1
|
Chen W, Meng J, Wang S. Bioinspired Materials for Controlling Mineral Adhesion: From Innovation Design to Diverse Applications. ACS NANO 2025. [PMID: 39979232 DOI: 10.1021/acsnano.4c16946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
The advancement of controllable mineral adhesion materials has significantly impacted various sectors, including industrial production, energy utilization, biomedicine, construction engineering, food safety, and environmental management. Natural biological materials exhibit distinctive and controllable adhesion properties that inspire the design of artificial systems for controlling mineral adhesion. In recent decades, researchers have sought to create bioinspired materials that effectively regulate mineral adhesion, significantly accelerating the development of functional materials across various emerging fields. Herein, we review recent advances in bioinspired materials for controlling mineral adhesion, including bioinspired mineralized materials and bioinspired antiscaling materials. First, a systematic overview of biological materials that exhibit controllable mineral adhesion in nature is provided. Then, the mechanism of mineral adhesion and the latest adhesion characterization between minerals and material surfaces are introduced. Later, the latest advances in bioinspired materials designed for controlling mineral adhesion are presented, ranging from the molecular level to micro/nanostructures, including bioinspired mineralized materials and bioinspired antiscaling materials. Additionally, recent applications of these bioinspired materials in emerging fields are discussed, such as industrial production, energy utilization, biomedicine, construction engineering, and environmental management, highlighting their roles in promoting or inhibiting aspects. Finally, we summarize the ongoing challenges and offer a perspective on the future of this charming field.
Collapse
Affiliation(s)
- Wei Chen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jingxin Meng
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
2
|
Xu D, Song XJ, Chen X, Wang JW, Cui YL. Advances and future perspectives of intranasal drug delivery: A scientometric review. J Control Release 2024; 367:366-384. [PMID: 38286336 DOI: 10.1016/j.jconrel.2024.01.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 01/31/2024]
Abstract
Intranasal drug delivery is as a noninvasive and efficient approach extensively utilized for treating the local, central nervous system, and systemic diseases. Despite numerous reviews delving into the application of intranasal drug delivery across biomedical fields, a comprehensive analysis of advancements and future perspectives remains elusive. This review elucidates the research progress of intranasal drug delivery through a scientometric analysis. It scrutinizes several challenges to bolster research in this domain, encompassing a thorough exploration of entry and elimination mechanisms specific to intranasal delivery, the identification of drugs compatible with the nasal cavity, the selection of dosage forms to surmount limited drug-loading capacity and poor solubility, and the identification of diseases amenable to the intranasal delivery strategy. Overall, this review furnishes a perspective aimed at galvanizing future research and development concerning intranasal drug delivery.
Collapse
Affiliation(s)
- Dong Xu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi' an 710032, China
| | - Xu-Jiao Song
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Xue Chen
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Jing-Wen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi' an 710032, China
| | - Yuan-Lu Cui
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
3
|
Tian F, Zhou Y, Ma Z, Tang R, Wang X. Organismal Function Enhancement through Biomaterial Intervention. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:377. [PMID: 38392750 PMCID: PMC10891834 DOI: 10.3390/nano14040377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 02/24/2024]
Abstract
Living organisms in nature, such as magnetotactic bacteria and eggs, generate various organic-inorganic hybrid materials, providing unique functionalities. Inspired by such natural hybrid materials, researchers can reasonably integrate biomaterials with living organisms either internally or externally to enhance their inherent capabilities and generate new functionalities. Currently, the approaches to enhancing organismal function through biomaterial intervention have undergone rapid development, progressing from the cellular level to the subcellular or multicellular level. In this review, we will concentrate on three key strategies related to biomaterial-guided bioenhancement, including biointerface engineering, artificial organelles, and 3D multicellular immune niches. For biointerface engineering, excess of amino acid residues on the surfaces of cells or viruses enables the assembly of materials to form versatile artificial shells, facilitating vaccine engineering and biological camouflage. Artificial organelles refer to artificial subcellular reactors made of biomaterials that persist in the cytoplasm, which imparts cells with on-demand regulatory ability. Moreover, macroscale biomaterials with spatiotemporal regulation characters enable the local recruitment and aggregation of cells, denoting multicellular niche to enhance crosstalk between cells and antigens. Collectively, harnessing the programmable chemical and biological attributes of biomaterials for organismal function enhancement shows significant potential in forthcoming biomedical applications.
Collapse
Affiliation(s)
- Fengchao Tian
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310058, China; (F.T.); (Y.Z.)
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China;
| | - Yuemin Zhou
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310058, China; (F.T.); (Y.Z.)
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China;
| | - Zaiqiang Ma
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China;
| | - Ruikang Tang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310058, China; (F.T.); (Y.Z.)
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China;
| | - Xiaoyu Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310058, China; (F.T.); (Y.Z.)
| |
Collapse
|
4
|
Jin L, Mao Z. Living virus-based nanohybrids for biomedical applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1923. [PMID: 37619605 DOI: 10.1002/wnan.1923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Living viruses characterized by distinctive biological functions including specific targeting, gene invasion, immune modulation, and so forth have been receiving intensive attention from researchers worldwide owing to their promising potential for producing numerous theranostic modalities against diverse pathological conditions. Nevertheless, concerns during applications, such as rapid immune clearance, altering immune activation modes, insufficient gene transduction efficiency, and so forth, highlight the crucial issues of excessive therapeutic doses and the associated biosafety risks. To address these concerns, synthetic nanomaterials featuring unique physical/chemical properties are frequently exploited as efficient drug delivery vehicles or treatments in biomedical domains. By constant endeavor, researchers nowadays can create adaptable living virus-based nanohybrids (LVN) that not only overcome the limitations of virotherapy, but also combine the benefits of natural substances and nanotechnology to produce novel and promising therapeutic and diagnostic agents. In this review, we discuss the fundamental physiochemical properties of the viruses, and briefly outline the basic construction methodologies of LVN. We then emphasize their distinct diagnostic and therapeutic performances for various diseases. Furthermore, we survey the foreseeable challenges and future perspectives in this interdisciplinary area to offer insights. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Lulu Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Zhou Y, Liu K, Zhang H. Biomimetic Mineralization: From Microscopic to Macroscopic Materials and Their Biomedical Applications. ACS APPLIED BIO MATERIALS 2023; 6:3516-3531. [PMID: 36944024 DOI: 10.1021/acsabm.3c00109] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Biomineralization is an attractive pathway to produce mineral-based biomaterials with high performance and hierarchical structures. To date, the biomineralization process and mechanism have been extensively studied, especially for the formation of bone, teeth, and nacre. Inspired by those, abundant biomimetic mineralized materials have been fabricated for biomedical applications. Those bioinspired materials generally exhibit great mechanical properties and biological functions. Nevertheless, substantial gaps remain between biomimetic materials and natural materials, particularly with respect to mechanical properties and mutiscale structures. This Review summarizes the recent progress of micro- and macroscopic biomimetic mineralization from the perspective of materials synthesis and biomedical applications. To begin with, we discuss the progress of biomimetic mineralization at the microscopic level. The mechanical strength, stability, and functionality of the nano- and micromaterials are significantly improved by introducing biominerals, such as DNA nanostructures, nanovaccines, and living cells. Next, numerous biomimetic strategies based on biomineralization at the macroscopic scale are highlighted, including in situ mineralization and bottom-up assembly of mineralized building blocks. Finally, challenges and future perspectives regarding the development of biomimetic mineralization are also presented with the aim of offering insights for the rational design and fabrication of next-generation biomimetic mineralized materials.
Collapse
Affiliation(s)
- Yusai Zhou
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Hongjie Zhang
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| |
Collapse
|
6
|
Bioinspired Nanomaterials and Nanostructures from Nanobiology to Nanomedicine. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
7
|
Chou PY, Lin SY, Wu YN, Shen CY, Sheu MT, Ho HO. Glycosylation of OVA antigen-loaded PLGA nanoparticles enhances DC-targeting for cancer vaccination. J Control Release 2022; 351:970-988. [DOI: 10.1016/j.jconrel.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/01/2022] [Accepted: 10/01/2022] [Indexed: 11/30/2022]
|
8
|
Zhang Y, Hao H, Lin J, Ma Z, Li H, Nie Z, Cui Y, Guo Z, Zhang Y, Wang X, Tang R. Conformation-Stabilized Amorphous Nanocoating for Rational Design of Long-Term Thermostable Viral Vaccines. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39873-39884. [PMID: 36018064 DOI: 10.1021/acsami.2c12065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Despite the great potency of vaccines to combat infectious diseases, their global use is hindered by a lack of thermostability, which leads to a constant need for cold-chain storage. Here, aiming at long-term thermostability and eliminating cold-chain requirements of bioactive vaccines, we propose that efforts should focus on tailoring the conformational stability of vaccines. Accordingly, we design a nanocoating composed of histidine (His)-coordinated amorphous Zn and 2-methylimidazolate complex (His-aZn-mIM) on single nanoparticles of viral vaccines to introduce intramolecular coordinated linkage between viruses and the nanocoatings. The coordinated nanocoating enhances the rigidity of proteins and preserves the vaccine's activity. Importantly, integrating His into the original Zn-N coordinative environment symbiotically reinforces its tolerance to biological and hydrothermal solutions, resulting in the augmented thermostability following the Hofmeister effect. Thus, even after storage of His-aZn-mIM encapsulated Human adenovirus type 5 (Ad5@His-aZn-mIM) at 25 °C for 90 d, the potency loss of the coated Ad5 is less than 10%, while the native Ad5 becomes 100% ineffective within one month. Such a nanocoating gains thermostability by forming an ultrastable hydration shell, which prevents viral proteins from unfolding under the attack of hydration ions, providing a conformational stabilizer upon heat exposure. Our findings represent an easy-access biomimetic platform to address the long-term vaccine storage without the requirement of a cold chain.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, Zhejiang, China
- Sir Run Run Shaw Hospital, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Haibin Hao
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Jiake Lin
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zaiqiang Ma
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Huixin Li
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zihao Nie
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yihao Cui
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhengxi Guo
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yaqin Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xiaoyu Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, Zhejiang, China
- Sir Run Run Shaw Hospital, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, Zhejiang, China
- Sir Run Run Shaw Hospital, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| |
Collapse
|
9
|
Zhang QL, Hong S, Dong X, Zheng DW, Liang JL, Bai XF, Wang XN, Han ZY, Zhang XZ. Bioinspired nano-vaccine construction by antigen pre-degradation for boosting cancer personalized immunotherapy. Biomaterials 2022; 287:121628. [PMID: 35704965 DOI: 10.1016/j.biomaterials.2022.121628] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022]
Abstract
Cancer vaccines-based cancer immunotherapy has drawn widespread concern. However, insufficient cancer antigens and inefficient antigen presentation lead to low immune response rate, which greatly restrict the practical application of cancer vaccines. Here, inspired by intracellular proteasome-mediated protein degradation pathway, we report an antigen presentation simplification strategy by extracellular degradation of antigen proteins into peptides with proteolytic enzyme for improving the utilization of cancer antigens and arousing restricted cancer immunity. The pre-degraded antigen peptides are first validated to exhibit an increased capacity on antigen-presenting cell (APC) stimulation compared with proteins and still reserve antigen specificity and major histocompatibility complex (MHC) affinity. Furthermore, by coordinating the pre-degraded peptides with calcium phosphate nanoparticles (CaP), a CaP-peptide vaccine (CaP-Pep) is constructed, which is verified to induce an efficient personalized immune response in vivo for multi-model anti-cancer therapy. Notably, this bioinspired strategy based on extracellular enzymatic hydrolysis for vaccine construction is not only applicable for multiple types of cancers, but also shows great potential in expanding immunology fields and translational medicine.
Collapse
Affiliation(s)
- Qiu-Ling Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Sheng Hong
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Xue Dong
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, PR China
| | - Di-Wei Zheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Jun-Long Liang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Xue-Feng Bai
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Xia-Nan Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Zi-Yi Han
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China; Institute for Advanced Studies, Wuhan University, Wuhan, 430072, PR China; Wuhan Research Centre for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, PR China.
| |
Collapse
|
10
|
Mucosal vaccine delivery: A focus on the breakthrough of specific barriers. Acta Pharm Sin B 2022; 12:3456-3474. [PMID: 35818435 PMCID: PMC9259023 DOI: 10.1016/j.apsb.2022.07.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/03/2022] [Accepted: 06/30/2022] [Indexed: 12/30/2022] Open
Abstract
Mucosal vaccines can effectively induce an immune response at the mucosal site and form the first line of defense against microbial invasion. The induced mucosal immunity includes the proliferation of effector T cells and the production of IgG and IgA antibodies, thereby effectively blocking microbial infection and transmission. However, after a long period of development, the transformation of mucosal vaccines into clinical use is still relatively slow. To date, fewer than ten mucosal vaccines have been approved. Only seven mucosal vaccines against coronavirus disease 2019 (COVID-19) are under investigation in clinical trials. A representative vaccine is the adenovirus type-5 vectored COVID-19 vaccine (Ad5-nCoV) developed by Chen and coworkers, which is currently in phase III clinical trials. The reason for the limited progress of mucosal vaccines may be the complicated mucosal barriers. Therefore, this review summarizes the characteristics of mucosal barriers and highlights strategies to overcome these barriers for effective mucosal vaccine delivery.
Collapse
|
11
|
Biomimetic mineralization: An emerging organism engineering strategy for biomedical applications. J Inorg Biochem 2022; 232:111815. [DOI: 10.1016/j.jinorgbio.2022.111815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/03/2022] [Accepted: 04/02/2022] [Indexed: 11/21/2022]
|
12
|
Atz Dick T, Uludağ H. A Polyplex in a Shell: The Effect of Poly(aspartic acid)-Mediated Calcium Carbonate Mineralization on Polyplexes Properties and Transfection Efficiency. Mol Pharm 2022; 19:2077-2091. [PMID: 35649175 DOI: 10.1021/acs.molpharmaceut.1c00909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mineralization by exposure of organic templates to supersaturated solutions is used by many living organisms to generate specialized materials to perform structural or protective functions. Similarly, it was suggested that improved robustness acquired through mineralization under natural conditions could be an important factor for virus survival outside of a host for better transfection of cells. Here, inspired by this fact, we developed a nonviral tricomponent polyplex system for gene delivery capable of undergoing mineralization. First, we fabricated anionic polyplexes carrying pDNA by self-assembly with a lipid-modified cationic polymer and coating by poly(aspartic acid). Then, we submitted the polyplexes to a two-step mineralization reaction to precipitate CaCO3 under various supersaturations. We carried out detailed morphological studies of the mineralized polyplexes and identified which parameters of the fabrication process were influential on transfection efficiency. We found that mineralization with CaCO3 is efficient in promoting transfection efficiency as long as a certain Ca2+/CO32- lower limit ratio is respected. However, calcium incubation can also be used to achieve similar effects at higher concentrations depending on polyplex composition, probably due to the formation of physical cross-links by calcium binding to poly(aspartic acid). We proposed that the improved robustness and transfection efficiency provided by means of mineralization can be used to expand the possible applications of polyplexes in gene therapy.
Collapse
Affiliation(s)
- Teo Atz Dick
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T5K 2Y3 Canada
| | - Hasan Uludağ
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T5K 2Y3 Canada.,Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3 Canada.,Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
13
|
Dick TA, Sone ED, Uludağ H. Mineralized vectors for gene therapy. Acta Biomater 2022; 147:1-33. [PMID: 35643193 DOI: 10.1016/j.actbio.2022.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/01/2022]
Abstract
There is an intense interest in developing materials for safe and effective delivery of polynucleotides using non-viral vectors. Mineralization of organic templates has long been used to produce complex materials with outstanding biocompatibility. However, a lack of control over mineral growth has limited the applicability of mineralized materials to a few in vitro applications. With better control over mineral growth and surface functionalization, mineralized vectors have advanced significantly in recent years. Here, we review the recent progress in chemical synthesis, physicochemical properties, and applications of mineralized materials in gene therapy, focusing on structure-function relationships. We contrast the classical understanding of the mineralization mechanism with recent ideas of mineralization. A brief introduction to gene delivery is summarized, followed by a detailed survey of current mineralized vectors. The vectors derived from calcium phosphate are articulated and compared to other minerals with unique features. Advanced mineral vectors derived from templated mineralization and specialty coatings are critically analyzed. Mineral systems beyond the co-precipitation are explored as more complex multicomponent systems. Finally, we conclude with a perspective on the future of mineralized vectors by carefully demarcating the boundaries of our knowledge and highlighting ambiguous areas in mineralized vectors. STATEMENT OF SIGNIFICANCE: Therapy by gene-based medicines is increasingly utilized to cure diseases that are not alleviated by conventional drug therapy. Gene medicines, however, rely on macromolecular nucleic acids that are too large and too hydrophilic for cellular uptake. Without tailored materials, they are not functional for therapy. One emerging class of nucleic acid delivery system is mineral-based materials. The fact that they can undergo controlled dissolution with minimal footprint in biological systems are making them attractive for clinical use, where safety is utmost importance. In this submission, we will review the emerging synthesis technology and the range of new generation minerals for use in gene medicines.
Collapse
|
14
|
Dong C, Wang Y, Zhu W, Ma Y, Kim J, Wei L, Gonzalez GX, Wang BZ. Polycationic HA/CpG Nanoparticles Induce Cross-Protective Influenza Immunity in Mice. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6331-6342. [PMID: 35084819 PMCID: PMC8832387 DOI: 10.1021/acsami.1c19192] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/20/2021] [Indexed: 05/28/2023]
Abstract
The intranasal (i.n.) route is an ideal vaccination approach for infectious respiratory diseases like influenza. Polycationic polyethylenimine (PEI) could form nanoscale complexes with negatively charged viral glycoproteins. Here we fabricated PEI-hemagglutinin (HA) and PEI-HA/CpG nanoparticles and investigated their immune responses and protective efficacies with an i.n. vaccination regimen in mice. Our results revealed that the nanoparticles significantly enhanced HA immunogenicity, providing heterologous cross-protection. The conserved HA stalk region induced substantial antibodies in the nanoparticle immunization groups. In contrast to the Th2-biased, IgG1-dominant antibody response generated by PEI-HA nanoparticles, PEI-HA/CpG nanoparticles generated more robust and balanced IgG1/IgG2a antibody responses with augmented neutralization activity and Fc-mediated antibody-dependent cellular cytotoxicity (ADCC). PEI-HA/CpG nanoparticles also induced enhanced local and systemic cellular immune responses. These immune responses did not decay over six months of observation postimmunization. PEI and CpG synergized these comprehensive immune responses. Thus, the PEI-HA/CpG nanoparticle is a potential cross-protective influenza vaccine candidate. Polycationic PEI nanoplatforms merit future development into mucosal vaccine systems.
Collapse
|
15
|
Bioinspired Nanomaterials and Nanostructures from Nanobiology to Nanomedicine. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_3-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
16
|
A Dick T, Uludağ H. Mineralized polyplexes for gene delivery: Improvement of transfection efficiency as a consequence of calcium incubation and not mineralization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112419. [PMID: 34579928 DOI: 10.1016/j.msec.2021.112419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/19/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022]
Abstract
Gene therapy is an emerging field in which nucleic acids are used to control protein expression. The necessity of delivering nucleic acids to specific cell types and intracellular sites demands the use of highly specialized gene carriers. As a carrier modification technique, mineralization has been successfully used to modify viral and non-viral carriers, providing new properties that ultimately aim to increase the transfection efficiency. However, for the specific case of polyplexes used in gene therapy, recent literature shows that interaction with calcium, a fundamental step of mineralization, might be effective to increase transfection efficiency, leaving an ambiguity about of the role of mineralization for this type of gene carriers. To answer this question and to reveal the properties responsible for increasing transfection efficiency, we mineralized poly(aspartic acid) coated polyplexes at various CaCl2 and Na3PO4 concentrations, and evaluated the resultant carriers for physicochemical and morphological characteristics, as well as transfection and delivery efficiency with MC3T3-E1 mouse osteoblastic cells. We found that both mineralization and calcium incubation positively affected the transfection efficiency and uptake of polyplexes in MC3T3-E1 cells. However, this effect originated from the properties achieved by polyplexes after the calcium incubation step that are maintained after mineralization, including particle size increase, improved pDNA binding, and adjustment of zeta potential. Considering that mineralization can be a longer process than calcium incubation, we find that calcium incubation might be sufficient and preferred if improved transfection efficiency in vitro is the only effect desired.
Collapse
Affiliation(s)
- Teo A Dick
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada.
| | - Hasan Uludağ
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
17
|
Feng F, Hao H, Zhao J, Li Y, Zhang Y, Li R, Wen Z, Wu C, Li M, Li P, Chen L, Tang R, Wang X, Sun C. Shell-mediated phagocytosis to reshape viral-vectored vaccine-induced immunity. Biomaterials 2021; 276:121062. [PMID: 34418816 DOI: 10.1016/j.biomaterials.2021.121062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/25/2021] [Accepted: 08/05/2021] [Indexed: 02/02/2023]
Abstract
Adenovirus (Ad) has been extensively developed as a gene delivery vector, but the potential side effect caused by systematic immunization remains one major obstacle for its clinical application. Needle-free mucosal immunization with Ad-based vaccine shows advantages but still faces poor mucosal responses. We herein report that the chemical engineering of single live viral-based vaccine effectively modulated the location and pattern of the subsequently elicited immunity. Through precisely assembly of functional materials onto single live Ad particle, the modified virus entered host cell in a phagocytosis-dependent manner, which is completely distinct from the receptor-mediated entry of native Ad. RNA-Seq data further demonstrated that the modified Ad-induced innate immunity was sharply reshaped via phagocytosis-related pathway, therefore promoting the activation and mature of antigen presentation cells (APC). Moreover, the functional shell enabled the modified Ad-based vector with enhanced muco-adhesion to nasal tissues in mice, and then prolonged resident time onto mucosal surface, leading to the robust mucosal IgA production and T cell immunity at local and even remote mucosal-associated lymphoid tissues. This study demonstrated that vaccine-induced immunity can be well modulated by chemistry engineering, and this method provides the rational design for needle-free mucosa-targeting vaccine against a variety of emerging infectious diseases.
Collapse
Affiliation(s)
- Fengling Feng
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, 518107, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 514400, China
| | - Haibin Hao
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jin Zhao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, 518107, China
| | - Yanjun Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, 518107, China
| | - Ying Zhang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Ruiting Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, 518107, China
| | - Ziyu Wen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, 518107, China
| | - Chunxiu Wu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 518107, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minchao Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, 518107, China
| | - Pingchao Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 518107, China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 518107, China.
| | - Ruikang Tang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Xiaoyu Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Caijun Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, 518107, China; State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 518107, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 514400, China.
| |
Collapse
|
18
|
Ma Z, Li B, Tang R. Biomineralization: Biomimetic Synthesis of Materials and Biomimetic Regulation of Organisms. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Zaiqiang Ma
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
| | - Benke Li
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
- Qiushi Academy for Advanced Studies, Zhejiang University Hangzhou Zhejiang 310027 China
| |
Collapse
|
19
|
Jiang J. Cell-penetrating Peptide-mediated Nanovaccine Delivery. Curr Drug Targets 2021; 22:896-912. [PMID: 33538670 DOI: 10.2174/1389450122666210203193225] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/26/2020] [Accepted: 12/09/2020] [Indexed: 11/22/2022]
Abstract
Vaccination with small antigens, such as proteins, peptides, or nucleic acids, is used to activate the immune system and trigger the protective immune responses against a pathogen. Currently, nanovaccines are undergoing development instead of conventional vaccines. The size of nanovaccines is in the range of 10-500 nm, which enables them to be readily taken up by cells and exhibit improved safety profiles. However, low-level immune responses, as the removal of redundant pathogens, trigger counter-effective activation of the immune system invalidly and present a challenging obstacle to antigen recognition and its uptake via antigen-presenting cells (APCs). In addition, toxicity can be substantial. To overcome these problems, a variety of cell-penetrating peptide (CPP)-mediated vaccine delivery systems based on nanotechnology have been proposed, most of which are designed to improve the stability of antigens in vivo and their delivery into immune cells. CPPs are particularly attractive components of antigen delivery. Thus, the unique translocation property of CPPs ensures that they remain an attractive carrier with the capacity to deliver cargo in an efficient manner for the application of drugs, gene transfer, protein, and DNA/RNA vaccination delivery. CPP-mediated nanovaccines can enhance antigen uptake, processing, and presentation by APCs, which are the fundamental steps in initiating an immune response. This review describes the different types of CPP-based nanovaccines delivery strategies.
Collapse
Affiliation(s)
- Jizong Jiang
- School of Medicine, Shanghai University, Shanghai 200444, China
| |
Collapse
|
20
|
Dumkliang E, Pamornpathomkul B, Patrojanasophon P, Ngawhirunpat T, Rojanarata T, Yoksan S, Opanasopit P. Feasibility of chitosan-based nanoparticles approach for intranasal immunisation of live attenuated Japanese encephalitis vaccine. Int J Biol Macromol 2021; 183:1096-1105. [PMID: 33974924 DOI: 10.1016/j.ijbiomac.2021.05.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/26/2021] [Accepted: 05/06/2021] [Indexed: 01/23/2023]
Abstract
Intranasal (IN) administration, a non-invasive route, is explored to overcome the limitations of conventional subcutaneous (SC) injection for Japanese encephalitis (JE) immunisation. Mucoadhesive nanoparticles (NPs) are recognised for the benefits they offer via IN delivery, such as extended retention time of the vaccine on the mucosa. The purpose of this study was to evaluate immunisation effect of live attenuated Japanese encephalitis-chimeric virus vaccine (JE-CV)-loaded mucoadhesive NPs based on chitosan (CS) or chitosan maleimide (CM), a novel mucoadhesive polymer, via the IN route to improve the mucosal immunisation against JE. The results revealed that IN immunisation stimulated seroprotection following PRNT50 evaluation. Moreover, compared with SC immunisation, IN immunisation in mice provided a higher sIgA level, leading to improved mucosal immune response. In addition, chitosan-based NPs showed an adjuvant effect on the IN vaccine due to their mucoadhesive and antigen-uptaken properties. CM NPs successfully induced sIgA. In contrast, SC JE-CV immunisation induced negligible mucosal immunity. These immunological advantages revealed that JE-CV-loaded mucoadhesive NPs are a promising approach for IN vaccination as an alternative route for JE protection due to the stimulatory effects on both mucosal and systemic immune responses.
Collapse
Affiliation(s)
- Ekachai Dumkliang
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Boonnada Pamornpathomkul
- Thai Traditional Medicine College, Rajamangala University of Technology Thanyaburi, Pathum Thani 12130, Thailand
| | - Prasopchai Patrojanasophon
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Tanasait Ngawhirunpat
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Theerasak Rojanarata
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Sutee Yoksan
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand; Translational Research Unit, Chulabhorn Research Institute, Bangkok 10210, Thailand.
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand.
| |
Collapse
|
21
|
Li B, Cui Y, Wang X, Tang R. Novel nanomaterial-organism hybrids with biomedical potential. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1706. [PMID: 33644977 DOI: 10.1002/wnan.1706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/29/2022]
Abstract
Instinctive hierarchically biomineralized structures of various organisms, such as eggs, algae, and magnetotactic bacteria, afford extra protection and distinct performance, which endow fragile organisms with a tenacious ability to adapt and survive. However, spontaneous formation of hybrid materials is difficult for most organisms in nature. Rapid development of chemistry and materials science successfully obtained the combinations of organisms with nanomaterials by biomimetic mineralization thus demonstrating the reproduction of the structures and functions and generation of novel functions that organisms do not possess. The rational design of biomaterial-organism hybridization can control biological recognition, interactions, and metabolism of the organisms. Thus, nanomaterial-organism hybrids represent a next generation of organism engineering with great potential biomedical applications. This review summarizes recent advances in material-directed organism engineering and is mainly focused on biomimetic mineralization technologies and their outstanding biomedical applications. Three representative types of biomimetic mineralization are systematically introduced, including external mineralization, internal mineralization, and genetic engineering mineralization. The methods involving hybridization of nanomaterials and organisms based on biomimetic mineralization strategies are described. These strategies resulted in applications of various nanomaterial-organism hybrids with multiplex functions in cell engineering, cancer treatment, and vaccine improvement. Unlike classical biological approaches, this material-based bioregulation is universal, effective, and inexpensive. In particular, instead of traditional medical solutions, the integration of nanomaterials and organisms may exploit novel strategies to solve current biomedical problems. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Benke Li
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yihao Cui
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoyu Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China.,Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
22
|
Cui Y, Li B, Wang X, Tang R. Organism–Materials Integration: A Promising Strategy for Biomedical Applications. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Yihao Cui
- Center for Biomaterials and Biopathways Department of Chemistry Zhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| | - Benke Li
- Center for Biomaterials and Biopathways Department of Chemistry Zhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| | - Xiaoyu Wang
- Qiushi Academy for Advanced Studies Zhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| | - Ruikang Tang
- Center for Biomaterials and Biopathways Department of Chemistry Zhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
- Qiushi Academy for Advanced Studies Zhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| |
Collapse
|
23
|
Zhao Y, Tang R. Improvement of organisms by biomimetic mineralization: A material incorporation strategy for biological modification. Acta Biomater 2021; 120:57-80. [PMID: 32629191 DOI: 10.1016/j.actbio.2020.06.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 12/18/2022]
Abstract
Biomineralization, a bio-organism controlled mineral formation process, plays an important role in linking biological organisms and mineral materials in nature. Inspired by biomineralization, biomimetic mineralization is used as a bridge tool to integrate biological organisms and functional materials together, which can be beneficial for the development of diversified functional organism-material hybrids. In this review, recent progresses on the techniques of biomimetic mineralization for organism-material combinations are summarized and discussed. Based upon these techniques, the preparations and applications of virus-, prokaryotes-, and eukaryotes-material hybrids have been presented and they demonstrate the great potentials in the fields of vaccine improvement, cell protection, energy production, environmental and biomedical treatments, etc. We suggest that more researches about functional organism and material combination with more biocompatible techniques should be developed to improve the design and applications of specific organism-material hybrids. These rationally designed organism-material hybrids will shed light on the production of "live materials" with more advanced functions in future. STATEMENT OF SIGNIFICANCE: This review summaries the recent attempts on improving biological organisms by their integrations with functional materials, which can be achieved by biomimetic mineralization as the combination tool. The integrated materials, as the artificial shells or organelles, confer diversified functions on the enclosed organisms. The successful constructions of various virus-, prokaryotes-, and eukaryotes-material hybrids have demonstrated the great potentials of the material incorporation strategy in vaccine development, cancer treatment, biological photosynthesis and environment protection etc. The suggested challenges and perspectives indicate more inspirations for the future development of organism-material hybrids.
Collapse
Affiliation(s)
- Yueqi Zhao
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou 310027 China
| | - Ruikang Tang
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou 310027 China; Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027 China.
| |
Collapse
|
24
|
Nanoparticles as Vaccines to Prevent Arbovirus Infection: A Long Road Ahead. Pathogens 2021; 10:pathogens10010036. [PMID: 33466440 PMCID: PMC7824877 DOI: 10.3390/pathogens10010036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/15/2022] Open
Abstract
Arthropod-borne viruses (arboviruses) are a significant public health problem worldwide. Vaccination is considered one of the most effective ways to control arbovirus diseases in the human population. Nanoparticles have been widely explored as new vaccine platforms. Although nanoparticles' potential to act as new vaccines against infectious diseases has been identified, nanotechnology's impact on developing new vaccines to prevent arboviruses is unclear. Thus, we used a comprehensive bibliographic survey to integrate data concerning the use of diverse nanoparticles as vaccines against medically important arboviruses. Our analysis showed that considerable research had been conducted to develop and evaluate nanovaccines against Chikungunya virus, Dengue virus, Zika virus, Japanese encephalitis virus, and West Nile virus. The main findings indicate that nanoparticles have great potential for use as a new vaccine system against arboviruses. Most of the studies showed an increase in neutralizing antibody production after mouse immunization. Nevertheless, even with significant advances in this field, further efforts are necessary to address the nanoparticles' potential to act as a vaccine against these arboviruses. To promote advances in the field, we proposed a roadmap to help researchers better characterize and evaluate nanovaccines against medically important arboviruses.
Collapse
|
25
|
Lemoine C, Thakur A, Krajišnik D, Guyon R, Longet S, Razim A, Górska S, Pantelić I, Ilić T, Nikolić I, Lavelle EC, Gamian A, Savić S, Milicic A. Technological Approaches for Improving Vaccination Compliance and Coverage. Vaccines (Basel) 2020; 8:E304. [PMID: 32560088 PMCID: PMC7350210 DOI: 10.3390/vaccines8020304] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/13/2020] [Accepted: 06/14/2020] [Indexed: 12/18/2022] Open
Abstract
Vaccination has been well recognised as a critically important tool in preventing infectious disease, yet incomplete immunisation coverage remains a major obstacle to achieving disease control and eradication. As medical products for global access, vaccines need to be safe, effective and inexpensive. In line with these goals, continuous improvements of vaccine delivery strategies are necessary to achieve the full potential of immunisation. Novel technologies related to vaccine delivery and route of administration, use of advanced adjuvants and controlled antigen release (single-dose immunisation) approaches are expected to contribute to improved coverage and patient compliance. This review discusses the application of micro- and nano-technologies in the alternative routes of vaccine administration (mucosal and cutaneous vaccination), oral vaccine delivery as well as vaccine encapsulation with the aim of controlled antigen release for single-dose vaccination.
Collapse
Affiliation(s)
- Céline Lemoine
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1221 Geneva, Switzerland;
- Vaccine Formulation Institute, Chemin des Aulx 14, 1228 Plan-les-Ouates, Switzerland
| | - Aneesh Thakur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark;
| | - Danina Krajišnik
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.K.); (I.P.); (T.I.); (I.N.); (S.S.)
| | - Romain Guyon
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK;
| | - Stephanie Longet
- Virology & Pathogenesis Group, Public Health England, Manor Farm Road, Porton Down, Salisbury SP4 0JG, UK;
| | - Agnieszka Razim
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114 Wroclaw, Poland; (A.R.); (S.G.)
| | - Sabina Górska
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114 Wroclaw, Poland; (A.R.); (S.G.)
| | - Ivana Pantelić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.K.); (I.P.); (T.I.); (I.N.); (S.S.)
| | - Tanja Ilić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.K.); (I.P.); (T.I.); (I.N.); (S.S.)
| | - Ines Nikolić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.K.); (I.P.); (T.I.); (I.N.); (S.S.)
| | - Ed C. Lavelle
- The Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, DO2R590 Dublin, Ireland;
| | - Andrzej Gamian
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114 Wroclaw, Poland;
| | - Snežana Savić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.K.); (I.P.); (T.I.); (I.N.); (S.S.)
| | - Anita Milicic
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK;
| |
Collapse
|
26
|
Du P, Liu R, Sun S, Dong H, Zhao R, Tang R, Dai J, Yin H, Luo J, Liu Z, Guo H. Biomineralization improves the thermostability of foot-and-mouth disease virus-like particles and the protective immune response induced. NANOSCALE 2019; 11:22748-22761. [PMID: 31599276 DOI: 10.1039/c9nr05549e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Virus-like particles (VLPs) are an ideal substitute for traditionally inactivated or attenuated viruses in vaccine production. However, given the properties of their native proteins, the thermal stability of VLPs is poor. In this study, calcium mineralization was used to fabricate foot-and-mouth disease virus (FMDV) VLPs as immunogenic core-shell particles with improved thermal stability. The biomineralized VLPs were stably stored at 24 °C and 37 °C for 13 and 11 days, respectively. Animal experiments showed that the biomineralized VLPs induced specific protective immunogenic effects, even after storage at 37 °C for 7 days. The biomineralized VLPs also effectively activated dendritic cells (DCs) to express high levels of surface MHC-II, costimulatory molecules, and proinflammatory cytokines. The DCs activated by the mineralized VLPs rapidly localized to the secondary lymphoid tissues and promoted the activation of the native T-cell population. These results suggest that the biomineralization of VLPs is an effective approach to vaccine production insofar as the mineralized shell provides an adjuvant effect which improves the immunogenicity of the VLPs. Biomineralization can also confer superior heat resistance on VLPs, an advantage in vaccine production. The successful development of thermally stable, biomineralized VLPs will reduce our dependence on cold storage and delivery.
Collapse
Affiliation(s)
- Ping Du
- State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu 730046, P.R. China.
| | - Ronghuan Liu
- State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu 730046, P.R. China.
| | - Shiqi Sun
- State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu 730046, P.R. China.
| | - Hu Dong
- State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu 730046, P.R. China.
| | - Ruibo Zhao
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, P.R. China
| | - Ruikang Tang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, P.R. China
| | - Jianwu Dai
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Science, Suzhou, 215123, P.R. China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu 730046, P.R. China.
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu 730046, P.R. China.
| | - Zaixin Liu
- State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu 730046, P.R. China.
| | - Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu 730046, P.R. China.
| |
Collapse
|
27
|
Regulations of organism by materials: a new understanding of biological inorganic chemistry. J Biol Inorg Chem 2019; 24:467-481. [DOI: 10.1007/s00775-019-01673-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/19/2019] [Indexed: 10/26/2022]
|
28
|
Wang J, Hu X, Xiang D. Nanoparticle drug delivery systems: an excellent carrier for tumor peptide vaccines. Drug Deliv 2018; 25:1319-1327. [PMID: 29869539 PMCID: PMC6058474 DOI: 10.1080/10717544.2018.1477857] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/12/2018] [Accepted: 05/14/2018] [Indexed: 12/22/2022] Open
Abstract
In the past 40 years, the nanoparticle drug delivery system for tumor peptide vaccines has been widely studied which also reached a splendid result. Nanomaterial can enhance the targeting of vaccines, help vaccines enter the cells and trigger immune response by themselves. They also help in increasing cellular uptake, improving permeability and efficacy. Currently, several categories of nanopreparation, such as liposome, polymeric micelle, polymeric nanoparticle, gold nanoparticle and so on, are proved that they are appropriate for peptide vaccines. This review we discussed the possible mechanisms of nanomaterial's action on the regulation of immunological functions and several major applications of this advanced drug delivery system for tumor peptide vaccine.
Collapse
Affiliation(s)
- Jiemin Wang
- a Department of Pharmacy , Second Xiangya Hospital Central South University , Changsha , Hunan Province , China
- b Institute of Clinical Pharmacy Central South University , Changsha , Hunan Province , China
- c Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug , Changsha , Hunan Province , China
| | - Xiongbin Hu
- a Department of Pharmacy , Second Xiangya Hospital Central South University , Changsha , Hunan Province , China
- b Institute of Clinical Pharmacy Central South University , Changsha , Hunan Province , China
- c Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug , Changsha , Hunan Province , China
| | - Daxiong Xiang
- a Department of Pharmacy , Second Xiangya Hospital Central South University , Changsha , Hunan Province , China
- b Institute of Clinical Pharmacy Central South University , Changsha , Hunan Province , China
- c Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug , Changsha , Hunan Province , China
| |
Collapse
|
29
|
Wang X, Xiao Y, Hao H, Zhang Y, Xu X, Tang R. Therapeutic Potential of Biomineralization‐Based Engineering. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xiaoyu Wang
- Qiushi Academy for Advanced StudiesZhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| | - Yun Xiao
- Center for Biomaterials and Biopathways, Department of ChemistryZhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| | - Haibin Hao
- Center for Biomaterials and Biopathways, Department of ChemistryZhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| | - Ying Zhang
- Center for Biomaterials and Biopathways, Department of ChemistryZhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| | - Xurong Xu
- Qiushi Academy for Advanced StudiesZhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| | - Ruikang Tang
- Qiushi Academy for Advanced StudiesZhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
- Center for Biomaterials and Biopathways, Department of ChemistryZhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| |
Collapse
|
30
|
Wang X, Liu X, Xiao Y, Hao H, Zhang Y, Tang R. Biomineralization State of Viruses and Their Biological Potential. Chemistry 2018; 24:11518-11529. [PMID: 29377301 DOI: 10.1002/chem.201705936] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Indexed: 11/06/2022]
Abstract
In nature, viruses can realize self-mineralization under metal-ion-abundant conditions. Interestingly, the mineralized state is a transition state of the virus when the host is not available. Mammalian viruses that share the similar chemical properties also stand a chance of transformation into a mineralized state. In this review, we focus on the possibility of mammalian viruses to undergo mineralization under a physiological environment and the development of biomineralized-based virus engineering. We will introduce the effect of biomineralization on the physiochemical or biological properties of viruses and we will discuss the relationship between mineral composition and biological potentials. The new biological prospects of mineralized-state viruses, including bypassing biological barriers, protection, and virus-host recognition, will provide new insight for the biosecurity and prevention of viral infection. With respect to vaccines, the mineralized state can modulate the immune recognition, change the immunization route, and elevate the vaccine efficacy. Together, these findings of the mineralized state of the virus may lead to a new understanding of virus biology, application, and prevention.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, No.38 Zheda Road, Hangzhou, Zhejiang, 310027, P. R. China
| | - Xueyao Liu
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, No.38 Zheda Road, Hangzhou, Zhejiang, 310027, P. R. China
| | - Yun Xiao
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, No.38 Zheda Road, Hangzhou, Zhejiang, 310027, P. R. China
| | - Haibin Hao
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, No.38 Zheda Road, Hangzhou, Zhejiang, 310027, P. R. China
| | - Ying Zhang
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, No.38 Zheda Road, Hangzhou, Zhejiang, 310027, P. R. China
| | - Ruikang Tang
- Qiushi Academy for Advanced Studies, Zhejiang University, No.38 Zheda Road, Hangzhou, Zhejiang, 310027, P. R. China.,Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, No.38 Zheda Road, Hangzhou, Zhejiang, 310027, P. R. China
| |
Collapse
|
31
|
Sheng J, Wang L, Han Y, Chen W, Liu H, Zhang M, Deng L, Liu YN. Dual Roles of Protein as a Template and a Sulfur Provider: A General Approach to Metal Sulfides for Efficient Photothermal Therapy of Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1702529. [PMID: 29148623 DOI: 10.1002/smll.201702529] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 10/01/2017] [Indexed: 06/07/2023]
Abstract
Fabrication of clinically translatable nanoparticles (NPs) as photothermal therapy (PTT) agents against cancer is becoming increasingly desirable, but still challenging, especially in facile and controllable synthesis of biocompatible NPs with high photothermal efficiency. A new strategy which uses protein as both a template and a sulfur provider is proposed for facile, cost-effective, and large-scale construction of biocompatible metal sulfide NPs with controlled structure and high photothermal efficiency. Upon mixing proteins and metal ions under alkaline conditions, the metal ions can be rapidly coordinated via a biuret-reaction like process. In the presence of alkali, the inert disulfide bonds of S-rich proteins can be activated to react with metal ions and generate metal sulfide NPs under gentle conditions. As a template, the protein can confine and regulate the nucleation and growth of the metal sulfide NPs within the protein formed cavities. Thus, the obtained metal sulfides such as Ag2 S, Bi2 S3 , CdS, and CuS NPs are all with small size and coated with proteins, affording them biocompatible surfaces. As a model material, CuS NPs are evaluated as a PTT agent for cancer treatment. They exhibit high photothermal efficiency, high stability, water solubility, and good biocompatibility, making them an excellent PTT agent against tumors. This work paves a new avenue toward the synthesis of structure-controlled and biocompatible metal sulfide NPs, which can find wide applications in biomedical fields.
Collapse
Affiliation(s)
- Jianping Sheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Liqiang Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Yajing Han
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Wansong Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Hong Liu
- Aier Ophthalmic College, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Min Zhang
- School of Materials Science and Energy Engineering, Foshan University, Foshan, Guangdong, 528000, P. R. China
| | - Liu Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - You-Nian Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083, P. R. China
| |
Collapse
|
32
|
Wang X, Deng YQ, Yang D, Xiao Y, Zhao H, Nian QG, Xu X, Li XF, Tang R, Qin CF. Biomimetic inorganic camouflage circumvents antibody-dependent enhancement of infection. Chem Sci 2017; 8:8240-8246. [PMID: 29568472 PMCID: PMC5857936 DOI: 10.1039/c7sc03868b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/03/2017] [Indexed: 12/14/2022] Open
Abstract
Pre-existing antibodies can aggravate disease during subsequent infection or vaccination via the mechanism of antibody-dependent enhancement (ADE) of infection. Herein, using dengue virus (DENV) as a model, we present a versatile surface-camouflage strategy to obtain a virus core-calcium phosphate shell hybrid by self-templated biomineralization. The shelled DENV stealthily avoids recognition by pre-existing antibodies under extracellular conditions, resulting in the efficient abrogation of the ADE of infection both in vitro and in vivo. Moreover, the nanoshell can spontaneously degrade under intracellular conditions to restore the virus activity and immunogenicity due to its pH-sensitive behaviour. This work demonstrates that the biomimetic material shell can significantly improve the administration safety and potency of the DENV vaccine, which provides the promising prospect of chemically designed virus-material hybrids for immune evasion.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Qiushi Academy for Advanced Studies , Zhejiang University , Hangzhou , Zhejiang 310027 , China .
| | - Yong-Qiang Deng
- Department of Virology , State Key Laboratory of Pathogen and Biosecurity , Beijing Institute of Microbiology and Epidemiology , Beijing , 100071 , China .
| | - Dong Yang
- Department of Virology , State Key Laboratory of Pathogen and Biosecurity , Beijing Institute of Microbiology and Epidemiology , Beijing , 100071 , China .
| | - Yun Xiao
- Qiushi Academy for Advanced Studies , Zhejiang University , Hangzhou , Zhejiang 310027 , China .
| | - Hui Zhao
- Department of Virology , State Key Laboratory of Pathogen and Biosecurity , Beijing Institute of Microbiology and Epidemiology , Beijing , 100071 , China .
| | - Qing-Gong Nian
- Department of Virology , State Key Laboratory of Pathogen and Biosecurity , Beijing Institute of Microbiology and Epidemiology , Beijing , 100071 , China .
| | - Xurong Xu
- Qiushi Academy for Advanced Studies , Zhejiang University , Hangzhou , Zhejiang 310027 , China .
| | - Xiao-Feng Li
- Department of Virology , State Key Laboratory of Pathogen and Biosecurity , Beijing Institute of Microbiology and Epidemiology , Beijing , 100071 , China .
| | - Ruikang Tang
- Qiushi Academy for Advanced Studies , Zhejiang University , Hangzhou , Zhejiang 310027 , China .
- Centre for Biomaterials and Biopathways , Department of Chemistry , Zhejiang University , Hangzhou , Zhejiang 310027 , China
| | - Cheng-Feng Qin
- Department of Virology , State Key Laboratory of Pathogen and Biosecurity , Beijing Institute of Microbiology and Epidemiology , Beijing , 100071 , China .
| |
Collapse
|
33
|
Yao S, Jin B, Liu Z, Shao C, Zhao R, Wang X, Tang R. Biomineralization: From Material Tactics to Biological Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605903. [PMID: 28229486 DOI: 10.1002/adma.201605903] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/31/2017] [Indexed: 05/23/2023]
Abstract
Biomineralization is an important tactic by which biological organisms produce hierarchically structured minerals with marvellous functions. Biomineralization studies typically focus on the mediation function of organic matrices on inorganic minerals, which helps scientists to design and synthesize bioinspired functional materials. However, the presence of inorganic minerals may also alter the native behaviours of organic matrices and even biological organisms. This progress report discusses the latest achievements relating to biomineralization mechanisms, the manufacturing of biomimetic materials and relevant applications in biological and biomedical fields. In particular, biomineralized vaccines and algae with improved thermostability and photosynthesis, respectively, demonstrate that biomineralization is a strategy for organism evolution via the rational design of organism-material complexes. The successful modification of biological systems using materials is based on the regulatory effect of inorganic materials on organic organisms, which is another aspect of biomineralization control. Unlike previous studies, this study integrates materials and biological science to achieve a more comprehensive view of the mechanisms and applications of biomineralization.
Collapse
Affiliation(s)
- Shasha Yao
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Biao Jin
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Zhaoming Liu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Changyu Shao
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Ruibo Zhao
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Xiaoyu Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|