibrillar density and alignment in the GAE-derived matrices with an increase in gelation pH. These factors, combined with a higher G' in the alkaline precursor hydrogels, led to a significant increase in the micro-compressive modulus of GAE-densified gels of pH 9 and 10. Furthermore, NIH/3T3 fibroblast-seeded GAE-derived matrices densified from gels fibrillized in the pH range of 7 to 10 exhibited low cell mortality with >80% viability. It is anticipated that the results of this study can be potentially applicable to other hydrogel systems, as well as biofabrication techniques involving needles or nozzles, such as injection and bioprinting.
Collapse
|
6
|
Sun L, Lu M, Chen L, Zhao B, Yao J, Shao Z, Chen X, Liu Y. Silk-Inorganic Nanoparticle Hybrid Hydrogel as an Injectable Bone Repairing Biomaterial. J Funct Biomater 2023; 14:jfb14020086. [PMID: 36826885 PMCID: PMC9966230 DOI: 10.3390/jfb14020086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Silk fibroin is regarded as a promising biomaterial in various areas, including bone tissue regeneration. Herein, Laponite® (LAP), which can promote osteogenic differentiation, was introduced into regenerated silk fibroin (RSF) to prepare an RSF/LAP hybrid hydrogel. This thixotropic hydrogel is injectable during the operation process, which is favorable for repairing bone defects. Our previous work demonstrated that the RSF/LAP hydrogel greatly promoted the osteogenic differentiation of osteoblasts in vitro. In the present study, the RSF/LAP hydrogel was found to have excellent biocompatibility and significantly improved new bone formation in a standard rat calvarial defect model in vivo. Additionally, the underlying biological mechanism of the RSF/LAP hydrogel in promoting osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) was extensively explored. The results indicate that the RSF/LAP hydrogels provide suitable conditions for the adhesion and proliferation of BMSCs, showing good biocompatibility in vitro. With the increase in LAP content, the alkaline phosphatase (ALP) activity and mRNA and protein expression of the osteogenic markers of BMSCs improved significantly. Protein kinase B (AKT) pathway activation was found to be responsible for the inherent osteogenic properties of the RSF/LAP hybrid hydrogel. Therefore, the results shown in this study firmly suggest such an injectable RSF/LAP hydrogel with good biocompatibility (both in vitro and in vivo) would have good application prospects in the field of bone regeneration.
Collapse
Affiliation(s)
- Liangyan Sun
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Minqi Lu
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Ling Chen
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Bingjiao Zhao
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Jinrong Yao
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Zhengzhong Shao
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Xin Chen
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
- Correspondence: (X.C.); (Y.L.)
| | - Yuehua Liu
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
- Correspondence: (X.C.); (Y.L.)
| |
Collapse
|
7
|
Targeting Agents in Biomaterial-Mediated Bone Regeneration. Int J Mol Sci 2023; 24:ijms24032007. [PMID: 36768328 PMCID: PMC9916506 DOI: 10.3390/ijms24032007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Bone diseases are a global public concern that affect millions of people. Even though current treatments present high efficacy, they also show several side effects. In this sense, the development of biocompatible nanoparticles and macroscopic scaffolds has been shown to improve bone regeneration while diminishing side effects. In this review, we present a new trend in these materials, reporting several examples of materials that specifically recognize several agents of the bone microenvironment. Briefly, we provide a subtle introduction to the bone microenvironment. Then, the different targeting agents are exposed. Afterward, several examples of nanoparticles and scaffolds modified with these agents are shown. Finally, we provide some future perspectives and conclusions. Overall, this topic presents high potential to create promising translational strategies for the treatment of bone-related diseases. We expect this review to provide a comprehensive description of the incipient state-of-the-art of bone-targeting agents in bone regeneration.
Collapse
|
8
|
Doyle ME, Dalgarno K, Masoero E, Ferreira AM. Advances in biomimetic collagen mineralisation and future approaches to bone tissue engineering. Biopolymers 2023; 114:e23527. [PMID: 36444710 PMCID: PMC10078151 DOI: 10.1002/bip.23527] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022]
Abstract
With an ageing world population and ~20% of adults in Europe being affected by bone diseases, there is an urgent need to develop advanced regenerative approaches and biomaterials capable to facilitate tissue regeneration while providing an adequate microenvironment for cells to thrive. As the main components of bone are collagen and apatite mineral, scientists in the tissue engineering field have attempted in combining these materials by using different biomimetic approaches to favour bone repair. Still, an ideal bone analogue capable of mimicking the distinct properties (i.e., mechanical properties, degradation rate, porosity, etc.) of cancellous bone is to be developed. This review seeks to sum up the current understanding of bone tissue mineralisation and structure while providing a critical outlook on the existing biomimetic strategies of mineralising collagen for bone tissue engineering applications, highlighting where gaps in knowledge exist.
Collapse
Affiliation(s)
| | - Kenny Dalgarno
- School of EngineeringNewcastle UniversityNewcastle upon TyneUK
| | | | | |
Collapse
|
9
|
Wang L, Qu Y, Li W, Wang K, Qin S. Effects and metabolism of fish collagen sponge in repairing acute wounds of rat skin. Front Bioeng Biotechnol 2023; 11:1087139. [PMID: 36911203 PMCID: PMC9992718 DOI: 10.3389/fbioe.2023.1087139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Objective: Study the repair effect of tilapia collagen on acute wounds, and the effect on the expression level of related genes and its metabolic direction in the repair process. Materials and methods: After the full-thickness skin defect model was constructed in standard deviation rats, the wound healing effect was observed and evaluated by means of characterization, histology, and immunohistochemistry. RT-PCR, fluorescence tracer, frozen section and other techniques were used to observe the effect of fish collagen on the expression of related genes and its metabolic direction in the process of wound repair. Results: After implantation, there was no immune rejection reaction, fish collagen fused with new collagen fibers in the early stage of wound repair, and was gradually degraded and replaced by new collagen in the later stage. It has excellent performance in inducing vascular growth, promoting collagen deposition and maturation, and re-epithelialization. The results of fluorescent tracer showed that fish collagen was decomposed, and the decomposition products were involved in the wound repair process and remained at the wound site as a part of the new tissue. RT-PCR results showed that, without affecting collagen deposition, the expression level of collagen-related genes was down-regulated due to the implantation of fish collagen. Conclusion: Fish collagen has good biocompatibility and wound repair ability. It is decomposed and utilized in the process of wound repair to form new tissues.
Collapse
Affiliation(s)
- Lei Wang
- The Affiliated Hospital of Weifang Medical University, Weifang, China.,Key Laboratory of Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,University of Chinese Academy of Sciences, Yantai, China
| | - Yan Qu
- The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Wenjun Li
- Key Laboratory of Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Kai Wang
- Department of Orthopedics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Song Qin
- Key Laboratory of Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| |
Collapse
|
10
|
Torabizadeh F, Fadaie M, Mirzaei E, Sadeghi S, Nejabat GR. Tailoring structural properties, mechanical behavior and cellular performance of collagen hydrogel through incorporation of cellulose manofibrils and cellulose nanocrystals: A comparative study. Int J Biol Macromol 2022; 219:438-451. [DOI: 10.1016/j.ijbiomac.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/27/2022]
|
11
|
Bohner M, Maazouz Y, Ginebra MP, Habibovic P, Schoenecker JG, Seeherman H, van den Beucken JJ, Witte F. Sustained local ionic homeostatic imbalance caused by calcification modulates inflammation to trigger heterotopic ossification. Acta Biomater 2022; 145:1-24. [PMID: 35398267 DOI: 10.1016/j.actbio.2022.03.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/15/2022]
Abstract
Heterotopic ossification (HO) is a condition triggered by an injury leading to the formation of mature lamellar bone in extraskeletal soft tissues. Despite being a frequent complication of orthopedic and trauma surgery, brain and spinal injury, the etiology of HO is poorly understood. The aim of this study is to evaluate the hypothesis that a sustained local ionic homeostatic imbalance (SLIHI) created by mineral formation during tissue calcification modulates inflammation to trigger HO. This evaluation also considers the role SLIHI could play for the design of cell-free, drug-free osteoinductive bone graft substitutes. The evaluation contains five main sections. The first section defines relevant concepts in the context of HO and provides a summary of proposed causes of HO. The second section starts with a detailed analysis of the occurrence and involvement of calcification in HO. It is followed by an explanation of the causes of calcification and its consequences. This allows to speculate on the potential chemical modulators of inflammation and triggers of HO. The end of this second section is devoted to in vitro mineralization tests used to predict the ectopic potential of materials. The third section reviews the biological cascade of events occurring during pathological and material-induced HO, and attempts to propose a quantitative timeline of HO formation. The fourth section looks at potential ways to control HO formation, either acting on SLIHI or on inflammation. Chemical, physical, and drug-based approaches are considered. Finally, the evaluation finishes with a critical assessment of the definition of osteoinduction. STATEMENT OF SIGNIFICANCE: The ability to regenerate bone in a spatially controlled and reproducible manner is an essential prerequisite for the treatment of large bone defects. As such, understanding the mechanism leading to heterotopic ossification (HO), a condition triggered by an injury leading to the formation of mature lamellar bone in extraskeletal soft tissues, would be very useful. Unfortunately, the mechanism(s) behind HO is(are) poorly understood. The present study reviews the literature on HO and based on it, proposes that HO can be caused by a combination of inflammation and calcification. This mechanism helps to better understand current strategies to prevent and treat HO. It also shows new opportunities to improve the treatment of bone defects in orthopedic and dental procedures.
Collapse
|
12
|
Mechanical activation drives tenogenic differentiation of human mesenchymal stem cells in aligned dense collagen hydrogels. Biomaterials 2022; 286:121606. [DOI: 10.1016/j.biomaterials.2022.121606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/12/2022] [Accepted: 05/27/2022] [Indexed: 01/13/2023]
|
13
|
Ding X, Shi J, Wei J, Li Y, Wu X, Zhang Y, Jiang X, Zhang X, Lai H. A biopolymer hydrogel electrostatically reinforced by amino-functionalized bioactive glass for accelerated bone regeneration. SCIENCE ADVANCES 2021; 7:eabj7857. [PMID: 34890238 PMCID: PMC8664252 DOI: 10.1126/sciadv.abj7857] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Composite hydrogels incorporating natural polymers and bioactive glass (BG) are promising materials for bone regeneration. However, their applications are compromised by the poor interfacial compatibility between organic and inorganic phases. In this study, we developed an electrostatically reinforced hydrogel (CAG) with improved interfacial compatibility by introducing amino-functionalized 45S5 BG to the alginate/gellan gum (AG) matrix. BAG composed of AG and unmodified BG (10 to 100 μm in size) was prepared as a control. Compared with BAG, CAG had a more uniform porous structure with a pore size of 200 μm and optimal compressive strength of 66 kPa. Furthermore, CAG promoted the M2 phenotype transition of macrophages and up-regulated the osteogenic gene expression of stem cells. The new bone formation in vivo was also accelerated due to the enhanced biomineralization of CAG. Overall, this work suggests CAG with improved interfacial compatibility is an ideal material for bone regeneration application.
Collapse
|
14
|
Mellati A, Hasanzadeh E, Gholipourmalekabadi M, Enderami SE. Injectable nanocomposite hydrogels as an emerging platform for biomedical applications: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112489. [PMID: 34857275 DOI: 10.1016/j.msec.2021.112489] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 12/13/2022]
Abstract
Hydrogels have attracted much attention for biomedical and pharmaceutical applications due to the similarity of their biomimetic structure to the extracellular matrix of natural living tissues, tunable soft porous microarchitecture, superb biomechanical properties, proper biocompatibility, etc. Injectable hydrogels are an exciting type of hydrogels that can be easily injected into the target sites using needles or catheters in a minimally invasive manner. The more comfortable use, less pain, faster recovery period, lower costs, and fewer side effects make injectable hydrogels more attractive to both patients and clinicians in comparison to non-injectable hydrogels. However, it is difficult to achieve an ideal injectable hydrogel using just a single material (i.e., polymer). This challenge can be overcome by incorporating nanofillers into the polymeric matrix to engineer injectable nanocomposite hydrogels with combined or synergistic properties gained from the constituents. This work aims to critically review injectable nanocomposite hydrogels, their preparation methods, properties, functionalities, and versatile biomedical and pharmaceutical applications such as tissue engineering, drug delivery, and cancer labeling and therapy. The most common natural and synthetic polymers as matrices together with the most popular nanomaterials as reinforcements, including nanoceramics, carbon-based nanostructures, metallic nanomaterials, and various nanosized polymeric materials, are highlighted in this review.
Collapse
Affiliation(s)
- Amir Mellati
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Elham Hasanzadeh
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Ehsan Enderami
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
15
|
Zeimaran E, Pourshahrestani S, Fathi A, Razak NABA, Kadri NA, Sheikhi A, Baino F. Advances in bioactive glass-containing injectable hydrogel biomaterials for tissue regeneration. Acta Biomater 2021; 136:1-36. [PMID: 34562661 DOI: 10.1016/j.actbio.2021.09.034] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
Successful tissue regeneration requires a scaffold with tailorable biodegradability, tissue-like mechanical properties, structural similarity to extracellular matrix (ECM), relevant bioactivity, and cytocompatibility. In recent years, injectable hydrogels have spurred increasing attention in translational medicine as a result of their tunable physicochemical properties in response to the surrounding environment. Furthermore, they have the potential to be implanted via minimally invasive procedures while enabling deep penetration, which is considered a feasible alternative to traditional open surgical procedures. However, polymeric hydrogels may lack sufficient stability and bioactivity in physiological environments. Composite hydrogels containing bioactive glass (BG) particulates, synergistically combining the advantages of their constituents, have emerged as multifunctional biomaterials with tailored mechanical properties and biological functionalities. This review paper highlights the recent advances in injectable composite hydrogel systems based on biodegradable polymers and BGs. The influence of BG particle geometry, composition, and concentration on gel formation, rheological and mechanical behavior as well as hydration and biodegradation of injectable hydrogels have been discussed. The applications of these composite hydrogels in tissue engineering are additionally described, with particular attention to bone and skin. Finally, the prospects and current challenges in the development of desirable injectable bioactive hydrogels for tissue regeneration are discussed to outline a roadmap for future research. STATEMENT OF SIGNIFICANCE: Developing a biomaterial that can be readily available for surgery, implantable via minimally invasive procedures, and be able to effectively stimulate tissue regeneration is one of the grand challenges in modern biomedicine. This review summarizes the state-of-the-art of injectable bioactive glass-polymer composite hydrogels to address several challenges in bone and soft tissue repair. The current limitations and the latest evolutions of these composite biomaterials are critically examined, and the roles of design parameters, such as composition, concentration, and size of the bioactive phase, and polymer-glass interactions on the rheological, mechanical, biological, and overall functional performance of hydrogels are detailed. Existing results and new horizons are discussed to provide a state-of-the-art review that may be useful for both experienced and early-stage researchers in the biomaterials community.
Collapse
|
16
|
Maazouz Y, Chizzola G, Döbelin N, Bohner M. Cell-free, quantitative mineralization measurements as a proxy to identify osteoinductive bone graft substitutes. Biomaterials 2021; 275:120912. [PMID: 34098150 DOI: 10.1016/j.biomaterials.2021.120912] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 05/05/2021] [Accepted: 05/20/2021] [Indexed: 12/30/2022]
Abstract
Some synthetic bone graft substitutes (BGS) can trigger ectopic bone formation, which is the hallmark of osteoinduction and the most important prerequisite for the repair of large bone defects. Unfortunately, measuring or predicting BGS osteoinductive potential based on in vitro experiments is currently impossible. A recent study claimed that synthetic BGS can induce bone formation ectopically if they create a local homeostatic imbalance during their in vivo mineralization. This raised the hope that a simple cell free in vitro mineralization experiment would correlate with osteoinduction. The aim of the present study was therefore to assess the ability of a quantitative in vitro mineralization test to predict and rank the osteoinductive potential of BGS. Eight calcium phosphate BGS already tested ectopically in 9 different in vivo studies were used for that purpose. The experiment was able to identify materials that are reliably osteoinductive from those that are not, but was inaccurate in ranking the osteoinductive materials between each other. Chemical contaminants (Ca2+, Mg2+, H+, OH-, PO43-) present in some of the BGS affected the in vitro mineralization experiment results, but not in a direction that could explain the different rankings. In conclusion, this study suggests that an in vitro experiment can be used as a fast and reliable screening tool to identify osteoinductive BGS and underline the need to study ionic contaminants on calcium phosphate BGS.
Collapse
Affiliation(s)
- Yassine Maazouz
- RMS Foundation, Bischmattstrasse 12, 2544, Bettlach, Switzerland
| | - Giacomo Chizzola
- RMS Foundation, Bischmattstrasse 12, 2544, Bettlach, Switzerland
| | - Nicola Döbelin
- RMS Foundation, Bischmattstrasse 12, 2544, Bettlach, Switzerland
| | - Marc Bohner
- RMS Foundation, Bischmattstrasse 12, 2544, Bettlach, Switzerland.
| |
Collapse
|
17
|
Liu W, Jing X, Xu Z, Teng C. PEGDA/HA mineralized hydrogel loaded with Exendin4 promotes bone regeneration in rat models with bone defects by inducing osteogenesis. J Biomater Appl 2021; 35:1337-1346. [PMID: 33467965 DOI: 10.1177/0885328220987046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Scaffolds with osteogenic differentiation function play an important role in the healing process of bone defects. Here, we designed a high strength Poly(ethyleneglycol) diacrylate/Hydroxyapatite (PEGDA/HA) mineralized hydrogel loaded with Exendin4 for inducing osteogenic differentiation. In this study, PEGDA hydrogel was prepared by photo initiating method. PEGDA/HA mineralized hydrogel was prepared by in-situ precipitation method, and Exendin4 was loaded by gel adsorption. The effects of different calcium and phosphorus concentrations on the strength and Exendin4 release of PEGDA/HA hydrogels were investigated. Rat models of bone defect were made and randomly divided into 5 groups. The experimental group was implanted with PEGDA hydrogel, Exendin4-PEGDA hydrogel, PEGDA/HA mineralized hydrogel, Exendin4-PEGDA/HA mineralized hydrogel, and no materials were implanted in the blank control group. Computed tomography (CT) and histology were observed 4 and 8 weeks after operation. Our results revealed that the PEGDA/HA mineralized hydrogel had porous structure, high mechanical strength and good biocompatibility. In vitro release test showed that the mineralized hydrogel exhibited good sustained release profile within 20 d. The animal experiments showed that the mineralized hydrogel accelerated the formation of new bone after 4 and 8 weeks, and formed a seamless union on the defected bone area after 8 weeks. In conclusions, The Exendin4-PEGDA/HA mineralized hydrogel can effectively repair bone defects in rats, and it is expected to be used as a biomaterial for human bone tissue repair.
Collapse
Affiliation(s)
- Wei Liu
- The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Xiaowei Jing
- The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Zhiwen Xu
- The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Chong Teng
- The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| |
Collapse
|
18
|
Zhao F, Yang Z, Liu L, Chen D, Shao L, Chen X, Fz, Ls, Fz, Zy, Ll, Xc, Dc, Xc, Ls, Fz, Xc. Design and evaluation of a novel sub-scaffold dental implant system based on the osteoinduction of micro-nano bioactive glass. BIOMATERIALS TRANSLATIONAL 2020; 1:82-88. [PMID: 35837658 PMCID: PMC9255813 DOI: 10.3877/cma.j.issn.2096-112x.2020.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022]
Abstract
Alveolar ridge atrophy brings great challenges for endosteal implantation due to the lack of adequate vertical bone mass to hold the implants. To overcome this limitation, we developed a novel dental implant design: sub-scaffold dental implant system (SDIS), which is composed of a metal implant and a micro-nano bioactive glass scaffold. This implant system can be directly implanted under mucous membranes without adding any biomolecules or destroying the alveolar ridge. To evaluate the performance of the novel implant system in vivo, SDISs were implanted into the sub-epicranial aponeurosis space of Sprague-Dawley rats. After 6 weeks, the SDIS and surrounding tissues were collected and analysed by micro-CT, scanning electron microscopy and histology. Our results showed that SDISs implanted into the sub-epicranial aponeurosis had integrated with the skull without any mobility and could stably support a denture. Moreover, this design achieved alveolar ridge augmentation, as active osteogenesis could be observed outside the cortical bone. Considering that the microenvironment of the sub-epicranial aponeurosis space is similar to that of the alveolar ridge, SDISs have great potential for clinical applications in the treatment of atrophic alveolar ridges. The study was approved by the Animal Care Committee of Guangdong Pharmaceutical University (approval No. 2017370).
Collapse
Affiliation(s)
- Fujian Zhao
- Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhen Yang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province, China,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Lu Liu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province, China,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Beijing, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong Province, China,Corresponding authors: Xiaofeng Chen, ; Longquan Shao,
| | - Xiaofeng Chen
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province, China,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong Province, China,Corresponding authors: Xiaofeng Chen, ; Longquan Shao,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Liu X, Hou M, Luo X, Zheng M, Wang X, Zhang H, Guo J. Thermoresponsive Hemostatic Hydrogel with a Biomimetic Nanostructure Constructed from Aggregated Collagen Nanofibers. Biomacromolecules 2020; 22:319-329. [PMID: 33296595 DOI: 10.1021/acs.biomac.0c01167] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Uncontrollable bleeding poses considerable fatality risks by large-volume blood losses. Current emergency antibleeding handlings including either compression with gauze or "passive" blood transfusion are thus far from ideal, while most recently developed hemostatic agents still share common limitations without considering the subsequent tissue repairing and antibacterial activity after treatment. Herein, we introduce a novel bioinspired aggregated collagen nanofiber-based biocompatible and efficient hemostatic hydrogel material (TS-Gel-Ag-col) prepared by the integration of multifunctional compounds of muco-mimetic poloxamer, polyvinylpyrrolidone, and dencichine/chitosan dialdehyde synergistic crosslinked aggregated collagen nanofibers decorated with silver nanoparticles. Comprehensive material characterization and in vitro and in vivo studies of TS-Gel-Ag-col demonstrate that these materials possess effective antihemorrhagic and antibacterial wound protection effects. Moreover, TS-Gel-Ag-col can facilitate the tissue repairing of skin wounds by promoting revascularization. TS-Gel-Ag-col holds great promise for next-generation collagen-based absorbable hemostatic materials and for the development of smart artificial skins.
Collapse
Affiliation(s)
- Xinhua Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Wei Yang District, Xi'an, Shaanxi 710021, China.,National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Weiyang District, Xi'an, Shaanxi 710021, China.,Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Weiyang District, Xi'an, Shaanxi 710021, China
| | - Mengdi Hou
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Wei Yang District, Xi'an, Shaanxi 710021, China.,National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Weiyang District, Xi'an, Shaanxi 710021, China.,Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Weiyang District, Xi'an, Shaanxi 710021, China
| | - Xiaomin Luo
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Wei Yang District, Xi'an, Shaanxi 710021, China.,National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Weiyang District, Xi'an, Shaanxi 710021, China.,Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Weiyang District, Xi'an, Shaanxi 710021, China
| | - Manhui Zheng
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Wei Yang District, Xi'an, Shaanxi 710021, China.,National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Weiyang District, Xi'an, Shaanxi 710021, China.,Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Weiyang District, Xi'an, Shaanxi 710021, China
| | - Xuechuan Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Wei Yang District, Xi'an, Shaanxi 710021, China.,National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Weiyang District, Xi'an, Shaanxi 710021, China.,Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Weiyang District, Xi'an, Shaanxi 710021, China
| | - Huijie Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Wei Yang District, Xi'an, Shaanxi 710021, China.,National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Weiyang District, Xi'an, Shaanxi 710021, China.,Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Weiyang District, Xi'an, Shaanxi 710021, China
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, School of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China.,Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts 02115, United States
| |
Collapse
|
20
|
Liang B, Shi Q, Xu J, Chai YM, Xu JG. Poly (Glycerol Sebacate)-Based Bio-Artificial Multiporous Matrix for Bone Regeneration. Front Chem 2020; 8:603577. [PMID: 33330398 PMCID: PMC7719816 DOI: 10.3389/fchem.2020.603577] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
In recent years, bone repair biomaterials that combine cells and bioactive factors are superior to autologous and allogeneic bone implants. However, neither natural nor synthetic biomaterials can possess all desired qualities such as strength, porosity, and biological activity. In this study, we used poly (glycerol sebacate) (PGS), a synthetic material with great osteogenic potential that has attracted more attention in the field of tissue (such as bone tissue) regeneration owing to its good biocompatibility and high elasticity. It also has the advantage of being regulated by material synthesis to match the bone tissue's strength and can be easily modified to become functional. However, pure PGS lacks functional groups and hydrophilicity. Therefore, we used PGS as the substrate to graft the adhesive ligands RGD and vascular endothelial growth factor mimetic peptide. The bone repair scaffold can be prepared through photo crosslinking, as it not only improves hydrophobicity but also promotes vascularization and accelerates osteogenesis. Simultaneously, we improved the preparation method of hydrogels after freeze-drying and crosslinking to form a sponge-like structure and to easily regenerate blood vessels. In summary, a bone repair scaffold was prepared to meet the structural and biological requirements. It proved to serve as a potential bone-mimicking scaffold by enhancing tissue regenerative processes such as cell infiltration and vascularization and subsequent replacement by the native bone tissue.
Collapse
Affiliation(s)
| | | | | | | | - Jian-Guang Xu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
21
|
Park H, Collignon AM, Lepry WC, Ramirez-GarciaLuna JL, Rosenzweig DH, Chaussain C, Nazhat SN. Acellular dense collagen-S53P4 bioactive glass hybrid gel scaffolds form more bone than stem cell delivered constructs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111743. [PMID: 33545885 DOI: 10.1016/j.msec.2020.111743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/21/2020] [Accepted: 11/13/2020] [Indexed: 01/07/2023]
Abstract
Dense collagen (DC) gels facilitate the osteoblastic differentiation of seeded dental pulp stem cells (DPSCs) and undergo rapid acellular mineralization when incorporated with bioactive glass particles, both in vitro and subcutaneously in vivo. However, the potential of DC-bioactive glass hybrid gels in delivering DPSCs for bone regeneration in an osseous site has not been investigated. In this study, the efficacies of both acellular and DPSC-seeded DC-S53P4 bioactive glass [(53)SiO2-(23)Na2O-(20)CaO-(4)P2O5, wt%] hybrid gels were investigated in a critical-sized murine calvarial defect. The incorporation of S53P4, an osteostimulative bioactive glass, into DC gels led to its accelerated acellular mineralization in simulated body fluid (SBF), in vitro, where hydroxycarbonated apatite was detected within 1 day. By day 7 in SBF, micro-mechanical analysis demonstrated an 8-fold increase in the compressive modulus of the mineralized gels. The in-situ effect of the bioactive glass on human-DPSCs within DC-S53P4 was evident, by their osteogenic differentiation in the absence of osteogenic supplements. The production of alkaline phosphatase and collagen type I was further increased when cultured in osteogenic media. This osteostimulative effect of DC-S53P4 constructs was confirmed in vivo, where after 8 weeks implantation, both acellular scaffolds and DPSC-seeded DC-S53P4 constructs formed mineralized and vascularized bone matrices with osteoblastic and osteoclastic cell activity. Surprisingly, however, in vivo micro-CT analysis confirmed that the acellular scaffolds generated larger volumes of bone, already visible at week 3 and exhibiting superior trabecular architecture. The results of this study suggest that DC-S53P4 scaffolds negate the need for stem cell delivery for effective bone tissue regeneration and may expedite their path towards clinical applications.
Collapse
Affiliation(s)
- Hyeree Park
- Department of Mining and Materials Engineering, McGill University, Canada
| | - Anne-Margaux Collignon
- Université de Paris, URP 2496 Laboratory Orofacial Pathologies, Imaging, and Biotherapies and Life Imaging Platform (PIV), Montrouge, France; AP-HP, GH Nord Université de Paris (Louis Mourier and Bretonneau hospitals), France
| | - William C Lepry
- Department of Mining and Materials Engineering, McGill University, Canada
| | | | - Derek H Rosenzweig
- Division of Orthopedic Surgery, McGill University, Canada; Injury, Repair and Recovery Program, Research Institute of McGill University Health Centre, Canada
| | - Catherine Chaussain
- Université de Paris, URP 2496 Laboratory Orofacial Pathologies, Imaging, and Biotherapies and Life Imaging Platform (PIV), Montrouge, France; AP-HP, GH Nord Université de Paris (Louis Mourier and Bretonneau hospitals), France
| | - Showan N Nazhat
- Department of Mining and Materials Engineering, McGill University, Canada.
| |
Collapse
|
22
|
Dogan E, Bhusal A, Cecen B, Miri AK. 3D Printing metamaterials towards tissue engineering. APPLIED MATERIALS TODAY 2020; 20:100752. [PMID: 32856000 PMCID: PMC7446732 DOI: 10.1016/j.apmt.2020.100752] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The rapid growth and disruptive potentials of three-dimensional (3D) printing demand further research for addressing fundamental fabrication concepts and enabling engineers to realize the capabilities of 3D printing technologies. There is a trend to use these capabilities to develop materials that derive some of their properties via their structural organization rather than their intrinsic constituents, sometimes referred to as mechanical metamaterials. Such materials show qualitatively different mechanical behaviors despite using the same material composition, such as ultra-lightweight, super-elastic, and auxetic structures. In this work, we review current advancements in the design and fabrication of multi-scale advanced structures with properties heretofore unseen in well-established materials. We classify the fabrication methods as conventional methods, additive manufacturing techniques, and 4D printing. Following a comprehensive comparison of different fabrication methods, we suggest some guidelines on the selection of fabrication parameters to construct meta-biomaterials for tissue engineering. The parameters include multi-material capacity, fabrication resolution, prototyping speed, and biological compatibility.
Collapse
Affiliation(s)
- Elvan Dogan
- Biofabrication Lab, Department of Mechanical Engineering, Rowan University, Glassboro, NJ 08028, United States
| | - Anant Bhusal
- Biofabrication Lab, Department of Mechanical Engineering, Rowan University, Glassboro, NJ 08028, United States
| | - Berivan Cecen
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, United States
| | - Amir K. Miri
- Biofabrication Lab, Department of Mechanical Engineering, Rowan University, Glassboro, NJ 08028, United States
- School of Medical Engineering, Science, and Health, Rowan University, Camden, NJ 08103, United States
| |
Collapse
|
23
|
Montalbano G, Borciani G, Cerqueni G, Licini C, Banche-Niclot F, Janner D, Sola S, Fiorilli S, Mattioli-Belmonte M, Ciapetti G, Vitale-Brovarone C. Collagen Hybrid Formulations for the 3D Printing of Nanostructured Bone Scaffolds: An Optimized Genipin-Crosslinking Strategy. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1681. [PMID: 32867075 PMCID: PMC7558137 DOI: 10.3390/nano10091681] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/27/2022]
Abstract
Bone-tissue regeneration induced by biomimetic bioactive materials is the most promising approach alternative to the clinical ones used to treat bone loss caused by trauma or diseases such as osteoporosis. The goal is to design nanostructured bioactive constructs able to reproduce the physiological environment: By mimicking the natural features of bone tissue, the cell behavior during the regeneration process may be addressed. At present, 3D-printing technologies are the only techniques able to design complex structures avoiding constraints of final shape and porosity. However, this type of biofabrication requires complex optimization of biomaterial formulations in terms of specific rheological and mechanical properties while preserving high biocompatibility. In this work, we combined nano-sized mesoporous bioactive glasses enriched with strontium ions with type I collagen, to formulate a bioactive ink for 3D-printing technologies. Moreover, to avoid the premature release of strontium ions within the crosslinking medium and to significantly increase the material mechanical and thermal stability, we applied an optimized chemical treatment using ethanol-dissolved genipin solutions. The high biocompatibility of the hybrid system was confirmed by using MG-63 and Saos-2 osteoblast-like cell lines, further highlighting the great potential of the innovative nanocomposite for the design of bone-like scaffolds.
Collapse
Affiliation(s)
- Giorgia Montalbano
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (G.M.); (G.B.); (C.L.); (F.B.-N.); (D.J.); (S.S.); (S.F.)
| | - Giorgia Borciani
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (G.M.); (G.B.); (C.L.); (F.B.-N.); (D.J.); (S.S.); (S.F.)
- Scienze e Tecnologie Biomediche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
| | - Giorgia Cerqueni
- Department of Clinical and Molecular Sciences (DISCLIMO,) Università Politecnica delle Marche, Via Tronto 10/a, 60126 Ancona, Italy; (G.C.); (M.M.-B.)
| | - Caterina Licini
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (G.M.); (G.B.); (C.L.); (F.B.-N.); (D.J.); (S.S.); (S.F.)
- Department of Clinical and Molecular Sciences (DISCLIMO,) Università Politecnica delle Marche, Via Tronto 10/a, 60126 Ancona, Italy; (G.C.); (M.M.-B.)
| | - Federica Banche-Niclot
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (G.M.); (G.B.); (C.L.); (F.B.-N.); (D.J.); (S.S.); (S.F.)
| | - Davide Janner
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (G.M.); (G.B.); (C.L.); (F.B.-N.); (D.J.); (S.S.); (S.F.)
| | - Stefania Sola
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (G.M.); (G.B.); (C.L.); (F.B.-N.); (D.J.); (S.S.); (S.F.)
| | - Sonia Fiorilli
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (G.M.); (G.B.); (C.L.); (F.B.-N.); (D.J.); (S.S.); (S.F.)
| | - Monica Mattioli-Belmonte
- Department of Clinical and Molecular Sciences (DISCLIMO,) Università Politecnica delle Marche, Via Tronto 10/a, 60126 Ancona, Italy; (G.C.); (M.M.-B.)
| | - Gabriela Ciapetti
- Scienze e Tecnologie Biomediche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
| | - Chiara Vitale-Brovarone
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (G.M.); (G.B.); (C.L.); (F.B.-N.); (D.J.); (S.S.); (S.F.)
| |
Collapse
|
24
|
Matter MT, Li J, Lese I, Schreiner C, Bernard L, Scholder O, Hubeli J, Keevend K, Tsolaki E, Bertero E, Bertazzo S, Zboray R, Olariu R, Constantinescu MA, Figi R, Herrmann IK. Multiscale Analysis of Metal Oxide Nanoparticles in Tissue: Insights into Biodistribution and Biotransformation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000912. [PMID: 32775166 PMCID: PMC7404155 DOI: 10.1002/advs.202000912] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/22/2020] [Indexed: 05/05/2023]
Abstract
Metal oxide nanoparticles have emerged as exceptionally potent biomedical sensors and actuators due to their unique physicochemical features. Despite fascinating achievements, the current limited understanding of the molecular interplay between nanoparticles and the surrounding tissue remains a major obstacle in the rationalized development of nanomedicines, which is reflected in their poor clinical approval rate. This work reports on the nanoscopic characterization of inorganic nanoparticles in tissue by the example of complex metal oxide nanoparticle hybrids consisting of crystalline cerium oxide and the biodegradable ceramic bioglass. A validated analytical method based on semiquantitative X-ray fluorescence and inductively coupled plasma spectrometry is used to assess nanoparticle biodistribution following intravenous and topical application. Then, a correlative multiscale analytical cascade based on a combination of microscopy and spectroscopy techniques shows that the topically applied hybrid nanoparticles remain at the initial site and are preferentially taken up into macrophages, form apatite on their surface, and lead to increased accumulation of lipids in their surroundings. Taken together, this work displays how modern analytical techniques can be harnessed to gain unprecedented insights into the biodistribution and biotransformation of complex inorganic nanoparticles. Such nanoscopic characterization is imperative for the rationalized engineering of safe and efficacious nanoparticle-based systems.
Collapse
Affiliation(s)
- Martin T. Matter
- Particles‐Biology Interactions, Department of Materials Meet LifeSwiss Federal Laboratories for Materials Science and Technology (Empa)Lerchenfeldstrasse 5St. Gallen9014Switzerland
- Nanoparticle Systems Engineering LaboratoryInstitute of Process EngineeringDepartment of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
| | - Jian‐Hao Li
- Particles‐Biology Interactions, Department of Materials Meet LifeSwiss Federal Laboratories for Materials Science and Technology (Empa)Lerchenfeldstrasse 5St. Gallen9014Switzerland
- Nanoparticle Systems Engineering LaboratoryInstitute of Process EngineeringDepartment of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
| | - Ioana Lese
- Department of Plastic and Hand SurgeryUniversity Hospital Bern (Inselspital)University of BernBern3010Switzerland
| | - Claudia Schreiner
- Advanced Analytical TechnologiesSwiss Federal Laboratories for Materials Science and Technology (Empa)Uberlandstrasse 129Dubendorf8600Switzerland
| | - Laetitia Bernard
- Nanoscale MaterialsDepartment of Materials Meet LifeSwiss Federal Laboratories for Materials Science and Technology (Empa)Uberlandstrasse 129Dubendorf8600Switzerland
| | - Olivier Scholder
- Nanoscale MaterialsDepartment of Materials Meet LifeSwiss Federal Laboratories for Materials Science and Technology (Empa)Uberlandstrasse 129Dubendorf8600Switzerland
| | - Jasmin Hubeli
- Advanced Analytical TechnologiesSwiss Federal Laboratories for Materials Science and Technology (Empa)Uberlandstrasse 129Dubendorf8600Switzerland
| | - Kerda Keevend
- Particles‐Biology Interactions, Department of Materials Meet LifeSwiss Federal Laboratories for Materials Science and Technology (Empa)Lerchenfeldstrasse 5St. Gallen9014Switzerland
- Nanoparticle Systems Engineering LaboratoryInstitute of Process EngineeringDepartment of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
| | - Elena Tsolaki
- Particles‐Biology Interactions, Department of Materials Meet LifeSwiss Federal Laboratories for Materials Science and Technology (Empa)Lerchenfeldstrasse 5St. Gallen9014Switzerland
- Nanoparticle Systems Engineering LaboratoryInstitute of Process EngineeringDepartment of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
- Department of Medical Physics and Biomedical EngineeringUniversity College London (UCL)Malet Place Engineering BuildingLondonWC1E 6BTUK
| | - Enrico Bertero
- Mechanics of Materials and NanostructuresSwiss Federal Laboratories for Materials Science and Technology (Empa)Feuerwerkerstrasse 39Thun3602Switzerland
| | - Sergio Bertazzo
- Department of Medical Physics and Biomedical EngineeringUniversity College London (UCL)Malet Place Engineering BuildingLondonWC1E 6BTUK
| | - Robert Zboray
- Center for X‐ray AnalyticsSwiss Federal Laboratories for Materials Science and Technology (Empa)Uberlandstrasse 129Dubendorf8600Switzerland
| | - Radu Olariu
- Department of Plastic and Hand SurgeryUniversity Hospital Bern (Inselspital)University of BernBern3010Switzerland
| | - Mihai A. Constantinescu
- Department of Plastic and Hand SurgeryUniversity Hospital Bern (Inselspital)University of BernBern3010Switzerland
| | - Renato Figi
- Advanced Analytical TechnologiesSwiss Federal Laboratories for Materials Science and Technology (Empa)Uberlandstrasse 129Dubendorf8600Switzerland
| | - Inge K. Herrmann
- Particles‐Biology Interactions, Department of Materials Meet LifeSwiss Federal Laboratories for Materials Science and Technology (Empa)Lerchenfeldstrasse 5St. Gallen9014Switzerland
- Nanoparticle Systems Engineering LaboratoryInstitute of Process EngineeringDepartment of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
| |
Collapse
|
25
|
Jiang W, Griffanti G, Tamimi F, McKee MD, Nazhat SN. Multiscale structural evolution of citrate-triggered intrafibrillar and interfibrillar mineralization in dense collagen gels. J Struct Biol 2020; 212:107592. [PMID: 32736073 DOI: 10.1016/j.jsb.2020.107592] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/09/2020] [Accepted: 07/22/2020] [Indexed: 01/06/2023]
Abstract
The mineralized extracellular matrix of bone is an organic-inorganic nanocomposite consisting primarily of carbonated hydroxyapatite, fibrous type I collagen, noncollagenous proteins, proteoglycans, and diverse biomolecules such as pyrophosphate and citrate. While much is now known about the mineralization-regulating role of pyrophosphate, less is known about the function of citrate. In order to assess the effect of negatively charged citrate on collagen mineralization, citrate-functionalized, bone osteoid-mimicking dense collagen gels were exposed to simulated body fluid for up to 7 days to examine the multiscale evolution of intra- and interfibrillar collagen mineralization. Here, we show by increases in methylene blue staining that the net negative charge of collagen can be substantially augmented through citrate functionalization. Structural and compositional analyses by transmission and scanning electron microscopy (including X-ray microanalysis and electron diffraction), and atomic force microscopy, all demonstrated that citrate-functionalized collagen fibrils underwent extensive intrafibrillar mineralization within 12 h in simulated body fluid. Time-resolved, high-resolution transmission electron microscopy confirmed the temporal evolution of intrafibrillar mineralization of single collagen fibrils. Longer exposure to simulated body fluid resulted in additional interfibrillar mineralization, all through an amorphous-to-crystalline transformation towards apatite (assessed by X-ray diffraction and attenuated total reflection-Fourier-transform infrared spectroscopy). Calcium deposition assays indicated a citrate concentration-dependent temporal increase in mineralization, and micro-computed tomography confirmed that >80 vol% of the collagen in the gels was mineralized by day 7. In conclusion, citrate effectively induces mesoscale intra- and interfibrillar collagen mineralization, a finding that advances our understanding of the role of citrate in mineralized tissues.
Collapse
Affiliation(s)
- Wenge Jiang
- Department of Mining and Materials Engineering, Faculty of Engineering, McGill University, Montreal, Quebec, Canada; Faculty of Dentistry McGill University, Montreal, Quebec, Canada; Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin, PR China
| | - Gabriele Griffanti
- Department of Mining and Materials Engineering, Faculty of Engineering, McGill University, Montreal, Quebec, Canada
| | - Faleh Tamimi
- Faculty of Dentistry McGill University, Montreal, Quebec, Canada
| | - Marc D McKee
- Faculty of Dentistry McGill University, Montreal, Quebec, Canada; Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Showan N Nazhat
- Department of Mining and Materials Engineering, Faculty of Engineering, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
26
|
Wu C, Zhang Z, Zhou K, Chen W, Tao J, Li C, Xin H, Song Y, Ai F. Preparation and characterization of borosilicate-bioglass-incorporated sodium alginate composite wound dressing for accelerated full-thickness skin wound healing. Biomed Mater 2020; 15:055009. [PMID: 32422624 DOI: 10.1088/1748-605x/ab9421] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Full-thickness skin injury is a serious and intractable clinical problem. Wound dressing is urgently needed to treat serious skin defects or induce skin reconstruction. For the first time, we demonstrated a borosilicate bioglass (BBG)-incorporated sodium alginate (SA) wound dressing by a simple and effective technique for accelerated wound healing. The physical and chemical properties, in vitro and in vivo properties of SA-BBG composite wound dressing have been investigated. The results show that the SA-BBG composite dressing possesses good water absorption performance. The boron and silicon ions in BBG can maintain stable and sustained release. Most importantly, the SA-BBG composite wound dressing shows outstanding wound healing ability in full-thickness skin defects in rats. The wounds treated with SA-BBG composite dressing groups had almost closed at day 15. When the ratio of sodium alginate to bioglass in the sponge is 3:1, the wound healing effect is the best. In conclusion, the SA-BBG composite dressing shows great potential for application in skin wound healing and SA3BBG works best.
Collapse
Affiliation(s)
- Chunxuan Wu
- The Second Clinical Medical School, Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
- These authors contributed equally to this work
| | - Zhongjie Zhang
- Xiaogan Central Hospital, Xiaogan, Hubei 432000, People's Republic of China
- These authors contributed equally to this work
| | - Kui Zhou
- School of Mechanic & Electronic Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Weigao Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Jun Tao
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Chen Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Hongbo Xin
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Yulin Song
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Fanrong Ai
- School of Mechanic & Electronic Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| |
Collapse
|
27
|
Cheng W, Ding Z, Zheng X, Lu Q, Kong X, Zhou X, Lu G, Kaplan DL. Injectable hydrogel systems with multiple biophysical and biochemical cues for bone regeneration. Biomater Sci 2020; 8:2537-2548. [PMID: 32215404 PMCID: PMC7204512 DOI: 10.1039/d0bm00104j] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bone regeneration is a complex process in which angiogenesis and osteogenesis are crucial. Introducing multiple angiogenic and osteogenic cues simultaneously into a single system and tuning these cues to optimize the niche remains a challenge for bone tissue engineering. Herein, based on our injectable biomimetic hydrogels composed of silk nanofibers (SNF) and hydroxyapatite nanoparticles (HA), deferoxamine (DFO) and bone morphogenetic protein-2 (BMP-2) were loaded on SNF and HA to introduce more angiogenic and osteogenic cues. The angiogenesis and osteogenesis capacity of injectable hydrogels could be regulated by tuning the delivery of DFO and BMP-2 independently, resulting in vascularization and bone regeneration in cranial defects. The angiogenesis and osteogenesis outcomes accelerated the regeneration of vascularized bones toward similar composition and structure to natural bones. Therefore, the multiple biophysical and chemical cues provided by the nanofibrous structures, organic-inorganic compositions, and chemical and biochemical angiogenic and osteogenic inducing cues suggest the potential for clinical applicability of these hydrogels in bone tissue engineering.
Collapse
Affiliation(s)
- Weinan Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215000, People's Republic of China. and Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, People's Republic of China. and Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen 361000, People's Republic of China
| | - Zhaozhao Ding
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, People's Republic of China.
| | - Xin Zheng
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou 318000, People's Republic of China
| | - Qiang Lu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215000, People's Republic of China. and Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, People's Republic of China.
| | - Xiangdong Kong
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Xiaozhong Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215000, People's Republic of China.
| | - Guozhong Lu
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, People's Republic of China.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| |
Collapse
|
28
|
Veronesi F, Maglio M, Brogini S, Fini M. In vivo studies on osteoinduction: A systematic review on animal models, implant site, and type and postimplantation investigation. J Biomed Mater Res A 2020; 108:1834-1866. [PMID: 32297695 DOI: 10.1002/jbm.a.36949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 03/15/2020] [Accepted: 03/28/2020] [Indexed: 11/10/2022]
Abstract
Musculoskeletal diseases involving loss of tissue usually require management with bone grafts, among which autografts are still the gold standard. To overcome autograft disadvantages, the development of new scaffolds is constantly increasing, as well as the number of in vivo studies evaluating their osteoinductivity in ectopic sites. The aim of the present systematic review is to evaluate the last 10 years of osteoinduction in vivo studies. The review is focused on: (a) which type of animal model is most suitable for osteoinduction evaluation; (b) what are the most used types of scaffolds; (c) what kind of post-explant evaluation is most used. Through three websites (www.pubmed.com, www.webofknowledge.com and www.embase.com), 77 in vivo studies were included. Fifty-eight studies were conducted in small animal models (rodents) and 19 in animals of medium or large size (rabbits, dogs, goats, sheep, and minipigs). Despite the difficulty in establishing the most suitable animal model for osteoinductivity studies, small animals (in particular mice) are the most utilized. Intramuscular implantation is more frequent than subcutis, especially in large animals, and synthetic scaffolds (especially CaP ceramics) are preferred than natural ones, also in combination with cells and growth factors. Paraffin histology and histomorphometric evaluations are usually employed for postimplantation analyses.
Collapse
Affiliation(s)
- Francesca Veronesi
- IRCCS-Istituto Ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| | - Melania Maglio
- IRCCS-Istituto Ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| | - Silvia Brogini
- IRCCS-Istituto Ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| | - Milena Fini
- IRCCS-Istituto Ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| |
Collapse
|
29
|
Sohrabi M, Eftekhari Yekta B, Rezaie HR, Naimi‐Jamal MR. Rheology, injectability, and bioactivity of bioactive glass containing chitosan/gelatin, nano pastes. J Appl Polym Sci 2020. [DOI: 10.1002/app.49240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mehri Sohrabi
- School of Metallurgy and Materials Engineering Iran University of Science and Technology Tehran Iran
| | - Bijan Eftekhari Yekta
- School of Metallurgy and Materials Engineering Iran University of Science and Technology Tehran Iran
| | - Hamid R. Rezaie
- School of Metallurgy and Materials Engineering Iran University of Science and Technology Tehran Iran
| | - Mohammad R. Naimi‐Jamal
- Research Laboratory of Green Organic Synthesis and Polymers Iran University of Science and Technology Tehran Iran
| |
Collapse
|
30
|
Huynh RN, Yousof M, Ly KL, Gombedza FC, Luo X, Bandyopadhyay BC, Raub CB. Microstructural densification and alignment by aspiration-ejection influence cancer cell interactions with three-dimensional collagen networks. Biotechnol Bioeng 2020; 117:1826-1838. [PMID: 32073148 DOI: 10.1002/bit.27308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/17/2019] [Accepted: 02/16/2020] [Indexed: 01/18/2023]
Abstract
Extracellular matrix microstructure and mechanics are crucial to breast cancer progression and invasion into surrounding tissues. The peritumor collagen network is often dense and aligned, features which in vitro models lack. Aspiration of collagen hydrogels led to densification and alignment of microstructure surrounding embedded cancer cells. Two metastasis-derived breast cancer cell lines, MDA-MB-231 and MCF-7, were cultured in initially 4 mg/ml collagen gels for 3 days after aspiration, as well as in unaspirated control hydrogels. Videomicroscopy during aspiration, and at 0, 1, and 3 days after aspiration, epifluorescence microscopy of phalloidin-stained F-actin cytoskeleton, histological sections, and soluble metabolic byproducts from constructs were collected to characterize effects on the embedded cell morphology, the collagen network microstructure, and proliferation. Breast cancer cells remained viable after aspiration-ejection, proliferating slightly less than in unaspirated gels. Furthermore, MDA-MB-231 cells appear to partially relax the collagen network and lose alignment 3 days after aspiration. Aspiration-ejection generated aligned, compact collagen network microstructure with immediate cell co-orientation and higher cell number density apparently through purely physical means, though cell-collagen contact guidance and network remodeling influence cell organization and collagen network microstructure during subsequent culture. This study establishes a platform to determine the effects of collagen density and alignment on cancer cell behavior, with translational potential for anticancer drug screening in a biomimetic three-dimensional matrix microenvironment, or implantation in preclinical models.
Collapse
Affiliation(s)
- Ruby N Huynh
- Department of Biomedical Engineering, The Catholic University of America, Washington, District of Columbia
| | - Manal Yousof
- Department of Biomedical Engineering, The Catholic University of America, Washington, District of Columbia
| | - Khanh L Ly
- Department of Biomedical Engineering, The Catholic University of America, Washington, District of Columbia
| | - Farai C Gombedza
- Research Service, Veterans Affairs Medical Center, Washington, District of Columbia
| | - Xiaolong Luo
- Department of Mechanical Engineering, The Catholic University of America, Washington, District of Columbia
| | - Bidhan C Bandyopadhyay
- Department of Biomedical Engineering, The Catholic University of America, Washington, District of Columbia.,Research Service, Veterans Affairs Medical Center, Washington, District of Columbia
| | - Christopher B Raub
- Department of Biomedical Engineering, The Catholic University of America, Washington, District of Columbia
| |
Collapse
|
31
|
Montalbano G, Borciani G, Pontremoli C, Ciapetti G, Mattioli-Belmonte M, Fiorilli S, Vitale-Brovarone C. Development and Biocompatibility of Collagen-Based Composites Enriched with Nanoparticles of Strontium Containing Mesoporous Glass. MATERIALS 2019; 12:ma12223719. [PMID: 31717980 PMCID: PMC6888293 DOI: 10.3390/ma12223719] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/25/2019] [Accepted: 11/07/2019] [Indexed: 01/23/2023]
Abstract
In the last years bone tissue engineering has been increasingly indicated as a valid solution to meet the challenging requirements for a healthy bone regeneration in case of bone loss or fracture. In such a context, bioactive glasses have already proved their great potential in promoting the regeneration of new bone tissue due to their high bioactivity. In addition, their composition and structure enable us to incorporate and subsequently release therapeutic ions such as strontium, enhancing the osteogenic properties of the material. The incorporation of these inorganic systems in polymeric matrices enables the formulation of composite systems suitable for the design of bone scaffolds or delivery platforms. Among the natural polymers, type I collagen represents the main organic phase of bone and thus is a good candidate to develop biomimetic bioactive systems for bone tissue regeneration. However, alongside the specific composition and structure, the key factor in the design of new biosystems is creating a suitable interaction with cells and the host tissue. In this scenario, the presented study aimed at combining nano-sized mesoporous bioactive glasses produced by means of a sol–gel route with type I collagen in order to develop a bioactive hybrid formulation suitable for bone tissue engineering applications. The designed system has been fully characterized in terms of physico-chemical and morphological analyses and the ability to release Sr2+ ions has been studied observing a more sustained profile in presence of the collagenous matrix. With the aim to improve the mechanical and thermal stability of the resulting hybrid system, a chemical crosslinking approach using 4-star poly (ethylene glycol) ether tetrasuccinimidyl glutarate (4-StarPEG) has been explored. The biocompatibility of both non-crosslinked and 4-StarPEG crosslinked systems was evaluated by in vitro tests with human osteoblast-like MG-63 cells. Collected results confirmed the high biocompatibility of composites, showing a good viability and adhesion of cells when cultured onto the biomaterial samples.
Collapse
Affiliation(s)
- Giorgia Montalbano
- Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (G.M.); (G.B.); (C.P.); (S.F.)
| | - Giorgia Borciani
- Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (G.M.); (G.B.); (C.P.); (S.F.)
- Laboratorio di Fisiopatologia Ortopedica e Medicina Rigenerativa, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Carlotta Pontremoli
- Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (G.M.); (G.B.); (C.P.); (S.F.)
| | - Gabriela Ciapetti
- Laboratorio di Fisiopatologia Ortopedica e Medicina Rigenerativa, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Monica Mattioli-Belmonte
- Dipartimento di Scienze Cliniche e Molecolari, DISCLIMO, Università Politecnica delle Marche, 60100 Ancona, Italy;
| | - Sonia Fiorilli
- Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (G.M.); (G.B.); (C.P.); (S.F.)
| | - Chiara Vitale-Brovarone
- Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (G.M.); (G.B.); (C.P.); (S.F.)
- Correspondence: ; Tel.: +39-0110-904-716
| |
Collapse
|
32
|
Vuornos K, Ojansivu M, Koivisto JT, Häkkänen H, Belay B, Montonen T, Huhtala H, Kääriäinen M, Hupa L, Kellomäki M, Hyttinen J, Ihalainen JA, Miettinen S. Bioactive glass ions induce efficient osteogenic differentiation of human adipose stem cells encapsulated in gellan gum and collagen type I hydrogels. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:905-918. [PMID: 30889765 DOI: 10.1016/j.msec.2019.02.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 02/05/2019] [Accepted: 02/10/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Due to unmet need for bone augmentation, our aim was to promote osteogenic differentiation of human adipose stem cells (hASCs) encapsulated in gellan gum (GG) or collagen type I (COL) hydrogels with bioactive glass (experimental glass 2-06 of composition [wt-%]: Na2O 12.1, K2O 14.0, CaO 19.8, P2O5 2.5, B2O3 1.6, SiO2 50.0) extract based osteogenic medium (BaG OM) for bone construct development. GG hydrogels were crosslinked with spermidine (GG-SPD) or BaG extract (GG-BaG). METHODS Mechanical properties of cell-free GG-SPD, GG-BaG, and COL hydrogels were tested in osteogenic medium (OM) or BaG OM at 0, 14, and 21 d. Hydrogel embedded hASCs were cultured in OM or BaG OM for 3, 14, and 21 d, and analyzed for viability, cell number, osteogenic gene expression, osteocalcin production, and mineralization. Hydroxyapatite-stained GG-SPD samples were imaged with Optical Projection Tomography (OPT) and Selective Plane Illumination Microscopy (SPIM) in OM and BaG OM at 21 d. Furthermore, Raman spectroscopy was used to study the calcium phosphate (CaP) content of hASC-secreted ECM in GG-SPD, GG-BaG, and COL at 21 d in BaG OM. RESULTS The results showed viable rounded cells in GG whereas hASCs were elongated in COL. Importantly, BaG OM induced significantly higher cell number and higher osteogenic gene expression in COL. In both hydrogels, BaG OM induced strong mineralization confirmed as CaP by Raman spectroscopy and significantly improved mechanical properties. GG-BaG hydrogels rescued hASC mineralization in OM. OPT and SPIM showed homogeneous 3D cell distribution with strong mineralization in BaG OM. Also, strong osteocalcin production was visible in COL. CONCLUSIONS Overall, we showed efficacious osteogenesis of hASCs in 3D hydrogels with BaG OM with potential for bone-like grafts.
Collapse
Affiliation(s)
- Kaisa Vuornos
- Adult Stem Cell Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, P.O. BOX 100, FI-33014 Tampere, Finland; Research, Development and Innovation Centre, Tampere University Hospital, P.O. BOX 2000, FI-33521, Tampere, Finland.
| | - Miina Ojansivu
- Adult Stem Cell Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, P.O. BOX 100, FI-33014 Tampere, Finland; Research, Development and Innovation Centre, Tampere University Hospital, P.O. BOX 2000, FI-33521, Tampere, Finland.
| | - Janne T Koivisto
- Biomaterials and Tissue Engineering Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, P.O. BOX 527, FI-33101 Tampere, Finland; Heart Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, P.O. BOX 100, FI-33014 Tampere, Finland.
| | - Heikki Häkkänen
- Nanoscience Center, University of Jyväskylä, P.O. BOX 35, FI-40014 Jyväskylä, Finland.
| | - Birhanu Belay
- Computational Biophysics and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, P.O. BOX 527, FI-33101 Tampere, Finland.
| | - Toni Montonen
- Computational Biophysics and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, P.O. BOX 527, FI-33101 Tampere, Finland.
| | - Heini Huhtala
- Faculty of Social Sciences, Tampere University, P.O. BOX 100, FI-33014 Tampere, Finland.
| | - Minna Kääriäinen
- Department of Plastic and Reconstructive Surgery, Tampere University Hospital, P.O. BOX 2000, FI-33521 Tampere, Finland.
| | - Leena Hupa
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FI-20500 Åbo, Finland.
| | - Minna Kellomäki
- Biomaterials and Tissue Engineering Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, P.O. BOX 527, FI-33101 Tampere, Finland.
| | - Jari Hyttinen
- Computational Biophysics and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, P.O. BOX 527, FI-33101 Tampere, Finland.
| | - Janne A Ihalainen
- Nanoscience Center, University of Jyväskylä, P.O. BOX 35, FI-40014 Jyväskylä, Finland.
| | - Susanna Miettinen
- Adult Stem Cell Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, P.O. BOX 100, FI-33014 Tampere, Finland; Research, Development and Innovation Centre, Tampere University Hospital, P.O. BOX 2000, FI-33521, Tampere, Finland.
| |
Collapse
|
33
|
Griffanti G, Jiang W, Nazhat SN. Bioinspired mineralization of a functionalized injectable dense collagen hydrogel through silk sericin incorporation. Biomater Sci 2019; 7:1064-1077. [DOI: 10.1039/c8bm01060a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The incorporation of silk sericin into injectable dense collagen hydrogels represents a powerful approach to mimic the biomineralization process, together with the osteogenic stimulation of seeded mesenchymal stem cells, in vitro.
Collapse
Affiliation(s)
- Gabriele Griffanti
- Department of Mining and Materials Engineering
- McGill University
- Montréal
- Canada
| | - Wenge Jiang
- Department of Mining and Materials Engineering
- McGill University
- Montréal
- Canada
| | - Showan N. Nazhat
- Department of Mining and Materials Engineering
- McGill University
- Montréal
- Canada
| |
Collapse
|
34
|
Diba M, Camargo WA, Zinkevich T, Grünewald A, Detsch R, Kabiri Y, Kentgens APM, Boccaccini AR, van den Beucken JJJP, Leeuwenburgh SCG. Hybrid particles derived from alendronate and bioactive glass for treatment of osteoporotic bone defects. J Mater Chem B 2019; 7:796-808. [DOI: 10.1039/c8tb03062f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Novel hybrid particles are synthesized using alendronate and bioactive glass, which can stimulate regeneration of osteoporotic bone defects.
Collapse
Affiliation(s)
- Mani Diba
- Department of Regenerative Biomaterials, Radboud University Medical Center
- Nijmegen
- The Netherlands
| | - Winston A. Camargo
- Department of Regenerative Biomaterials, Radboud University Medical Center
- Nijmegen
- The Netherlands
| | - Tatiana Zinkevich
- Institute for Molecules and Materials, Radboud University
- 6525 AJ Nijmegen
- The Netherlands
| | - Alina Grünewald
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg
- 91058 Erlangen
- Germany
| | - Rainer Detsch
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg
- 91058 Erlangen
- Germany
| | - Yoones Kabiri
- Kavli Institute of Nanoscience Delft, Delft University of Technology
- 2629 HZ Delft
- The Netherlands
| | - Arno P. M. Kentgens
- Institute for Molecules and Materials, Radboud University
- 6525 AJ Nijmegen
- The Netherlands
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg
- 91058 Erlangen
- Germany
| | | | | |
Collapse
|
35
|
James-Bhasin M, Siegel PM, Nazhat SN. A Three-Dimensional Dense Collagen Hydrogel to Model Cancer Cell/Osteoblast Interactions. J Funct Biomater 2018; 9:E72. [PMID: 30545096 PMCID: PMC6306762 DOI: 10.3390/jfb9040072] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/26/2018] [Accepted: 12/03/2018] [Indexed: 12/17/2022] Open
Abstract
No curative treatment options exist once breast cancer metastasizes to bone. This is due, in part, to an incomplete understanding of how osteolytic cancers interact with bone. Presented here is a novel approach to study the interactions between triple negative breast cancer cells and osteoblasts within a 3D collagenous environment. More specifically, a dense collagen hydrogel was employed to model interactions between MDA-MB-231 breast cancer cells and MC3T3-E1 pre-osteoblasts. Co-cultures with these two cell types, or MDA-MB-231-derived conditioned medium applied to MC3T3-E1 cells, were established in the context of plastically compressed dense collagen gel matrices. Importantly, breast cancer-derived conditioned medium or the establishment of breast cancer/osteoblast co-cultures did not negatively influence MC3T3-E1 cell viability. The inclusion of either conditioned medium or the presence of MDA-MB-231 cells resulted in impaired MC3T3-E1 differentiation into osteoblasts, which coincided with reduced osteoblast-mediated mineralization. The results presented here demonstrate that dense collagen gels provide a model environment to examine the effect of osteolytic breast cancer cells on osteoblast differentiation and subsequent mineralization of the collagen scaffold.
Collapse
Affiliation(s)
- Mark James-Bhasin
- Department of Mining and Materials Engineering, McGill University, Montréal, QC H3A 0C5, Canada.
| | - Peter M Siegel
- Departments of Medicine, Biochemistry and Anatomy & Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada.
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, QC H3A 1A3, Canada.
| | - Showan N Nazhat
- Department of Mining and Materials Engineering, McGill University, Montréal, QC H3A 0C5, Canada.
| |
Collapse
|
36
|
Magnetic bioinspired micro/nanostructured composite scaffold for bone regeneration. Colloids Surf B Biointerfaces 2018; 174:70-79. [PMID: 30439640 DOI: 10.1016/j.colsurfb.2018.11.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/12/2018] [Accepted: 11/02/2018] [Indexed: 12/28/2022]
Abstract
Magnetic-responsive materials are promising for applications in various biomedical fields. Especially, superparamagnetic nanoparticles are widely used in magnetic system for bone tissue engineering owing to superior biocompatibility and long term stability. Based on the idea of in situ bionics, we successfully incorporate the nano-hydroxyapatite (nHAP) and Fe3O4 nanoparticles which were prepared by in situ crystallization and freeze-drying technique into the chitosan/collagen (CS/Col) organic matrix to achieve the uniform dispersion of inorganic substrate with nanometer-scale. The in vitro results of the physicochemical and biocompatibility tests showed that CS/Col/Fe3O4/nHAP magnetic scaffold possessed superior structural and mechanical performance for cell adhesion and proliferation, as well as the osteogenic differentiation. Mineralization experiments showed better bioactive and good ability of in situ biomimetic mineralization. Moreover, from the in vivo model of SD rats' skull defects proved that the CS/Col/Fe3O4/nHAP hybrid scaffold had a better tissue compatibility and higher bone regeneration ability when implanted into the skull defects comparing to control group. Herein, the magnetic hybrid micro/nanostructured scaffold showed a potential application for bone defect repair.
Collapse
|
37
|
Turnbull G, Clarke J, Picard F, Riches P, Jia L, Han F, Li B, Shu W. 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater 2018; 3:278-314. [PMID: 29744467 PMCID: PMC5935790 DOI: 10.1016/j.bioactmat.2017.10.001] [Citation(s) in RCA: 608] [Impact Index Per Article: 86.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 12/13/2022] Open
Abstract
Bone is the second most commonly transplanted tissue worldwide, with over four million operations using bone grafts or bone substitute materials annually to treat bone defects. However, significant limitations affect current treatment options and clinical demand for bone grafts continues to rise due to conditions such as trauma, cancer, infection and arthritis. Developing bioactive three-dimensional (3D) scaffolds to support bone regeneration has therefore become a key area of focus within bone tissue engineering (BTE). A variety of materials and manufacturing methods including 3D printing have been used to create novel alternatives to traditional bone grafts. However, individual groups of materials including polymers, ceramics and hydrogels have been unable to fully replicate the properties of bone when used alone. Favourable material properties can be combined and bioactivity improved when groups of materials are used together in composite 3D scaffolds. This review will therefore consider the ideal properties of bioactive composite 3D scaffolds and examine recent use of polymers, hydrogels, metals, ceramics and bio-glasses in BTE. Scaffold fabrication methodology, mechanical performance, biocompatibility, bioactivity, and potential clinical translations will be discussed.
Collapse
Affiliation(s)
- Gareth Turnbull
- Department of Biomedical Engineering, Wolfson Building, University of Strathclyde, 106 Rottenrow, Glasgow, G4 0NW, United Kingdom
- Department of Orthopaedic Surgery, Golden Jubilee National Hospital, Agamemnon St, Clydebank, G81 4DY, United Kingdom
| | - Jon Clarke
- Department of Orthopaedic Surgery, Golden Jubilee National Hospital, Agamemnon St, Clydebank, G81 4DY, United Kingdom
| | - Frédéric Picard
- Department of Biomedical Engineering, Wolfson Building, University of Strathclyde, 106 Rottenrow, Glasgow, G4 0NW, United Kingdom
- Department of Orthopaedic Surgery, Golden Jubilee National Hospital, Agamemnon St, Clydebank, G81 4DY, United Kingdom
| | - Philip Riches
- Department of Biomedical Engineering, Wolfson Building, University of Strathclyde, 106 Rottenrow, Glasgow, G4 0NW, United Kingdom
| | - Luanluan Jia
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, PR China
| | - Fengxuan Han
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, PR China
| | - Bin Li
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, PR China
| | - Wenmiao Shu
- Department of Biomedical Engineering, Wolfson Building, University of Strathclyde, 106 Rottenrow, Glasgow, G4 0NW, United Kingdom
| |
Collapse
|
38
|
Zhao F, Xie W, Zhang W, Fu X, Gao W, Lei B, Chen X. 3D Printing Nanoscale Bioactive Glass Scaffolds Enhance Osteoblast Migration and Extramembranous Osteogenesis through Stimulating Immunomodulation. Adv Healthc Mater 2018; 7:e1800361. [PMID: 29952135 DOI: 10.1002/adhm.201800361] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/17/2018] [Indexed: 11/10/2022]
Abstract
Bioactive glass (BG) can repair bone defects, however, it is not clear whether BG has the ability for bone augmentation without making any bone defect. Unlike the intramembranous osteogenesis in bone defect repair, the extramembranous osteogenesis occurs outside the cortical bone and the osteoprogenitor cells show the reversed migration. Herein, nanoscale bioactive glass scaffolds (BGSs) are fabricated, and their role and immunomodulation-related mechanism in the extramembranous osteogenesis are investigated. The in vitro migration and differentiation of calvaria preosteoblasts are studied by culturing with peripheral macrophage-conditioned medium after stimulating with BGSs. The results indicate that the proinflammatory environment significantly promotes preosteoblast migration, but has limited effect on osteogenic differentiation. However, the anti-inflammatory environment and BGSs significantly increase the osteogenic differentiation of preosteoblasts. The in vivo extramembranous osteogenesis evaluation shows that the active osteogenesis is observed near the skull. The osteoblasts derived from the reverse migration of cranial cells can be confirmed by comparing with the scaffolds implanted in back subcutaneous which is just colonized by fibrous tissue. This study may bring a fresh perspective for BG in bone regeneration and explore the osteogenic immunomodulation of peripheral macrophages in a nonosteogenic environment.
Collapse
Affiliation(s)
- Fujian Zhao
- Department of Biomedical Engineering; School of Materials Science and Engineering; South China University of Technology; Guangzhou 510641 China
- National Engineering Research Center for Tissue Restoration; South China University of Technology; Guangzhou 510006 China
- Key Laboratory of Biomedical Materials and Engineering; Ministry of Education; South China University of Technology; Guangzhou 510006 China
| | - Weihan Xie
- Department of Biomedical Engineering; School of Materials Science and Engineering; South China University of Technology; Guangzhou 510641 China
- National Engineering Research Center for Tissue Restoration; South China University of Technology; Guangzhou 510006 China
- Key Laboratory of Biomedical Materials and Engineering; Ministry of Education; South China University of Technology; Guangzhou 510006 China
| | - Wen Zhang
- Department of Biomedical Engineering; School of Materials Science and Engineering; South China University of Technology; Guangzhou 510641 China
- National Engineering Research Center for Tissue Restoration; South China University of Technology; Guangzhou 510006 China
- Key Laboratory of Biomedical Materials and Engineering; Ministry of Education; South China University of Technology; Guangzhou 510006 China
| | - Xiaoling Fu
- Department of Biomedical Engineering; School of Materials Science and Engineering; South China University of Technology; Guangzhou 510641 China
- National Engineering Research Center for Tissue Restoration; South China University of Technology; Guangzhou 510006 China
- Key Laboratory of Biomedical Materials and Engineering; Ministry of Education; South China University of Technology; Guangzhou 510006 China
| | - Wendong Gao
- Department of Biomedical Engineering; School of Materials Science and Engineering; South China University of Technology; Guangzhou 510641 China
- National Engineering Research Center for Tissue Restoration; South China University of Technology; Guangzhou 510006 China
- Key Laboratory of Biomedical Materials and Engineering; Ministry of Education; South China University of Technology; Guangzhou 510006 China
| | - Bo Lei
- Frontier Institute of Science and Technology; Xi'an Jiaotong University; Xi'an 710000 China
| | - Xiaofeng Chen
- Department of Biomedical Engineering; School of Materials Science and Engineering; South China University of Technology; Guangzhou 510641 China
- National Engineering Research Center for Tissue Restoration; South China University of Technology; Guangzhou 510006 China
- Key Laboratory of Biomedical Materials and Engineering; Ministry of Education; South China University of Technology; Guangzhou 510006 China
| |
Collapse
|
39
|
Montalbano G, Fiorilli S, Caneschi A, Vitale-Brovarone C. Type I Collagen and Strontium-Containing Mesoporous Glass Particles as Hybrid Material for 3D Printing of Bone-Like Materials. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E700. [PMID: 29710811 PMCID: PMC5978077 DOI: 10.3390/ma11050700] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/20/2018] [Accepted: 04/25/2018] [Indexed: 12/12/2022]
Abstract
Bone tissue engineering offers an alternative promising solution to treat a large number of bone injuries with special focus on pathological conditions, such as osteoporosis. In this scenario, the bone tissue regeneration may be promoted using bioactive and biomimetic materials able to direct cell response, while the desired scaffold architecture can be tailored by means of 3D printing technologies. In this context, our study aimed to develop a hybrid bioactive material suitable for 3D printing of scaffolds mimicking the natural composition and structure of healthy bone. Type I collagen and strontium-containing mesoporous bioactive glasses were combined to obtain suspensions able to perform a sol-gel transition under physiological conditions. Field emission scanning electron microscopy (FESEM) analyses confirmed the formation of fibrous nanostructures homogeneously embedding inorganic particles, whereas bioactivity studies demonstrated the large calcium phosphate deposition. The high-water content promoted the strontium ion release from the embedded glass particles, potentially enhancing the osteogenic behaviour of the composite. Furthermore, the suspension printability was assessed by means of rheological studies and preliminary extrusion tests, showing shear thinning and fast material recovery upon deposition. In conclusion, the reported results suggest that promising hybrid systems suitable for 3D printing of bioactive scaffolds for bone tissue engineering have been developed.
Collapse
Affiliation(s)
- Giorgia Montalbano
- Politecnico di Torino, Department of Applied Science and Technology, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Sonia Fiorilli
- Politecnico di Torino, Department of Applied Science and Technology, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Andrea Caneschi
- DIEF-Department of Industrial Engineering and RU INSTM, Università degli Studi di Firenze, Via S. Marta 3, 50139 Firenze, Italy.
| | - Chiara Vitale-Brovarone
- Politecnico di Torino, Department of Applied Science and Technology, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| |
Collapse
|
40
|
Kido HW, Gabbai-Armelin PR, Avanzi IR, da Silva AC, Fernandes KR, Fortulan CA, Rennó ACM. Vacuumed collagen-impregnated bioglass scaffolds: Characterization and influence on proliferation and differentiation of bone marrow stromal cells. J Biomed Mater Res B Appl Biomater 2018; 107:211-222. [PMID: 29569333 DOI: 10.1002/jbm.b.34112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/09/2018] [Accepted: 03/06/2018] [Indexed: 11/09/2022]
Abstract
This study evaluated physical-chemical characteristics of a vacuumed collagen-impregnated bioglass (BG) scaffolds and bone marrow stromal cells (BMSCs) behavior on those composites. scanning electron microscope and energy dispersive x-ray spectroscope demonstrated collagen (Col) was successfully introduced into BG. Vacuum impregnation system has showed efficiency for Col impregnation in BG scaffolds (approximately 20 wt %). Furthermore, mass weight decreasing and more stabilized pH were observed over time for BG/Col upon incubation in phosphate buffered saline compared to plain BG under same conditions. Calcium evaluation (Ca assay) demonstrated higher calcium uptake for BG/Col samples compared to BG. In addition, BG samples presented hydroxyapatite crystals formation on its surface after 14 days in simulated body fluid solution, and signs of initial degradation were observed for BG and BG/Col after 21 days. Fourier transform infrared spectroscopy spectra for both groups indicated peaks for hydroxyapatite formation. Finally, a significant increase of BMSCs viability for both composites was observed compared to control group, but no increase of osteogenic differentiation-related gene expressions were found. In summary, BG/Col scaffolds have improved degradation, pH equilibrium and Ca mineralization over time, accompanied by hydroxyapatite formation. Moreover, both BG and BG/Col scaffolds were biocompatible and noncytotoxic, promoting a higher cell viability compared to control. Future investigations should focus on additional molecular and in vivo studies in order to evaluate biomaterial performance for bone tissue engineering applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 107B: 211-222, 2019.
Collapse
Affiliation(s)
- Hueliton Wilian Kido
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | | | - Ingrid Regina Avanzi
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | | | | | | | | |
Collapse
|
41
|
Kim HD, Amirthalingam S, Kim SL, Lee SS, Rangasamy J, Hwang NS. Biomimetic Materials and Fabrication Approaches for Bone Tissue Engineering. Adv Healthc Mater 2017; 6. [PMID: 29171714 DOI: 10.1002/adhm.201700612] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 10/09/2017] [Indexed: 01/14/2023]
Abstract
Various strategies have been explored to overcome critically sized bone defects via bone tissue engineering approaches that incorporate biomimetic scaffolds. Biomimetic scaffolds may provide a novel platform for phenotypically stable tissue formation and stem cell differentiation. In recent years, osteoinductive and inorganic biomimetic scaffold materials have been optimized to offer an osteo-friendly microenvironment for the osteogenic commitment of stem cells. Furthermore, scaffold structures with a microarchitecture design similar to native bone tissue are necessary for successful bone tissue regeneration. For this reason, various methods for fabricating 3D porous structures have been developed. Innovative techniques, such as 3D printing methods, are currently being utilized for optimal host stem cell infiltration, vascularization, nutrient transfer, and stem cell differentiation. In this progress report, biomimetic materials and fabrication approaches that are currently being utilized for biomimetic scaffold design are reviewed.
Collapse
Affiliation(s)
- Hwan D. Kim
- School of Chemical and Biological Engineering; The Institute of Chemical Processes; Seoul National University; Seoul 151-742 Republic of Korea
| | | | - Seunghyun L. Kim
- Interdisciplinary Program in Bioengineering; Seoul National University; Seoul 151-742 Republic of Korea
| | - Seunghun S. Lee
- Interdisciplinary Program in Bioengineering; Seoul National University; Seoul 151-742 Republic of Korea
| | - Jayakumar Rangasamy
- Centre for Nanosciences and Molecular Medicine; Amrita University; Kochi 682041 India
| | - Nathaniel S. Hwang
- School of Chemical and Biological Engineering; The Institute of Chemical Processes; Seoul National University; Seoul 151-742 Republic of Korea
- Interdisciplinary Program in Bioengineering; Seoul National University; Seoul 151-742 Republic of Korea
- The BioMax Institute of Seoul National University; Seoul 151-742 Republic of Korea
| |
Collapse
|
42
|
Injectable nanohydroxyapatite-chitosan-gelatin micro-scaffolds induce regeneration of knee subchondral bone lesions. Sci Rep 2017; 7:16709. [PMID: 29196647 PMCID: PMC5711958 DOI: 10.1038/s41598-017-17025-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023] Open
Abstract
Subchondral bone has been identified as an attractive target for KOA. To determine whether a minimally invasive micro-scaffolds could be used to induce regeneration of knee subchondral bone lesions, and to examine the protective effect of subchondral bone regeneration on upper cartilage, a ready-to-use injectable treatment with nanohydroxyapatite-chitosan-gelatin micro-scaffolds (HaCGMs) is proposed. Human-infrapatellar-fat-pad-derived adipose stem cells (IPFP-ASCs) were used as a cellular model to examine the osteo-inductivity and biocompatibility of HaCGMs, which were feasibly obtained with potency for multi-potential differentiations. Furthermore, a subchondral bone lesion model was developed to mimic the necrotic region removing performed by surgeons before sequestrectomy. HaCGMs were injected into the model to induce regeneration of subchondral bone. HaCGMs exhibited desirable swelling ratios, porosity, stiffness, and bioactivity and allowed cellular infiltration. Eight weeks after treatment, assessment via X-ray imaging, micro-CT imaging, and histological analysis revealed that rabbits treated with HaCGMs had better subchondral bone regeneration than those not treated. Interestingly, rabbits in the HaCGM treatment group also exhibited improved reservation of upper cartilage compared to those in other groups, as shown by safranin O-fast green staining. Present study provides an in-depth demonstration of injectable HaCGM-based regenerative therapy, which may provide an attractive alternative strategy for treating KOA.
Collapse
|
43
|
Collignon AM, Lesieur J, Vacher C, Chaussain C, Rochefort GY. Strategies Developed to Induce, Direct, and Potentiate Bone Healing. Front Physiol 2017; 8:927. [PMID: 29184512 PMCID: PMC5694432 DOI: 10.3389/fphys.2017.00927] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 10/31/2017] [Indexed: 12/19/2022] Open
Abstract
Bone exhibits a great ability for endogenous self-healing. Nevertheless, impaired bone regeneration and healing is on the rise due to population aging, increasing incidence of bone trauma and the clinical need for the development of alternative options to autologous bone grafts. Current strategies, including several biomolecules, cellular therapies, biomaterials, and different permutations of these, are now developed to facilitate the vascularization and the engraftment of the constructs, to recreate ultimately a bone tissue with the same properties and characteristics of the native bone. In this review, we browse the existing strategies that are currently developed, using biomolecules, cells and biomaterials, to induce, direct and potentiate bone healing after injury and further discuss the biological processes associated with this repair.
Collapse
Affiliation(s)
- Anne-Margaux Collignon
- EA 2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School Faculty, Life Imaging Platform (PIV), University Paris Descartes, Montrouge, France.,Department of Odontology, University Hospitals PNVS, Assistance Publique Hopitaux De Paris, Paris, France
| | - Julie Lesieur
- EA 2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School Faculty, Life Imaging Platform (PIV), University Paris Descartes, Montrouge, France
| | - Christian Vacher
- EA 2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School Faculty, Life Imaging Platform (PIV), University Paris Descartes, Montrouge, France.,Department of Maxillofacial Surgery, Beaujon Hospital, Assistance Publique Hopitaux De Paris, Paris, France
| | - Catherine Chaussain
- EA 2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School Faculty, Life Imaging Platform (PIV), University Paris Descartes, Montrouge, France.,Department of Odontology, University Hospitals PNVS, Assistance Publique Hopitaux De Paris, Paris, France
| | - Gael Y Rochefort
- EA 2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School Faculty, Life Imaging Platform (PIV), University Paris Descartes, Montrouge, France
| |
Collapse
|
44
|
Querido W, Falcon JM, Kandel S, Pleshko N. Vibrational spectroscopy and imaging: applications for tissue engineering. Analyst 2017; 142:4005-4017. [PMID: 28956032 PMCID: PMC5653442 DOI: 10.1039/c7an01055a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tissue engineering (TE) approaches strive to regenerate or replace an organ or tissue. The successful development and subsequent integration of a TE construct is contingent on a series of in vitro and in vivo events that result in an optimal construct for implantation. Current widely used methods for evaluation of constructs are incapable of providing an accurate compositional assessment without destruction of the construct. In this review, we discuss the contributions of vibrational spectroscopic assessment for evaluation of tissue engineered construct composition, both during development and post-implantation. Fourier transform infrared (FTIR) spectroscopy in the mid and near-infrared range, as well as Raman spectroscopy, are intrinsically label free, can be non-destructive, and provide specific information on the chemical composition of tissues. Overall, we examine the contribution that vibrational spectroscopy via fiber optics and imaging have to tissue engineering approaches.
Collapse
Affiliation(s)
- William Querido
- Department of Bioengineering, Temple University, Philadelphia, PA, USA.
| | | | | | | |
Collapse
|
45
|
Sinibaldi R, Conti A, Sinjari B, Spadone S, Pecci R, Palombo M, Komlev VS, Ortore MG, Tromba G, Capuani S, Guidotti R, De Luca F, Caputi S, Traini T, Della Penna S. Multimodal-3D imaging based on μMRI and μCT techniques bridges the gap with histology in visualization of the bone regeneration process. J Tissue Eng Regen Med 2017; 12:750-761. [PMID: 28593731 DOI: 10.1002/term.2494] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 04/23/2017] [Accepted: 06/05/2017] [Indexed: 01/05/2023]
Abstract
Bone repair/regeneration is usually investigated through X-ray computed microtomography (μCT) supported by histology of extracted samples, to analyse biomaterial structure and new bone formation processes. Magnetic resonance imaging (μMRI) shows a richer tissue contrast than μCT, despite at lower resolution, and could be combined with μCT in the perspective of conducting non-destructive 3D investigations of bone. A pipeline designed to combine μMRI and μCT images of bone samples is here described and applied on samples of extracted human jawbone core following bone graft. We optimized the coregistration procedure between μCT and μMRI images to avoid bias due to the different resolutions and contrasts. Furthermore, we used an Adaptive Multivariate Clustering, grouping homologous voxels in the coregistered images, to visualize different tissue types within a fused 3D metastructure. The tissue grouping matched the 2D histology applied only on 1 slice, thus extending the histology labelling in 3D. Specifically, in all samples, we could separate and map 2 types of regenerated bone, calcified tissue, soft tissues, and/or fat and marrow space. Remarkably, μMRI and μCT alone were not able to separate the 2 types of regenerated bone. Finally, we computed volumes of each tissue in the 3D metastructures, which might be exploited by quantitative simulation. The 3D metastructure obtained through our pipeline represents a first step to bridge the gap between the quality of information obtained from 2D optical microscopy and the 3D mapping of the bone tissue heterogeneity and could allow researchers and clinicians to non-destructively characterize and follow-up bone regeneration.
Collapse
Affiliation(s)
- R Sinibaldi
- Department of Neuroscience, Imaging and Clinical Sciences, G. D'Annunzio University of Chieti-Pescara, Chieti, Italy
- Multimodal3D s.r.l., Rome, Italy
| | - A Conti
- Department of Neuroscience, Imaging and Clinical Sciences, G. D'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - B Sinjari
- Department of Medical and Oral Sciences and Biotechnologies, G. D'Annunzio University of Chieti and Pescara, Chieti, Italy
| | - S Spadone
- Department of Neuroscience, Imaging and Clinical Sciences, G. D'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - R Pecci
- Department of Technologies and Health, Istituto Superiore di Sanità, Rome, Italy
| | - M Palombo
- Department of Physics, Sapienza University of Rome, Rome, Italy
- CEA/DSV/I2BM, MIRCen, Fontenay-aux-Roses, France
| | - V S Komlev
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, Russian Federation
| | - M G Ortore
- Department of Life and Environmental Science, Marche Polytechnic University, Ancona, Italy
| | - G Tromba
- Elettra Sincrotrone Trieste, Trieste, Italy
| | - S Capuani
- CNR (Institute for Complex Systems) c/o Physics Department Sapienza University of Rome, Rome, Italy
| | - R Guidotti
- Department of Neuroscience, Imaging and Clinical Sciences, G. D'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - F De Luca
- Department of Physics, Sapienza University of Rome, Rome, Italy
| | - S Caputi
- Department of Medical and Oral Sciences and Biotechnologies, G. D'Annunzio University of Chieti and Pescara, Chieti, Italy
| | - T Traini
- Department of Medical and Oral Sciences and Biotechnologies, G. D'Annunzio University of Chieti and Pescara, Chieti, Italy
| | - S Della Penna
- Department of Neuroscience, Imaging and Clinical Sciences, G. D'Annunzio University of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies, G. D'Annunzio University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
46
|
Ding Z, Han H, Fan Z, Lu H, Sang Y, Yao Y, Cheng Q, Lu Q, Kaplan DL. Nanoscale Silk-Hydroxyapatite Hydrogels for Injectable Bone Biomaterials. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16913-16921. [PMID: 28471165 DOI: 10.1021/acsami.7b03932] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Injectable hydrogel systems are important bone substitutes for regeneration because of their handling properties and the ability to fill irregular defects. Silk-hydroxyapatite composite materials with silk nanofibers in hydrogels were prepared and used as biomaterials for osteogenesis. These thixotropic silk nanofiber hydrogels and water-dispersible silk-HA nanoparticles were blended to form injectable nanoscale systems with a homogeneous distribution of a high HA content [60% (w/w)] to imitate bone niche. A modulus of ∼21 kPa was also achieved following the addition of HA in the systems, providing physical cues to induce osteodifferentiation. The composite hydrogels supported improved osteogenesis compared to that with silk nanofiber hydrogels. The newly formed bone tissue and bone defect healing were detected after implantation of the silk-HA composite hydrogels, suggesting utility for the regeneration of irregular bone defects.
Collapse
Affiliation(s)
- Zhaozhao Ding
- School of Biology and Basic Medical Sciences and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University , Suzhou 215123, People's Republic of China
| | - Hongyan Han
- School of Biology and Basic Medical Sciences and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, People's Republic of China
| | - Zhihai Fan
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University , Suzhou 215000, People's Republic of China
| | - Haijun Lu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University , Suzhou 215000, People's Republic of China
| | - Yonghuan Sang
- National Engineering Laboratory for Modern Silk, Soochow University , Suzhou 215123, People's Republic of China
| | - Yuling Yao
- School of Biology and Basic Medical Sciences and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, People's Republic of China
| | - Qingqing Cheng
- National Engineering Laboratory for Modern Silk, Soochow University , Suzhou 215123, People's Republic of China
| | - Qiang Lu
- School of Biology and Basic Medical Sciences and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University , Suzhou 215123, People's Republic of China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University , Medford, Massachusetts 02155, United States
| |
Collapse
|
47
|
Khoshakhlagh P, Rabiee SM, Kiaee G, Heidari P, Miri AK, Moradi R, Moztarzadeh F, Ravarian R. Development and characterization of a bioglass/chitosan composite as an injectable bone substitute. Carbohydr Polym 2017; 157:1261-1271. [DOI: 10.1016/j.carbpol.2016.11.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/27/2016] [Accepted: 11/02/2016] [Indexed: 11/27/2022]
|
48
|
Naseri S, Lepry WC, Nazhat SN. Bioactive glasses in wound healing: hope or hype? J Mater Chem B 2017; 5:6167-6174. [DOI: 10.1039/c7tb01221g] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Bioactive glasses have long been investigated in mineralized tissue regeneration, but recently their potential applications in soft tissue repair, and in particular wound healing, have demonstrated great promise.
Collapse
Affiliation(s)
- Shiva Naseri
- Department of Mining and Materials Engineering
- McGill University
- Montreal
- Canada
| | - William C. Lepry
- Department of Mining and Materials Engineering
- McGill University
- Montreal
- Canada
| | - Showan N. Nazhat
- Department of Mining and Materials Engineering
- McGill University
- Montreal
- Canada
| |
Collapse
|
49
|
Luo G, Ma Y, Cui X, Jiang L, Wu M, Hu Y, Luo Y, Pan H, Ruan C. 13-93 bioactive glass/alginate composite scaffolds 3D printed under mild conditions for bone regeneration. RSC Adv 2017. [DOI: 10.1039/c6ra27669e] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Composite scaffolds of type 13-93 bioactive glass (13-93 BG) and sodium alginate (SA), denoted 13-93 BG/SA, in mass ratios of 0 : 4, 1 : 4, 2 : 4 and 4 : 4 were prepared for bone regeneration by 3D printing under mild conditions.
Collapse
Affiliation(s)
- Guilin Luo
- Center for Human Tissue and Organs Degeneration
- Institute Biomedical and Biotechnology
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
| | - Yufei Ma
- Center for Human Tissue and Organs Degeneration
- Institute Biomedical and Biotechnology
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
| | - Xu Cui
- Center for Human Tissue and Organs Degeneration
- Institute Biomedical and Biotechnology
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
| | - Lixin Jiang
- Center for Human Tissue and Organs Degeneration
- Institute Biomedical and Biotechnology
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
| | - Mingming Wu
- Center for Human Tissue and Organs Degeneration
- Institute Biomedical and Biotechnology
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
| | - Yang Hu
- Center for Human Tissue and Organs Degeneration
- Institute Biomedical and Biotechnology
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
| | - Yanfeng Luo
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education
- Research Center of Bioinspired Materials Science and Engineering
- College of Bioengineering
- Chongqing University
| | - Haobo Pan
- Center for Human Tissue and Organs Degeneration
- Institute Biomedical and Biotechnology
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
| | - Changshun Ruan
- Center for Human Tissue and Organs Degeneration
- Institute Biomedical and Biotechnology
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
| |
Collapse
|