1
|
Zhao J, Dai C, Gu B, Wei M. An ESIPT + AIE based dual-response fluorescent probe for continuous detection of PhSH and HClO and visualization of PhSH-induced oxidative stress in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124664. [PMID: 38901234 DOI: 10.1016/j.saa.2024.124664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/01/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
As a valuable industrial chemical, thiophenol (PhSH) is poisonous, which can be easily absorbed by the human body, leading to many serious health issues. In addition, PhSH-triggered oxidative stress is considered to be related with the pathogenesis and toxicity of PhSH. Therefore, efficient methods for monitoring PhSH and ROS production induced by PhSH in living systems are very meaningful and desired. Herein, we reasonably developed a facile dual-response fluorescent probe (HDB-DNP) by incorporating the dinitrophenyl (DNP) group into a novel methylthio-substituted salicylaldehyde azine (HDB) with AIE and ESIPT features. The probe itself was non-fluorescent owing to the strong quenching effect of DNP group. In the presence of PhSH, HDB-DNP gave an intense red fluorescence (610 nm), which can rapidly switch to green fluorescence (510 nm) upon further addition of HClO, allowing the successive detection of PhSH and HClO in two well-separated channels. HDB-DNP proved to be a very promising dual-functional probe for rapid (PhSH: < 17 min; HClO: 10 s) and selective detection of PhSH and HClO in physiological conditions with low detection limit (PhSH: 13.8 nM; HClO: 88.6 nM). Inspired by its excellent recognition properties and low cytotoxicity, HDB-DNP was successfully applied for monitoring PhSH and PhSH-induced HClO generation in living cells with satisfactory results, which may help to better understand the pathogenesis of PhSH-related diseases.
Collapse
Affiliation(s)
- Jingjun Zhao
- Key Laboratory of Organometallic New Materials, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, PR China
| | - Cong Dai
- Key Laboratory of Organometallic New Materials, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, PR China
| | - Biao Gu
- Key Laboratory of Organometallic New Materials, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, PR China.
| | - Mingjie Wei
- School of Public Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China.
| |
Collapse
|
2
|
Ma C, Zhu Y, Zhang Z, Chen X, Ji Z, Zhang LN, Xu Q. Ratiometric electrochemiluminescence sensing and intracellular imaging of ClO - via resonance energy transfer. Anal Bioanal Chem 2024; 416:4691-4703. [PMID: 38512384 DOI: 10.1007/s00216-024-05236-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024]
Abstract
Electrochemiluminescence resonance energy transfer (ECL-RET) is a versatile signal transduction strategy widely used in the fabrication of chem/biosensors. However, this technique has not yet been applied in visualized imaging analysis of intracellular species due to the insulating nature of the cell membrane. Here, we construct a ratiometric ECL-RET analytical method for hypochlorite ions (ClO-) by ECL luminophore, with a luminol derivative (L-012) as the donor and a fluorescence probe (fluorescein hydrazide) as the acceptor. L-012 can emit a strong blue ECL signal and fluorescein hydrazide has negligible absorbance and fluorescence signal in the absence of ClO-. Thus, the ECL-RET process is turned off at this time. In the presence of ClO-, however, the closed-loop hydrazide structure in fluorescein hydrazide is opened via specific recognition with ClO-, accompanied with intensified absorbance and fluorescence signal. Thanks to the spectral overlap between the ECL spectrum of L-012 and the absorption spectrum of fluorescein, the ECL-RET effect is gradually recovered with the addition of ClO-. Furthermore, the ECL-RET system has been successfully applied to image intracellular ClO-. Although the insulating nature of the cell itself can generate a shadow ECL pattern in the cellular region, extracellular ECL emission penetrates the cell membrane and excites intracellular fluorescein generated by the reactions between fluorescein hydrazide and ClO-. The cell imaging strategy via ECL-RET circumvents the blocking of the cell membrane and enables assays of intracellular species. The importance of the ECL-RET platform lies in calibrating the fluctuation from the external environment and improving the selectivity by using fluorescent probes. Therefore, this ratiometric ECL sensor has shown broad application prospects in the identification of targets in clinical diagnosis and environmental monitoring.
Collapse
Affiliation(s)
- Cheng Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, YangzhouJiangsu, 225002, China.
| | - Yujing Zhu
- School of Chemistry and Chemical Engineering, Yangzhou University, YangzhouJiangsu, 225002, China
| | - Zhichen Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, YangzhouJiangsu, 225002, China
| | - Xuan Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, YangzhouJiangsu, 225002, China
| | - Zhengping Ji
- School of Chemistry and Chemical Engineering, Yangzhou University, YangzhouJiangsu, 225002, China
| | - Lu-Nan Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, YangzhouJiangsu, 225002, China
| | - Qin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, YangzhouJiangsu, 225002, China.
| |
Collapse
|
3
|
Zareen W, Ahmed N, Raza S, Ali Khan M, Shafiq Z. Recent development in dual function fluorescence probes for HOCl and interaction with different bioactive molecules. Talanta 2024; 277:126374. [PMID: 38878514 DOI: 10.1016/j.talanta.2024.126374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/25/2024] [Accepted: 06/05/2024] [Indexed: 07/19/2024]
Abstract
Reactive oxygen species (ROS), reactive sulfur species (RSS), metal ions, and nitrogen species (RNS) play important roles in a variety of biological processes, such as a signal transduction, inflammation, and neurodegenerative damage. These species, while essential for certain functions, can also induce stress-related diseases. The interrelation between ROS, RSS, Metal ions and RNS underscores the importance of quantifying their concentrations in live cells, tissues, and organisms. The review emphasizes the use of small-molecule-based fluorescent/chemodosimeter probes to effectively measure and map the species' distribution with high temporal and spatial precision, paying particular attention to in vitro and in vivo environments. These probes are recognized as valuable tools contributing to breakthroughs in modern redox biology. The review specifically addresses the relationship of HOCl/ClO‾ (hypochlorous acid/Hypochlorite) with other reactive species. (Dual sensing probes).
Collapse
Affiliation(s)
- Wajeeha Zareen
- Institute of Chemical Sciences, Bahauddin Zakariya University, 60800, Multan, Pakistan
| | - Nadeem Ahmed
- Institute of Chemical Sciences, Bahauddin Zakariya University, 60800, Multan, Pakistan
| | - Shahid Raza
- Institute of Chemical Sciences, Bahauddin Zakariya University, 60800, Multan, Pakistan
| | - Muhammad Ali Khan
- Institute of Chemical Sciences, Bahauddin Zakariya University, 60800, Multan, Pakistan.
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, 60800, Multan, Pakistan.
| |
Collapse
|
4
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
5
|
Dai E, Sheng Y, Gao Y. A Fast-Response, Phenanthroimidazole-Based Fluorescent Probe for Selective Detection of HClO. J Fluoresc 2024; 34:1551-1560. [PMID: 37542588 DOI: 10.1007/s10895-023-03376-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
A new phenanthroimidazole-based fluorescence probe for selective detection of HClO was synthesized and characterized using 1HNMR, 13CNMR, IR, and HRMS. With benzenesulfonohydrazide as the identification group, the probe demonstrated a fast fluorescence response from yellow-green to blue when the HC = N double bond was oxidized and broken into an aldehyde group by HClO. The probe showed high selectivity and sensitivity towards HClO with approximately 4.5-fold fluorescence enhancement and has been successfully applied in the molecular logic gate, determination of HClO in environmental water samples, and portable HClO detection.
Collapse
Affiliation(s)
- Enhui Dai
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yumiao Sheng
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yunling Gao
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
6
|
Yang Y, Yan X, Liang T, Tian M, Wu C, Tang L, Sun X, Zhang J, Li Y, Zhong K. A novel fluorescence probe for ultrafast detection of SO 2 derivatives/biogenic amines and its multi-application: Detecting food and fish freshness, fluorescent dye and bioimaging. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134003. [PMID: 38492394 DOI: 10.1016/j.jhazmat.2024.134003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
In this study, we have effectively prepared a novel fluorescent probe named HDXM based on benzopyran derivatives for the ultrafast detection (within 3 s) of SO2 derivatives or biogenic amines. HDXM showed a noticeable color change after the addition of SO2 derivatives (from purple to colorless) or biogenic amines (from purple to blue), indicating that HDXM can identify two analytes with the naked eye. It is worth noting that HDXM can be used to detect SO2 derivatives in actual sugar samples, and to image HSO3-/SO32- in living cells. More importantly, sensing labels (HDXM-loaded filter paper or agarose hydrogel) enable real-time visual monitoring of salmon freshness through colorimetric and fluorescence dual channels. Compared with the Chinese national standard method, the sensing label is an effective tool for evaluating the freshness of fish. Benefiting from its excellent solubility and fluorescence performance, HDXM can be used as a versatile fluorescent material in various applications, including flexible films, glass coatings, impregnating dyes, printing, and fingerprint ink. HDXM is expected to be a promising and valuable multifunctional tool for food safety and fluorescent materials.
Collapse
Affiliation(s)
- YaXin Yang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Xiaomei Yan
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, China
| | - Tianyu Liang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Mingyu Tian
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Chengyan Wu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Lijun Tang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China; Food Safety Key Lab of Liaoning Province, Jinzhou 121013, China.
| | - Xiaofei Sun
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China; Food Safety Key Lab of Liaoning Province, Jinzhou 121013, China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| | - Jinglin Zhang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China..
| | - Yang Li
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Keli Zhong
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China; Institute of Ocean, Bohai University, Jinzhou 121013, China; Food Safety Key Lab of Liaoning Province, Jinzhou 121013, China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China..
| |
Collapse
|
7
|
Liu FT, Wang YP, Jiang PF, Zhao BX. A FRET-based ratiometric fluorescent probe for sensing bisulfite/sulfite and viscosity and its applications in food, water samples and test strips. Food Chem 2024; 436:137755. [PMID: 37862981 DOI: 10.1016/j.foodchem.2023.137755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023]
Abstract
A FRET-based ratiometric dual-response fluorescent probe, CQI, constructed by combining quinolinium-indole as the acceptor and coumarin as the donor, was developed for sensing HSO3-/SO32- and viscosity. After the interaction of probe CQI with the analyte, we achieved a green channel for the response to HSO3-/SO32- and an orange channel for the response to viscosity. We comprehensively evaluated the ability of CQI to detect SO2 derivatives and viscosity using fluorescence spectroscopy. Probe CQI exhibited a large Stokes shift (196 nm), a high energy transfer efficiency (99.6 %) and a wide detection range (0-250 μM). The fluorescence intensity of the probe increased up to 14-fold with increasing viscosity, and CQI could detect the viscosity of food thickeners. More importantly, probe CQI could not only successfully monitor SO2 derivatives in various food and water samples, but also be prepared as bisulfite test strips.
Collapse
Affiliation(s)
- Feng-Ting Liu
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Yan-Pu Wang
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Peng-Fei Jiang
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Bao-Xiang Zhao
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
| |
Collapse
|
8
|
Li H, Liu Y, Wang Y, Li J, Li Y, Zhang G, Zhang C, Shuang S, Dong C. A near infrared fluorescence probe with dual-site for hydrogen sulfide and sulfur dioxide detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123523. [PMID: 37857073 DOI: 10.1016/j.saa.2023.123523] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
Both hydrogen sulfide (H2S) and sulfur dioxide (SO2) are regarded as double-edged swords. They are toxic gases at high concentration, and at low concentration they are beneficial to the human. Therefore, it is of great significance to develop single chemosensor which enable to detect them with different fluorescence signal changes. In this work, a novel dual-site fluorescence probe (AMN-SSPy) with near infrared emission (675 nm) was designed, which realized quantitative detection for H2S and SO2 by fluorescence enhancement and fluorescence quenching, respectively. AMN-SSPy showed advantages such as excellent selectivity to H2S and SO2, strong anti-interference ability, high sensitivity for H2S (LOD 1.03 µM for H2S and 77.08 µM for SO2) and low toxicity. In addition, AMN-SSPy possessed the capacity to successfully image the endogenous and exogenous H2S, and it was also used to demonstrate that Ca2+ could induce accumulation of H2S in cell and zebrafish. Finally, the rapid detection of SO2 by AMN-SSPy in real samples was also established.
Collapse
Affiliation(s)
- Haoyang Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Ying Liu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Yuhang Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Jinshan Li
- Chumin College, Shanxi University, Taiyuan 030006, China
| | - Yang Li
- Chumin College, Shanxi University, Taiyuan 030006, China
| | - Guomei Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Caihong Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
9
|
Fang Y, Zheng D, Zhang T, Cao Z, Zhou H, Deng Y, Peng C. A rationally designed fluorescent probe for sulfur dioxide and its derivatives: applications in food analysis and bioimaging. Anal Bioanal Chem 2024; 416:533-543. [PMID: 38008784 DOI: 10.1007/s00216-023-05060-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/28/2023]
Abstract
Exogenous sulfur dioxide (SO2) and its derivatives (SO32-/HSO3-) have been extensively utilized in food preservation and endogenous SO2 is recognized as a significant gaseous signaling molecule that can mediate various physiological processes. Overproduction and/or extensive intake of these species can trigger allergic reactions and even tissue damage. Therefore, it is highly desirable to monitor SO2 and its derivatives effectively and quantitatively both in vitro and in vivo. Herein, a new mitochondria-targeted fluorescent probe (PIB) had been constructed, which could ratiometrically recognize SO2 and its derivatives with excellent sensitivity (DL = 15.9 nM) and a fast response time (200 s). The obtained high selectivity and good adaptability of this SO2-specific probe in a wide pH range (6.5-10.0) allowed for quantitatively tracking of SO2 and its derivatives in real food samples (granulated sugar, crystal sugar, and white wine). In addition, PIB could locate at mitochondrion and was capable of imaging exogenous/endogenous SO2 in the cells and zebrafish. In particular, our findings represented one of the rare examples that have demonstrated endogenous SO2 is closely related with the apoptosis of cells. Importantly, probe PIB was successfully employed for in situ metabolic localization in mouse organs, implying the potential applications of our probe in further exploration on SO2-releated pathological and physiological processes.
Collapse
Affiliation(s)
- Yuyu Fang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Sichuan New Green Pharmaceutical Technology Development Co. Ltd., Chengdu, 611930, China.
| | - Dongbin Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tingrui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhixing Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Houcheng Zhou
- Sichuan New Green Pharmaceutical Technology Development Co. Ltd., Chengdu, 611930, China
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
10
|
Shang Z, Meng Q, Zhang R, Zhang Z. Bifunctional near-infrared fluorescent probe for the selective detection of bisulfite and hypochlorous acid in food, water samples and in vivo. Anal Chim Acta 2023; 1279:341783. [PMID: 37827680 DOI: 10.1016/j.aca.2023.341783] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/24/2023] [Accepted: 09/04/2023] [Indexed: 10/14/2023]
Abstract
We report the development of a bifunctional near-infrared fluorescent probe (QZB) for selective sensing of bisulfite (HSO3-) and hypochlorous acid (HOCl). The synergistic detection of HSO3- and HOCl was achieved via a C=C bond recognition site. In comparison with the red-fluorescence QZB, two different products with non-fluorescence and paleturquoise fluorescence were produced by the recognition of QZB towards HSO3- and HOCl respectively, which can realize effectively the dual-functional detection of HSO3- and HOCl. QZB features prominent preponderances of dual-function response, near-infrared emission, reliability at physiological pH, low cytotoxicity and high sensitivity to HSO3- and HOCl. The detection of HSO3- in actual food samples has been successfully achieved using QZB. Utilization of QZB-based test strip to semi-quantitatively detect HSO3- and HOCl in real-world water samples by the "naked-eye" colorimetry are then demonstrated. Simultaneously, the determination of HSO3- and HOCl in real-world water sample has been achieved by smartphone-based standard curves. Additionally, the applications of QZB for imaging HSO3- and HOCl in vivo are successfully demonstrated. Consequently, the successful development of QZB could be promising as an efficient tool for researching the role of HSO3-/HOCl in the regulation of redox homeostasis regulation in vivo and complex signal transduction and for future food safety evaluation.
Collapse
Affiliation(s)
- Zhuye Shang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China; Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China.
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, 4072, Australia
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China.
| |
Collapse
|
11
|
Geng Y, Wang Z, Zhou J, Zhu M, Liu J, James TD. Recent progress in the development of fluorescent probes for imaging pathological oxidative stress. Chem Soc Rev 2023. [PMID: 37190785 DOI: 10.1039/d2cs00172a] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Oxidative stress is closely related to the physiopathology of numerous diseases. Reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS) are direct participants and important biomarkers of oxidative stress. A comprehensive understanding of their changes can help us evaluate disease pathogenesis and progression and facilitate early diagnosis and drug development. In recent years, fluorescent probes have been developed for real-time monitoring of ROS, RNS and RSS levels in vitro and in vivo. In this review, conventional design strategies of fluorescent probes for ROS, RNS, and RSS detection are discussed from three aspects: fluorophores, linkers, and recognition groups. We introduce representative fluorescent probes for ROS, RNS, and RSS detection in cells, physiological/pathological processes (e.g., Inflammation, Drug Induced Organ Injury and Ischemia/Reperfusion Injury etc.), and specific diseases (e.g., neurodegenerative diseases, epilepsy, depression, diabetes and cancer, etc.). We then highlight the achievements, current challenges, and prospects for fluorescent probes in the pathophysiology of oxidative stress-related diseases.
Collapse
Affiliation(s)
- Yujie Geng
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Zhuo Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Jiaying Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Mingguang Zhu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Jiang Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
12
|
Zhou Y, Xu H, Li QX, Hou ZR, Wang YW, Peng Y. A dual-mode probe based on AIE and TICT effects for the detection of the hypochlorite anion and its bioimaging in living cells. Org Biomol Chem 2023; 21:1270-1274. [PMID: 36637117 DOI: 10.1039/d2ob02138b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Based on aggregation-induced emission (AIE) and twisted intramolecular charge transfer (TICT) mechanisms, a fluorescent probe SWJT-12 for the detection of ClO- was designed by using the CN bond as a reactive group. This synthesized probe can react with ClO- in a high aqueous phase, and it shows a large Stokes shift (144 nm) and low biological toxicity. Its limit of detection was calculated to be 0.28 μM. Furthermore, SWJT-12 was successfully used for ratiometric imaging of the exogenous hypochlorite anion in living cells.
Collapse
Affiliation(s)
- Yang Zhou
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Hai Xu
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Qing-Xiu Li
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Zong-Rui Hou
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Ya-Wen Wang
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Yu Peng
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| |
Collapse
|
13
|
Liu CX, Xiao SY, Gong XL, Zhu X, Wang YW, Peng Y. A Near-Infrared Fluorescent Probe for Recognition of Hypochlorite Anions Based on Dicyanoisophorone Skeleton. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010402. [PMID: 36615593 PMCID: PMC9823594 DOI: 10.3390/molecules28010402] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 01/09/2023]
Abstract
A novel near-infrared (NIR) fluorescent probe (SWJT-9) was designed and synthesized for the detection of hypochlorite anion (ClO-) using a diaminomaleonitrile group as the recognition site. SWJT-9 had large Stokes shift (237 nm) and showed an excellent NIR fluorescence response to ClO- with the color change under the visible light. It showed a low detection limit (24.7 nM), high selectivity, and rapid detection (within 2 min) for ClO-. The new detection mechanism of SWJT-9 on ClO- was confirmed by 1H NMR, MS spectrum, and the density functional theory (DFT) calculations. In addition, the probe was successfully used to detect ClO- in HeLa cells.
Collapse
Affiliation(s)
- Chang-Xiang Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shu-Yuan Xiao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiu-Lin Gong
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xi Zhu
- Department of Neurology, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China
- Correspondence: (X.Z.); (Y.-W.W.)
| | - Ya-Wen Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
- Correspondence: (X.Z.); (Y.-W.W.)
| | - Yu Peng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
14
|
Huang P, Yue Y, Yin C, Huo F. Design of Dual‐responsive ROS/RSS Fluorescent Probes and Their Application in Bioimaging. Chem Asian J 2022; 17:e202200907. [DOI: 10.1002/asia.202200907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/03/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Pei Huang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science Shanxi University Taiyuan 030006 P. R. China
| | - Yongkang Yue
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science Shanxi University Taiyuan 030006 P. R. China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science Shanxi University Taiyuan 030006 P. R. China
| | - Fangjun Huo
- Research Institute of Applied Chemistry Shanxi University Taiyuan 030006 P. R. China
| |
Collapse
|
15
|
Hao XL, Guo JF, Ren AM, Zhou L. Persistent and Efficient Multimodal Imaging for Tyrosinase Based on Two-Photon Excited Fluorescent and Room-Temperature Phosphorescent Probes. J Phys Chem A 2022; 126:7650-7659. [PMID: 36240504 DOI: 10.1021/acs.jpca.2c05482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tyrosinase is crucial to regulate the metabolism of phenol derivatives, playing an important role in the biosynthesis of melanin pigments, whereas an abnormal level of tyrosinase would lead to severe diseases. It is rather necessary to develop a sensitive and selective imaging tool to assess the level of tyrosinase in vivo. We thoroughly researched the luminous mechanism of the existing TPTYR probe and provided design strategies to improve its two-photon excited fluorescence properties. The designed probes benza2-TPTYR and product benza2-TPTYR-coumarin have large two-photon absorption cross sections at the NIR spectral region (41 GM/706 nm, 71 GM/852 nm), while benza2-TPTYR-coumarin possesses easily distinguishable spectrum in the visible region and a high fluorescence efficiency (ΦF = 0.27). What is more, novel two-photon excited multimodal imaging based on the pure organic small molecule benza1-TPTYR-coumarin (61 GM/936 nm) is proposed first, simultaneously possessing strong instantaneous fluorescent (563.79 nm) and persistent room-temperature phosphorescent emissions (767.68 nm, 0.54 ms).
Collapse
Affiliation(s)
- Xue-Li Hao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Jing-Fu Guo
- School of Physics, Northeast Normal University, Changchun 130024, P. R. China
| | - Ai-Min Ren
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, Jilin, P. R. China
| | - Liang Zhou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| |
Collapse
|
16
|
Das S, Patra L, Pratim Das P, Ghoshal K, Gharami S, Walton JW, Bhattacharyya M, Mondal TK. A new ratiometric switch "two-way" detects hydrazine and hypochlorite via a "dye-release" mechanism with a PBMC bioimaging study. Phys Chem Chem Phys 2022; 24:20941-20952. [PMID: 36053209 DOI: 10.1039/d2cp02482a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new ratiometric fluorescent probe (E)-2-(benzo[d]thiazol-2-yl)-3-(8-methoxyquinolin-2-yl)acrylonitrile (HQCN) was synthesised by the perfect blending of quinoline and a 2-benzothiazoleacetonitrile unit. In a mixed aqueous solution, HQCN reacts with hydrazine (N2H4) to give a new product 2-(hydrazonomethyl)-8-methoxyquinoline along with the liberation of the 2-benzothiazoleacetonitrile moiety. In contrast, the reaction of hypochlorite ions (OCl-) with the probe gives 8-methoxyquinoline-2-carbaldehyde. In both cases, the chemodosimetric approaches of hydrazine and hypochlorite selectively occur at the olefinic carbon but give two different products with two different outputs, as observed from the fluorescence study exhibiting signals at 455 nm and 500 nm for hydrazine and hypochlorite, respectively. A UV-vis spectroscopy study also depicts a distinct change in the spectrum of HQCN in the presence of hydrazine and hypochlorite. The hydrazinolysis of HQCN exhibits a prominent chromogenic as well as ratiometric fluorescence change with a 165 nm left-shift in the fluorescence spectrum. Similarly, the probe in hand (HQCN) can selectively detect hypochlorite in a ratiometric manner with a shift of 120 nm, as observed from the fluorescence emission spectra. HQCN can detect hydrazine and OCl- as low as 2.25 × 10-8 M and 3.46 × 10-8 M, respectively, as evaluated from the fluorescence experiments again. The excited state behaviour of the probe HQCN and the chemodosimetric products with hydrazine and hypochlorite are studied by the nanosecond time-resolved fluorescence technique. Computational studies (DFT and TDDFT) with the probe and the hydrazine and hypochlorite products were also performed. The observations made in the fluorescence imaging studies with human blood cells manifest that HQCN can be employed to monitor hydrazine and OCl- in human peripheral blood mononuclear cells (PBMCs). It is indeed a rare case that the single probe HQCN is found to be successfully able to detect hydrazine and hypochlorite in PBMCs, with two different outputs.
Collapse
Affiliation(s)
- Sangita Das
- Department of Chemistry, Jadavpur University, Kolkata-700032, India. .,Department of Chemistry, Durham University, Durham, DH1 3LE, UK. .,KIST Europe Forschungsgesellschaft mbH, Campus E71, 66123 Saarbrücken, Germany
| | - Lakshman Patra
- Department of Chemistry, Jadavpur University, Kolkata-700032, India.
| | - Partha Pratim Das
- Center for Novel States of Complex Materials Research, Seoul National University, Seoul 08826, Republic of Korea
| | - Kakali Ghoshal
- Department of Biochemistry, University of Calcutta, Kolkata-700019, India
| | - Saswati Gharami
- Department of Chemistry, Jadavpur University, Kolkata-700032, India.
| | - James W Walton
- Department of Chemistry, Durham University, Durham, DH1 3LE, UK.
| | | | | |
Collapse
|
17
|
Tan L, Yang Q, Peng L, Xie C, Luo K, Zhou L. Molecular engineering-based a dual-responsive fluorescent sensor for sulfur dioxide and nitric oxide detecting in acid rain and its imaging studies in biosystems. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128947. [PMID: 35472539 DOI: 10.1016/j.jhazmat.2022.128947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/04/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Sulfur dioxide (SO2) and nitric oxide (NO), known as sulfur oxides and nitrogen oxides, are toxic air pollutants and seriously threaten human health. Herein, for the first time, a robust dual-response fluorescent sensor CGT with two different emission fluorophores and dual well-known response-group for visual bisulphites (HSO3-) and nitrites (NO2-) detection was reported. Specifically, once CGT was incubated with HSO3- firstly, the color of the test solution changed to dark yellow with no-fluorescence emission, following added NO2-, the color of the test solution changed to yellow with a bright cyan emission. However, NO2- was added firstly, the color of the test solution changed to dark purple with a white emission, and then added HSO3-, the color of the test solution changed to yellow with a bright cyan emission. Furthermore, CGT showed high sensitivity and selectivity toward HSO3- and NO2- detecting with good detection limits as low as 20.17 nM and 4.14 nM, respectively. Impressively, CGT showed good detection capability in complex aqueous samples and was successfully used for the detection of HSO3- and NO2- in biosystems. Thus, the experimental results indicated CGT as a powerful novel visual detecting tool for HSO3- and NO2- detecting in complex acid rain and biosystems.
Collapse
Affiliation(s)
- Libin Tan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qiaomei Yang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Longpeng Peng
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Can Xie
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Kun Luo
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Liyi Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
18
|
Han X, Wang Y, Huang Y, Wang X, Choo J, Chen L. Fluorescent probes for biomolecule detection under environmental stress. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128527. [PMID: 35231812 DOI: 10.1016/j.jhazmat.2022.128527] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The use of fluorescent probes in visible detection has been developed over the last several decades. Biomolecules are essential in the biological processes of organisms, and their distribution and concentration are largely influenced by environmental factors. Significant advances have occurred in the applications of fluorescent probes for the detection of the dynamic localization and quantity of biomolecules during various environmental stress-induced physiological and pathological processes. Herein, we summarize representative examples of small molecule-based fluorescent probes that provide bimolecular information when the organism is under environmental stress. The discussion includes strategies for the design of smart small-molecule fluorescent probes, in addition to their applications in biomolecule imaging under environmental stresses, such as hypoxia, ischemia-reperfusion, hyperthermia/hypothermia, organic/inorganic chemical exposure, oxidative/reductive stress, high glucose stimulation, and drug treatment-induced toxicity. We believe that comprehensive insight into the beneficial applications of fluorescent probes in biomolecule detection under environmental stress should enable the further development and effective application of fluorescent probes in the biochemical and biomedical fields.
Collapse
Affiliation(s)
- Xiaoyue Han
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Present: Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, UK; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Huang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; School of Pharmacy, Binzhou Medical University, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
19
|
Yang YZ, Qing M, Luo XY, Xie J, Zhang LN. A dual-response fluorescent probe for discriminative sensing of hydrazine and bisulfite as well as intracellular imaging with different emission. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120795. [PMID: 34972056 DOI: 10.1016/j.saa.2021.120795] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/25/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Bisulfite and hydrazine are harmful to the environment safety and human health. Therefore, it is of great value to develop a smart fluorescent probe with high selectivity for detection of bisulfite and hydrazine. In our report, a dual-response fluorescent probe EDBI with high selectivity, rapid response, and low detection limit for discriminative determination HSO3- and N2H4 was exploited. The probe EDBI is capable of distinctive sensing HSO3- and N2H4 based on nucleophilic addition reactions by taking advantage of ratiometric fluorescence and fluorescence "on-off" mode, respectively. The dual-responses behaviors of probe EDBI toward HSO3- and N2H4 were attribute to different reaction sites, which it has been confirmed by HRMS. More importantly, cytotoxicity experiment authenticated that probe possesses low toxicity and good penetration. The probe EDBI with excellent performance, it was successfully employed to distinguishable sense HSO3- and N2H4 in living cells by diverse channel patterns. Therefore, this simple dual-response fluorescence probe is expected to be used for real-time monitoring bisulfite and hydrazine in biological samples.
Collapse
Affiliation(s)
- Yu Zhu Yang
- Department of Basic Teaching, Zunyi Medical and Pharmaceutical College, Zunyi 563006, PR China.
| | - Min Qing
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Xiao Ye Luo
- Department of Basic Teaching, Zunyi Medical and Pharmaceutical College, Zunyi 563006, PR China
| | - Juan Xie
- Department of Basic Teaching, Zunyi Medical and Pharmaceutical College, Zunyi 563006, PR China
| | - Li Na Zhang
- Department of Basic Teaching, Zunyi Medical and Pharmaceutical College, Zunyi 563006, PR China
| |
Collapse
|
20
|
Mu S, Zhang J, Gao H, Wang Y, Rizvi SFA, Ding N, Liu X, Wu L, Zhang H. Sequential detection of H 2S and HOBr with a novel lysosome-targetable fluorescent probe and its application in biological imaging. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126898. [PMID: 34416694 DOI: 10.1016/j.jhazmat.2021.126898] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Understanding the complex relationship between active small molecules is of great significance in various physiological processes. Herein, we present the design and synthesis of a sequential responsive Lysosome-Naphthalene imide-Azido (lyso-NP-N3) reporter for probing the H2S and HOBr within organelle (lysosome) in living cells. Probe lyso-NP-N3 exhibited high selectivity and sensitivity towards H2S (LOD = 23.5 nM) and HOBr (LOD = 254 nM). Additionally, lyso-NP-N3 possessed an excellent lysosome targeting ability and was utilized to visualize the exogenous/endogenous H2S and HOBr in RAW 264.7, Hela and HepG2 cells. Facilitated by this sequentially activated mechanism, the probe was successfully applied to confirm that the reported scavenger of HOBr, N-acetyl-L-cysteine (NAC) mainly relied on its metabolite H2S to eliminate excess HOBr, thereby playing the role of cell regulation and protection. These results establish the crosstalk between H2S and HOBr in lysosome and provide a promising tool to study metabolite interactions.
Collapse
Affiliation(s)
- Shuai Mu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jinlong Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hong Gao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yaya Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Syed Faheem Askari Rizvi
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Nana Ding
- College of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu 730030, China
| | - Xiaoyan Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Lan Wu
- College of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu 730030, China.
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
21
|
Wei W, Liu W, Zhang H, Li Z, Yu M. A novel near-infrared fluorescent probe for the detection of sulfur dioxide derivatives and its application in biological imaging. NEW J CHEM 2022. [DOI: 10.1039/d2nj01414a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
SO2 plays an important role in our life and is also associated with many diseases, so it is a double-edged sword. Therefore, it is necessary to develop a probe for...
Collapse
|
22
|
Fei G, Ma S, Wang C, Chen T, Li Y, Liu Y, Tang B, James TD, Chen G. Imaging strategies using cyanine probes and materials for biomedical visualization of live animals. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214134] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Yu Z, Zhang X, Pei X, Cao W, Ye J, Wang J, Sun L, Yu F, Wang J, Li N, Lee K, Barth S, Yang VC, He H. Antibody-siRNA conjugates (ARCs) using multifunctional peptide as a tumor enzyme cleavable linker mediated effective intracellular delivery of siRNA. Int J Pharm 2021; 606:120940. [PMID: 34310959 DOI: 10.1016/j.ijpharm.2021.120940] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
The tissue-specific targeted delivery and efficient cellular uptake of siRNAs are the main obstacles to their clinical application. Antibody-siRNA-conjugates (ARCs) can deliver siRNA by exploiting the targeting property of antibodies like antibody-drug conjugates (ADCs). However, the effective conjugation of antibodies and siRNAs and the release of siRNAs specifically at target sites have posed challenges to the development of ARCs. In this study, the successful conjugation of antibodies and siRNAs was achieved using a multifunctional peptide as a linker, composed of a cell-penetrating peptide (CPP) and a substrate peptide (SP), which is highly expressed in solid tumors. The resulting antibody-multifunctional peptide (SP-CPP)-siRNA system delivered the siRNA to target tumor cells by the specific binding of the antibody. Once the enzymes on the tumor cell surface hydrolyzed the substrate peptide linker, siRNA-CPP was released from ARCs. The released siRNA-CPP entered the targeted cells via the cellular penetrating ability of CPP, resulting in improved siRNA-mediated gene silencing efficiency, verified both in vitro and in vivo. After intravenous administration, the designed ARCs achieved approximately 66.7% EGFP (Enhanced Green Fluorescent Protein) downregulation efficiency in nude mice xenografted with the HCT116-EGFP tumor model. The proposed system provides a prospective choice for ARC production and the safe and efficient delivery of siRNAs.
Collapse
Affiliation(s)
- Zhili Yu
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xiaojuan Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Xing Pei
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Weiran Cao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Junxiao Ye
- College of Pharmacy, Tsinghua University, Beijing 100084, China
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Lu Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Fei Yu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Jiancheng Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, XueYuan Rd 38, Haidian Dist, Beijing 100191, China
| | - Nan Li
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Kyuri Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Gyeongsangnam-do 52828, Republic of Korea
| | - Stefan Barth
- South African Research Chair in Cancer Biotechnology, Institute of Infectious Disease and Molecular Medicine (IDM), Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
| | - Victor C Yang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA
| | - Huining He
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
24
|
Chen J, Chen X, Wang P, Liu S, Chi Z. Aggregation-induced emission luminogen@manganese dioxide core-shell nanomaterial-based paper analytical device for equipment-free and visual detection of organophosphorus pesticide. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125306. [PMID: 33588332 DOI: 10.1016/j.jhazmat.2021.125306] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/18/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Organophosphorus pesticide (OP) residues have gathered considerable attention because of their significant threat to society development and healthy life. Developing a sensitive and practical OPs sensor is highly urgent, whereas remains a huge challenge. To this end, we fabricated a high-performance fluorescence paper analytical device (PAD) for apparatus-free and visual sensing of OPs based on aggregation-induced emission (AIE) luminogen's bright emission in aggregated state, unique response of MnO2 to thiol compounds, and difference of MnO2 and Mn2+ in quenching fluorescence. AIE nanoparticles PTDNPs-0.10 and MnO2 respectively acted as core and shell to prepare PTDNPs@MnO2, which possessed high stability and were dripped on cellulose paper's surface to fabricate AIE-PAD. The sensing mechanism is that OPs-treated acetylcholinesterase (AChE) prevents the formation of thiocholine, thereby minimizing the reduction of MnO2 into Mn2+ and changing the output signal. As a result, equipment-free and visual sensing of OPs was acquired with limit of detection of 1.60 ng/mL. This work justifies the feasibility of applying core-shell material to develop high-performance sensor and substituting complex/expensive solution-phase sensor with PAD, providing a new avenue to bring OPs analysis out of the lab and into the world.
Collapse
Affiliation(s)
- Jianling Chen
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Center for High Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Material and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaojie Chen
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Center for High Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Material and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Po Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Siwei Liu
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Center for High Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Material and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Zhenguo Chi
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Center for High Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Material and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
25
|
Song X, Jing C, Wang Y, Feng Y, Cao C, Wang K, Liu W, Ru J. Fluorescence distinguishing of SO 2 derivatives and Cys/GSH from multi-channel signal patterns and visual sensing based on smartphone in living cells and environment. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125332. [PMID: 33582462 DOI: 10.1016/j.jhazmat.2021.125332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/17/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Sulfur dioxide (SO2), cysteine (Cys) and glutathione (GSH), which perform crucial actions in regulating the balance of human, are closely related reactive sulfur species (RSS). Moreover, SO2 is one of the most concerned air pollutants, which is easily soluble in water and forms its derivatives. Therefore, it is highly desirable to differentiate SO2 derivatives and Cys/GSH in living cells and environment. Herein, a new near-infrared (NIR) mitochondria-targeted fluorescent probe, NIR-CG, which could distinguish SO2 derivatives and Cys/GSH by using multiple sets of signal patterns under single excitation was reported. NIR-CG exhibited different fluorescence signal modes to SO32- and Cys/GSH with low limit of detection (17.1 nM for SO32-, 17.3 nM for Cys and 25.9 nM for GSH). The recognition mechanisms of NIR-CG to SO32- and Cys/GSH were verified by HRMS, 1H NMR and DFT calculation. NIR-CG had good ability of mitochondrial targeted and fluorescence imaging in cells. What's more, NIR-CG showed great recovery rates (101-104%) in the determination of SO32- in actual water samples. It was worth noting that NIR-CG-based paper strip successfully realized the visual quantitative detection of SO32- and Cys/GSH by use of smartphone, which offered a novel method to develop powerful sensing platform.
Collapse
Affiliation(s)
- Xuerui Song
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Chunlin Jing
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Yingzhe Wang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Yan Feng
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Chen Cao
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Kun Wang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.
| | - Jiaxi Ru
- State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu Province 730046, PR China.
| |
Collapse
|
26
|
Yang JM, Kou YK. Sulfo-modified MIL-101 with immobilized carbon quantum dots as a fluorescence sensing platform for highly sensitive detection of DNP. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Zhou Y, Wang X, Zhang W, Tang B, Li P. Recent advances in small molecule fluorescent probes for simultaneous imaging of two bioactive molecules in live cells and in vivo. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2041-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
28
|
Han J, Yang S, Wang B, Song X. Tackling the Selectivity Dilemma of Benzopyrylium-Coumarin Dyes in Fluorescence Sensing of HClO and SO 2. Anal Chem 2021; 93:5194-5200. [PMID: 33739079 DOI: 10.1021/acs.analchem.0c05266] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Benzopyrylium-coumarin fluorescent probes for sensing hypochlorous acid (HClO) or sulfur dioxide (SO2) are unable to distinguish between HClO and SO2 because the two compounds can react with the 4-position of benzopyrylium-coumarin dyes through the nucleophilic attack. In the current work, we introduced a phenoxazine moiety to the benzopyrylium-coumarin dye to synthesize a new fluorescent probe PBC1, which can dually sense HClO and SO2 and generate distinct fluorescence signals with rapid response time and high sensitivity and selectivity. Moreover, probe PBC1 was also successfully utilized to detect intracellular HClO and SO2 in HeLa cells and zebrafish.
Collapse
Affiliation(s)
- Jinliang Han
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Sheng Yang
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Benhua Wang
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Xiangzhi Song
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China.,Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, Hunan 410083, China
| |
Collapse
|
29
|
Zhang J, Kan J, Sun Y, Won M, Kim JH, Zhang W, Zhou J, Qian Z, Kim JS. Nanoliposomal Ratiometric Fluorescent Probe toward ONOO - Flux. ACS APPLIED BIO MATERIALS 2021; 4:2080-2088. [PMID: 35014335 DOI: 10.1021/acsabm.0c01178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peroxynitrite (ONOO-), a powerful biological oxidant, is produced in the mitochondria and reacts with many biomolecular targets under various pathological conditions, leading to a range of disease states. In this work, we developed a nanoliposome-encapsulated ratiometrically fluorescent probe (NRF) based on a hemicyanine structure Cy-O obtained by facile synthesis. Upon reaction with ONOO-, the oxidation and hydrolysis of a π-conjugation system within the nanoliposome triggers a ratiometrically fluorescent response and a large-scale emission shift (238 nm), which provides a specific and sensitive means for the ONOO- detection. Moreover, we have performed DFT calculation at the 6-31+G(d,p) level using a suite of Gaussian 09 programs to obtain insights into the chemical structure optical properties of Cy-O. In addition, the practical applications of the nanoprobe to image exogenous and endogenous ONOO- were achieved further in live cells and animals triumphantly.
Collapse
Affiliation(s)
- Jie Zhang
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, College of Pharmacy, Weifang Medical University, Weifang 261053, P. R. China
| | - Jianfei Kan
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, College of Pharmacy, Weifang Medical University, Weifang 261053, P. R. China
| | - Yanyan Sun
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, College of Pharmacy, Weifang Medical University, Weifang 261053, P. R. China
| | - Miae Won
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Ji Hyeon Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Weifen Zhang
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, College of Pharmacy, Weifang Medical University, Weifang 261053, P. R. China
| | - Jin Zhou
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, College of Pharmacy, Weifang Medical University, Weifang 261053, P. R. China
| | - Zhaosheng Qian
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
30
|
Sharma A, Chun J, Ji MS, Lee S, Kang C, Kim JS. Binary Prodrug of Dichloroacetic Acid and Doxorubicin with Enhanced Anticancer Activity. ACS APPLIED BIO MATERIALS 2021; 4:2026-2032. [PMID: 35014328 DOI: 10.1021/acsabm.0c00443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The inevitable challenge in conventional chemotherapy is to deliver the anticancer drugs to the dense population of tumors cells while minimizing the drug-associated side effects on the normal cells. Cancer cells' preference for glycolysis for energy production is well recognized. Intuitively, taking advantage of such cancer-associated metabolism would be a promising strategy for anticancer drug delivery with minimal side effects. In this investigation, we have designed a binary prodrug PDOX as a sequential drug delivery regimens to realize the combination therapy for cancer. As cancer cells exhibit abrupt metabolism with elevated pyruvate dehydrogenase kinase (PDK) activity, dichloroacetic acid (DCA, a well-known PDK inhibitor) was used in combination with anticancer drug doxorubicin (DOX). The designed molecular prodrug was activated selectively by cancer-associated esterase to deliver DCA and DOX, respectively, and induced synergetic effects. Hence, sequential targeted delivery of molecular prodrug PDOX offers a promising approach to overcome the offside drug toxicity, pharmacokinetics, and biodistribution of individuals and provide an alternative option for cancer treatment.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Chemistry, Korea University, Seoul 02841, Korea.,CSIR-Central Scientific Instruments Organization, Sector-30C, Chandigarh 160030, India
| | - Jieun Chun
- The School of East-West Medical Science, Kyung Hee University, Yongin 17104, Korea
| | - Myung Sun Ji
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Sooyeon Lee
- The School of East-West Medical Science, Kyung Hee University, Yongin 17104, Korea
| | - Chulhun Kang
- The School of East-West Medical Science, Kyung Hee University, Yongin 17104, Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
31
|
Responsive small-molecule luminescence probes for sulfite/bisulfite detection in food samples. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116199] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Niu H, Tang J, Zhu X, Li Z, Zhang Y, Ye Y, Zhao Y. A three-channel fluorescent probe to image mitochondrial stress. Chem Commun (Camb) 2021; 56:7710-7713. [PMID: 32524110 DOI: 10.1039/d0cc02668a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Dual-recognition probes based on one reacting site inevitably encounter competition problems. Here, NPClA, a two-photon fluorescent probe based on a dual-site response for SO2/HOCl, was developed and applied in imaging mitochondrial stress.
Collapse
Affiliation(s)
- Huawei Niu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China. and College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471000, China
| | - Jun Tang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Xiaofei Zhu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Zipeng Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Yongru Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Yong Ye
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Yufen Zhao
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China. and Institute of Drug Discovery Technology, Ningbo University, Ningbo, 450052, China
| |
Collapse
|
33
|
Jiang WL, Wang WX, Mao GJ, Yan L, Du Y, Li Y, Li CY. Construction of NIR and Ratiometric Fluorescent Probe for Monitoring Carbon Monoxide under Oxidative Stress in Zebrafish. Anal Chem 2021; 93:2510-2518. [DOI: 10.1021/acs.analchem.0c04537] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wen-Li Jiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Wen-Xin Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Guo-Jiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Ling Yan
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Yan Du
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Yongfei Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, P. R. China
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| |
Collapse
|
34
|
Liang X, Huo Y, Yan J, Huang L, Lin W. The development of a highly selective fluorescent probe for the rapid detection of HClO in living cells and zebrafish. NEW J CHEM 2021. [DOI: 10.1039/d1nj00891a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new turn-on fluorescent probe, BM-HA, for the rapid detection of HClO in living cells and zebrafish is proposed, and DFT/TDDFT calculations provide insights into the optical properties of the BM-HA probe.
Collapse
Affiliation(s)
- Xing Liang
- Guangxi Key Laboratory of Electrochemical Energy Materials
- Institute of Optical Materials and Chemical Biology
- School of Chemistry and Chemical Engineering, Guangxi University
- Nanning
- P. R. China
| | - Yonghui Huo
- Guangxi Key Laboratory of Electrochemical Energy Materials
- Institute of Optical Materials and Chemical Biology
- School of Chemistry and Chemical Engineering, Guangxi University
- Nanning
- P. R. China
| | - Jun Yan
- Guangxi Key Laboratory of Electrochemical Energy Materials
- Institute of Optical Materials and Chemical Biology
- School of Chemistry and Chemical Engineering, Guangxi University
- Nanning
- P. R. China
| | - Ling Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials
- Institute of Optical Materials and Chemical Biology
- School of Chemistry and Chemical Engineering, Guangxi University
- Nanning
- P. R. China
| | - Weiying Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials
- Institute of Optical Materials and Chemical Biology
- School of Chemistry and Chemical Engineering, Guangxi University
- Nanning
- P. R. China
| |
Collapse
|
35
|
Ma S, Chen G, Xu J, Liu Y, Li G, Chen T, Li Y, James TD. Current strategies for the development of fluorescence-based molecular probes for visualizing the enzymes and proteins associated with Alzheimer’s disease. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213553] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Ma C, Zhong G, Zhao Y, Zhang P, Fu Y, Shen B. Recent development of synthetic probes for detection of hypochlorous acid/hypochlorite. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118545. [PMID: 32521447 DOI: 10.1016/j.saa.2020.118545] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/23/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Hypochlorous acid/hypochlorite (HOCl/OCl-), as one of the most important reactive oxygen species (ROS), plays an important role in various physiological and pathological processes. Nonproperly located or abnormal concentration of OCl-, however, is associated with many diseases. Thus, developing the fluorescent probe for detecting OCl- is of great significance. To this end, in last decade, many fluorescent probes have been developed and applied for detecting HOCl/OCl- in vitro and in vivo. Despite a great progress has achieved, the development and application of near-infrared fluorescent HOCl/OCl- probe still have some challenges. For example, highly specific and sensitive NIR fluorescent HOCl/OCl- probes applied in endogenous OCl- detection and subcellular organelle bioimaging. In this review, we summarized the representative cases of HOCl/OCl- probes with properties that mentioned above. The discussion contains design strategies, detection mechanisms, as well as applications in bioimaging.
Collapse
Affiliation(s)
- Chenggong Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Guoyan Zhong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Yu Zhao
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, United States
| | - Ping Zhang
- "Nanjing Normal University-Zhejiang Kingsun Eco-pack" Union Laboratory, Xianju, Zhejiang 317300, China
| | - Yongqian Fu
- "Nanjing Normal University-Zhejiang Kingsun Eco-pack" Union Laboratory, Xianju, Zhejiang 317300, China; School of Life Science, Taizhou University, Jiaojiang, Zhejiang 318000, China
| | - Baoxing Shen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
37
|
Yu C, Qin D, Jiang X, Zheng X, Deng B. N-doped carbon quantum dots from osmanthus fragrans as a novel off-on fluorescent nanosensor for highly sensitive detection of quercetin and aluminium ion, and cell imaging. J Pharm Biomed Anal 2020; 192:113673. [PMID: 33120313 DOI: 10.1016/j.jpba.2020.113673] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/31/2020] [Accepted: 10/03/2020] [Indexed: 01/23/2023]
Abstract
In this work, fluorescent N-doped carbon quantum dots (N-CQDs) have been synthesized by simple hydrothermal heating of natural osmanthus fragrans, without any toxic ingredients or surface chemical modifications. The N-CQDs possess a high quantum yield of 21.9 %, outstanding blue fluorescence, good water dispersity, and excellent optical stability. Because the favorable inner filter effect (IFE) between N-CQDs and quercetin (QT) occurs, the addition of QT to N-CQDs can cause their fluorescence quenching. When Al3+ was added to the N-CQDs/QT system solution, it was found that the inhibition of IFE leads to the fluorescence intensity of N-CQDs/QT system enhancement by virtue of a specific binding of QT to aluminum ion (Al3+). Therefore, we used the N-CQDs as a novel off-on fluorescent nanosensor to detect QT and Al3+. Under optimal conditions, the fluorescent nanosensor can detect QT within the wide linear response in the range of 0.003-80 μmol/L with as low as 1 nmol/L detection limit. For the detection of Al3+, the N-CQDs/QT system showed linearity response toward Al3+ in a range of 0.1∼100 μmol/L and the limit of detection was found at 26 nmol/L. In addition, N-CQDs have been successfully used to efficient quantification QT in human plasma and monitor Al3+ in serum samples. Noteworthy, the N-CQDs demonstrated low toxicity toward T24 cells, which realized sensing QT and Al3+ in the living cells.
Collapse
Affiliation(s)
- Chunhe Yu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Dongmiao Qin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xiaohua Jiang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xiangfei Zheng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Biyang Deng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
38
|
Sadeghpour SD, Karimi F, Alizadeh H. Predictive and fluorescent nanosensing experimental methods for evaluating anthrax protective antigen and lethal factor interactions for therapeutic applications. Int J Biol Macromol 2020; 160:1158-1167. [DOI: 10.1016/j.ijbiomac.2020.05.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 10/24/2022]
|
39
|
Rational design of a far-red fluorescent probe for endogenous biothiol imbalance induced by hydrogen peroxide in living cells and mice. Bioorg Chem 2020; 103:104173. [DOI: 10.1016/j.bioorg.2020.104173] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/14/2020] [Accepted: 08/04/2020] [Indexed: 01/08/2023]
|
40
|
Niu H, Zhang Y, Tang J, Zhu X, Ye Y, Zhao Y. A bifunctional fluorescent sensor for CCCP-induced cancer cell apoptosis imaging. Chem Commun (Camb) 2020; 56:12423-12426. [PMID: 32936131 DOI: 10.1039/d0cc04200e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The detailed mechanism and the extent of pH/SO2 changes during apoptosis remain unknown. The developed sensor NPCF for SO2 and pH dual detection illustrates that SO2 can reduce the inflammation caused by LPS and the acidification of the environment. The levels of SO2 and pH change during carbonyl cyanide m-chlorophenylhydrazone (CCCP)-induced apoptosis.
Collapse
Affiliation(s)
- Huawei Niu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | | | | | | | | | | |
Collapse
|
41
|
Jiang Q, Wang Z, Li M, Song J, Yang Y, Xu X, Xu H, Wang S. A novel dual-response fluorescent probe based on nopinone for discriminative detection of hydrazine and bisulfate from different emission channels. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Synthesis of hemicellulose/deep eutectic solvent based carbon quantum dots for ultrasensitive detection of Ag+ and L-cysteine with “off-on” pattern. Int J Biol Macromol 2020; 153:412-420. [DOI: 10.1016/j.ijbiomac.2020.03.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 11/21/2022]
|
43
|
Liu H, Zhang H, Luo J, Peng J, An B, Qiao Z, Wei N, Zhang Y, Zhu W. Highly Efficient Cell Membrane Tracker Based on a Solvatochromic Dye with Near-Infrared Emission. ACS OMEGA 2020; 5:11829-11835. [PMID: 32478274 PMCID: PMC7254808 DOI: 10.1021/acsomega.0c01416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
The cell membrane is composed of a phospholipid bilayer with embedded proteins and maintains cell homeostasis through dynamic changes. An abnormal cell membrane shape could be a sign of unhealthy cells. Probes for subcellular fluorescence imaging that can identify the abnormal plasma membrane and record the dynamic changes are needed. Based on a solvatochromic dye with a near-infrared emission strategy, the amphipathic molecule (E)-2,2'-((4-(2-(4-(dicyanomethylene)-4H-chromen-2-yl)vinyl)phenyl)azanediyl)bis(ethane-1-sulfonic acid) (MRL) contained a hydrophilic sulfo group and a hydrophobic chromone group, which was designed and synthesized for staining the cell membrane and monitoring the morphology of the membranes under different conditions. MRL exhibited an excellent photostability and low cytotoxicity; when cells were incubated with MRL, cell membranes were specifically labeled. MRL is capable of long-term monitoring of the morphological changes of cell membrane.
Collapse
|
44
|
Developing a ratiometric two-photon probe with baseline resolved emissions by through band energy transfer strategy: Tracking mitochondrial SO2 during neuroinflammation. Biomaterials 2020; 241:119910. [DOI: 10.1016/j.biomaterials.2020.119910] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/15/2020] [Accepted: 02/22/2020] [Indexed: 11/20/2022]
|
45
|
Antunes AH, Faria FR, Mota JF, Santiago MF, Kogawa AC, Rezende KR. Bioanalytical method by HPLC-FLD for curcumin analysis in supplemented athletes. Saudi Pharm J 2020; 28:599-606. [PMID: 32435141 PMCID: PMC7229331 DOI: 10.1016/j.jsps.2020.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/29/2020] [Indexed: 11/26/2022] Open
Abstract
In sports, curcumin, a substance derived from the rhizome of Curcuma longa (turmeric) plant with antioxidant effect 8 times greater than vitamin E, has attracted the attention of scientists because of its potent antioxidant action, since in athletes subjected to intense exercise the—endogenous mechanisms of neutralization of reactive species are saturated. However, the pharmacokinetic characteristics of curcumin do not favor its medicinal use due to its low absorption, accelerated metabolism and rapid systemic elimination. Thus, the determination of plasma levels in supplemented patients is a crucial step in their pharmacodynamic evaluation. Therefore, the objective of this work was to develop and validate an analytical method by HPLC-FLD for curcumin evaluation in plasma of supplemented athletes. Luna column (C18; 150 × 4 mm; 3 µm), acetonitrile: acetic acid pH 3.2 (45:55 to 60:40) as mobile phase, flow rate of 1 mL min−1, excitation at 429/285 nm and emission at 529 nm and injection of 10 µL were the chromatographic conditions used. Plasma samples were extracted using ethylacetate and methanol (95: 5, 500 µL) and estradiol (30 µg mL−1) as internal standard, with subsequent stirring (3 min) and centrifugation (8 min) (triple extraction). The organic fraction was evaporated under N2 (20 min) and the dried residue reconstituted in acetonitrile. The method was linear between 44 and 261 ng mL−1, showing intra-day (2.05.6%) and inter-day (4.0–5.1%) precision with accuracy and selectiveness (curcumin tR = 8.7 min and internal standard tR = 13.9 min with relative recovery of 83.2%). So, it can be successfully used for curcumin evaluation in plasma samples from supplemented athletes, as well as being an alternative and advantageous method to UV–Vis and MS/MS in bioavailability studies.
Collapse
Affiliation(s)
- Alisson Henrique Antunes
- Laboratório de Biofarmácia e Farmacocinética (BioPk), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Flávia Rasmussen Faria
- Laboratório de Investigação em Nutrição Clínica e Esportiva (LABINCE), Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - João Felipe Mota
- Laboratório de Investigação em Nutrição Clínica e Esportiva (LABINCE), Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Mariângela Fontes Santiago
- Laboratório de Enzimologia e Materiais Bioativos (LENZIBIO), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Ana Carolina Kogawa
- Laboratório de Biofarmácia e Farmacocinética (BioPk), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Kênnia Rocha Rezende
- Laboratório de Biofarmácia e Farmacocinética (BioPk), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
46
|
Gu J, Li X, Zhou G, Liu W, Gao J, Wang Q. A novel self-calibrating strategy for real time monitoring of formaldehyde both in solution and solid phase. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121883. [PMID: 31881494 DOI: 10.1016/j.jhazmat.2019.121883] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/17/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Formaldehyde (FA) is a chemical substance with tremendously noxious feature for human health and it causes serious damages to living organisms. The recognition of formaldehyde in the form of fluorescent signals has been extensively explored by using a few molecular scaffolds in buffer mediums. In particular, the study for sensing of formaldehyde both in solution and solid state has generated considerable interests. Herein, a new ratiometric fluorescent probe 1-(5-(9-phenyl-9H-carbazol-3-yl)thiophen-2-yl)but-3-en-1-amine (SO-GJP) has been synthesized for selective detection of FA based on aza-Cope reaction. In the presence of FA from 0 to 1.3 mM, the emission band of SO-GJP varies from 393 nm to 542 nm and the detection limit has been calculated to be 1.55 μM. The entrapment of SO-GJP onto the thin layer chromatography (TLC) plate leads to the successful detection of FA with sensitive color change from white to yellow. Moreover, the response mechanism has been explained by FA-induced 2-aza-Cope rearrangement within SO-GJP and the chemical processes are supported by density functional theory, fluorescence and UV-vis spectra. The integration of responsive units based on carbazole platform can serve as one of the powerful strategies by directly converting signals at different circumstances into fluorescence.
Collapse
Affiliation(s)
- Jiapei Gu
- School of Chemistry, South China Normal University, Guangzhou, 510006, PR China
| | - Xiangqian Li
- School of Chemistry, South China Normal University, Guangzhou, 510006, PR China
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, PR China
| | - Wanqiang Liu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, PR China
| | - Jinwei Gao
- Institute for Advanced Materials, South China Academy of Advanced Optoelectronics and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Normal University, Guangzhou, 510006, PR China
| | - Qianming Wang
- School of Chemistry, South China Normal University, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, PR China.
| |
Collapse
|
47
|
Deng Z, Li F, Zhao G, Yang W, Hu Y. A mitochondrion-targeted dual-site fluorescent probe for the discriminative detection of SO32− and HSO3− in living HepG-2 cells. RSC Adv 2020; 10:26349-26357. [PMID: 35519787 PMCID: PMC9055423 DOI: 10.1039/d0ra01233e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/28/2020] [Indexed: 12/30/2022] Open
Abstract
Sulfur dioxide, known as an environmental pollutant, produced during industrial productions is also a common food additive that is permitted worldwide. In living organisms, sulfur dioxide forms hydrates of sulfite (SO2·H2O), bisulfite (HSO3−) and sulfite (SO32−) under physiological pH conditions; these three exist in a dynamic balance and play a role in maintaining redox balance, further participating in a wide range of physiological and pathological processes. On the basis of the differences in nucleophilicity between SO32− and HSO3−, for the first time, we built a mitochondrion-targeted dual-site fluorescent probe (Mito-CDTH-CHO) based on benzopyran for the highly specific detection of SO32− and HSO3− with two diverse emission channels. Mito-CDTH-CHO can discriminatively respond to the levels of HSO3− and SO32−. Besides, its advantages of low cytotoxicity, superior biocompatibility and excellent mitochondrial enrichment ability contribute to the detection and observation of the distribution of sulfur dioxide derivatives in living organisms as well as allowing further studies on the physiological functions of sulfur dioxide. Rational design and sensing mechanism of a dual-site fluorescence probe for HSO3− and SO32−.![]()
Collapse
Affiliation(s)
- Zhenmei Deng
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Fangzhao Li
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Guomin Zhao
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Wenge Yang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Yonghong Hu
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| |
Collapse
|
48
|
Li S, Wang P, Feng W, Xiang Y, Dou K, Liu Z. Simultaneous imaging of mitochondrial viscosity and hydrogen peroxide in Alzheimer's disease by a single near-infrared fluorescent probe with a large Stokes shift. Chem Commun (Camb) 2020; 56:1050-1053. [DOI: 10.1039/c9cc08267k] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Simultaneous imaging of mitochondrial viscosity and hydrogen peroxide in Alzheimer's disease by a single near-infrared fluorescent probe with a large Stokes shift.
Collapse
Affiliation(s)
- Songjiao Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- China
| | - Peipei Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- China
| | - Wenqi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- China
| | - Yunhui Xiang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- China
| | - Kun Dou
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- China
| | - Zhihong Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- China
| |
Collapse
|
49
|
Yang J, Yin C, Ma K, Yue Y, Huo F. A water soluble ratiometric fluorescent probe for targeting SO2 in mitochondria based on conjugated biquinolines. NEW J CHEM 2020. [DOI: 10.1039/d0nj04484a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the unprecedented development of SO2 fluorescent probes in the past five years, the water-solubility of these probes is still an important factor related to their practical application.
Collapse
Affiliation(s)
- Jialu Yang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education
- Institute of Molecular Science
- Shanxi University
- Taiyuan
- China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education
- Institute of Molecular Science
- Shanxi University
- Taiyuan
- China
| | - Kaiqing Ma
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education
- Institute of Molecular Science
- Shanxi University
- Taiyuan
- China
| | - Yongkang Yue
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education
- Institute of Molecular Science
- Shanxi University
- Taiyuan
- China
| | - Fangjun Huo
- Research Institute of Applied Chemistry
- Shanxi University
- Taiyuan
- China
| |
Collapse
|
50
|
Zhang T, Zhu L, Ma Y, Lin W. A near-infrared ratiometric fluorescent probe based on the CN double bond for monitoring SO2 and its application in biological imaging. Analyst 2020; 145:1910-1914. [DOI: 10.1039/c9an02322d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A near-infrared ratiometric fluorescent probe based on CN double bond was developed for monitoring SO2 and its application in biological imaging.
Collapse
Affiliation(s)
- Tiange Zhang
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Linlin Zhu
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Yanyan Ma
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| |
Collapse
|